1
|
Lin F, Su Y, Zhao C, Akter F, Yao S, Huang S, Shao X, Yao Y. Tackling visual impairment: emerging avenues in ophthalmology. Front Med (Lausanne) 2025; 12:1567159. [PMID: 40357281 PMCID: PMC12066777 DOI: 10.3389/fmed.2025.1567159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
Visual impairment, stemming from genetic, degenerative, and traumatic causes, affects millions globally. Recent advancements in ophthalmology present novel strategies for managing and potentially reversing these conditions. Here, we explore 10 emerging avenues-including gene therapy, stem cell therapy, advanced imaging, novel therapeutics, nanotechnology, artificial intelligence (AI) and machine learning, teleophthalmology, optogenetics, bionics, and neuro-ophthalmology-all making strides to improve diagnosis, treatment, and vision restoration. Among these, gene therapy and stem cell therapy are revolutionizing the treatment of retinal degenerative diseases, while advanced imaging technologies enable early detection and personalized care. Therapeutic advancements like anti-vascular endothelial growth factor therapies and neuroprotective agents, along with nanotechnology, have improved clinical outcomes for multiple ocular conditions. AI, especially machine learning, is enhancing diagnostic accuracy, facilitating early detection, and personalized treatment strategies, particularly when integrated with advanced imaging technologies. Teleophthalmology, further strengthened by AI, is expanding access to care, particularly in underserved regions, whereas emerging technologies like optogenetics, bionics, and neuro-ophthalmology offer new hope for patients with severe vision impairment. In light of ongoing research, we summarize the current clinical landscape and the potential advantages of these innovations to revolutionize the management of visual impairments. Additionally, we address the challenges and limitations associated with these emerging avenues in ophthalmology, providing insights into their future trajectories in clinical practice. Continued advancements in these fields promise to reshape the landscape of ophthalmic care, ultimately improving the quality of life for individuals with visual impairments.
Collapse
Affiliation(s)
- Fang Lin
- Department of Ophthalmology, Xinjiang 474 Hospital, China RongTong Medical Healthcare Group CO. LTD, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yuxing Su
- Department of Ophthalmology, Xinjiang 474 Hospital, China RongTong Medical Healthcare Group CO. LTD, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Chenxi Zhao
- Department of Ophthalmology, Xinjiang 474 Hospital, China RongTong Medical Healthcare Group CO. LTD, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Farhana Akter
- Faculty of Arts and Sciences, Harvard University, Cambridge, MA, United States
| | - Shun Yao
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sheng Huang
- Department of Ophthalmology, TongRen Municipal People’s Hospital, Tongren, Guizhou, China
| | - Xiaodong Shao
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yizheng Yao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Walshe JA, Schmid KL, Toalster N, McGowan CC, Ekwe AP, McKirdy NC, Harkin DG. Current and emerging strategies for the manufacture, implantation, and clinical management of corneal tissue allografts. Clin Exp Optom 2024:1-12. [PMID: 39648366 DOI: 10.1080/08164622.2024.2434626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 12/10/2024] Open
Abstract
Approximately 40,000 Australians have received a donor corneal tissue transplant over the last 40 years, with the primary indications being keratoconus, Fuchs' endothelial dystrophy, bullous keratopathy, and failure of a prior corneal transplant. Although corneal cross-linking and rigid contact lenses have emerged as alternative strategies for the management of keratoconus, the demand for donor corneas is increasing in-line with the ageing population in Australia. Moreover, owing to the lack of tissue banking resources in less-developed countries, the global demand for donor corneas exceeds supply by 70-fold. These supply issues, combined with evolving tissue banking and surgical techniques, have led to the emergence of new strategies for the storage, processing and implantation of corneal cells and tissues. Organ culture techniques have been developed that support the storage of donor corneas for up to 30 days, facilitating improvements in tissue supply and surgery scheduling. Bespoke surgical methods have been developed that are tailored to the requirements of specific conditions, allowing reductions in both the volume of tissue required to be transplanted and the size of the necessary surgical incision. Further efficiencies and improvements in patient care may be achieved via exploitation of cell culture technologies as exemplified through use of cultured corneal epithelial cells for the treatment of limbal stem cell deficiency. Promising progress has also been made in developing a cultured corneal endothelial cell therapy for patients with corneal endothelial dysfunction. These evolving strategies are discussed with respect to their potential impact on the clinical presentation and management of patients who have received an implant of donor corneal tissue or cells.
Collapse
Affiliation(s)
- Jennifer A Walshe
- Centre for Vision and Eye Research, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Katrina L Schmid
- Centre for Vision and Eye Research, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nicholas Toalster
- Ophthalmology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Ceara C McGowan
- Centre for Vision and Eye Research, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Adaeze P Ekwe
- Centre for Vision and Eye Research, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Natalie C McKirdy
- Centre for Vision and Eye Research, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Damien G Harkin
- Centre for Vision and Eye Research, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Wang F, Xu Y, Zhou Q, Xie L. Biomolecule-based hydrogels as delivery systems for limbal stem cell transplantation: A review. Int J Biol Macromol 2024; 280:135778. [PMID: 39304050 DOI: 10.1016/j.ijbiomac.2024.135778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Limbal stem cell deficiency (LSCD) is a complex disease of the cornea resulting from dysfunction and/or loss of limbal stem cells (LSCs) and their niche. Most patients with LSCD cannot be treated by conventional corneal transplants because the donor tissue lacks the LSCs necessary for corneal epithelial regeneration. Successful treatment of LSCD depends on effective stem cell transplantation to the ocular surface for replenishment of the LSC reservoir. Thus, stem cell therapies employing carrier substrates for LSCs have been widely explored. Hydrogel biomaterials have many favorable characteristics, including hydrophilicity, flexibility, cytocompatibility, and optical properties suitable for the transplantation of LSCs. Therefore, due to these properties, along with the necessary signals for stem cell proliferation and differentiation, hydrogels are ideal carrier substrates for LSCD treatment. This review summarizes the use of different medical-type hydrogels in LSC transplantation from 2001 to 2024. First, a brief background of LSCD is provided. Then, studies that employed various hydrogel scaffolds as LSC carriers are highlighted to provide a multimodal strategic reference for LSCD treatment. Finally, an analysis of prospective future developments and challenges in the field of hydrogels as LSC carriers for treating LSCD is presented.
Collapse
Affiliation(s)
- Fuyan Wang
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao 266071, China
| | - Yuehe Xu
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao 266071, China
| | - Qingjun Zhou
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao 266071, China.
| | - Lixin Xie
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao 266071, China.
| |
Collapse
|
4
|
Di Girolamo N. Biologicals and Biomaterials for Corneal Regeneration and Vision Restoration in Limbal Stem Cell Deficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401763. [PMID: 38777343 DOI: 10.1002/adma.202401763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/15/2024] [Indexed: 05/25/2024]
Abstract
The mammalian cornea is decorated with stem cells bestowed with the life-long task of renewing the epithelium, provided they remain healthy, functional, and in sufficient numbers. If not, a debilitating disease known as limbal stem cell deficiency (LSCD) can develop causing blindness. Decades after the first stem cell (SC) therapy is devised to treat this condition, patients continue to suffer unacceptable failures. During this time, improvements to therapeutics have included identifying better markers to isolate robust SC populations and nurturing them on crudely modified biological or biomaterial scaffolds including human amniotic membrane, fibrin, and contact lenses, prior to their delivery. Researchers are now gathering information about the biomolecular and biomechanical properties of the corneal SC niche to decipher what biological and/or synthetic materials can be incorporated into these carriers. Advances in biomedical engineering including electrospinning and 3D bioprinting with surface functionalization and micropatterning, and self-assembly models, have generated a wealth of biocompatible, biodegradable, integrating scaffolds to choose from, some of which are being tested for their SC delivery capacity in the hope of improving clinical outcomes for patients with LSCD.
Collapse
Affiliation(s)
- Nick Di Girolamo
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
5
|
Suanno G, Genna VG, Maurizi E, Dieh AA, Griffith M, Ferrari G. Cell therapy in the cornea: The emerging role of microenvironment. Prog Retin Eye Res 2024; 102:101275. [PMID: 38797320 DOI: 10.1016/j.preteyeres.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The cornea is an ideal testing field for cell therapies. Its highly ordered structure, where specific cell populations are sequestered in different layers, together with its accessibility, has allowed the development of the first stem cell-based therapy approved by the European Medicine Agency. Today, different techniques have been proposed for autologous and allogeneic limbal and non-limbal cell transplantation. Cell replacement has also been attempted in cases of endothelial cell decompensation as it occurs in Fuchs dystrophy: injection of cultivated allogeneic endothelial cells is now in advanced phases of clinical development. Recently, stromal substitutes have been developed with excellent integration capability and transparency. Finally, cell-derived products, such as exosomes obtained from different sources, have been investigated for the treatment of severe corneal diseases with encouraging results. Optimization of the success rate of cell therapies obviously requires high-quality cultured cells/products, but the role of the surrounding microenvironment is equally important to allow engraftment of transplanted cells, to preserve their functions and, ultimately, lead to restoration of tissue integrity and transparency of the cornea.
