1
|
Jacob C, Tollenaere M, Kachar H, Potier MC, De Deyn PP, Van Dam D. Exploring peripheral fluid biomarkers for early detection of Alzheimer's disease in Down syndrome: A literature review. Heliyon 2025; 11:e41445. [PMID: 39850411 PMCID: PMC11755057 DOI: 10.1016/j.heliyon.2024.e41445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/24/2024] [Accepted: 12/22/2024] [Indexed: 01/25/2025] Open
Abstract
People with Down Syndrome (DS) are at high risk of developing Alzheimer's disease dementia (AD) and cerebral amyloid angiopathy, which is a critical factor contributing to dementia in sporadic AD. Predicting and monitoring the decline and onset of dementia is a diagnostic challenge and of essence in daily care and support for people with DS. In this literature scoping review, we first summarize the different blood-based biomarkers for AD in DS. Next, we describe urine-based biomarkers for AD in DS and finally, we explore various blood-based biomarkers in the general AD population. Apart from the classic amyloid beta and Tau biomarkers, we also discuss more out-of-the-box biomarkers such as neurofilament light chain, Dual-specificity tyrosine-regulated kinase 1A, and monoaminergic biomarkers. These potential biomarkers could be a valuable addition to the established panel of fluid biomarkers.
Collapse
Affiliation(s)
- Charlotte Jacob
- Laboratory of Neurochemistry and Behaviour, Experimental Neurobiology Unit, University of Antwerp, Belgium
| | - Marleen Tollenaere
- Laboratory of Neurochemistry and Behaviour, Experimental Neurobiology Unit, University of Antwerp, Belgium
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Hanane Kachar
- Laboratory of Neurochemistry and Behaviour, Experimental Neurobiology Unit, University of Antwerp, Belgium
| | - Marie-Claude Potier
- Institut du Cerveau, Pitié-Salpêtrière Hospital, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behaviour, Experimental Neurobiology Unit, University of Antwerp, Belgium
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
- Department of Neurology and Alzheimer Center, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behaviour, Experimental Neurobiology Unit, University of Antwerp, Belgium
- Department of Neurology and Alzheimer Center, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
2
|
Rosas HD, Mercaldo ND, Hasimoglu Y, Petersen M, Lewis LR, Lai F, Powell D, Dhungana A, Demir A, Keater D, Yassa M, Brickman AM, O'Bryant S. Association of plasma neurofilament light chain with microstructural white matter changes in Down syndrome. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e70023. [PMID: 39583646 PMCID: PMC11582681 DOI: 10.1002/dad2.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 11/26/2024]
Abstract
INTRODUCTION Both micro- and macrostructural white matter (WM) abnormalities, particularly those related to axonal degeneration, are associated with cognitive decline in adults with Down syndrome (DS) prior to a diagnosis of Alzheimer disease. Neurofilament light chain (NfL) is a support protein within myelinated axons released into blood following axonal damage. In this study we investigated cross-sectional relationships between WM microstructural changes as measured by diffusion tensor imaging (DTI) and plasma NfL concentration in adults with DS without dementia. METHODS Thirty cognitively stable (CS) adults with DS underwent diffusion-weighted MRI scanning and plasma NfL measurement. DTI measures of select WM tracts were derived using automatic fiber tracking, and associations with plasma NfL were assessed using Spearman correlation coefficients. RESULTS Higher Plasma NfL was associated with greater altered diffusion measures of select tracts. DISCUSSION Early increases in plasma NfL may reflect early white matter microstructural changes prior to dementia in DS. Highlights The onset of such WM changes in DS has not yet been widely studied.WM microstructural properties correlated with plasma neurofilament light chain (NfL).NfL may reflect early, selective WM changes in adults with DS at high risk of developing AD.
Collapse
Affiliation(s)
- Herminia Diana Rosas
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Center for Neuroimaging of Aging and Neurodegenerative DiseasesMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Nathaniel David Mercaldo
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Center for Neuroimaging of Aging and Neurodegenerative DiseasesMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Yasemin Hasimoglu
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Center for Neuroimaging of Aging and Neurodegenerative DiseasesMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Melissa Petersen
- Department of Family MedicineUniversity of North Texas Health Science CenterFort WorthTexasUSA
- Institute for Translational ResearchUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Lydia R. Lewis
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Center for Neuroimaging of Aging and Neurodegenerative DiseasesMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Florence Lai
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - David Powell
- Magnetic Resonance Imaging and Spectroscopy CenterUniversity of KentuckyLexingtonKentuckyUSA
| | - Asim Dhungana
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Center for Neuroimaging of Aging and Neurodegenerative DiseasesMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Ali Demir
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Center for Neuroimaging of Aging and Neurodegenerative DiseasesMassachusetts General HospitalCharlestownMassachusettsUSA
| | - David Keater
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Michael Yassa
- Department of Psychiatry and Human BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Adam M. Brickman
- Taub Institute for Research on Alzheimer's disease and the Aging Brain Department of NeurologyVagelos College of Physicians and Surgeons, Columbia UniversityNew YorkUSA
| | - Sid O'Bryant
- Department of Family MedicineUniversity of North Texas Health Science CenterFort WorthTexasUSA
- Institute for Translational ResearchUniversity of North Texas Health Science CenterFort WorthTexasUSA
| |
Collapse
|
3
|
Edwards NC, Lao PJ, Alshikho MJ, Ericsson OM, Rizvi B, Petersen ME, O’Bryant S, Aguilar LF, Simoes S, Mapstone M, Tudorascu DL, Janelidze S, Hansson O, Handen BL, Christian BT, Lee JH, Lai F, Rosas HD, Zaman S, Lott IT, Yassa MA, Gutierrez J, Wilcock DM, Head E, Brickman AM. Cerebrovascular disease is associated with Alzheimer's plasma biomarker concentrations in adults with Down syndrome. Brain Commun 2024; 6:fcae331. [PMID: 39403075 PMCID: PMC11472828 DOI: 10.1093/braincomms/fcae331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
By age 40 years, over 90% of adults with Down syndrome have Alzheimer's disease pathology and most progress to dementia. Despite having few systemic vascular risk factors, individuals with Down syndrome have elevated cerebrovascular disease markers that track with the clinical progression of Alzheimer's disease, suggesting a role of cerebrovascular disease that is hypothesized to be mediated by inflammatory factors. This study examined the pathways through which small vessel cerebrovascular disease contributes to Alzheimer's disease-related pathophysiology and neurodegeneration in adults with Down syndrome. One hundred eighty-five participants from the Alzheimer's Biomarkers Consortium-Down Syndrome [mean (SD) age = 45.2 (9.3) years] with available MRI and plasma biomarker data were included in this study. White matter hyperintensity (WMH) volumes were derived from T2-weighted fluid-attenuated inversion recovery MRI scans, and plasma biomarker concentrations of amyloid beta 42/40, phosphorylated tau 217, astrocytosis (glial fibrillary acidic protein) and neurodegeneration (neurofilament light chain) were measured with ultrasensitive immunoassays. We examined the bivariate relationships of WMH, amyloid beta 42/40, phosphorylated tau 217 and glial fibrillary acidic protein with age-residualized neurofilament light chain across Alzheimer's disease diagnostic groups. A series of mediation and path analyses examined statistical pathways linking WMH and Alzheimer's disease pathophysiology to promote neurodegeneration in the total sample and groups stratified by clinical diagnosis. There was a direct and indirect bidirectional effect through the glial fibrillary acidic protein of WMH on phosphorylated tau 217 concentration, which was associated with neurofilament light chain concentration in the entire sample. Amongst cognitively stable participants, WMH was directly and indirectly, through glial fibrillary acidic protein, associated with phosphorylated tau 217 concentration, and in those with mild cognitive impairment, there was a direct effect of WMH on phosphorylated tau 217 and neurofilament light chain concentrations. There were no associations of WMH with biomarker concentrations among those diagnosed with dementia. The findings from this cross-sectional study suggest that among individuals with Down syndrome, cerebrovascular disease promotes neurodegeneration by increasing astrocytosis and tau pathophysiology in the presymptomatic phases of Alzheimer's disease, but future studies will need to confirm these associations with longitudinal data. This work joins an emerging literature that implicates cerebrovascular disease and its interface with neuroinflammation as a core pathological feature of Alzheimer's disease in adults with Down syndrome.
