1
|
Li S, Gao Z, Chen T, Pan Z, Li D, Dong Y, Li J, Zhang Y, Cui S, Sun W, Xu N. Unveiling the mechanism and driving factors of pharmaceutical and personal care product (PPCP) removal in wastewater treatment plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 383:125358. [PMID: 40262502 DOI: 10.1016/j.jenvman.2025.125358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025]
Abstract
Wastewater treatment plants (WWTPs) are primary point sources of pharmaceuticals and personal care products (PPCPs) entering the environment; however, few studies have systematically elucidated the PPCP removal mechanism in WWTPs. In this study, we conducted two composite sampling campaigns, collecting water and sludge samples from each treatment stage of four secondary or tertiary WWTPs with various processes. Our goal was to identify the mechanisms and driving factors behind the removal of 30 common PPCPs. The average removal efficiency of all PPCPs was 62.57 %, with significant variations (-308.03 %-91.03 %) among individual PPCPs. The contribution of sludge adsorption, biodegradation and chemical degradation to the removal of 30 PPCPs was quantified. The average biodegradation efficiency of sulfonamides was 44.90 %, but reconversion of chelate products to the sulfonamides after chemical treatment (UV) was the main reason for their low removal efficiency (about 30 %). Base dissociation constant (pKb) and logKow were used to evaluate the contribution of charge interactions and hydrophobic partitioning to the adsorption capacity of PPCPs for the first time. For PPCPs that could ionize into cations, higher pKb increased adsorption capacity, whereas for other PPCPs logKd (distribution coefficient) and logKow showed a significant positive correlation. The biodegradation of sulfonamides was positively correlated with their solubility. The presence of hydroxyl and carboxyl groups promoted microbial degradation of non-antibiotic compounds. This study reveals the universal mechanisms and driving factors behind PPCP removal in WWTPs, providing insights to guide the targeted optimization of treatment processes for PPCP removal.
Collapse
Affiliation(s)
- Shaoyang Li
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China; Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Zhen Gao
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
| | - Tianyi Chen
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
| | - Zhile Pan
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
| | - Dianbao Li
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
| | - Yanran Dong
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
| | - Junjie Li
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
| | - Yanli Zhang
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
| | - Sihan Cui
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
| | - Weiling Sun
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Nan Xu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China.
| |
Collapse
|
2
|
de Jong YP. Mice Engrafted with Human Liver Cells. Semin Liver Dis 2024; 44:405-415. [PMID: 39265638 PMCID: PMC11620938 DOI: 10.1055/s-0044-1790601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Rodents are commonly employed to model human liver conditions, although species differences can restrict their translational relevance. To overcome some of these limitations, researchers have long pursued human hepatocyte transplantation into rodents. More than 20 years ago, the first primary human hepatocyte transplantations into immunodeficient mice with liver injury were able to support hepatitis B and C virus infections, as these viruses cannot replicate in murine hepatocytes. Since then, hepatocyte chimeric mouse models have transitioned into mainstream preclinical research and are now employed in a diverse array of liver conditions beyond viral hepatitis, including malaria, drug metabolism, liver-targeting gene therapy, metabolic dysfunction-associated steatotic liver disease, lipoprotein and bile acid biology, and others. Concurrently, endeavors to cotransplant other cell types and humanize immune and other nonparenchymal compartments have seen growing success. Looking ahead, several challenges remain. These include enhancing immune functionality in mice doubly humanized with hepatocytes and immune systems, efficiently creating mice with genetically altered grafts and reliably humanizing chimeric mice with renewable cell sources such as patient-specific induced pluripotent stem cells. In conclusion, hepatocyte chimeric mice have evolved into vital preclinical models that address many limitations of traditional rodent models. Continued improvements may further expand their applications.
Collapse
Affiliation(s)
- Ype P de Jong
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, New York
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York
| |
Collapse
|
3
|
Ma M, Ge JY, Nie YZ, Li YM, Zheng YW. Developing Humanized Animal Models with Transplantable Human iPSC-Derived Cells. FRONT BIOSCI-LANDMRK 2024; 29:34. [PMID: 38287837 DOI: 10.31083/j.fbl2901034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/02/2023] [Accepted: 12/22/2023] [Indexed: 01/31/2024]
Abstract
Establishing reliable and reproducible animal models for disease modelling, drug screening and the understanding of disease susceptibility and pathogenesis is critical. However, traditional animal models differ significantly from humans in terms of physiology, immune response, and pathogenesis. As a result, it is difficult to translate laboratory findings into biomedical applications. Although several animal models with human chimeric genes, organs or systems have been developed in the past, their limited engraftment rate and physiological functions are a major obstacle to realize convincing models of humans. The lack of human transplantation resources and insufficient immune tolerance of recipient animals are the main challenges that need to be overcome to generate fully humanized animals. Recent advances in gene editing and pluripotent stem cell-based xenotransplantation technologies offer opportunities to create more accessible human-like models for biomedical research. In this article, we have combined our laboratory expertise to summarize humanized animal models, with a focus on hematopoietic/immune system and liver. We discuss their generation strategies and the potential donor cell sources, with particular attention given to human pluripotent stem cells. In particular, we discuss the advantages, limitations and emerging trends in their clinical and pharmaceutical applications. By providing insights into the current state of humanized animal models and their potential for biomedical applications, this article aims to advance the development of more accurate and reliable animal models for disease modeling and drug screening.