Collapse
Affiliation(s)
- Giuseppe Suanno
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Eleonora Maurizi
- Centre for Regenerative Medicine ''S. Ferrari'', University of Modena and Reggio Emilia, Modena, Italy
| | - Anas Abu Dieh
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | - May Griffith
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada.
| | - Giulio Ferrari
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
6
|
Bonnet C, Gonzalez S, Deng SX. Limbal stem cell therapy. Curr Opin Ophthalmol 2024; 35:309-314. [PMID: 38813737 DOI: 10.1097/icu.0000000000001061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
PURPOSE OF REVIEW To highlight the progress and future direction of limbal stem cell (LSC) therapies for the treatment of limbal stem cell deficiency (LSCD). RECENT FINDINGS Direct LSC transplantation have demonstrated good long-term outcomes. Cultivated limbal epithelial transplantation (CLET) has been an alternative to treat severe to total LSCD aiming to improve the safety and efficacy of the LSC transplant. A prospective early-stage uncontrolled clinical trial shows the feasibility and safety of CLET manufactured under xenobiotic free conditions. Other cell sources for repopulating of the corneal epithelium such as mesenchymal stem cells (MSCs) and induced pluripotent stem cells are being investigated. The first clinical trials of using MSCs showed short-term results, but long-term efficacy seems to be disappointing. A better understanding of the niche function and regulation of LSC survival and proliferation will lead to the development of medical therapies to rejuvenate the residual LSCs found in a majority of eyes with LSCD in vivo. Prior efforts have been largely focused on improving LSC transplantation. Additional effort should be placed on improving the accuracy of diagnosis and staging of LSCD, and implementing standardized outcome measures which enable comparison of efficacy of different LSCD treatments for different severity of LSCD. The choice of LSCD treatment will be customized based on the severity of LSCD in the future. SUMMARY New approaches for managing different stages of LSCD are being developed. This concise review summarizes the progresses in LSC therapies for LSCD, underlying mechanisms, limitations, and future areas of development.
Collapse
Affiliation(s)
- Clemence Bonnet
- Stein Eye Institute, University of California, Los Angeles, California, USA
- Centre de Recherche des Cordeliers, INSERM 1138, Paris Cité Université, AP-HP, Paris, France
| | - Sheyla Gonzalez
- Stein Eye Institute, University of California, Los Angeles, California, USA
| | - Sophie X Deng
- Stein Eye Institute, University of California, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
7
|
Niu Y, Ji J, Yao K, Fu Q. Regenerative treatment of ophthalmic diseases with stem cells: Principles, progress, and challenges. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2024; 4:52-64. [PMID: 38586868 PMCID: PMC10997875 DOI: 10.1016/j.aopr.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 04/09/2024]
Abstract
Background Degenerate eye disorders, such as glaucoma, cataracts and age-related macular degeneration (AMD), are prevalent causes of blindness and visual impairment worldwide. Other eye disorders, including limbal stem cell deficiency (LSCD), dry eye diseases (DED), and retinitis pigmentosa (RP), result in symptoms such as ocular discomfort and impaired visual function, significantly impacting quality of life. Traditional therapies are limited, primarily focus on delaying disease progression, while emerging stem cell therapy directly targets ocular tissues, aiming to restore ocular function by reconstructing ocular tissue. Main text The utilization of stem cells for the treatment of diverse degenerative ocular diseases is becoming increasingly significant, owing to the regenerative and malleable properties of stem cells and their functional cells. Currently, stem cell therapy for ophthalmopathy involves various cell types, such as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and retinal progenitor cells (RPCs). In the current article, we will review the current progress regarding the utilization of stem cells for the regeneration of ocular tissue covering key eye tissues from the cornea to the retina. These therapies aim to address the loss of functional cells, restore damaged ocular tissue and or in a paracrine-mediated manner. We also provide an overview of the ocular disorders that stem cell therapy is targeting, as well as the difficulties and opportunities in this field. Conclusions Stem cells can not only promote tissue regeneration but also release exosomes to mitigate inflammation and provide neuroprotection, making stem cell therapy emerge as a promising approach for treating a wide range of eye disorders through multiple mechanisms.
Collapse
Affiliation(s)
- Yifei Niu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Junfeng Ji
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, China
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Qiuli Fu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| |
Collapse
|
8
|
Jurkunas UV, Yin J, Johns LK, Li S, Negre H, Shaw KL, Samarakoon L, Ayala AR, Kheirkhah A, Katikireddy K, Gauthier A, Ong Tone S, Kaufman AR, Ellender S, Hernandez Rodriguez DE, Daley H, Dana R, Armant M, Ritz J. Cultivated autologous limbal epithelial cell (CALEC) transplantation: Development of manufacturing process and clinical evaluation of feasibility and safety. SCIENCE ADVANCES 2023; 9:eadg6470. [PMID: 37595035 PMCID: PMC10438443 DOI: 10.1126/sciadv.adg6470] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023]
Abstract
To treat unilateral limbal stem cell (LSC) deficiency, we developed cultivated autologous limbal epithelial cells (CALEC) using an innovative xenobiotic-free, serum-free, antibiotic-free, two-step manufacturing process for LSC isolation and expansion onto human amniotic membrane with rigorous quality control in a good manufacturing practices facility. Limbal biopsies were used to generate CALEC constructs, and final grafts were evaluated by noninvasive scanning microscopy and tested for viability and sterility. Cultivated cells maintained epithelial cell phenotype with colony-forming and proliferative capacities. Analysis of LSC biomarkers showed preservation of "stemness." After preclinical development, a phase 1 clinical trial enrolled five patients with unilateral LSC deficiency. Four of these patients received CALEC transplants, establishing preliminary feasibility. Clinical case histories are reported, with no primary safety events. On the basis of these results, a second recruitment phase of the trial was opened to provide longer term safety and efficacy data on more patients.
Collapse
Affiliation(s)
- Ula V. Jurkunas
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Jia Yin
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Lynette K. Johns
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Sanming Li
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Helene Negre
- Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kit L. Shaw
- Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - Ahmad Kheirkhah
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Kishore Katikireddy
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Alex Gauthier
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Stephan Ong Tone
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Aaron R. Kaufman
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Stacey Ellender
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | | | - Heather Daley
- Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Reza Dana
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Myriam Armant
- TransLab, Translational Research Program, Boston Children’s Hospital, Boston, MA, USA
| | - Jerome Ritz
- Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Roshandel D, Semnani F, Rayati Damavandi A, Masoudi A, Baradaran-Rafii A, Watson SL, Morgan WH, McLenachan S. Genetic predisposition to ocular surface disorders and opportunities for gene-based therapies. Ocul Surf 2023; 29:150-165. [PMID: 37192706 DOI: 10.1016/j.jtos.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023]
Abstract
The ocular surface, comprised of the corneal and conjunctival epithelium, innervation system, immune components, and tear-film apparatus, plays a key role in ocular integrity as well as comfort and vision. Gene defects may result in congenital ocular or systemic disorders with prominent ocular surface involvement. Examples include epithelial corneal dystrophies, aniridia, ectrodactyly-ectodermal dysplasia-clefting (EEC) syndrome, xeroderma pigmentosum (XP), and hereditary sensory and autonomic neuropathy. In addition, genetic factors may interact with environmental risk factors in the development of several multifactorial ocular surface disorders (OSDs) such as autoimmune disorders, allergies, neoplasms, and dry eye disease. Advanced gene-based technologies have already been introduced in disease modelling and proof-of-concept gene therapies for monogenic OSDs. For instance, patient-derived induced pluripotent stem cells have been used for modelling aniridia-associated keratopathy (AAK), XP, and EEC syndrome. Moreover, CRISPR/Cas9 genome editing has been used for disease modelling and/or gene therapy for AAK and Meesmann's epithelial corneal dystrophy. A better understanding of the role of genetic factors in OSDs may be helpful in designing personalized disease models and treatment approaches. Gene-based approaches in monogenic OSDs and genetic predisposition to multifactorial OSDs such as immune-mediated disorders and neoplasms with known or possible genetic risk factors has been seldom reviewed. In this narrative review, we discuss the role of genetic factors in monogenic and multifactorial OSDs and potential opportunities for gene therapy.
Collapse
Affiliation(s)
- Danial Roshandel
- Lions Eye Institute, Perth, WA, Australia; Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
| | - Farbod Semnani
- School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Amirmasoud Rayati Damavandi
- School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ali Masoudi
- Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Alireza Baradaran-Rafii
- Department of Ophthalmology, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Stephanie L Watson
- The University of Sydney, Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, Sydney, New South Wales, Australia
| | - William H Morgan
- Lions Eye Institute, Perth, WA, Australia; Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
| | - Samuel McLenachan
- Lions Eye Institute, Perth, WA, Australia; Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
10
|
Tomczak W, Winkler-Lach W, Tomczyk-Socha M, Misiuk-Hojło M. Advancements in Ocular Regenerative Therapies. BIOLOGY 2023; 12:biology12050737. [PMID: 37237549 DOI: 10.3390/biology12050737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
The use of stem cells (SCs) has emerged as a promising avenue in ophthalmology, offering potential therapeutic solutions for various vision impairments and degenerative eye diseases. SCs possess the unique ability to self-renew and differentiate into specialised cell types, making them valuable tools for repairing damaged tissues and restoring visual function. Stem cell-based therapies hold significant potential for addressing conditions such as age-related macular degeneration (AMD), retinitis pigmentosa (RP), corneal disorders, and optic nerve damage. Therefore, researchers have explored different sources of stem cells, including embryonic stem cells (ESC), induced pluripotent stem cells (iPSCs), and adult stem cells, for ocular tissue regeneration. Preclinical studies and early-phase clinical trials have demonstrated promising outcomes, with some patients experiencing improved vision following stem cell-based interventions. However, several challenges remain, including optimising the differentiation protocols, ensuring transplanted cells' safety and long-term viability, and developing effective delivery methods. The field of stem cell research in ophthalmology witnesses a constant influx of new reports and discoveries. To effectively navigate these tons of information, it becomes crucial to summarise and systematise these findings periodically. In light of recent discoveries, this paper demonstrates the potential applications of stem cells in ophthalmology, focusing on their use in various eye tissues, including the cornea, retina, conjunctiva, iris, trabecular meshwork, lens, ciliary body, sclera, and orbital fat.