Collapse
Affiliation(s)
- Natalie C Edwards
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
- Department of Neuroscience, Columbia University, New York City, NY 10032, USA
| | - Patrick J Lao
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - Mohamad J Alshikho
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - Olivia M Ericsson
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - Batool Rizvi
- Department of Neurobiology & Behavior, University of California, Irvine, CA 92697, USA
| | - Melissa E Petersen
- University of North Texas Health Science Center, Department of Pharmacology and Neuroscience, Fort Worth, TX 76107, USA
| | - Sid O’Bryant
- University of North Texas Health Science Center, Department of Pharmacology and Neuroscience, Fort Worth, TX 76107, USA
| | - Lisi Flores Aguilar
- Department of Pathology and Laboratory Medicine, University of California Irvine School of Medicine, University of California, Irvine, CA 92617, USA
| | - Sabrina Simoes
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - Mark Mapstone
- Department of Neurology, University of California, Irvine, CA 92697, USA
| | - Dana L Tudorascu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund 221 00, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund 221 00, Sweden
- Memory Clinic, Skåne University Hospital, Malmö 214 28, Sweden
| | - Benjamin L Handen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Joseph H Lee
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - Florence Lai
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - H Diana Rosas
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Center for Neuroimaging of Aging and Neurodegenerative Diseases, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
| | - Shahid Zaman
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Ira T Lott
- Department of Pediatrics and Neurology, School of Medicine, University of California, Irvine, CA 92868, USA
| | - Michael A Yassa
- Department of Neurobiology & Behavior, University of California, Irvine, CA 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697, USA
| | - José Gutierrez
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| | - Donna M Wilcock
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California Irvine School of Medicine, University of California, Irvine, CA 92617, USA
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY 10032, USA
| |
Collapse
|
4
|
Liou JJ, Lou J, Nakagiri J, Yong W, Hom CL, Doran EW, Totoiu M, Lott I, Mapstone M, Keator DB, Brickman AM, Wright S, Nelson B, Lai F, Xicota L, Dang LHT, Li J, Santini T, Mettenburg JM, Ikonomovic MD, Kofler J, Ibrahim T, Head E. A Neuropathology Case Report of a Woman with Down Syndrome who Remained Cognitively Stable. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.01.24308050. [PMID: 38883742 PMCID: PMC11177914 DOI: 10.1101/2024.06.01.24308050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
In this neuropathology case report, we present findings from an individual with Down syndrome (DS) who remained cognitively stable despite Alzheimer's disease (AD) neuropathology. Clinical assessments, fluid biomarkers, neuroimaging, and neuropathological examinations were conducted to characterize her condition. Notably, her ApoE genotype was E2/3, which is associated with a decreased risk of dementia. Neuroimaging revealed stable yet elevated amyloid profiles and moderately elevated tau levels, while neuropathology indicated intermediate AD neuropathologic change with Lewy body pathology and cerebrovascular pathology. Despite the presence of AD pathology, the participant demonstrated intact cognitive functioning, potentially attributed to factors such as genetic variations, cognitive resilience, and environmental enrichment. The findings suggest a dissociation between clinical symptoms and neuropathological changes, emphasizing the complexity of AD progression in DS. Further investigation into factors influencing cognitive resilience in individuals with DS, including comorbidities and social functioning, is warranted. Understanding the mechanisms underlying cognitive stability in DS could offer insights into resilience to AD neuropathology in people with DS and in the general population and inform future interventions.
Collapse
|
5
|
Sukreet S, Rafii MS, Rissman RA. From understanding to action: Exploring molecular connections of Down syndrome to Alzheimer's disease for targeted therapeutic approach. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12580. [PMID: 38623383 PMCID: PMC11016820 DOI: 10.1002/dad2.12580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 04/17/2024]
Abstract
Down syndrome (DS) is caused by a third copy of chromosome 21. Alzheimer's disease (AD) is a neurodegenerative condition characterized by the deposition of amyloid-beta (Aβ) plaques and neurofibrillary tangles in the brain. Both disorders have elevated Aβ, tau, dysregulated immune response, and inflammation. In people with DS, Hsa21 genes like APP and DYRK1A are overexpressed, causing an accumulation of amyloid and neurofibrillary tangles, and potentially contributing to an increased risk of AD. As a result, people with DS are a key demographic for research into AD therapeutics and prevention. The molecular links between DS and AD shed insights into the underlying causes of both diseases and highlight potential therapeutic targets. Also, using biomarkers for early diagnosis and treatment monitoring is an active area of research, and genetic screening for high-risk individuals may enable earlier intervention. Finally, the fundamental mechanistic parallels between DS and AD emphasize the necessity for continued research into effective treatments and prevention measures for DS patients at risk for AD. Genetic screening with customized therapy approaches may help the DS population in current clinical studies and future biomarkers.
Collapse
Affiliation(s)
- Sonal Sukreet
- Department of NeurosciencesUniversity of California‐San DiegoLa JollaCaliforniaUSA
| | - Michael S. Rafii
- Department of Neurology, Alzheimer's Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Robert A. Rissman
- Department of NeurosciencesUniversity of California‐San DiegoLa JollaCaliforniaUSA
- Department Physiology and Neuroscience, Alzheimer’s Therapeutic Research InstituteKeck School of Medicine of the University of Southern CaliforniaSan DiegoCaliforniaUSA
| |
Collapse
|
6
|
Portugal Barron D, Guo Z. The supersaturation perspective on the amyloid hypothesis. Chem Sci 2023; 15:46-54. [PMID: 38131088 PMCID: PMC10731913 DOI: 10.1039/d3sc03981a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/27/2023] [Indexed: 12/23/2023] Open
Abstract
Development of therapeutic interventions for Alzheimer's over the past three decades has been guided by the amyloid hypothesis, which puts Aβ deposition as the initiating event of a pathogenic cascade leading to dementia. In the current form, the amyloid hypothesis lacks a comprehensive framework that considers the complex nature of Aβ aggregation. The explanation of how Aβ deposition leads to downstream pathology, and how reducing Aβ plaque load via anti-amyloid therapy can lead to improvement in cognition remains insufficient. In this perspective we integrate the concept of Aβ supersaturation into the amyloid hypothesis, laying out a framework for the mechanistic understanding and therapeutic intervention of Alzheimer's disease. We discuss the important distinction between in vitro and in vivo patterns of Aβ aggregation, the impact of different aggregation stages on therapeutic strategies, and how future investigations could integrate this concept in order to produce a more thorough understanding and better treatment for Alzheimer's and other amyloid-related disorders.