Collapse
Affiliation(s)
- Min Ma
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, 212001 Zhenjiang, Jiangsu, China
| | - Jian-Yun Ge
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, 529020 Jiangmen, Guangdong, China
| | - Yun-Zhong Nie
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 108-8639 Tokyo, Japan
| | - Yu-Mei Li
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, 212001 Zhenjiang, Jiangsu, China
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, 212001 Zhenjiang, Jiangsu, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, 529020 Jiangmen, Guangdong, China
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 108-8639 Tokyo, Japan
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 278-8510 Noda, Japan
| |
Collapse
|
4
|
Du EJ, Muench MO. A Monocytic Barrier to the Humanization of Immunodeficient Mice. Curr Stem Cell Res Ther 2024; 19:959-980. [PMID: 37859310 PMCID: PMC10997744 DOI: 10.2174/011574888x263597231001164351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 10/21/2023]
Abstract
Mice with severe immunodeficiencies have become very important tools for studying foreign cells in an in vivo environment. Xenotransplants can be used to model cells from many species, although most often, mice are humanized through the transplantation of human cells or tissues to meet the needs of medical research. The development of immunodeficient mice is reviewed leading up to the current state-of-the-art strains, such as the NOD-scid-gamma (NSG) mouse. NSG mice are excellent hosts for human hematopoietic stem cell transplants or immune reconstitution through transfusion of human peripheral blood mononuclear cells. However, barriers to full hematopoietic engraftment still remain; notably, the survival of human cells in the circulation is brief, which limits overall hematological and immune reconstitution. Reports have indicated a critical role for monocytic cells - monocytes, macrophages, and dendritic cells - in the clearance of xenogeneic cells from circulation. Various aspects of the NOD genetic background that affect monocytic cell growth, maturation, and function that are favorable to human cell transplantation are discussed. Important receptors, such as SIRPα, that form a part of the innate immune system and enable the recognition and phagocytosis of foreign cells by monocytic cells are reviewed. The development of humanized mouse models has taken decades of work in creating more immunodeficient mice, genetic modification of these mice to express human genes, and refinement of transplant techniques to optimize engraftment. Future advances may focus on the monocytic cells of the host to find ways for further engraftment and survival of xenogeneic cells.
Collapse
Affiliation(s)
- Emily J. Du
- Vitalant Research Institute, 360 Spear Street, Suite 200, San Francisco, CA, 94105, USA
| | - Marcus O. Muench
- Vitalant Research Institute, 360 Spear Street, Suite 200, San Francisco, CA, 94105, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
5
|
Salas-Silva S, Kim Y, Kim TH, Kim M, Seo D, Choi J, Factor VM, Seo HR, Song Y, Choi GS, Jung YK, Kim K, Lee KG, Jeong J, Shin JH, Choi D. Human chemically-derived hepatic progenitors (hCdHs) as a source of liver organoid generation: Application in regenerative medicine, disease modeling, and toxicology testing. Biomaterials 2023; 303:122360. [PMID: 38465578 DOI: 10.1016/j.biomaterials.2023.122360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/24/2023] [Accepted: 10/19/2023] [Indexed: 03/12/2024]
Abstract
BACKGROUND & AIMS Several types of human stem cells from embryonic (ESCs) and induced pluripotent (iPSCs) to adult tissue-specific stem cells are commonly used to generate 3D liver organoids for modeling tissue physiology and disease. We have recently established a protocol for direct conversion of primary human hepatocytes (hPHs) from healthy donor livers into bipotent progenitor cells (hCdHs). Here we extended this culture system to generate hCdH-derived liver organoids for diverse biomedical applications. METHODS To obtain hCdHs, hPHs were cultured in reprogramming medium containing A83-01 and CHIR99021 for 7 days. Liver organoids were established from hCdHs (hCdHOs) and human liver cells (hLOs) using the same donor livers for direct comparison, as well as from hiPSCs. Organoid properties were analyzed by standard in vitro assays. Molecular changes were determined by RT-qPCR and RNA-seq. Clinical relevance was evaluated by transplantation into FRG mice, modeling of alcohol-related liver disease (ARLD), and in vitro drug-toxicity tests. RESULTS hCdHs were clonally expanded as organoid cultures with low variability between starting hCdH lines. Similar to the hLOs, hCdHOs stably maintained stem cell phenotype based on accepted criteria. However, hCdHOs had an advantage over hLOs in terms of EpCAM expression, efficiency of organoid generation and capacity for directed hepatic differentiation as judged by molecular profiling, albumin secretion, glycogen accumulation, and CYP450 activities. Accordingly, FRG mice transplanted with hCdHOs survived longer than mice injected with hLOs. When exposed to ethanol, hCdHOs developed stronger ARLD phenotype than hLOs as evidenced by transcriptional profiling, lipid accumulation and mitochondrial dysfunction. In drug-induced injury assays in vitro, hCdHOs showed a similar or higher sensitivity response than hPHs. CONCLUSION hCdHOs provide a novel patient-specific stem cell-based platform for regenerative medicine, toxicology testing and modeling liver diseases.