Collapse
Affiliation(s)
| | | | | | - Marta Misiuk-Hojło
- Department of Ophthalmology, Wroclaw Medical University, 50556 Wroclaw, Poland
| |
Collapse
|
11
|
Soleimani M, Cheraqpour K, Koganti R, Baharnoori SM, Djalilian AR. Concise Review: Bioengineering of Limbal Stem Cell Niche. Bioengineering (Basel) 2023; 10:111. [PMID: 36671683 PMCID: PMC9855097 DOI: 10.3390/bioengineering10010111] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/01/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The corneal epithelium is composed of nonkeratinized stratified squamous cells and has a significant turnover rate. Limbal integrity is vital to maintain the clarity and avascularity of the cornea as well as regeneration of the corneal epithelium. Limbal epithelial stem cells (LESCs) are located in the basal epithelial layer of the limbus and preserve this homeostasis. Proper functioning of LESCs is dependent on a specific microenvironment, known as the limbal stem cell niche (LSCN). This structure is made up of various cells, an extracellular matrix (ECM), and signaling molecules. Different etiologies may damage the LSCN, leading to limbal stem cell deficiency (LSCD), which is characterized by conjunctivalization of the cornea. In this review, we first summarize the basics of the LSCN and then focus on current and emerging bioengineering strategies for LSCN restoration to combat LSCD.
Collapse
Affiliation(s)
- Mohammad Soleimani
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran 1336616351, Iran
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Kasra Cheraqpour
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran 1336616351, Iran
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Seyed Mahbod Baharnoori
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
12
|
Di Girolamo N, Park M. Cell identity changes in ocular surface Epithelia. Prog Retin Eye Res 2022:101148. [DOI: 10.1016/j.preteyeres.2022.101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022]
|
13
|
Masood F, Chang JH, Akbar A, Song A, Hu WY, Azar DT, Rosenblatt MI. Therapeutic Strategies for Restoring Perturbed Corneal Epithelial Homeostasis in Limbal Stem Cell Deficiency: Current Trends and Future Directions. Cells 2022; 11:3247. [PMID: 36291115 PMCID: PMC9600167 DOI: 10.3390/cells11203247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 02/03/2023] Open
Abstract
Limbal stem cells constitute an important cell population required for regeneration of the corneal epithelium. If insults to limbal stem cells or their niche are sufficiently severe, a disease known as limbal stem cell deficiency occurs. In the absence of functioning limbal stem cells, vision-compromising conjunctivalization of the corneal epithelium occurs, leading to opacification, inflammation, neovascularization, and chronic scarring. Limbal stem cell transplantation is the standard treatment for unilateral cases of limbal stem cell deficiency, but bilateral cases require allogeneic transplantation. Herein we review the current therapeutic utilization of limbal stem cells. We also describe several limbal stem cell markers that impact their phenotype and function and discuss the possibility of modulating limbal stem cells and other sources of stem cells to facilitate the development of novel therapeutic interventions. We finally consider several hurdles for widespread adoption of these proposed methodologies and discuss how they can be overcome to realize vision-restoring interventions.
Collapse
Affiliation(s)
- Faisal Masood
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Anosh Akbar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Amy Song
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Wen-Yang Hu
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Dimitri T. Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mark I. Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
14
|
Delivery of Cells to the Cornea Using Synthetic Biomaterials. Cornea 2022; 41:1325-1336. [DOI: 10.1097/ico.0000000000003094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/24/2022] [Indexed: 11/26/2022]
|
15
|
Jurkunas U, Johns L, Armant M. Cultivated Autologous Limbal Epithelial Cell Transplantation: New Frontier in the Treatment of Limbal Stem Cell Deficiency. Am J Ophthalmol 2022; 239:244-268. [PMID: 35314191 DOI: 10.1016/j.ajo.2022.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 01/27/2022] [Accepted: 03/08/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE Taking into consideration prior human experience with treating limbal stem cell deficiency (LSCD) with cultivated limbal epithelial cells (CLEC) from other countries, we have set a goal to optimize and standardize the techniques of CLEC preparation (called CALEC by our group) for the clinical trial in the United States. METHODS We performed an extensive literature review of all human trials, case series, and reports involving autologous cultivated limbal epithelial cell transplantation. Allogeneic cultivated limbal epithelial cell transplantations were reported only when combined with autologous studies. We also searched prior animal data aiding in detailing regulatory toxicology requirements. RESULTS Between 1997 and 2020, the analysis of human trials revealed 21 studies on autologous grafts, and 13 studies analyzing both autologous grafts and allogeneic grafts. Of a total of 34 studies, 6 studies used good manufacturing process (GMP) facilities, and 11 studies had no animal-derived products or murine feeder layers, whereas only 1 study had both. Overall, the treatment with autologous CLEC grafts was 68.9% successful. In total there were 6 preclinical studies using rabbits, serving as surrogate studies to assess the safety and toxicity of cultivated limbal epithelial cells for human trials. Based on prior human experience, we further optimized the manufacturing conditions with GMP-grade and serum and animal-free reagents, and developed cell characterization assays for the CALEC product release. CONCLUSIONS These data were used to develop a novel and consistent manufacturing process using only qualified and validated reagents for performing the first clinical trial on CALEC transplantation to treat LSCD in the United States.
Collapse
Affiliation(s)
- Ula Jurkunas
- From the Schepens Eye Research Institute (U.J., L.J.), Massachusetts Eye and Ear, Boston, Massachusetts, USA.
| | - Lynette Johns
- From the Schepens Eye Research Institute (U.J., L.J.), Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Myriam Armant
- TransLab (M.A.), Translational Research Program, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Terzopoulou Z, Zamboulis A, Koumentakou I, Michailidou G, Noordam MJ, Bikiaris DN. Biocompatible Synthetic Polymers for Tissue Engineering Purposes. Biomacromolecules 2022; 23:1841-1863. [PMID: 35438479 DOI: 10.1021/acs.biomac.2c00047] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Synthetic polymers have been an integral part of modern society since the early 1960s. Besides their most well-known applications to the public, such as packaging, construction, textiles and electronics, synthetic polymers have also revolutionized the field of medicine. Starting with the first plastic syringe developed in 1955 to the complex polymeric materials used in the regeneration of tissues, their contributions have never been more prominent. Decades of research on polymeric materials, stem cells, and three-dimensional printing contributed to the rapid progress of tissue engineering and regenerative medicine that envisages the potential future of organ transplantations. This perspective discusses the role of synthetic polymers in tissue engineering, their design and properties in relation to each type of application. Additionally, selected recent achievements of tissue engineering using synthetic polymers are outlined to provide insight into how they will contribute to the advancement of the field in the near future. In this way, we aim to provide a guide that will help scientists with synthetic polymer design and selection for different tissue engineering applications.
Collapse
Affiliation(s)
- Zoi Terzopoulou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Alexandra Zamboulis
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Ioanna Koumentakou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Georgia Michailidou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Michiel Jan Noordam
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
17
|
Goals and Challenges of Stem Cell-Based Therapy for Corneal Blindness Due to Limbal Deficiency. Pharmaceutics 2021; 13:pharmaceutics13091483. [PMID: 34575560 PMCID: PMC8466237 DOI: 10.3390/pharmaceutics13091483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Corneal failure is a highly prevalent cause of blindness. One special cause of corneal failure occurs due to malfunction or destruction of the limbal stem cell niche, upon which the superficial cornea depends for homeostatic maintenance and wound healing. Failure of the limbal niche is referred to as limbal stem cell deficiency. As the corneal epithelial stem cell niche is easily accessible, limbal stem cell-based therapy and regenerative medicine applied to the ocular surface are among the most highly advanced forms of this novel approach to disease therapy. However, the challenges are still great, including the development of cell-based products and understanding how they work in the patient's eye. Advances are being made at the molecular, cellular, and tissue levels to alter disease processes and to reduce or eliminate blindness. Efforts must be coordinated from the most basic research to the most clinically oriented projects so that cell-based therapies can become an integrated part of the therapeutic armamentarium to fight corneal blindness. We undoubtedly are progressing along the right path because cell-based therapy for eye diseases is one of the most successful examples of global regenerative medicine.
Collapse
|
18
|
Corneal Epithelial Stem Cells-Physiology, Pathophysiology and Therapeutic Options. Cells 2021; 10:cells10092302. [PMID: 34571952 PMCID: PMC8465583 DOI: 10.3390/cells10092302] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
In the human cornea, regeneration of the epithelium is regulated by the stem cell reservoir of the limbus, which is the marginal region of the cornea representing the anatomical and functional border between the corneal and conjunctival epithelium. In support of this concept, extensive limbal damage, e.g., by chemical or thermal injury, inflammation, or surgery, may induce limbal stem cell deficiency (LSCD) leading to vascularization and opacification of the cornea and eventually vision loss. These acquired forms of limbal stem cell deficiency may occur uni- or bilaterally, which is important for the choice of treatment. Moreover, a variety of inherited diseases, such as congenital aniridia or dyskeratosis congenita, are characterized by LSCD typically occurring bilaterally. Several techniques of autologous and allogenic stem cell transplantation have been established. The limbus can be restored by transplantation of whole limbal grafts, small limbal biopsies or by ex vivo-expanded limbal cells. In this review, the physiology of the corneal epithelium, the pathophysiology of LSCD, and the therapeutic options will be presented.
Collapse
|
19
|
Baird PN, Machin H, Brown KD. Corneal supply and the use of technology to reduce its demand: A review. Clin Exp Ophthalmol 2021; 49:1078-1090. [PMID: 34310836 DOI: 10.1111/ceo.13978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/26/2022]
Abstract
Recovery and access to end-of-life corneal tissue for corneal transplantation, training and research is globally maldistributed. The reasons for the maldistribution are complex and multifaceted, and not well defined or understood. Currently there are few solutions available to effectively address these issues. This review provides an overview of the system, key issues impacting recovery and allocation and emphasises how end-user ophthalmologists and researchers, with support from administrators and the wider sector, can assist in increasing access long-term through sustaining eye banks nationally and globally. We posit that prevention measures and improved surgical techniques, together with the development of novel therapies will play a significant role in reducing demand and enhance the equitable allocation of corneas.