Collapse
Affiliation(s)
- Diana Portugal Barron
- Department of Neurology, Brain Research Institute, Mary S. Easton Center for Alzheimer's Research and Care, David Geffen School of Medicine, University of California, Los Angeles Los Angeles CA USA
| | - Zhefeng Guo
- Department of Neurology, Brain Research Institute, Mary S. Easton Center for Alzheimer's Research and Care, David Geffen School of Medicine, University of California, Los Angeles Los Angeles CA USA
| |
Collapse
|
7
|
Stern AM, Van Pelt KL, Liu L, Anderson AK, Ostaszewski B, Mapstone M, O’Bryant S, Petersen ME, Christian BT, Handen BL, Selkoe DJ, Schmitt F, Head E. Plasma NT1-tau and Aβ 42 correlate with age and cognitive function in two large Down syndrome cohorts. Alzheimers Dement 2023; 19:5755-5764. [PMID: 37438872 PMCID: PMC10784408 DOI: 10.1002/alz.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/14/2023]
Abstract
INTRODUCTION People with Down syndrome (DS) often develop Alzheimer's disease (AD). Here, we asked whether ultrasensitive plasma immunoassays for a tau N-terminal fragment (NT1-tau) and Aβ isoforms predict cognitive impairment. METHODS Plasma NT1-tau, Aβ37 , Aβ40 , and Aβ42 levels were measured in a longitudinal discovery cohort (N = 85 participants, 220 samples) and a cross-sectional validation cohort (N = 239). We developed linear models and predicted values in the validation cohort. RESULTS Discovery cohort linear mixed models for NT1-tau, Aβ42 , and Aβ37:42 were significant for age; there was no main effect of time. In cross-sectional models, NT1-tau increased and Aβ42 decreased with age. NT1-tau predicted cognitive and functional scores. The discovery cohort linear model for NT1-tau predicted levels in the validation cohort. DISCUSSION NT1-tau correlates with age and worse cognition in DS. Further validation of NT1-tau and other plasma biomarkers of AD neuropathology in DS cohorts is important for clinical utility.
Collapse
Affiliation(s)
- Andrew M. Stern
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Kathryn L. Van Pelt
- Sanders-Brown Center for Aging, Department of Neurology, University of Kentucky, Lexington, KY 40508
| | - Lei Liu
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Amirah K. Anderson
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Beth Ostaszewski
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Mark Mapstone
- Department of Neurology, University of California, Irvine, Irvine, CA 92868
| | - Sid O’Bryant
- University of North Texas Health Science Center, Fort Worth, TX 76107
| | | | | | - Benjamin L. Handen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213
| | - Dennis J. Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Frederick Schmitt
- Sanders-Brown Center for Aging, Department of Neurology, University of Kentucky, Lexington, KY 40508
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697
| | | |
Collapse
|
8
|
Edwards NC, Lao PJ, Alshikho MJ, Ericsson OM, Rizvi B, Petersen ME, O’Bryant S, Flores-Aguilar L, Simoes S, Mapstone M, Tudorascu DL, Janelidze S, Hansson O, Handen BL, Christian BT, Lee JH, Lai F, Rosas HD, Zaman S, Lott IT, Yassa MA, Gutierrez J, Wilcock DM, Head E, Brickman AM. Cerebrovascular disease drives Alzheimer plasma biomarker concentrations in adults with Down syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.28.23298693. [PMID: 38076904 PMCID: PMC10705616 DOI: 10.1101/2023.11.28.23298693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Importance By age 40 years over 90% of adults with Down syndrome (DS) have Alzheimer's disease (AD) pathology and most progress to dementia. Despite having few systemic vascular risk factors, individuals with DS have elevated cerebrovascular disease (CVD) markers that track with the clinical progression of AD, suggesting a role for CVD that is hypothesized to be mediated by inflammatory factors. Objective To examine the pathways through which small vessel CVD contributes to AD-related pathophysiology and neurodegeneration in adults with DS. Design Cross sectional analysis of neuroimaging, plasma, and clinical data. Setting Participants were enrolled in Alzheimer's Biomarker Consortium - Down Syndrome (ABC-DS), a multisite study of AD in adults with DS. Participants One hundred eighty-five participants (mean [SD] age=45.2 [9.3] years) with available MRI and plasma biomarker data were included. White matter hyperintensity (WMH) volumes were derived from T2-weighted FLAIR MRI scans and plasma biomarker concentrations of amyloid beta (Aβ42/Aβ40), phosphorylated tau (p-tau217), astrocytosis (glial fibrillary acidic protein, GFAP), and neurodegeneration (neurofilament light chain, NfL) were measured with ultrasensitive immunoassays. Main Outcomes and Measures We examined the bivariate relationships of WMH, Aβ42/Aβ40, p-tau217, and GFAP with age-residualized NfL across AD diagnostic groups. A series of mediation and path analyses examined causal pathways linking WMH and AD pathophysiology to promote neurodegeneration in the total sample and groups stratified by clinical diagnosis. Results There was a direct and indirect bidirectional effect through GFAP of WMH on p-tau217 concentration, which was associated with NfL concentration in the entire sample. Among cognitively stable participants, WMH was directly and indirectly, through GFAP, associated with p-tau217 concentration, and in those with MCI, there was a direct effect of WMH on p-tau217 and NfL concentrations. There were no associations of WMH with biomarker concentrations among those diagnosed with dementia. Conclusions and Relevance The findings suggest that among individuals with DS, CVD promotes neurodegeneration by increasing astrocytosis and tau pathophysiology in the presymptomatic phases of AD. This work joins an emerging literature that implicates CVD and its interface with neuroinflammation as a core pathological feature of AD in adults with DS.
Collapse
Affiliation(s)
- Natalie C. Edwards
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
- Department of Neuroscience, Columbia University, New York City, NY, USA
| | - Patrick J. Lao
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Mohamad J. Alshikho
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Olivia M. Ericsson
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Batool Rizvi
- Department of Neurobiology & Behavior, University of California, Irvine, CA, USA
| | | | - Sid O’Bryant
- University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Lisi Flores-Aguilar
- Department of Pathology and Laboratory Medicine, University of California Irvine School of Medicine, University of California, Irvine, CA, USA
| | - Sabrina Simoes
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Mark Mapstone
- Department of Neurology, University of California, Irvine, CA, USA
| | - Dana L. Tudorascu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | | | | | - Joseph H. Lee
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Florence Lai
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - H Diana Rosas
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Center for Neuroimaging of Aging and neurodegenerative Diseases, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Shahid Zaman
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Ira T. Lott
- Department of Pediatrics and Neurology, School of Medicine, University of California, Irvine, CA, USA
| | - Michael A. Yassa
- Department of Neurobiology & Behavior, University of California, Irvine, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA
| | - José Gutierrez
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Donna M. Wilcock
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California Irvine School of Medicine, University of California, Irvine, CA, USA
| | - Adam M. Brickman
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York City, NY, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| |
Collapse
|
9
|
Chen J, Zhao X, Zhang W, Zhang T, Wu S, Shao J, Shi FD. Reference intervals for plasma amyloid-β, total tau, and phosphorylated tau181 in healthy elderly Chinese individuals without cognitive impairment. Alzheimers Res Ther 2023; 15:100. [PMID: 37237388 DOI: 10.1186/s13195-023-01246-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Plasma amyloid-β (Aβ) peptides and tau proteins are promising biomarkers of Alzheimer's disease (AD), not only for predicting Aβ and tau pathology but also for differentiating AD from other neurodegenerative diseases. However, reference intervals for plasma biomarkers of AD in healthy elderly Chinese individuals have not yet been established. METHODS Biomarkers of AD were measured using single-molecule array (Simoa) assays in plasma samples from 193 healthy, cognitively unimpaired Chinese individuals aged 50-89 years. The 95% reference intervals for plasma Aβ42, Aβ40, t-tau, p-tau181, and derived ratios were calculated by using log-transformed parametric methods. RESULTS Plasma Aβ42, Aβ40, and p-tau181 levels were positively correlated with age, while the Aβ42/Aβ40 ratio was negatively correlated with age. The 95% reference intervals for plasma Aβ42 and Aβ40 were 2.72-11.09 pg/mL and 61.4-303.9 pg/mL, respectively, and the 95% reference intervals for plasma t-tau and p-tau181 were 0.20-3.12 pg/mL and 0.49-3.29 pg/mL, respectively. The 95% reference intervals for the Aβ42/Aβ40 ratio, p-tau181/t-tau ratio, and p-tau181/Aβ42 ratio were 0.022-0.064, 0.38-6.34, and 0.05-0.55, respectively. CONCLUSION Reference intervals for plasma biomarkers of AD may assist clinicians in making accurate clinical decisions.