Collapse
Affiliation(s)
- Soraya Salas-Silva
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763, Republic of Korea; Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Yohan Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763, Republic of Korea; Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, 04763, Republic of Korea; Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany; Department of MetaBioHealth, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Tae Hun Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763, Republic of Korea; Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, 04763, Republic of Korea
| | - Myounghoi Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763, Republic of Korea; Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, 04763, Republic of Korea
| | - Daekwan Seo
- Office of Cellular, Tissue and Gene Therapies, Center for Biologics Evaluation and Researcj, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Jeonghoon Choi
- Office of Cellular, Tissue and Gene Therapies, Center for Biologics Evaluation and Researcj, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Valentina M Factor
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Haeng Ran Seo
- Advanced Biomedical Research Laboratory, Institute Pasteur Korea, 16, Daewangpangyo-ro 712-beon gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Yeonhwa Song
- Advanced Biomedical Research Laboratory, Institute Pasteur Korea, 16, Daewangpangyo-ro 712-beon gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Gyu Sung Choi
- Department of General Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yun Kyung Jung
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763, Republic of Korea
| | - Kungsik Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763, Republic of Korea
| | - Kyeong Geun Lee
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763, Republic of Korea
| | - Jaemin Jeong
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, KIRAMS, Republic of Korea
| | - Ji Hyun Shin
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763, Republic of Korea; Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763, Republic of Korea; Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, 04763, Republic of Korea; Department of HY-KIST Bio-convergence, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
6
|
Tripura C, Gunda S, Vishwakarma SK, Thatipalli AR, Jose J, Jerald MK, Khan AA, Pande G. Long-term and non-invasive in vivo tracking of DiD dye-labeled human hepatic progenitors in chronic liver disease models. World J Hepatol 2022; 14:1884-1898. [PMID: 36340748 PMCID: PMC9627437 DOI: 10.4254/wjh.v14.i10.1884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/02/2022] [Accepted: 10/02/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chronic liver diseases (CLD) are the major public health burden due to the continuous increasing rate of global morbidity and mortality. The inherent limitations of organ transplantation have led to the development of stem cell-based therapy as a supportive and promising therapeutic option. However, identifying the fate of transplanted cells in vivo represents a crucial obstacle. AIM To evaluate the potential applicability of DiD dye as a cell labeling agent for long-term, and non-invasive in vivo tracking of transplanted cells in the liver. METHODS Magnetically sorted, epithelial cell adhesion molecule positive (1 × 106 cells/mL) fetal hepatic progenitor cells were labeled with DiD dye and transplanted into the livers of CLD-severe combined immunodeficiency (SCID) mice. Near-infrared (NIR) imaging was performed for in vivo tracking of the DiD-labeled transplanted cells along with colocalization of hepatic markers for up to 80 d. The existence of human cells within mouse livers was identified using Alu polymerase chain reaction and sequencing. RESULTS NIR fluorescence imaging of CLD-SCID mice showed a positive fluorescence signal of DiD at days 7, 15, 30, 45, 60, and 80 post-transplantation. Furthermore, positive staining of cytokeratin, c-Met, and albumin colocalizing with DiD fluorescence clearly demonstrated that the fluorescent signal of hepatic markers emerged from the DiD-labeled transplanted cells. Recovery of liver function was also observed with serum levels of glutamic-oxaloacetic transaminase, glutamate-pyruvate transaminase, and bilirubin. The detection of human-specific Alu sequence from the transplanted mouse livers provided evidence for the survival of transplanted cells at day 80. CONCLUSION DiD-labeling is promising for long-term and non-invasive in vivo cell tracking, and understanding the regenerative mechanisms incurred by the transplanted cells.