Collapse
Affiliation(s)
- Paul N Baird
- Department of Surgery, Ophthalmology, University of Melbourne, Melbourne, Victoria, Australia
| | - Heather Machin
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Lions Eye Donation Service, Melbourne, Australia
| | - Karl D Brown
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| |
Collapse
|
20
|
Diebold Y, García-Posadas L. Is the Conjunctiva a Potential Target for Advanced Therapy Medicinal Products? Pharmaceutics 2021; 13:pharmaceutics13081140. [PMID: 34452098 PMCID: PMC8402183 DOI: 10.3390/pharmaceutics13081140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/20/2022] Open
Abstract
The conjunctiva is a complex ocular tissue that provides mechanical, sensory, and immune protection for the ocular surface. It is affected by many diseases through different pathological mechanisms. If a disease is not treated and conjunctival function is not fully restored, the whole ocular surface and, therefore, sight is at risk. Different therapeutic approaches have been proposed, but there are still unsolved conjunctival alterations that require more sophisticated therapeutic options. Advanced therapy medicinal products (ATMPs) comprise a wide range of products that includes cell therapy, tissue engineering, and gene therapy. To the best of our knowledge, there is no commercialized ATMP specifically for conjunctival treatment yet. However, the conjunctiva can be a potential target for ATMPs for different reasons. In this review, we provide an overview of the advances in experimental phases of potential ATMPs that primarily target the conjunctiva. Important advances have been achieved through the techniques of cell therapy and tissue engineering, whereas the use of gene therapy in the conjunctiva is still marginal. Undoubtedly, future research in this field will lead to achieving commercially available ATMPs for the conjunctiva, which may provide better treatments for patients.
Collapse
Affiliation(s)
- Yolanda Diebold
- Ocular Surface Group, Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence:
| | - Laura García-Posadas
- Ocular Surface Group, Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain;
| |
Collapse
|
21
|
Samoila O, Samoila L. Stem Cells in the Path of Light, from Corneal to Retinal Reconstruction. Biomedicines 2021; 9:biomedicines9080873. [PMID: 34440077 PMCID: PMC8389604 DOI: 10.3390/biomedicines9080873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
The future of eye reconstruction invariably includes stem cells transplantation. Corneal limbus, corneal stroma, trabeculum, retinal cells, optic nerve, and all structures that are irreversibly damaged and have no means to be repaired or replaced, through conventional treatment or surgery, represent targets for stem cell reconstruction. This review tries to answer the question if there is any clinical validation for stem therapies, so far, starting from the cornea and, on the path of light, arriving to the retina. The investigation covers the last 10 years of publications. From 2385 published sources, we found 56 clinical studies matching inclusion criteria, 39 involving cornea, and 17 involving retina. So far, corneal epithelial reconstruction seems well validated clinically. Enough clinical data are collected to allow some form of standardization for the stem cell transplant procedures. Cultivated limbal epithelial stem cells (CLET), simple limbal epithelial transplant (SLET), and oral mucosa transplantation are implemented worldwide. In comparison, far less patients are investigated in retinal stem reconstructions, with lower anatomical and clinical success, so far. Intravitreal, subretinal, and suprachoroidal approach for retinal stem therapies face specific challenges.
Collapse
Affiliation(s)
- Ovidiu Samoila
- Ophthalmology Department, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400006 Cluj-Napoca, Romania
- Correspondence:
| | | |
Collapse
|
22
|
Abstract
PURPOSE In recent decades, the medical and surgical treatment of limbal stem cell deficiency (LSCD) has evolved significantly through the incorporation of innovative pharmacological strategies, surgical techniques, bioengineering, and cell therapy. With such a wide variety of options, there is a need to establish a global consensus on the preferred approaches for the medical and surgical treatment of LSCD. METHODS An international LSCD Working Group was established by the Cornea Society in 2012 and divided into subcommittees. Four face-to-face meetings, frequent email discussions, and teleconferences were conducted since then to reach agreement on a strategic plan and methods after a comprehensive literature search. A writing group drafted the current study. RESULTS A consensus in the medical and surgical management of LSCD was reached by the Working Group. Optimization of the ocular surface by eyelid and conjunctival reconstruction, antiinflammatory therapy, dry eye and meibomian gland dysfunction treatment, minimization of ocular surface toxicity from medications, topical medications that promote epithelialization, and use of a scleral lens is considered essential before surgical treatment of LSCD. Depending on the laterality, cause, and stage of LSCD, surgical strategies including conjunctival epitheliectomy, amniotic membrane transplantation, transplantation of limbal stem cells using different techniques and sources (allogeneic vs. autologous vs. ex vivo-cultivated), transplantation of oral mucosal epithelium, and keratoprosthesis can be performed as treatment. A stepwise flowchart for use in treatment decision-making was established. CONCLUSIONS This global consensus provides an up-to-date and comprehensive framework for the management of LSCD.
Collapse
|
23
|
Tong CM, He B, Iovieno A, Yeung SN. Diagnosis and management of limbal stem cell deficiency, challenges, and future prospects. EXPERT REVIEW OF OPHTHALMOLOGY 2021. [DOI: 10.1080/17469899.2021.1933441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- C. Maya Tong
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Canada
| | - Bonnie He
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
| | - Alfonso Iovieno
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
| | - Sonia N. Yeung
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
24
|
Ghareeb AE, Lako M, Figueiredo FC. Recent Advances in Stem Cell Therapy for Limbal Stem Cell Deficiency: A Narrative Review. Ophthalmol Ther 2020; 9:809-831. [PMID: 32970311 PMCID: PMC7708613 DOI: 10.1007/s40123-020-00305-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Destruction of the limbus and depletion of limbal stem cells (LSCs), the adult progenitors of the corneal epithelium, leads to limbal stem cell deficiency (LSCD). LSCD is a rare, progressive ocular surface disorder which results in conjunctivalisation and neovascularisation of the corneal surface. Many strategies have been used in the treatment of LSCD, the common goal of which is to regenerate a self-renewing, transparent, and uniform epithelium on the corneal surface. The development of these techniques has frequently resulted from collaboration between stem cell translational scientists and ophthalmologists. Direct transplantation of autologous or allogeneic limbal tissue from a healthy donor eye is regarded by many as the technique of choice. Expansion of harvested LSCs in vitro allows smaller biopsies to be taken from the donor eye and is considered safer and more acceptable to patients. This technique may be utilised in unilateral cases (autologous) or bilateral cases (living related donor). Recently developed, simple limbal epithelial transplant (SLET) can be performed with equally small biopsies but does not require in vitro cell culture facilities. In the case of bilateral LSCD, where autologous limbal tissue is not available, autologous oral mucosa epithelium can be expanded in vitro and transplanted to the diseased eye. Data on long-term outcomes (over 5 years of follow-up) for many of these procedures is needed, and it remains unclear how they produce a self-renewing epithelium without recreating the vital stem cell niche. Bioengineering techniques offer the ability to re-create the physical characteristics of the stem cell niche, while induced pluripotent stem cells offer an unlimited supply of autologous LSCs. In vivo confocal microscopy and anterior segment OCT will complement impression cytology in the diagnosis, staging, and follow-up of LSCD. In this review we analyse recent advances in the pathology, diagnosis, and treatment of LSCD.
Collapse
Affiliation(s)
- Ali E Ghareeb
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK.,Department of Ophthalmology, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Francisco C Figueiredo
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK. .,Department of Ophthalmology, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK.
| |
Collapse
|
25
|
Loh EYX, Fauzi MB, Ng MH, Ng PY, Ng SF, Mohd Amin MCI. Insight into delivery of dermal fibroblast by non-biodegradable bacterial nanocellulose composite hydrogel on wound healing. Int J Biol Macromol 2020; 159:497-509. [DOI: 10.1016/j.ijbiomac.2020.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/19/2020] [Accepted: 05/02/2020] [Indexed: 11/26/2022]
|
26
|
O'Callaghan AR, Dziasko MA, Sheth-Shah R, Lewis MP, Daniels JT. Oral Mucosa Tissue Equivalents for the Treatment of Limbal Stem Cell Deficiency. ACTA ACUST UNITED AC 2020; 4:e1900265. [PMID: 32515079 DOI: 10.1002/adbi.201900265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 05/07/2020] [Indexed: 12/13/2022]
Abstract
Cultured limbal and oral epithelial cells have been successfully used to treat patients with limbal stem cell deficiency (LSCD). The most common culture method for these cell therapies utilizes amniotic membrane as a cell support and/or murine 3T3s as feeder fibroblasts. The aim of this study is to refine the production of autologous oral mucosal cell therapy for the treatment of LSCD. Real architecture for 3D tissue (RAFT) is used as an alternative cell culture support. In addition, oral mucosal cells (epithelial and fibroblast) are used as autologous alternatives to donor human limbal epithelial cells (HLE) and murine 3T3s. The following tissue equivalents are produced and characterized: first, for patients with bilateral LSCD, an oral mucosa tissue equivalent consisting of human oral mucosal epithelial cells on RAFT supported by human oral mucosal fibroblasts (HOMF). Second, for patients with unilateral LSCD, HLE on RAFT supported by HOMF. For both tissue equivalent types, features of the cornea are observed including a multi-layered epithelium with small cells with a stem cell like phenotype in the basal layer and squamous cells in the top layers, and p63α and PAX6 expression. These tissue equivalents may therefore be useful in the treatment of LSCD.