Collapse
Affiliation(s)
- Jingshan Chen
- Department of Neurology, Institute of Neuroimmunology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xue Zhao
- Department of Neurology, Institute of Neuroimmunology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wenyan Zhang
- Department of Neurology, Institute of Neuroimmunology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Tianxiang Zhang
- Department of Neurology, Institute of Neuroimmunology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Siting Wu
- Department of Neurology, Institute of Neuroimmunology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jinghao Shao
- Department of Neurology, Institute of Neuroimmunology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Fu-Dong Shi
- Department of Neurology, Institute of Neuroimmunology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Division of Neuroimmunology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, 100070, China.
| |
Collapse
|
10
|
Stern AM, Van Pelt KL, Liu L, Anderson AK, Ostaszewski B, Mapstone M, O'Bryant S, Petersen ME, Christian BT, Handen BL, Selkoe DJ, Schmitt F, Head E. Plasma NT1-tau and Aβ 42 correlate with age and cognitive function in two large Down syndrome cohorts. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.10.23287109. [PMID: 36945447 PMCID: PMC10029060 DOI: 10.1101/2023.03.10.23287109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Introduction People with Down syndrome (DS) often develop Alzheimer disease (AD). Here we asked whether ultrasensitive plasma immunoassays for a tau N-terminal fragment (NT1-tau) and Aβ isoforms predict cognitive impairment. Methods Plasma NT1-tau, Aβ 37 , Aβ 40 , and Aβ 42 levels were measured in a longitudinal discovery cohort (N = 85 participants, 220 samples) and a cross-sectional validation cohort (N = 239). We developed linear models and predicted values in the validation cohort. Results Linear mixed models for NT1-tau, Aβ 42, and Aβ 37:42 were significant for age, there was no main effect of time in the discovery cohort. In cross-sectional models, NT1-tau and Aβ 42 increased with age. NT1-tau predicted DLD scores. The discovery cohort linear model for NT1-tau predicted NT1-tau levels in the validation cohort. Discussion NT1-tau correlates with age and worse cognition in DS. Further validation of NT1-tau and other plasma biomarkers of AD neuropathology in DS cohorts is important for clinical utility.
Collapse
|
11
|
Araya P, Kinning KT, Coughlan C, Smith KP, Granrath RE, Enriquez-Estrada BA, Worek K, Sullivan KD, Rachubinski AL, Wolter-Warmerdam K, Hickey F, Galbraith MD, Potter H, Espinosa JM. IGF1 deficiency integrates stunted growth and neurodegeneration in Down syndrome. Cell Rep 2022; 41:111883. [PMID: 36577365 PMCID: PMC9876612 DOI: 10.1016/j.celrep.2022.111883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/30/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022] Open
Abstract
Down syndrome (DS), the genetic condition caused by trisomy 21 (T21), is characterized by stunted growth, cognitive impairment, and increased risk of diverse neurological conditions. Although signs of lifelong neurodegeneration are well documented in DS, the mechanisms underlying this phenotype await elucidation. Here we report a multi-omics analysis of neurodegeneration and neuroinflammation biomarkers, plasma proteomics, and immune profiling in a diverse cohort of more than 400 research participants. We identified depletion of insulin growth factor 1 (IGF1), a master regulator of growth and brain development, as the top biosignature associated with neurodegeneration in DS. Individuals with T21 display chronic IGF1 deficiency downstream of growth hormone production, associated with a specific inflammatory profile involving elevated tumor necrosis factor alpha (TNF-α). Shorter children with DS show stronger IGF1 deficiency, elevated biomarkers of neurodegeneration, and increased prevalence of autism and other conditions. These results point to disruption of IGF1 signaling as a potential contributor to stunted growth and neurodegeneration in DS.
Collapse
Affiliation(s)
- Paula Araya
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kohl T Kinning
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christina Coughlan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Alzheimer's and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Keith P Smith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ross E Granrath
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Belinda A Enriquez-Estrada
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kayleigh Worek
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kelly D Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Angela L Rachubinski
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Section of Developmental Pediatrics, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristine Wolter-Warmerdam
- Sie Center for Down Syndrome, Department of Pediatrics, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Francis Hickey
- Sie Center for Down Syndrome, Department of Pediatrics, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Matthew D Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Huntington Potter
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Alzheimer's and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joaquin M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
12
|
Huang LC, Chen MH, Chuu CP, Li KY, Hour TC, Yang YH. Plasma biomarkers and their correlation in adult children of parents with Alzheimer’s disease. Front Aging Neurosci 2022; 14:977515. [PMID: 36110426 PMCID: PMC9468332 DOI: 10.3389/fnagi.2022.977515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/02/2022] [Indexed: 11/22/2022] Open
Abstract
Family history (FH) of late-onset Alzheimer’s disease (AD) is associated with changes in several cerebrospinal fluid (CSF) biomarkers in cognitively normal individuals. However, potential changes in plasma biomarkers remain unknown. This study aimed to evaluate potential plasma biomarkers and their correlation in cognitively normal adult children (AC) and to compare this data with their AD parents and unrelated non-demented controls (NC). Participants with dementia due to AD, their AC and NC were recruited. Plasma samples were assessed for amyloid beta (Aβ)1–42, Aβ1–40, total tau (T-tau) and phosphorylated tau (P-tau). Kruskal–Wallis test was used for the comparison of this data between the three groups. Spearman rank correlation was used for evaluation of the correlations between Aβ1–40 and Aβ1–42, and T-tau and P-tau in the AD and AC groups. A total of 99 subjects completed the assessment (30 had AD; 38 were AC group; and 31 were NC). Compared with the NC group, there were significantly higher levels of Aβ1–40, P-tau, and P-tau/T-tau ratio, and lower levels of Aβ1–42 and Aβ1–42/Aβ1–40 ratio in the AD and AC groups. The correlation between the level of Aβ1–42 and Aβ1–40 and level of T-tau and P-tau was only observed in the AC but not in the AD group. AC of AD parents demonstrate some indicators of AD like their parents. Disruption to the correlation between Aβ and tau in AD may be a biomarker for the development of AD in AC, which should be examined in a longitudinal cohort.