Collapse
Affiliation(s)
- Chaturvedula Tripura
- Cell and Stem Cell Biology, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India.
| | - Srinivas Gunda
- Cell and Stem Cell Biology, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Sandeep Kumar Vishwakarma
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Avinash Raj Thatipalli
- Cell and Stem Cell Biology, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Jedy Jose
- Cell and Stem Cell Biology, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Mahesh Kumar Jerald
- Cell and Stem Cell Biology, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Aleem Ahmed Khan
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad 500058, Telangana, India
| | - Gopal Pande
- Cell and Stem Cell Biology, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| |
Collapse
|
7
|
Segovia-Zafra A, Di Zeo-Sánchez DE, López-Gómez C, Pérez-Valdés Z, García-Fuentes E, Andrade RJ, Lucena MI, Villanueva-Paz M. Preclinical models of idiosyncratic drug-induced liver injury (iDILI): Moving towards prediction. Acta Pharm Sin B 2021; 11:3685-3726. [PMID: 35024301 PMCID: PMC8727925 DOI: 10.1016/j.apsb.2021.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Idiosyncratic drug-induced liver injury (iDILI) encompasses the unexpected harms that prescription and non-prescription drugs, herbal and dietary supplements can cause to the liver. iDILI remains a major public health problem and a major cause of drug attrition. Given the lack of biomarkers for iDILI prediction, diagnosis and prognosis, searching new models to predict and study mechanisms of iDILI is necessary. One of the major limitations of iDILI preclinical assessment has been the lack of correlation between the markers of hepatotoxicity in animal toxicological studies and clinically significant iDILI. Thus, major advances in the understanding of iDILI susceptibility and pathogenesis have come from the study of well-phenotyped iDILI patients. However, there are many gaps for explaining all the complexity of iDILI susceptibility and mechanisms. Therefore, there is a need to optimize preclinical human in vitro models to reduce the risk of iDILI during drug development. Here, the current experimental models and the future directions in iDILI modelling are thoroughly discussed, focusing on the human cellular models available to study the pathophysiological mechanisms of the disease and the most used in vivo animal iDILI models. We also comment about in silico approaches and the increasing relevance of patient-derived cellular models.
Collapse
Affiliation(s)
- Antonio Segovia-Zafra
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - Daniel E. Di Zeo-Sánchez
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Carlos López-Gómez
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Zeus Pérez-Valdés
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Eduardo García-Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - M. Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
- Platform ISCIII de Ensayos Clínicos, UICEC-IBIMA, Málaga 29071, Spain
| | - Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| |
Collapse
|
8
|
Lin J, Wang Z, Huang J, Tang S, Saiding Q, Zhu Q, Cui W. Microenvironment-Protected Exosome-Hydrogel for Facilitating Endometrial Regeneration, Fertility Restoration, and Live Birth of Offspring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007235. [PMID: 33590681 DOI: 10.1002/smll.202007235] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Thin endometrium is a primary cause of failed embryo transfer, resulting in long-term infertility and negative family outcomes. While hormonal treatments have greatly improved fertility results for some women, these responses remain unsatisfactory due to damage and infection of the complex endometrial microenvironment. In this study, a multifunctional microenvironment-protected exosome-hydrogel is designed for facilitating endometrial regeneration and fertility restoration via in situ microinjection and endometrial regeneration. This exosome hydrogel is formulated via Ag+ -S dynamic coordination and fusion with adipose stem cell-derived exosomes (ADSC-exo), yielding an injectable preparation that is sufficient to mitigate infection risk while also possessing the antigenic contents and paracrine signaling activity of the ADSC source cells, enabling regeneration of the endometrial microenvironment. In vitro, this exosome-hydrogel exerts an outstanding neovascularization-promoting effect, increased human umbilical vein endothelial cell proliferation and tube formation for 1.87 and 2.2 folds. In vivo, microenvironment-protected exosome-hydrogel also reveals to promote neovascularization and tissue regeneration while suppressing local tissue fibrosis. Importantly, regenerated endometrial tissue is more receptive to give embryos and birth to a healthy newborn. This microenvironment-protected exosome-hydrogel system offers a convenient, safe, and noninvasive approach for repairing thin endometrium and fertility restoration.