Collapse
Affiliation(s)
- Anna R O'Callaghan
- Cells for Sight, UCL Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Marc A Dziasko
- Cells for Sight, UCL Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Radhika Sheth-Shah
- Cells for Sight, UCL Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Mark P Lewis
- National Centre for Sport and Exercise Medicine (NCSEM), School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Julie T Daniels
- Cells for Sight, UCL Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| |
Collapse
|
27
|
Zhang C, Mei H, Robertson SYT, Lee HJ, Deng SX, Zheng JJ. A Small-Molecule Wnt Mimic Improves Human Limbal Stem Cell Ex Vivo Expansion. iScience 2020; 23:101075. [PMID: 32361505 PMCID: PMC7200314 DOI: 10.1016/j.isci.2020.101075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/11/2020] [Accepted: 04/14/2020] [Indexed: 12/20/2022] Open
Abstract
Ex vivo cultured limbal stem/progenitor cells is an effective alternative to other surgical treatments for limbal stem cell deficiency, but a standard xenobiotic-free method for culturing the LSCs in vitro needs to be optimized. Because Wnt ligands are required for LSC expansion and preservation in vitro, to create a small-molecule Wnt mimic, we created a consolidated compound by linking a Wnt inhibitor that binds to the Wnt co-receptor Frizzled to a peptide derived from the N-terminal Dickkopf-1 that binds to Lrp (low-density lipoprotein receptor-related protein) 5/6, another Wnt co-receptor. This Wnt mimic not only enhances cellular Wnt signaling activation, but also improves the progenitor cell phenotype of in vitro cultured limbal epithelial cells. As the maintenance of stem cell characteristics in the process of culture expansion is essential for the success of ocular surface reconstruction, the small molecules generated in this study may be helpful in the development of pharmaceutical reagents for treating corneal wounds.
Collapse
Affiliation(s)
- Chi Zhang
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Hua Mei
- Department of Ophthalmology, University of North Carolina School of Medicine, Chapel Hill, NC 27517, USA
| | - Sarah Y T Robertson
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Ho-Jin Lee
- Department of Natural Sciences, Southwest Tennessee Community College, Memphis, TN 38134, USA
| | - Sophie X Deng
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - Jie J Zheng
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
28
|
Development and Validation of an Open-Source Grading Tool for Outcome Assessment in Limbal Stem Cell Treatment. Cornea 2020; 39:787-792. [PMID: 32044825 DOI: 10.1097/ico.0000000000002282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To design a grading system and validate an open-source tool to improve objective quantification and follow-up of limbal stem cell deficiency (LSCD) after treatment. METHODS A custom-made web-based grading system was developed for grading stem cell deficient eyes, termed the "Vascularisation, Haze, and Integrity" tool. For validation purposes, 60 corneal slit-lamp images of 30 limbal stem cell deficient eyes were graded by 3 groups of examiners: 3 corneal specialists (group A), 3 ophthalmologists with an expertise other than cornea (group B), and 3 nonclinicians (group C). The intragrader and intergrader agreement was evaluated using Fleiss weighted kappa coefficients and concurrent assessment of interrater and intrarater reliability (IRR) coefficients. RESULTS The overall intergrader agreement was 0.78, 0.61, and 0.42 for superficial corneal vascularization, corneal haze, and epithelial integrity, respectively. All groups had good agreement for the vascularization parameter with the highest intergrader reliability in group A (IRR = 0.80) and the lowest in group C (IRR = 0.72). When assessing "haze," there was good agreement in groups A (IRR = 0.75) and B (IRR = 0.76) but low agreement in group C (IRR = 0.37). CONCLUSIONS We report the development and evaluation of a novel method for grading results of limbal stem cell deficient eyes after treatment and provide this system as a free, open-source online tool. The grading tool offers an easy and standardized way of assessing the corneal surface in patients with LSCD, enables evaluation of progression over time, reduces assessment bias, and-if adopted universally-will harmonize outcome being reported between groups.
Collapse
|
29
|
Cho E, Kim YY, Noh K, Ku SY. A new possibility in fertility preservation: The artificial ovary. J Tissue Eng Regen Med 2019; 13:1294-1315. [PMID: 31062444 DOI: 10.1002/term.2870] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/02/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Abstract
Conventional fertility preservation methods such as oocyte or embryo cryopreservation are currently insufficient to treat including those patients with prepubertal cancer and premature ovarian failure. Ovarian tissue cryopreservation presents as an alternative but has limitations with a potential risk of reintroducing malignant cells in patients who recover from cancer, those of chemotherapy prior to tissue cryopreservation. The so called "artificial ovary" aims to resolve this issue by transplanting isolated follicles with or without a biological scaffold. The artificial ovary may also offer an effective alternative option for those who cannot benefit from traditional assisted reproductive techniques such as in vitro fertilisation. To date, in animal studies and human trial, the artificial ovary restored endocrine function, achieved in vivo follicular development, and resulted in successful pregnancies. However, development of a technique for higher follicular recovery rate and a more optimised design of delivery scaffold, better transplantation techniques to prevent postsurgical ischemia, and consideration for genetic safety are required for safer and consistent human clinical applications. Ideas from different transplantation surgeries (e.g., entire ovary, ovarian cortex, and transplantation with tissue-engineered products) can be applied to enhance the efficacy of artificial ovarian transplantation. For the better application of artificial ovary, a deeper understanding of mechanical and biochemical properties of the ovary and folliculogenesis after cryopreservation, transplantation with or without scaffold, and development of sophisticated in vivo imaging techniques of transplanted artificial ovary need to precede its efficient clinical application.
Collapse
Affiliation(s)
- Eun Cho
- College of Medicine, Seoul National University, Seoul, South Korea
| | - Yoon Young Kim
- College of Medicine, Seoul National University, Seoul, South Korea
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, South Korea
| | - Kevin Noh
- College of Human Ecology, Cornell University, Ithaca, New York, USA
| | - Seung-Yup Ku
- College of Medicine, Seoul National University, Seoul, South Korea
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|
30
|
Mobaraki M, Abbasi R, Omidian Vandchali S, Ghaffari M, Moztarzadeh F, Mozafari M. Corneal Repair and Regeneration: Current Concepts and Future Directions. Front Bioeng Biotechnol 2019; 7:135. [PMID: 31245365 PMCID: PMC6579817 DOI: 10.3389/fbioe.2019.00135] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
The cornea is a unique tissue and the most powerful focusing element of the eye, known as a window to the eye. Infectious or non-infectious diseases might cause severe visual impairments that need medical intervention to restore patients' vision. The most prominent characteristics of the cornea are its mechanical strength and transparency, which are indeed the most important criteria considerations when reconstructing the injured cornea. Corneal strength comes from about 200 collagen lamellae which criss-cross the cornea in different directions and comprise nearly 90% of the thickness of the cornea. Regarding corneal transparency, the specific characteristics of the cornea include its immune and angiogenic privilege besides its limbus zone. On the other hand, angiogenic privilege involves several active cascades in which anti-angiogenic factors are produced to compensate for the enhanced production of proangiogenic factors after wound healing. Limbus of the cornea forms a border between the corneal and conjunctival epithelium, and its limbal stem cells (LSCs) are essential in maintenance and repair of the adult cornea through its support of corneal epithelial tissue repair and regeneration. As a result, the main factors which threaten the corneal clarity are inflammatory reactions, neovascularization, and limbal deficiency. In fact, the influx of inflammatory cells causes scar formation and destruction of the limbus zone. Current studies about wound healing treatment focus on corneal characteristics such as the immune response, angiogenesis, and cell signaling. In this review, studied topics related to wound healing and new approaches in cornea regeneration, which are mostly related to the criteria mentioned above, will be discussed.
Collapse
Affiliation(s)
- Mohammadmahdi Mobaraki
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Reza Abbasi
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Sajjad Omidian Vandchali
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Maryam Ghaffari
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Fathollah Moztarzadeh
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
DERELI CAN GAMZE, AKDERE ÖZGEEKIN, CAN MEHMETEROL, GÜMÜŞDERELIOĞLU MENEMŞE. A simple and efficient method for cultivation of limbal explant stem cells with clinically safe potential. Cytotherapy 2019; 21:83-95. [DOI: 10.1016/j.jcyt.2018.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/04/2018] [Accepted: 11/08/2018] [Indexed: 11/26/2022]
|
32
|
Shayan Asl N, Nejat F, Mohammadi P, Nekoukar A, Hesam S, Ebrahimi M, Jadidi K. Amniotic Membrane Extract Eye Drop Promotes Limbal Stem Cell Proliferation and Corneal Epithelium Healing. CELL JOURNAL 2019; 20:459-468. [PMID: 30123991 PMCID: PMC6099140 DOI: 10.22074/cellj.2019.5423] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/12/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Human amniotic membrane (HAM) is used as a supporter for limbal stem cell (LSC) expansion and corneal surgery. The aim of study is to use HAM extracts from healthy donors to enhance proliferation of LSCs in vitro and in vivo. MATERIALS AND METHODS In this interventional experimental study, the effective and cytotoxic doses of the amniotic membrane extract eye drops (AMEED) was assessed by adding different concentrations of AMEED (0-2.0 mg/ml) to LSC cultures for 14 days. Subsequently, the expression levels of ATP-binding cassette sub-family G member 2 (ABCG2, a putative stem cell marker), cytokeratin 3 (K3, corneal maker), K12 and K19 (corneal-conjunctival cell makers) were assessed by real-time polymerase chain reaction (PCR). In the second step, the corneal epithelium of 10 rabbits was mechanically removed, and the right eye of each rabbit was treated with 1 mg/ml AMEED [every 2 hours (group 1) or every 6 hours (group 2)]. The left eyes only received an antibiotic. The corneal healing process, conjunctival infection, degree of eyelid oedema, degree of photophobia, and discharge scores were evaluated during daily assessments. Finally, corneal tissues were biopsied for pathologic evidences. RESULTS In comparison to the positive control [10% foetal bovine serum (FBS)], 0.1-1 mg/ml AMEED induced LSC proliferation, upregulated ABCG2, and downregulated K3. There were no remarkable differences in the expression levels of K12 and K19 (P>0.05). Interestingly, in the rabbits treated with AMEED, the epithelium healing duration decreased from 4 days in the control group to 3 days in the two AMEED groups, with lower mean degrees of eyelid oedema, chemosis, and infection compared to the control group. No pathologic abnormalities were observed in either of the AMEED groups. CONCLUSION AMEED increases LSCs proliferation ex vivo and accelerates corneal epithelium healing in vivo without any adverse effects. It could be used as a supplement for LSC expansion in cell therapy.