Collapse
Affiliation(s)
- Ling-Chun Huang
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Ming-Hui Chen
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Kuan-Ying Li
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| | - Tzyh-Chyuan Hour
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung City, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Yuan-Han Yang
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung City, Taiwan
| |
Collapse
|
13
|
Álvarez-Sánchez L, Peña-Bautista C, Baquero M, Cháfer-Pericás C. Novel Ultrasensitive Detection Technologies for the Identification of Early and Minimally Invasive Alzheimer's Disease Blood Biomarkers. J Alzheimers Dis 2022; 86:1337-1369. [PMID: 35213367 DOI: 10.3233/jad-215093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Single molecule array (SIMOA) and other ultrasensitive detection technologies have allowed the determination of blood-based biomarkers of Alzheimer's disease (AD) for diagnosis and monitoring, thereby opening up a promising field of research. OBJECTIVE To review the published bibliography on plasma biomarkers in AD using new ultrasensitive techniques. METHODS A systematic review of the PubMed database was carried out to identify reports on the use of blood-based ultrasensitive technology to identify biomarkers for AD. RESULTS Based on this search, 86 works were included and classified according to the biomarker determined. First, plasma amyloid-β showed satisfactory accuracy as an AD biomarker in patients with a high risk of developing dementia. Second, plasma t-Tau displayed good sensitivity in detecting different neurodegenerative diseases. Third, plasma p-Tau was highly specific for AD. Fourth, plasma NfL was highly sensitive for distinguishing between patients with neurodegenerative diseases and healthy controls. In general, the simultaneous determination of several biomarkers facilitated greater accuracy in diagnosing AD (Aβ42/Aβ40, p-Tau181/217). CONCLUSION The recent development of ultrasensitive technology allows the determination of blood-based biomarkers with high sensitivity, thus facilitating the early detection of AD through the analysis of easily obtained biological samples. In short, as a result of this knowledge, pre-symptomatic and early AD diagnosis may be possible, and the recruitment process for future clinical trials could be more precise. However, further studies are necessary to standardize levels of blood-based biomarkers in the general population and thus achieve reproducible results among different laboratories.
Collapse
Affiliation(s)
| | - Carmen Peña-Bautista
- Alzheimer Disease Research Group, Health Research Institute La Fe, Valencia, Spain
| | - Miguel Baquero
- Division of Neurology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | | |
Collapse
|
14
|
Neurogenetic disorders across the lifespan: from aberrant development to degeneration. Nat Rev Neurol 2022; 18:117-124. [PMID: 34987232 PMCID: PMC10132523 DOI: 10.1038/s41582-021-00595-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 02/08/2023]
Abstract
Intellectual disability and autism spectrum disorder (ASD) are common, and genetic testing is increasingly performed in individuals with these diagnoses to inform prognosis, refine management and provide information about recurrence risk in the family. For neurogenetic conditions associated with intellectual disability and ASD, data on natural history in adults are scarce; however, as older adults with these disorders are identified, it is becoming clear that some conditions are associated with both neurodevelopmental problems and neurodegeneration. Moreover, emerging evidence indicates that some neurogenetic conditions associated primarily with neurodegeneration also affect neurodevelopment. In this Perspective, we discuss examples of diseases that have developmental and degenerative overlap. We propose that neurogenetic disorders should be studied continually across the lifespan to understand the roles of the affected genes in brain development and maintenance, and to inform strategies for treatment.
Collapse
|
15
|
Montoliu-Gaya L, Strydom A, Blennow K, Zetterberg H, Ashton NJ. Blood Biomarkers for Alzheimer's Disease in Down Syndrome. J Clin Med 2021; 10:3639. [PMID: 34441934 PMCID: PMC8397053 DOI: 10.3390/jcm10163639] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
Epidemiological evidence suggests that by the age of 40 years, all individuals with Down syndrome (DS) have Alzheimer's disease (AD) neuropathology. Clinical diagnosis of dementia by cognitive assessment is complex in these patients due to the pre-existing and varying intellectual disability, which may mask subtle declines in cognitive functioning. Cerebrospinal fluid (CSF) and positron emission tomography (PET) biomarkers, although accurate, are expensive, invasive, and particularly challenging in such a vulnerable population. The advances in ultra-sensitive detection methods have highlighted blood biomarkers as a valuable and realistic tool for AD diagnosis. Studies with DS patients have proven the potential blood-based biomarkers for sporadic AD (amyloid-β, tau, phosphorylated tau, and neurofilament light chain) to be useful in this population. In addition, biomarkers related to other pathologies that could aggravate dementia progression-such as inflammatory dysregulation, energetic imbalance, or oxidative stress-have been explored. This review serves to provide a brief overview of the main findings from the limited neuroimaging and CSF studies, outline the current state of blood biomarkers to diagnose AD in patients with DS, discuss possible past limitations of the research, and suggest considerations for developing and validating blood-based biomarkers in the future.
Collapse
Affiliation(s)
- Laia Montoliu-Gaya
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, 431 41 Mölndal, Sweden; (K.B.); (H.Z.); (N.J.A.)
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London WC2R 2LS, UK;
- South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- London Down Syndrome Consortium (LonDowns), London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, 431 41 Mölndal, Sweden; (K.B.); (H.Z.); (N.J.A.)
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 413 45 Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, 431 41 Mölndal, Sweden; (K.B.); (H.Z.); (N.J.A.)
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 413 45 Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Nicholas James Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, 431 41 Mölndal, Sweden; (K.B.); (H.Z.); (N.J.A.)
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London SE5 9RT, UK
- NIHR Biomedical Research Centre for Mental Health, Biomedical Research Unit for Dementia at South London, Maudsley NHS Foundation, London SE5 8AF, UK
| |
Collapse
|
16
|
Fagan AM, Henson RL, Li Y, Boerwinkle AH, Xiong C, Bateman RJ, Goate A, Ances BM, Doran E, Christian BT, Lai F, Rosas HD, Schupf N, Krinsky-McHale S, Silverman W, Lee JH, Klunk WE, Handen BL, Allegri RF, Chhatwal JP, Day GS, Graff-Radford NR, Jucker M, Levin J, Martins RN, Masters CL, Mori H, Mummery CJ, Niimi Y, Ringman JM, Salloway S, Schofield PR, Shoji M, Lott IT. Comparison of CSF biomarkers in Down syndrome and autosomal dominant Alzheimer's disease: a cross-sectional study. Lancet Neurol 2021; 20:615-626. [PMID: 34302786 PMCID: PMC8496347 DOI: 10.1016/s1474-4422(21)00139-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Due to trisomy of chromosome 21 and the resultant extra copy of the amyloid precursor protein gene, nearly all adults with Down syndrome develop Alzheimer's disease pathology by the age of 40 years and are at high risk for dementia given their increased life expectancy compared with adults with Down syndrome in the past. We aimed to compare CSF biomarker patterns in Down syndrome with those of carriers of autosomal dominant Alzheimer's disease mutations to enhance our understanding of disease mechanisms in these two genetic groups at high risk for Alzheimer's disease. METHODS We did a cross-sectional study using data from adults enrolled in the Alzheimer's Biomarker Consortium-Down Syndrome (ABC-DS) study, a multisite longitudinal study of Alzheimer's disease in Down syndrome, as well as a cohort of carriers of autosomal dominant Alzheimer's disease mutations and non-carrier sibling controls enrolled in the Dominantly Inherited Alzheimer Network (DIAN) study. For ABC-DS, participants with baseline CSF, available clinical diagnosis, and apolipoprotein E genotype as of Jan 31, 2019, were included in the analysis. DIAN participants with baseline CSF, available clinical diagnosis, and apolipoprotein E genotype as of June 30, 2018, were evaluated as comparator groups. CSF samples obtained from adults with Down syndrome, similarly aged carriers of autosomal dominant Alzheimer's disease mutations, and non-carrier siblings (aged 30-61 years) were analysed for markers of amyloid β (Aβ1-40, Aβ1-42); tau phosphorylated at threonine 181-related processes; neuronal, axonal, or synaptic injury (total tau, visinin-like protein 1, neurofilament light chain [NfL], synaptosomal-associated protein 25); and astrogliosis and neuroinflammation (chitinase-3-like protein 1 [YKL-40]) via immunoassay. Biomarker concentrations were compared as a function of dementia status (asymptomatic or symptomatic), and linear regression was used to evaluate and compare the relationship between biomarker concentrations and age among groups. FINDINGS We assessed CSF samples from 341 individuals (178 [52%] women, 163 [48%] men, aged 30-61 years). Participants were adults with Down syndrome (n=41), similarly aged carriers of autosomal dominant Alzheimer's disease mutations (n=192), and non-carrier siblings (n=108). Individuals with Down syndrome had patterns of Alzheimer's disease-related CSF biomarkers remarkably similar to carriers of autosomal dominant Alzheimer's disease mutations, including reductions (all p<0·0080) in Aβ1-42 to Aβ1-40 ratio and increases in markers of phosphorylated tau-related processes; neuronal, axonal, and synaptic injury (p<0·080); and astrogliosis and neuroinflammation, with greater degrees of abnormality in individuals with dementia. Differences included overall higher concentrations of Aβ and YKL-40 (both p<0·0008) in Down syndrome and potential elevations in CSF tau (p<0·010) and NfL (p<0·0001) in the asymptomatic stage (ie, no dementia symptoms). FUNDING National Institute on Aging, Eunice Kennedy Shriver National Institute of Child Health and Human Development, German Center for Neurodegenerative Diseases, and Japan Agency for Medical Research and Development.