Collapse
Affiliation(s)
- Jiaying Lin
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Zhen Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Jialyu Huang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Shengluan Tang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Qimanguli Saiding
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Qianqian Zhu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
9
|
Yan Y, Wang R, Hu X, Wang S, Zhang L, Hou C, Zhang L. MiR-126 Regulates Properties of SOX9 + Liver Progenitor Cells during Liver Repair by Targeting Hoxb6. Stem Cell Reports 2020; 15:706-720. [PMID: 32763157 PMCID: PMC7486193 DOI: 10.1016/j.stemcr.2020.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Liver progenitor cells (LPCs) have a remarkable contribution to the hepatocytes and ductal cells when normal hepatocyte proliferation is severely impaired. As a biomarker for LPCs, Sry-box 9 (Sox9) plays critical roles in liver homeostasis and repair in response to injury. However, the regulation mechanism of Sox9 in liver physiological and pathological state remains unknown. In this study, we found that miR-126 positively regulated the expression of Sox9, the proliferation and differentiation of SOX9+ LPCs by suppressing the translation of homeobox b6 (Hoxb6). As a transcription factor, HOXB6 directly binds to the promoter of Sox9 to inhibit Sox9 expression, resulting in the destruction of the properties of SOX9+ LPCs in CCl4-induced liver injury. These findings revealed the role of miR-126 in regulating SOX9+ LPCs fate by targeting Hoxb6 in liver injury repair. Our findings suggest the potential role of miR-126 as a nucleic acid therapy drug target for liver failure.
Collapse
Affiliation(s)
- Yi Yan
- College of Veterinary Medicine, Bio-medical Center, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Rui Wang
- College of Veterinary Medicine, Bio-medical Center, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiongji Hu
- College of Veterinary Medicine, Bio-medical Center, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shichao Wang
- College of Veterinary Medicine, Bio-medical Center, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Liang Zhang
- College of Veterinary Medicine, Bio-medical Center, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chenjiao Hou
- College of Veterinary Medicine, Bio-medical Center, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lisheng Zhang
- College of Veterinary Medicine, Bio-medical Center, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
10
|
Kim Y, Kang K, Lee SB, Seo D, Yoon S, Kim SJ, Jang K, Jung YK, Lee KG, Factor VM, Jeong J, Choi D. Small molecule-mediated reprogramming of human hepatocytes into bipotent progenitor cells. J Hepatol 2019; 70:97-107. [PMID: 30240598 DOI: 10.1016/j.jhep.2018.09.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 08/02/2018] [Accepted: 09/10/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS Currently, much effort is directed towards the development of new cell sources for clinical therapy using cell fate conversion by small molecules. Direct lineage reprogramming to a progenitor state has been reported in terminally differentiated rodent hepatocytes, yet remains a challenge in human hepatocytes. METHODS Human hepatocytes were isolated from healthy and diseased donor livers and reprogrammed into progenitor cells by 2 small molecules, A83-01 and CHIR99021 (AC), in the presence of EGF and HGF. The stemness properties of human chemically derived hepatic progenitors (hCdHs) were tested by standard in vitro and in vivo assays and transcriptome profiling. RESULTS We developed a robust culture system for generating hCdHs with therapeutic potential. The use of HGF proved to be an essential determinant of the fate conversion process. Based on functional evidence, activation of the HGF/MET signal transduction system collaborated with A83-01 and CHIR99021 to allow a rapid expansion of progenitor cells through the activation of the ERK pathway. hCdHs expressed hepatic progenitor markers and could self-renew for at least 10 passages while retaining a normal karyotype and potential to differentiate into functional hepatocytes and biliary epithelial cells in vitro. Gene expression profiling using RNAseq confirmed the transcriptional reprogramming of hCdHs towards a progenitor state and the suppression of mature hepatocyte transcripts. Upon intrasplenic transplantation in several models of therapeutic liver repopulation, hCdHs effectively repopulated the damaged parenchyma. CONCLUSION Our study is the first report of successful reprogramming of human hepatocytes to a population of proliferating bipotent cells with regenerative potential. hCdHs may provide a novel tool that permits expansion and genetic manipulation of patient-specific progenitors to study regeneration and the repair of diseased livers. LAY SUMMARY Human primary hepatocytes were reprogrammed towards hepatic progenitor cells by a combined treatment with 2 small molecules, A83-01 and CHIR99021, and HGF. Chemically derived hepatic progenitors exhibited a high proliferation potential and the ability to differentiate into hepatocytes and biliary epithelial cells both in vitro and in vivo. This approach enables the generation of patient-specific hepatic progenitors and provides a platform for personal and stem cell-based regenerative medicine.