Collapse
Affiliation(s)
- Niloufar Shayan Asl
- Department of Stem Cells and Developmental Biology, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Farhad Nejat
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Parvaneh Mohammadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Abdolhossein Nekoukar
- Animal Core Facility, Reproductive Biomedicine Research Centre, Royan Institute for Biotechnology, ACECR, Tehran, Iran
| | - Saeed Hesam
- Department of Epidemiology and Reproductive Health, Reproductive Epidemiology Research Centre, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. Electronic Address:
| | - Khosrow Jadidi
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, Iran. Electronic Address:
| |
Collapse
|
33
|
Harkin DG, Dunphy SE, Shadforth AMA, Dawson RA, Walshe J, Zakaria N. Mounting of Biomaterials for Use in Ophthalmic Cell Therapies. Cell Transplant 2018; 26:1717-1732. [PMID: 29338382 PMCID: PMC5784520 DOI: 10.1177/0963689717723638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
When used as scaffolds for cell therapies, biomaterials often present basic handling and logistical problems for scientists and surgeons alike. The quest for an appropriate mounting device for biomaterials is therefore a significant and common problem. In this review, we provide a detailed overview of the factors to consider when choosing an appropriate mounting device including those experienced during cell culture, quality assurance, and surgery. By way of example, we draw upon our combined experience in developing epithelial cell therapies for the treatment of eye diseases. We discuss commercially available options for achieving required goals and provide a detailed analysis of 4 experimental designs developed within our respective laboratories in Australia, the United Kingdom, and Belgium.
Collapse
Affiliation(s)
- Damien G Harkin
- 1 School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.,2 Queensland Eye Institute, South Brisbane, Queensland, Australia
| | - Siobhan E Dunphy
- 3 Division of Clinical Neuroscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom.,4 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College, Dublin, Ireland
| | - Audra M A Shadforth
- 1 School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.,2 Queensland Eye Institute, South Brisbane, Queensland, Australia
| | - Rebecca A Dawson
- 1 School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.,2 Queensland Eye Institute, South Brisbane, Queensland, Australia
| | - Jennifer Walshe
- 2 Queensland Eye Institute, South Brisbane, Queensland, Australia
| | - Nadia Zakaria
- 5 Division of Ophthalmology, Center for Cell Therapy and Regenerative Medicine, University Hospital Antwerp, Edegem, Belgium.,6 Department of Ophthalmology, Visual Optics and Visual Rehabilitation, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
34
|
Lorenzo Y, Haug Berg K, Ringvold A, Petrovski G, Moe MC, Collins A, Nicolaissen B. Levels of oxidative DNA damage are low in ex vivo engineered human limbal epithelial tissue. Acta Ophthalmol 2018; 96:834-840. [PMID: 30239138 PMCID: PMC6667899 DOI: 10.1111/aos.13811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 04/05/2018] [Indexed: 11/21/2022]
Abstract
PURPOSE To examine levels of oxidative DNA base damage and expression of selected genes and proteins related to DNA damage repair in human limbal epithelium engineered ex vivo. METHODS Cells were expanded from limbal tissue on cell culture-treated inserts in medium containing fetal bovine serum, recombinant growth factors, hormones and cholera toxin (COM) and in medium with human serum as the single growth-promoting additive (HS). Cells were analysed after two, three and four weeks in culture for DNA strand breaks and oxidized purine bases (Comet assay using the enzyme formamidopyrimidine DNA glycosylase, Fpg) and for expression of DNA repair enzymes APE1, OGG1 and Polβ by in situ hybridization (ISH) and by immunohistochemistry (IHC). RESULTS Levels of strand breaks were substantial while levels of net Fpg-sensitive sites (8-oxoguanine and ring-opened FaPy bases) were relatively low in cells engineered in COM and in HS. Both types of medium were found to support expression of base excision repair (BER) enzymes APE1, OGG1 and Polβ at the gene level. At the protein level, expression of APE1 and OGG1 was noticeable in both conditions while expression of Polβ was low. CONCLUSION Our findings indicate low levels of oxidative stress and/or efficient DNA purine base damage repair in human limbal epithelium engineered in a medium with human serum as the single growth-promoting additive as well as in traditional medium with xenobiotics.
Collapse
Affiliation(s)
- Yolanda Lorenzo
- Center for Eye ResearchDepartment of OphthalmologyOslo University HospitalOsloNorway
| | - Kristiane Haug Berg
- Center for Eye ResearchDepartment of OphthalmologyOslo University HospitalOsloNorway
| | - Amund Ringvold
- Center for Eye ResearchDepartment of OphthalmologyOslo University HospitalOsloNorway
- Faculty of MedicineUniversity of OsloOsloNorway
| | - Goran Petrovski
- Center for Eye ResearchDepartment of OphthalmologyOslo University HospitalOsloNorway
- Faculty of MedicineUniversity of OsloOsloNorway
| | - Morten C. Moe
- Center for Eye ResearchDepartment of OphthalmologyOslo University HospitalOsloNorway
- Faculty of MedicineUniversity of OsloOsloNorway
| | - Andrew Collins
- Department of NutritionInstitute for Basic Medical SciencesUniversity of OsloOsloNorway
| | - Bjørn Nicolaissen
- Center for Eye ResearchDepartment of OphthalmologyOslo University HospitalOsloNorway
- Faculty of MedicineUniversity of OsloOsloNorway
| |
Collapse
|
35
|
Gurusamy N, Alsayari A, Rajasingh S, Rajasingh J. Adult Stem Cells for Regenerative Therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 160:1-22. [PMID: 30470288 DOI: 10.1016/bs.pmbts.2018.07.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell therapy has been identified as an effective method to regenerate damaged tissue. Adult stem cells, also known as somatic stem cells or resident stem cells, are a rare population of undifferentiated cells, located within a differentiated organ, in a specialized structure, called a niche, which maintains the microenvironments that regulate the growth and development of adult stem cells. The adult stem cells are self-renewing, clonogenic, and multipotent in nature, and their main role is to maintain the tissue homeostasis. They can be activated to proliferate and differentiate into the required type of cells, upon the loss of cells or injury to the tissue. Adult stem cells have been identified in many tissues including blood, intestine, skin, muscle, brain, and heart. Extensive preclinical and clinical studies have demonstrated the structural and functional regeneration capabilities of these adult stem cells, such as bone marrow-derived mononuclear cells, hematopoietic stem cells, mesenchymal stromal/stem cells, resident adult stem cells, induced pluripotent stem cells, and umbilical cord stem cells. In this review, we focus on the human therapies, utilizing adult stem cells for their regenerative capabilities in the treatment of cardiac, brain, pancreatic, and eye disorders.
Collapse
Affiliation(s)
- Narasimman Gurusamy
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Sheeja Rajasingh
- Department of Internal Medicine, University of Kansas Medical Center, Kansas, KS, United States
| | - Johnson Rajasingh
- Department of Internal Medicine, University of Kansas Medical Center, Kansas, KS, United States.
| |
Collapse
|
36
|
Bobba S, Di Girolamo N, Munsie M, Chen F, Pébay A, Harkin D, Hewitt AW, O'Connor M, McLenachan S, Shadforth AMA, Watson SL. The current state of stem cell therapy for ocular disease. Exp Eye Res 2018; 177:65-75. [PMID: 30029023 DOI: 10.1016/j.exer.2018.07.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/16/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022]
Abstract
Herein, we review the safety, efficacy, regulatory standards and ethical implications of the use of stem cells in ocular disease. A literature review was conducted, registered clinical trials reviewed, and expert opinions sought. Guidelines and codes of conduct from international societies and professional bodies were also reviewed. Collated data is presented on current progress in the field of ocular regenerative medicine, future challenges, the clinical trial process and ethical considerations in stem cell therapy. A greater understanding of the function and location of ocular stem cells has led to rapid advances in possible therapeutic applications. However, in the context of significant technical challenges and potential long-term complications, it is imperative that stem cell practices operate within formal clinical trial frameworks. While there remains broad scope for innovation, ongoing evidence-based review of potential interventions and the development of standardized protocols are necessary to ensure patient safety and best practice in ophthalmic care.