Collapse
Affiliation(s)
- Anne M Fagan
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA.
| | - Rachel L Henson
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Yan Li
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Anna H Boerwinkle
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Chengjie Xiong
- Division of Biostatistics, Washington University School of Medicine, St Louis, MO, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Alison Goate
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Beau M Ances
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Eric Doran
- Department of Pediatrics, UC Irvine School of Medicine, Irvine, CA, USA
| | - Bradley T Christian
- Department of Medical Physics, Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Psychiatry, Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Florence Lai
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - H Diana Rosas
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Nicole Schupf
- Department of Epidemiology, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sharon Krinsky-McHale
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Wayne Silverman
- Department of Pediatrics, UC Irvine School of Medicine, Irvine, CA, USA
| | - Joseph H Lee
- Department of Epidemiology, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin L Handen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ricardo F Allegri
- Department of Cognitive Neurology, Instituto Neurologico Fleni, Buenos Aires, Argentina
| | - Jasmeer P Chhatwal
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Gregory S Day
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, USA
| | | | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, German Center for Neurodegenerative Diseases, Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Ralph N Martins
- School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Colin L Masters
- Florey Institute, Melbourne, VIC, Australia; University of Melbourne, Melbourne, VIC, Australia
| | - Hiroshi Mori
- Department of Clinical Neuroscience, Osaka City University Medical School, Abenoku, Osaka, Japan
| | - Catherine J Mummery
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Yoshiki Niimi
- Unit for Early and Exploratory Clinical Development, University of Tokyo, Tokyo, Japan
| | - John M Ringman
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stephen Salloway
- Memory and Aging Program, Brown University, Butler Hospital, Providence, RI, USA
| | - Peter R Schofield
- Neuroscience Research Australia, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Mikio Shoji
- Geriatrics Research Institute and Hospital, Maebashi, Gunma, Japan
| | - Ira T Lott
- Department of Pediatrics, UC Irvine School of Medicine, Irvine, CA, USA
| |
Collapse
|
17
|
Martinez JL, Zammit MD, West NR, Christian BT, Bhattacharyya A. Basal Forebrain Cholinergic Neurons: Linking Down Syndrome and Alzheimer's Disease. Front Aging Neurosci 2021; 13:703876. [PMID: 34322015 PMCID: PMC8311593 DOI: 10.3389/fnagi.2021.703876] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/17/2021] [Indexed: 12/31/2022] Open
Abstract
Down syndrome (DS, trisomy 21) is characterized by intellectual impairment at birth and Alzheimer's disease (AD) pathology in middle age. As individuals with DS age, their cognitive functions decline as they develop AD pathology. The susceptibility to degeneration of a subset of neurons, known as basal forebrain cholinergic neurons (BFCNs), in DS and AD is a critical link between cognitive impairment and neurodegeneration in both disorders. BFCNs are the primary source of cholinergic innervation to the cerebral cortex and hippocampus, as well as the amygdala. They play a critical role in the processing of information related to cognitive function and are directly engaged in regulating circuits of attention and memory throughout the lifespan. Given the importance of BFCNs in attention and memory, it is not surprising that these neurons contribute to dysfunctional neuronal circuitry in DS and are vulnerable in adults with DS and AD, where their degeneration leads to memory loss and disturbance in language. BFCNs are thus a relevant cell target for therapeutics for both DS and AD but, despite some success, efforts in this area have waned. There are gaps in our knowledge of BFCN vulnerability that preclude our ability to effectively design interventions. Here, we review the role of BFCN function and degeneration in AD and DS and identify under-studied aspects of BFCN biology. The current gaps in BFCN relevant imaging studies, therapeutics, and human models limit our insight into the mechanistic vulnerability of BFCNs in individuals with DS and AD.
Collapse
Affiliation(s)
- Jose L. Martinez
- Cellular and Molecular Biology Graduate Program, University of Wisconsin, Madison, WI, United States
- Waisman Center, University of Wisconsin, Madison, WI, United States
| | - Matthew D. Zammit
- Waisman Center, University of Wisconsin, Madison, WI, United States
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Nicole R. West
- Cellular and Molecular Biology Graduate Program, University of Wisconsin, Madison, WI, United States
- Waisman Center, University of Wisconsin, Madison, WI, United States
| | - Bradley T. Christian
- Waisman Center, University of Wisconsin, Madison, WI, United States
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
- Department of Psychiatry, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin, Madison, WI, United States
- Department of Cellular and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
18
|
Aschenbrenner AJ, Baksh RA, Benejam B, Beresford‐Webb JA, Coppus A, Fortea J, Handen BL, Hartley S, Head E, Jaeger J, Levin J, Loosli SV, Rebillat A, Sacco S, Schmitt FA, Thurlow KE, Zaman S, Hassenstab J, Strydom A. Markers of early changes in cognition across cohorts of adults with Down syndrome at risk of Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12184. [PMID: 33969175 PMCID: PMC8088591 DOI: 10.1002/dad2.12184] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Down syndrome (DS), a genetic variant of early onset Alzheimer's disease (AD), lacks a suitable outcome measure for prevention trials targeting pre-dementia stages. METHODS We used cognitive test data collected in several longitudinal aging studies internationally from 312 participants with DS without dementia to identify composites that were sensitive to change over time. We then conducted additional analyses to provide support for the utility of the composites. The composites were presented to an expert panel to determine the most optimal cognitive battery based on predetermined criteria. RESULTS There were common cognitive domains across site composites, which were sensitive to early decline. The final composite consisted of memory, language/executive functioning, selective attention, orientation, and praxis tests. DISCUSSION We have identified a composite that is sensitive to early decline and thus may have utility as an outcome measure in trials to prevent or delay symptoms of AD in DS.