Collapse
Affiliation(s)
- Yohan Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea; HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul 04763, Republic of Korea
| | - Kyojin Kang
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea; HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul 04763, Republic of Korea
| | - Seung Bum Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Science, Seoul 01812, Republic of Korea
| | - Daekwan Seo
- Macrogen Corporation, Rockville, MD 20850, USA
| | - Sangtae Yoon
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea; HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul 04763, Republic of Korea
| | - Sung Joo Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University College of Medicine, Seoul 03063, Republic of Korea
| | - Kiseok Jang
- Department of Pathology, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Yun Kyung Jung
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Kyeong Geun Lee
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Valentina M Factor
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jaemin Jeong
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea; HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul 04763, Republic of Korea.
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea; HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
11
|
Yoon S, Kang K, Cho YD, Kim Y, Buisson EM, Yim JH, Lee SB, Ryu KY, Jeong J, Choi D. Nonintegrating Direct Conversion Using mRNA into Hepatocyte-Like Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8240567. [PMID: 30327781 PMCID: PMC6171260 DOI: 10.1155/2018/8240567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/23/2018] [Accepted: 08/30/2018] [Indexed: 12/20/2022]
Abstract
Recently, several researchers have reported that direct reprogramming techniques can be used to differentiate fibroblasts into hepatocyte-like cells without a pluripotent intermediate step. However, the use of viral vectors for conversion continues to pose important challenges in terms of genome integration. Herein, we propose a new method of direct conversion without genome integration with potential clinical applications. To generate hepatocyte-like cells, mRNA coding for the hepatic transcription factors Foxa3 and HNF4α was transfected into mouse embryonic fibroblasts. After 10-12 days, the fibroblasts converted to an epithelial morphology and generated colonies of hepatocyte-like cells (R-iHeps). The generated R-iHeps expressed hepatocyte-specific marker genes and proteins, including albumin, alpha-fetoprotein, HNF4α, CK18, and CYP1A2. To evaluate hepatic function, indocyanine green uptake, periodic acid-Schiff staining, and albumin secretion were assessed. Furthermore, mCherry-positive R-iHeps were engrafted in the liver of Alb-TRECK/SCID mice, and we confirmed FAH enzyme expression in Fah1RTyrc/RJ models. In conclusion, our data suggest that the nonintegrating method using mRNA has potential for cell therapy.
Collapse
Affiliation(s)
- Sangtae Yoon
- HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul 04763, Republic of Korea
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Kyojin Kang
- HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul 04763, Republic of Korea
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Young-duck Cho
- Department of Emergency Medicine, Korea University Guro Hospital, Seoul 02841, Republic of Korea
| | - Yohan Kim
- HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul 04763, Republic of Korea
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Elina Maria Buisson
- HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul 04763, Republic of Korea
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Ji-Hye Yim
- HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul 04763, Republic of Korea
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Seung Bum Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Science (KIRAMS), Seoul 01812, Republic of Korea
| | - Ki-Young Ryu
- Department of Obstetrics and Gynecology, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Jaemin Jeong
- HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul 04763, Republic of Korea
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Dongho Choi
- HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul 04763, Republic of Korea
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| |
Collapse
|
12
|
Fomin ME, Beyer AI, Muench MO. Human fetal liver cultures support multiple cell lineages that can engraft immunodeficient mice. Open Biol 2018; 7:rsob.170108. [PMID: 29237808 PMCID: PMC5746544 DOI: 10.1098/rsob.170108] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/17/2017] [Indexed: 12/25/2022] Open
Abstract
During prenatal development the liver is composed of multiple cell types with unique properties compared to their adult counterparts. We aimed to establish multilineage cultures of human fetal liver cells that could maintain stem cell and progenitor populations found in the developing liver. An aim of this study was to test if maturation of fetal hepatocytes in short-term cultures supported by epidermal growth factor and oncostatin M can improve their ability to engraft immunodeficient mice. Fetal liver cultures supported a mixture of albumin+ cytokertin-19+ hepatoblasts, hepatocytes, cholangiocytes, CD14++CD32+ liver sinusoidal endothelial cells (LSECs) and CD34+CD133+ haematopoietic stem cells. Transplantation of cultured cells into uPA-NOG or TK-NOG mice yielded long-term engraftment of hepatocytes, abundant LSEC engraftment and multilineage haematopoiesis. Haematopoietic engraftment included reconstitution of B-, T- and NK-lymphocytes. Colonies of polarized human hepatocytes were observed surrounded by human LSECs in contact with human CD45+ blood cells in the liver sinusoids. Thus, fetal liver cultures support multiple cell lineages including LSECs and haematopoietic stem cells while also promoting the ability of fetal hepatocytes to engraft adult mouse livers. Fetal liver cultures and liver-humanized mice created from these cultures can provide useful model systems to study liver development, function and disease.