Collapse
Affiliation(s)
- Samantha Bobba
- Prince of Wales Hospital Clinical School, High Street, Randwick, Sydney, New South Wales, 2031, Australia.
| | - Nick Di Girolamo
- School of Medical Sciences, University of New South Wales, Kensington, Sydney, New South Wales, 2052, Australia
| | - Megan Munsie
- Centre for Stem Cell Systems, School of Biomedical Sciences, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Fred Chen
- Lions Eye Institute, 2 Verdun Street, Nedlands, Western Australia, 6009, Australia
| | - Alice Pébay
- Centre for Stem Cell Systems, School of Biomedical Sciences, University of Melbourne, Parkville, Victoria, 3010, Australia; Centre for Eye Research Australia, Level 7/32 Gisborne Street, East Melbourne, Victoria, 3002, Australia
| | - Damien Harkin
- School of Biomedical Sciences, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4000, Australia
| | - Alex W Hewitt
- Centre for Eye Research Australia, Level 7/32 Gisborne Street, East Melbourne, Victoria, 3002, Australia; School of Medicine, University of Tasmania, Churchill Avenue, Hobart, Tasmania, 7005, Australia
| | - Michael O'Connor
- School of Medicine, Western Sydney University, Victoria Road Parramatta, New South Wales, Parramatta, 2150, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Audra M A Shadforth
- School of Biomedical Sciences, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4000, Australia
| | - Stephanie L Watson
- Prince of Wales Hospital Clinical School, High Street, Randwick, Sydney, New South Wales, 2031, Australia; Save Sight Institute, University of Sydney, 8 Macquarie Street, Sydney, New South Wales, 2000, Australia; Sydney Eye Hospital, 8 Macquarie Street, Sydney, New South Wales, 2000, Australia.
| |
Collapse
|
37
|
Nezakati T, Seifalian A, Tan A, Seifalian AM. Conductive Polymers: Opportunities and Challenges in Biomedical Applications. Chem Rev 2018; 118:6766-6843. [DOI: 10.1021/acs.chemrev.6b00275] [Citation(s) in RCA: 354] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Toktam Nezakati
- Google Inc.., Mountain View, California 94043, United States
- Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London NW3 2QG, United Kingdom
| | - Amelia Seifalian
- UCL Medical School, University College London, London WC1E 6BT, United Kingdom
| | - Aaron Tan
- UCL Medical School, University College London, London WC1E 6BT, United Kingdom
| | - Alexander M. Seifalian
- NanoRegMed Ltd. (Nanotechnology and Regenerative Medicine Commercialization Centre), The London Innovation BioScience Centre, London NW1 0NH, United Kingdom
| |
Collapse
|
38
|
Dereli Can G, Akdere ÖE, Can ME, Aydın B, Cagil N, Gümüşderelioğlu M. A completely human-derived biomaterial mimicking limbal niche: Platelet-rich fibrin gel. Exp Eye Res 2018; 173:1-12. [PMID: 29678720 DOI: 10.1016/j.exer.2018.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/12/2018] [Accepted: 04/17/2018] [Indexed: 01/01/2023]
Abstract
Platelet-rich fibrin (PRF) is a natural biomaterial and has excellent biochemical and physical properties with a history of proven biocompatibility in the field of tissue engineering and regenerative medicine. Recent reports of fibrin-based matrices have offered new opportunities to apply PRF as a supplement for in vitro cell culture. Here, custom-modified human-derived PRF (HPRF) was produced via different centrifugation protocols, then, characterized by morphologically and chemically and utilized as a substrate and as a conditioned medium for limbal explant culture for the first time. It was found that the HPRF released significantly higher levels of growth factors which are essential for epithelial cell growth. The enhanced physicochemical properties of the HPRF were also proven in the limbal explant cultures in terms of cell growth, migration, viability, and stemness in comparison with the conventional limbal explant culture on human-derived amniotic membrane. Consequently, HPRF hydrogels are appealing natural biomaterials for the purpose of mimicking limbal niche and the discovery elucidates this new, xeno-chemical-free, completely human-derived biomaterial can be utilized as a supplement to promote epithelial cell behaviour in vitro.
Collapse
Affiliation(s)
- Gamze Dereli Can
- Department of Ophthalmology, Bursa Yüksek İhtisas Training and Research Hospital, Bursa, Turkey; Institute of Science and Engineering, Bioengineering, Hacettepe University, Ankara, Turkey.
| | - Özge Ekin Akdere
- Institute of Science and Engineering, Bioengineering, Hacettepe University, Ankara, Turkey
| | - Mehmet Erol Can
- Department of Ophthalmology, Bursa Yüksek İhtisas Training and Research Hospital, Bursa, Turkey
| | - Bahri Aydın
- Department of Ophthalmology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Nurullah Cagil
- Department of Ophthalmology, Yıldırım Beyazıt University Faculty of Medicine, Ankara Atatürk Training and Research Hospital, Ankara, Turkey
| | - Menemşe Gümüşderelioğlu
- Institute of Science and Engineering, Bioengineering, Hacettepe University, Ankara, Turkey; Faculty of Engineering, Chemical Engineering Department, Hacettepe University, Ankara, Turkey
| |
Collapse
|
39
|
Figueiredo GS, Salvador-Culla B, Baylis OJ, Mudhar HS, Lako M, Figueiredo FC. Outcomes of Penetrating Keratoplasty Following Autologous Cultivated Limbal Epithelial Stem Cell Transplantation. Stem Cells 2018; 36:925-931. [DOI: 10.1002/stem.2803] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/11/2017] [Accepted: 02/05/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Gustavo S. Figueiredo
- Department of Ophthalmology; Royal Victoria Infirmary; Newcastle upon Tyne United Kingdom
- Institute of Genetic Medicine, Newcastle University; Newcastle upon Tyne United Kingdom
| | - Borja Salvador-Culla
- Department of Ophthalmology; Royal Victoria Infirmary; Newcastle upon Tyne United Kingdom
| | - Oliver J. Baylis
- Department of Ophthalmology; Royal Victoria Infirmary; Newcastle upon Tyne United Kingdom
- Institute of Genetic Medicine, Newcastle University; Newcastle upon Tyne United Kingdom
| | - Hardeep S. Mudhar
- Department of Histopathology; Royal Hallamshire Hospital; Sheffield United Kingdom
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University; Newcastle upon Tyne United Kingdom
| | - Francisco C. Figueiredo
- Department of Ophthalmology; Royal Victoria Infirmary; Newcastle upon Tyne United Kingdom
- Institute of Genetic Medicine, Newcastle University; Newcastle upon Tyne United Kingdom
| |
Collapse
|
40
|
Nguyen KN, Bobba S, Richardson A, Park M, Watson SL, Wakefield D, Di Girolamo N. Native and synthetic scaffolds for limbal epithelial stem cell transplantation. Acta Biomater 2018; 65:21-35. [PMID: 29107055 DOI: 10.1016/j.actbio.2017.10.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/22/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022]
Abstract
UNLABELLED Limbal stem cell deficiency (LSCD) is a complex blinding disease of the cornea, which cannot be treated with conventional corneal transplants. Instead, a stem cell (SC) graft is required to replenish the limbal epithelial stem cell (LESC) reservoir, which is ultimately responsible for regenerating the corneal epithelium. Current therapies utilize limbal tissue biopsies that harbor LESCs as well as tissue culture expanded cells. Typically, this tissue is placed on a scaffold that supports the formation of corneal epithelial cell sheets, which are then transferred to diseased eyes. A wide range of biological and synthetic materials have been identified as carrier substrates for LESC, some of which have been used in the clinic, including amniotic membrane, fibrin, and silicon hydrogel contact lenses, each with their own advantages and limitations. This review will provide a brief background of LSCD, focusing on bio-scaffolds that have been utilized in limbal stem cell transplantation (LSCT) and materials that are being developed as potentially novel therapeutics for patients with this disease. STATEMENT OF SIGNIFICANCE The outcome of patients with corneal blindness that receive stem cell grafts to restore eye health and correct vision varies considerably and may be due to the different biological and synthetic scaffolds used to deliver these cells to the ocular surface. This review will highlight the positive attributes and limitations of the myriad of carriers developed for clinical use as well as those that are being trialled in pre-clinical models. The overall focus is on developing a standardized therapy for patients, however due to the multiple causes of corneal blindness, a personal regenerative medicine approach may be the best option.
Collapse
Affiliation(s)
- Kim N Nguyen
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Samantha Bobba
- Prince of Wales Hospital Clinical School, Sydney, Australia
| | | | - Mijeong Park
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | | - Denis Wakefield
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Nick Di Girolamo
- School of Medical Sciences, University of New South Wales, Sydney, Australia.
| |
Collapse
|
41
|
Limbal and Conjunctival Epithelial Cell Cultivation on Contact Lenses-Different Affixing Techniques and the Effect of Feeder Cells. Eye Contact Lens 2017; 43:162-167. [PMID: 27058829 DOI: 10.1097/icl.0000000000000259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Corneal blindness due to limbal stem-cell deficiency can be treated by transplantation of cultivated limbal epithelial stem cells (LESCs). We examined LESC cultivation on a contact lens (CL) carrier. Our goal was to optimize explant affixation and assess the possible benefit of 3T3 feeder cells. METHODS Human cadaver limbal and conjunctival explants were allowed to attach to CLs under the airflow of the laminar box (dried group) or affixed on CLs using suturing (sutured group) or tissue adhesives (glued group), then cultivated with or without 3T3 feeder cells. Outgrowth efficiency was statistically analyzed. CEBPδ, p63, CK3/12, and CK13 were detected by immunofluorescence in expanded cells. RESULTS Suturing and gluing provided excellent sample attachment, whereas drying was less effective. Cell expansion was better in sutured than in dried or glued samples. Presence of 3T3 feeder resulted in significantly better cell growth (P=0.048), most importantly in dried samples (P=0.008). Stepwise regression analysis indicated that cell expansion was dependent on the affixing method (P<0.001) and the presence of feeder layer (P=0.003). Expanded cells maintained their CK expression profiles and expressed putative stem-cell markers p63 and CEBPδ. The 3T3 feeder did not influence the expression of putative LESC markers or growth rate. CONCLUSIONS Suturing is an effective way to fasten explants to CLs. 3T3 fibroblasts are not necessary in this system, although they may enhance cell outgrowth when samples are exposed to stress. However, once cells begin to expand, neither expression of putative stem-cell markers nor growth rate is influenced by feeder cells.