Collapse
Affiliation(s)
| | - R. Asaad Baksh
- Institute of Psychiatry, Psychology, and NeuroscienceDepartment of Forensic and Neurodevelopmental SciencesKing's College LondonLondonUK
- The London Down Syndrome (LonDownS) ConsortiumLondonUK
| | - Bessy Benejam
- Barcelona Down Medical CenterFundació Catalana Síndrome de DownBarcelonaSpain
| | - Jessica A. Beresford‐Webb
- Cambridge Intellectual and Developmental Disabilities Research GroupDepartment of PsychiatryUniversity of CambridgeCambridgeUK
| | - Antonia Coppus
- Department of Primary and Community CareRadboud University Medical CenterNijmegenThe Netherlands
| | - Juan Fortea
- Barcelona Down Medical CenterFundació Catalana Síndrome de DownBarcelonaSpain
- Memory Unit and Biomedical Research Institute Sant Pau (IIB Sant Pau)Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Benjamin L. Handen
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Sigan Hartley
- Department of Human Development & Family StudiesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Elizabeth Head
- Department of Pathology & Laboratory MedicineUniversity of CaliforniaIrvineCaliforniaUSA
| | - Judith Jaeger
- CognitionMetricsLLC.WilmingtonDelawareUSA
- Deptment of Psychiatry and Behavioral SciencesAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Johannes Levin
- Department of NeurologyLudwig‐Maximilians‐Universität MünchenMunichGermany
- German Center for Neurodegenerative DiseasesMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Sandra V. Loosli
- Department of NeurologyLudwig‐Maximilians‐Universität MünchenMunichGermany
| | | | | | - Frederick A. Schmitt
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Departments of NeurologyNeurosurgeryBehavioral SciencePsychologyPsychiatryUniversity of KentuckyLexingtonKentuckyUSA
| | - Kate E. Thurlow
- Institute of Psychiatry, Psychology, and NeuroscienceDepartment of Forensic and Neurodevelopmental SciencesKing's College LondonLondonUK
| | - Shahid Zaman
- Cambridge Intellectual and Developmental Disabilities Research GroupDepartment of PsychiatryUniversity of CambridgeCambridgeUK
- Cambridgeshire & Peterborough NHS Foundation TrustCambridgeUK
| | - Jason Hassenstab
- Washington University in St. Louis, Department of NeurologySt. LouisMissouriUSA
| | - Andre Strydom
- Institute of Psychiatry, Psychology, and NeuroscienceDepartment of Forensic and Neurodevelopmental SciencesKing's College LondonLondonUK
- The London Down Syndrome (LonDownS) ConsortiumLondonUK
- South London and the Maudsley NHS Foundation TrustLondonUK
| |
Collapse
|
19
|
Podracky CJ, An C, DeSousa A, Dorr BM, Walsh DM, Liu DR. Laboratory evolution of a sortase enzyme that modifies amyloid-β protein. Nat Chem Biol 2021; 17:317-325. [PMID: 33432237 PMCID: PMC7904614 DOI: 10.1038/s41589-020-00706-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 11/06/2020] [Indexed: 01/28/2023]
Abstract
Epitope-specific enzymes are powerful tools for site-specific protein modification but generally require genetic manipulation of the target protein. Here, we describe the laboratory evolution of the bacterial transpeptidase sortase A to recognize the LMVGG sequence in endogenous amyloid-β (Aβ) protein. Using a yeast display selection for covalent bond formation, we evolved a sortase variant that prefers LMVGG substrates from a starting enzyme that prefers LPESG substrates, resulting in a >1,400-fold change in substrate preference. We used this evolved sortase to label endogenous Aβ in human cerebrospinal fluid, enabling the detection of Aβ with sensitivities rivaling those of commercial assays. The evolved sortase can conjugate a hydrophilic peptide to Aβ42, greatly impeding the ability of the resulting protein to aggregate into higher-order structures. These results demonstrate laboratory evolution of epitope-specific enzymes toward endogenous targets as a strategy for site-specific protein modification without target gene manipulation and enable potential future applications of sortase-mediated labeling of Aβ peptides.
Collapse
Affiliation(s)
- Christopher J. Podracky
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, 02142,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 021383
| | - Chihui An
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 021383
| | - Alexandra DeSousa
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115
| | - Brent M. Dorr
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 021383
| | - Dominic M. Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, 02142,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 021383,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138
| |
Collapse
|
20
|
Mattsson-Carlgren N, Janelidze S, Palmqvist S, Cullen N, Svenningsson AL, Strandberg O, Mengel D, Walsh DM, Stomrud E, Dage JL, Hansson O. Longitudinal plasma p-tau217 is increased in early stages of Alzheimer's disease. Brain 2021; 143:3234-3241. [PMID: 33068398 PMCID: PMC7719022 DOI: 10.1093/brain/awaa286] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/12/2020] [Accepted: 07/02/2020] [Indexed: 11/25/2022] Open
Abstract
Plasma levels of tau phosphorylated at threonine-217 (p-tau217) is a candidate tool to monitor Alzheimer’s disease. We studied 150 cognitively unimpaired participants and 100 patients with mild cognitive impairment in the Swedish BioFINDER study. P-tau217 was measured repeatedly for up to 6 years (median three samples per person, median time from first to last sample, 4.3 years). Preclinical (amyloid-β-positive cognitively unimpaired, n = 62) and prodromal (amyloid-β-positive mild cognitive impairment, n = 49) Alzheimer’s disease had accelerated p-tau217 compared to amyloid-β-negative cognitively unimpaired (β = 0.56, P < 0.001, using linear mixed effects models) and amyloid-β-negative mild cognitive impairment patients (β = 0.67, P < 0.001), respectively. Mild cognitive impairment patients who later converted to Alzheimer’s disease dementia (n = 40) had accelerated p-tau217 compared to other mild cognitive impairment patients (β = 0.79, P < 0.001). P-tau217 did not change in amyloid-β-negative participants, or in patients with mild cognitive impairment who did not convert to Alzheimer’s disease dementia. For 80% power, 109 participants per arm were required to observe a slope reduction in amyloid-β-positive cognitively unimpaired (71 participants per arm in amyloid-β-positive mild cognitive impairment). Longitudinal increases in p-tau217 correlated with longitudinal worsening of cognition and brain atrophy. In summary, plasma p-tau217 increases during early Alzheimer’s disease and can be used to monitor disease progression.