Collapse
Affiliation(s)
- Marina E Fomin
- Blood Systems Research Institute, 270 Masonic Avenue, San Francisco, CA, USA
| | - Ashley I Beyer
- Blood Systems Research Institute, 270 Masonic Avenue, San Francisco, CA, USA
| | - Marcus O Muench
- Blood Systems Research Institute, 270 Masonic Avenue, San Francisco, CA, USA .,Liver Center and Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
13
|
Thompson K, Moore S, Tang S, Wiet M, Purmessur D. The chondrodystrophic dog: A clinically relevant intermediate-sized animal model for the study of intervertebral disc-associated spinal pain. JOR Spine 2018; 1:e1011. [PMID: 29984354 PMCID: PMC6018624 DOI: 10.1002/jsp2.1011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 12/16/2022] Open
Abstract
Low back pain (LBP) is the leading cause of disability worldwide, with an estimated 80% of the American population suffering from a painful back condition at some point during their lives. The most common cause of LBP is intervertebral disc (IVD) degeneration (IVDD), a condition that can be difficult to treat, either surgically or medically, with current available therapies. Thus, understanding the pathological mechanisms of IVDD and developing novel treatments are critical for improving outcome and quality of life in people living with LBP. While experimental animal models provide valuable mechanistic insight, each model has limitations that complicate translation to the clinical setting. This review focuses on the chondrodystrophic canine clinical model of IVDD as a promising model to assess IVD-associated spinal pain and translational therapeutic strategies for LBP. The canine IVD, while smaller in size than human, goat, ovine, and bovine IVDs, is larger than most other small animal IVDD models and undergoes maturational changes similar to those of the human IVD. Furthermore, both dogs and humans develop painful IVDD as a spontaneous process, resulting in similar characteristic pathologies and clinical signs. Future exploration of the canine model as a model of IVD-associated spinal pain and biological treatments using the canine clinical model will further demonstrate its translational capabilities with the added ethical benefit of treating an existing veterinary patient population with IVDD.
Collapse
Affiliation(s)
- Kelly Thompson
- Department of Veterinary Clinical SciencesThe Ohio State UniversityColumbusOhio
| | - Sarah Moore
- Department of Veterinary Clinical SciencesThe Ohio State UniversityColumbusOhio
| | - Shirley Tang
- Department of Biomedical Engineering, College of EngineeringThe Ohio State UniversityColumbusOhio
| | - Matthew Wiet
- Department of Biomedical Engineering, College of EngineeringThe Ohio State UniversityColumbusOhio
| | - Devina Purmessur
- Department of Biomedical Engineering, College of EngineeringThe Ohio State UniversityColumbusOhio
- Department of Orthopedics, College of MedicineThe Ohio State UniversityColumbusOhio
| |
Collapse
|
14
|
Nie YZ, Zheng YW, Ogawa M, Miyagi E, Taniguchi H. Human liver organoids generated with single donor-derived multiple cells rescue mice from acute liver failure. Stem Cell Res Ther 2018; 9:5. [PMID: 29321049 PMCID: PMC5763644 DOI: 10.1186/s13287-017-0749-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Acute liver failure (ALF) is a life-threatening disease with a high mortality rate. However, there are limited treatments or devices available for ALF therapy. Here, we aimed to develop a new strategy for ALF treatment by transplanting functional liver organoids (LOs) generated from single donor-derived human induced pluripotent stem cell (hiPSC) endoderm, endothelial cells (ECs), and mesenchymal cells (MCs). METHODS First, we isolated ECs and MCs from a single donor umbilical cord (UC) through enzyme digestion and characterized the UC-ECs and UC-MCs by flow cytometry. Second, using a nonviral reprogramming method, we generated same donor-derived hiPSCs from the UC-ECs and investigated their hepatic differentiation abilities. Finally, we simultaneously plated EC-hiPSC endoderm, UC-ECs, and UC-MCs in a three-dimensional (3D) microwell culture system, and generated single donor cell-derived differentiated LOs for ALF mouse treatment. RESULTS We obtained ECs and MCs from a single donor UC with high purity, and these cells provided a multicellular microenvironment that promoted LO differentiation. hiPSCs from the same donor were generated from UC-ECs, and the resultant EC-hiPSCs could be differentiated efficiently into pure definitive endoderm and further into hepatic lineages. Simultaneous plating of EC-hiPSC endoderm, UC-ECs, and UC-MCs in the 3D microwell system generated single donor cell-derived LOs (SDC-LOs) that could be differentiated into functional LOs with enhanced hepatic capacity as compared to that of EC-hiPSC-derived hepatic-like cells. When these functional SDC-LOs were transplanted into the renal subcapsules of ALF mice, they rapidly assumed hepatic functions and improved the survival rate of ALF mice. CONCLUSION These results demonstrate that functional LOs generated from single donor cells can improve the condition of ALF mice. Functional SDC-LO transplantation provides a promising novel approach for ALF therapy.