Collapse
|
42
|
Saghizadeh M, Kramerov AA, Svendsen CN, Ljubimov AV. Concise Review: Stem Cells for Corneal Wound Healing. Stem Cells 2017; 35:2105-2114. [PMID: 28748596 PMCID: PMC5637932 DOI: 10.1002/stem.2667] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/16/2017] [Accepted: 07/02/2017] [Indexed: 02/06/2023]
Abstract
Corneal wound healing is a complex process that occurs in response to various injuries and commonly used refractive surgery. It is a significant clinical problem, which may lead to serious complications due to either incomplete (epithelial) or excessive (stromal) healing. Epithelial stem cells clearly play a role in this process, whereas the contribution of stromal and endothelial progenitors is less well studied. The available evidence on stem cell participation in corneal wound healing is reviewed, together with the data on the use of corneal and non-corneal stem cells to facilitate this process in diseased or postsurgical conditions. Important aspects of corneal stem cell generation from alternative cell sources, including pluripotent stem cells, for possible transplantation upon corneal injuries or in disease conditions are also presented. Stem Cells 2017;35:2105-2114.
Collapse
Affiliation(s)
- Mehrnoosh Saghizadeh
- Cedars‐Sinai Medical Center, Regenerative Medicine InstituteLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Andrei A. Kramerov
- Cedars‐Sinai Medical Center, Regenerative Medicine InstituteLos AngelesCaliforniaUSA
| | - Clive N. Svendsen
- Cedars‐Sinai Medical Center, Regenerative Medicine InstituteLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Alexander V. Ljubimov
- Cedars‐Sinai Medical Center, Regenerative Medicine InstituteLos AngelesCaliforniaUSA
- David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| |
Collapse
|
43
|
Safety of Cultivated Limbal Epithelial Stem Cell Transplantation for Human Corneal Regeneration. Stem Cells Int 2017; 2017:6978253. [PMID: 28465692 PMCID: PMC5390601 DOI: 10.1155/2017/6978253] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/08/2017] [Indexed: 12/13/2022] Open
Abstract
Ex vivo cultivated limbal stem cell transplantation is a promising technique for the treatment of limbal stem cell deficiency. While the results of the clinical trials have been extensively reported since the introduction of the technique in 1997, little has been reported regarding the potential health risks associated with production processes and transplantation techniques. Culture procedures require the use of animal and/or human-derived products, which carry the potential of introducing toxic or infectious agents through contamination with known or unknown additives. Protocols vary widely, and the risks depend on the local institutional methods. Good manufacturing practice and xeno-free culture protocols could reduce potential health risks but are not yet a common practice worldwide. In this review, we focus on the safety of both autologous- and allogeneic-cultivated limbal stem cell transplantation, with respect to culture processes, surgical approaches, and postoperative strategies.
Collapse
|
44
|
Zsebik B, Ujlaky-Nagy L, Losonczy G, Vereb G, Takács L. Cultivation of Human Oral Mucosal Explants on Contact Lenses. Curr Eye Res 2017; 42:1094-1099. [DOI: 10.1080/02713683.2017.1279635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Barbara Zsebik
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Ujlaky-Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gergely Losonczy
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - György Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Lili Takács
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
45
|
Evidence-Based Update on Ocular Chemical Injuries. CURRENT OPHTHALMOLOGY REPORTS 2017. [DOI: 10.1007/s40135-017-0120-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
Gottipamula S, Saraswat SK, Sridhar KN. Comparative study of isolation, expansion and characterization of epithelial cells. Cytotherapy 2016; 19:263-271. [PMID: 27894881 DOI: 10.1016/j.jcyt.2016.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/05/2016] [Accepted: 10/17/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND AIMS The human epithelial cells (EPCs) have been identified as the essential element for the regeneration of skin construct for burns, wounds and various tissue engineer-based products. METHODS In this study, the isolation, expansion and characterization of EPCs from various sources such as juvenile foreskin (JSK), buccal mucosa (BM), penile skin (PS) and urothelium (UR) in serum-free and xeno-free EpiLife media were evaluated. RESULTS The growth kinetics study revealed that EPCs from JSK and BM had notably higher growth rates compared with the others. Overall, the EPCs from all sources retained basic morphological characteristics and the functional characteristics such as Pan Cytokeratin (AE1/AE3). In addition, the cryopreservation stability of EPCs was accessed for post-thaw viability and found to be greater than 80% at 1 year of storage, but demonstrated reduced cell recovery (51%) at the second year in fetal bovine serum-free cryopreservation media. CONCLUSIONS Our result suggests that the EPCs from four cell sources can be grown in feeder-free, serum-free and xeno-free systems using commercially available EpiLife medium without losing epithelial cell characteristics even after passage 4. However, its suitability for clinical application must be accessed by preclinical and clinical studies.
Collapse
Affiliation(s)
- Sanjay Gottipamula
- Shankara Research Centre, Rangadore Memorial Hospital, Sri Research for Tissue Engineering Pvt. Ltd, Bangalore, India
| | - Sumit K Saraswat
- Shankara Research Centre, Rangadore Memorial Hospital, Sri Research for Tissue Engineering Pvt. Ltd, Bangalore, India
| | - K N Sridhar
- Shankara Research Centre, Rangadore Memorial Hospital, Sri Research for Tissue Engineering Pvt. Ltd, Bangalore, India.
| |
Collapse
|
47
|
Bobba S, Di Girolamo N, Mills R, Daniell M, Chan E, Harkin DG, Cronin BG, Crawford G, McGhee C, Watson S. Nature and incidence of severe limbal stem cell deficiency in Australia and New Zealand. Clin Exp Ophthalmol 2016; 45:174-181. [DOI: 10.1111/ceo.12813] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 07/16/2016] [Accepted: 08/02/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Samantha Bobba
- Prince of Wales Clinical School; University of New South Wales; Sydney New South Wales Australia
| | - Nick Di Girolamo
- School of Medical Sciences; University of New South Wales; Sydney New South Wales Australia
| | - Richard Mills
- Flinders University of South Australia; Adelaide South Australia Australia
| | - Mark Daniell
- University of Melbourne; Melbourne Victoria Australia
| | - Elsie Chan
- Royal Victorian Ear and Eye Hospital; Melbourne Victoria Australia
| | - Damien G Harkin
- School of Biomedical Sciences; Queensland University of Technology; Brisbane Queensland Australia
- Queensland Eye Institute; South Brisbane Queensland Australia
| | | | - Geoffrey Crawford
- Centre for Ophthalmology and Visual Science; University of Western Australia; Perth Western Australia Australia
- Lions Eye Institute; Perth Western Australia Australia
| | - Charles McGhee
- Department of Ophthalmology, New Zealand National Eye Centre; University of Auckland; Auckland New Zealand
| | - Stephanie Watson
- Prince of Wales Clinical School; University of New South Wales; Sydney New South Wales Australia
- Save Sight Institute; University of Sydney; Sydney New South Wales Australia
- Sydney Eye Hospital; Sydney New South Wales Australia
| |
Collapse
|
48
|
Abstract
: Worldwide, 45 million people are blind. Corneal blindness is a major cause of visual loss, estimated to affect 10 million. For the most difficult to treat patients, including those with a disease called limbal stem cell deficiency, a donor corneal graft is not a viable option; thus, patients are treated with specialized stem cell grafts, which fail in a significant proportion (30 to 50%) of subjects. This unacceptable failure rate means there is a pressing need to develop minimally invasive, long-lasting, cost-effective therapies to improve patient quality of life and lessen the economic burden. Restoring vision in patients with severe corneal disease is the main focus of our research program; however, to achieve our goals and deliver the best quality stem cell therapy, we must first understand the basic biology of these cells, including their residence, the factors that support their long-term existence, markers to identify and isolate them, and carriers that facilitate expansion, delivery, and protection during engraftment. We recently achieved some of these goals through the discovery of stem cell markers and the development of a novel and innovative contact lens-based cell transfer technique that has been successfully trialed on patients with corneal blindness. Although several popular methodologies are currently available to nurture and transfer stem cells to the patients' ocular surface, contact lenses provide many advantages that will be discussed in this review article. The job for clinician-researchers will be to map precisely how these cells contribute to restoring ocular health and whether improvements in the quality of cells and the cell delivery system can be developed to reduce disease burden.
Collapse
|
49
|
Abstract
Over the past 10 to 15 years, the availability of new materials and technologies has resulted in revolutionary concepts for contact lenses being proposed that go well beyond correcting vision. These novel uses include their prescribing to deliver topical ocular and systemic drugs, assist with ocular surface disease management, and limit the progression of myopia and novel methods to display visual information. How likely are these concepts to become commercially available, how successful will they be, and what are the potential issues to consider for them to come to market? To answer these questions, a panel of four experts were invited to discuss the benefits and pitfalls of these technologies and what challenges lay ahead of these concepts before their availability. Their responses provide a fascinating insight for the clinician into the likelihood of such revolutionary contact lenses being available in a clinical setting.
Collapse
|
50
|
Eghtedari Y, Richardson A, Mai K, Heng B, Guillemin GJ, Wakefield D, Di Girolamo N. Keratin 14 Expression in Epithelial Progenitor Cells of the Developing Human Cornea. Stem Cells Dev 2016; 25:699-711. [DOI: 10.1089/scd.2016.0039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Yas Eghtedari
- Ocular Diseases Research Group, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Alexander Richardson
- Ocular Diseases Research Group, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Kelly Mai
- Ocular Diseases Research Group, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Benjamin Heng
- Neuroinflammation Group, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, Australia
| | - Gilles J. Guillemin
- Neuroinflammation Group, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, Australia
| | - Denis Wakefield
- Ocular Diseases Research Group, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Nick Di Girolamo
- Ocular Diseases Research Group, School of Medical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|