Collapse
Affiliation(s)
- Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Nicholas Cullen
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Anna L Svenningsson
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | - David Mengel
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Erik Stomrud
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | | | - Oskar Hansson
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
21
|
Petersen ME, Rafii MS, Zhang F, Hall J, Julovich D, Ances BM, Schupf N, Krinsky-McHale SJ, Mapstone M, Silverman W, Lott I, Klunk W, Head E, Christian B, Foroud T, Lai F, Rosas HD, Zaman S, Wang MC, Tycko B, Lee JH, Handen B, Hartley S, Fortea J, O’Bryant S. Plasma Total-Tau and Neurofilament Light Chain as Diagnostic Biomarkers of Alzheimer's Disease Dementia and Mild Cognitive Impairment in Adults with Down Syndrome. J Alzheimers Dis 2021; 79:671-681. [PMID: 33337378 PMCID: PMC8273927 DOI: 10.3233/jad-201167] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The need for diagnostic biomarkers of cognitive decline is particularly important among aging adults with Down syndrome (DS). Growing empirical support has identified the utility of plasma derived biomarkers among neurotypical adults with mild cognitive impairment (MCI) and Alzheimer's disease (AD); however, the application of such biomarkers has been limited among the DS population. OBJECTIVE This study aimed to investigate the cross-sectional diagnostic performance of plasma neurofilament light chain (Nf-L) and total-tau, individually and in combination among a cohort of DS adults. METHODS Plasma samples were analyzed from n = 305 (n = 225 cognitively stable (CS); n = 44 MCI-DS; n = 36 DS-AD) participants enrolled in the Alzheimer's Biomarker Consortium -Down Syndrome. RESULTS In distinguishing DS-AD participants from CS, Nf-L alone produced an AUC of 90%, total-tau alone reached 74%, and combined reached an AUC of 86%. When age and gender were included, AUC increased to 93%. Higher values of Nf-L, total-tau, and age were all shown to be associated with increased risk for DS-AD. When distinguishing MCI-DS participants from CS, Nf-L alone produced an AUC of 65%, while total-tau alone reached 56%. A combined model with Nf-L, total-tau, age, and gender produced an AUC of 87%. Both higher values in age and total-tau were found to increase risk for MCI-DS; Nf-L levels were not associated with increased risk for MCI-DS. CONCLUSION Advanced assay techniques make total-tau and particularly Nf-L useful biomarkers of both AD pathology and clinical status in DS and have the potential to serve as outcome measures in clinical trials for future disease-modifying drugs.
Collapse
Affiliation(s)
- Melissa E. Petersen
- University of North Texas Health Science Center, Department of Family Medicine and Institute for Translational Research, 3500 Camp Bowie Blvd, Fort Worth, Texas, 76107, USA
| | - Michael S. Rafii
- Alzheimer’s Therapeutic Research Institute (ATRI), Keck School of Medicine, University of Southern California, 9860 Mesa Rim Road, San Diego, California, 92121, USA
| | - Fan Zhang
- University of North Texas Health Science Center, Department of Family Medicine and Institute for Translational Research, 3500 Camp Bowie Blvd, Fort Worth, Texas, 76107, USA
| | - James Hall
- University of North Texas Health Science Center, Institute for Translational Research and Department of Pharmacology and Neuroscience, 3500 Camp Bowie Blvd, Fort Worth, Texas, 76107, USA
| | - David Julovich
- University of North Texas Health Science Center, Institute for Translational Research and Department of Pharmacology and Neuroscience, 3500 Camp Bowie Blvd, Fort Worth, Texas, 76107, USA
| | - Beau M. Ances
- Washington University School of Medicine in St. Louis, Center for Advanced Medicine Neuroscience, 4921 Parkview Place, St. Louis, Missouri, 63110, USA
| | - Nicole Schupf
- Columbia University Irving Medical Center, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain/G.H. Sergievsky Center, 630 W 168th St, New York, New York, 10032, USA
- Columbia University, Mailman School of Public Health, Department of Epidemiology, 722 West 168th Street, New York, New York, 10032, USA
- Columbia University Irving Medical Center, Department of Neurology, Neurological Institute 710 West 168 Street, New York, New York, 10032, USA
- Columbia University Medical Center, Department of Psychiatry, 1051 Riverside Drive, New York, New York, 10032, USA
| | - Sharon J. Krinsky-McHale
- NYS Institute for Basic Research in Developmental Disabilities, Department of Psychology, 1050 Forest Hill Road, Staten Island, New York, 10314, USA
| | - Mark Mapstone
- University of California, Irvine, Department of Neurology, 839 Health Sciences Road, Irvine, California, 92697, USA
| | - Wayne Silverman
- University of California, Irvine, School of Medicine, Department of Pediatrics, 101 The City Drive, Mail Code:4482, Orange, California, 92668, USA
| | - Ira Lott
- University of California, Irvine, School of Medicine, Department of Pediatrics, 101 The City Drive, Mail Code:4482, Orange, California, 92668, USA
| | - William Klunk
- University of Pittsburgh, Department of Psychiatry, 3811 O’Hara St., Pittsburgh, Pennsylvania, 15213, USA
| | - Elizabeth Head
- University of California, Irvine, Department of Pathology, 1261 Gillespie Neuroscience Facility, Irvine, California, 92697, USA
| | - Brad Christian
- University of Wisconsin Madison, Department of Medical Physics and Psychiatry, 1500 Highland Ave, Madison, Wisconsin, 53705, USA
| | - Tatiana Foroud
- Indiana University School of Medicine, Department of Medical & Molecular Genetics, 410 W. 10 Street, Indianapolis, IN. 46202. USA
| | - Florence Lai
- Massachusetts General Hospital, Department of Neurology, Harvard Medical School, 149 13 Street, Room 10128, Charlestown, Massachusetts, 02129, USA
| | - H. Diana Rosas
- Massachusetts General Hospital, Departments of Neurology and Radiology, Harvard Medical School, 149 13 Street Room 10126, Charlestown, Massachusetts, 02129, USA
| | - Shahid Zaman
- University of Cambridge, School of Clinical Medicine, Department of Psychiatry, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Fulbourn Hospital, Cambridge, CB21 5EF, UK
| | - Mei-Cheng Wang
- Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205
| | - Benjamin Tycko
- Columbia University Irving Medical Center, Department of Pathology and Cell Biology, 630 West 168 Street, New York, NY 10032
| | - Joseph H. Lee
- Columbia University Irving Medical Center, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain/G.H. Sergievsky Center, 630 W 168th St, New York, New York, 10032, USA
| | - Benjamin Handen
- University of Pittsburgh, Department of Psychiatry, 3811 O’Hara St., Pittsburgh, Pennsylvania, 15213, USA
| | - Sigan Hartley
- University of Wisconsin, School of Human Ecology and Waisman Center, 1500 Highland Ave, Madison, WI 53705
| | - Juan Fortea
- Barcelona Down Medical Center. Fundació Catalana de Síndrome de Down. Barcelona, Spain
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sid O’Bryant
- University of North Texas Health Science Center, Institute for Translational Research and Department of Pharmacology and Neuroscience, 3500 Camp Bowie Blvd, Fort Worth, Texas, 76107, USA
| |
Collapse
|
22
|
Mengel D, Janelidze S, Glynn RJ, Liu W, Hansson O, Walsh DM. Plasma
NT1
Tau is a Specific and Early Marker of Alzheimer's Disease. Ann Neurol 2020; 88:878-892. [DOI: 10.1002/ana.25885] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 12/26/2022]
Affiliation(s)
- David Mengel
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases Brigham and Women's Hospital and Harvard Medical School Boston MA USA
- Department of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research University of Tübingen Tübingen Germany
| | - Shorena Janelidze
- Clinical Memory Research Unit, Faculty of Medicine Lund University Lund Sweden
| | - Robert J. Glynn
- Division of Preventive Medicine Brigham & Women's Hospital Boston MA USA
| | - Wen Liu
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases Brigham and Women's Hospital and Harvard Medical School Boston MA USA
| | - Oskar Hansson
- Clinical Memory Research Unit, Faculty of Medicine Lund University Lund Sweden
- Memory Clinic Skåne University Hospital Malmö Sweden
| | - Dominic M. Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases Brigham and Women's Hospital and Harvard Medical School Boston MA USA
| |
Collapse
|