Collapse
Affiliation(s)
- Yun-Zhong Nie
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004 Japan
| | - Yun-Wen Zheng
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004 Japan
- Department of Advanced Gastroenterological Surgical Science and Technology, Faculty of Medicine, University of Tsukuba, Tsukuba-shi, Ibaraki 305-8575 Japan
- Research Center of Stem Cells and Regenerative Medicine, Jiangsu University Hospital, Zhenjiang, Jiangsu 212001 China
| | - Miyuki Ogawa
- Department of Obstetrics and Gynecology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004 Japan
| | - Etsuko Miyagi
- Department of Obstetrics and Gynecology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004 Japan
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004 Japan
- Advanced Medical Research Center, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004 Japan
| |
Collapse
|
15
|
Walsh NC, Kenney LL, Jangalwe S, Aryee KE, Greiner DL, Brehm MA, Shultz LD. Humanized Mouse Models of Clinical Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 12:187-215. [PMID: 27959627 DOI: 10.1146/annurev-pathol-052016-100332] [Citation(s) in RCA: 401] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Immunodeficient mice engrafted with functional human cells and tissues, that is, humanized mice, have become increasingly important as small, preclinical animal models for the study of human diseases. Since the description of immunodeficient mice bearing mutations in the IL2 receptor common gamma chain (IL2rgnull) in the early 2000s, investigators have been able to engraft murine recipients with human hematopoietic stem cells that develop into functional human immune systems. These mice can also be engrafted with human tissues such as islets, liver, skin, and most solid and hematologic cancers. Humanized mice are permitting significant progress in studies of human infectious disease, cancer, regenerative medicine, graft-versus-host disease, allergies, and immunity. Ultimately, use of humanized mice may lead to the implementation of truly personalized medicine in the clinic. This review discusses recent progress in the development and use of humanized mice and highlights their utility for the study of human diseases.
Collapse
Affiliation(s)
- Nicole C Walsh
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Laurie L Kenney
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Sonal Jangalwe
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Ken-Edwin Aryee
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Dale L Greiner
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Michael A Brehm
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | | |
Collapse
|
16
|
Fomin ME, Beyer AI, Publicover J, Lu K, Bakkour S, Simmons G, Muench MO. Higher Serum Alanine Transaminase Levels in Male Urokinase-Type Plasminogen Activator-Transgenic Mice Are Associated With Improved Engraftment of Hepatocytes but not Liver Sinusoidal Endothelial Cells. CELL MEDICINE 2016; 9:117-125. [PMID: 28713641 DOI: 10.3727/215517916x693375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effects of sex on the degree of liver damage and human cell engraftment were investigated in immunodeficient urokinase-type plasminogen activator-transgenic (uPA-NOG) mice. Liver damage, measured by serum alanine transaminase (ALT) levels, was compared in male and female uPA-NOG mice of different ages. Male mice had significantly higher ALT levels than females with a median of 334 versus 158 U/L in transgenic homozygous mice, respectively. Mice were transplanted with human adult hepatocytes or fetal liver cells and analyzed for any correlation of engraftment of hepatocytes, liver sinusoidal endothelial cells (LSECs), and hematopoietic cells with the degree of liver damage. Hepatocyte engraftment was measured by human albumin levels in the mouse serum. Higher ALT levels correlated with higher hepatocyte engraftment, resulting in albumin levels in male mice that were 9.6 times higher than in females. LSEC and hematopoietic cell engraftment were measured by flow cytometric analysis of the mouse liver and bone marrow. LSEC and hematopoietic engraftment did not differ between male and female transplant recipients. Thus, the sex of uPA-NOG mice affects the degree of liver damage, which is reflected in the levels of human hepatocyte engraftment. However, the high levels of LSEC engraftment observed in uPA-NOG mice are not further improved among male mice, suggesting that a lower threshold of liver damage is sufficient to enhance endothelial cell engraftment. Previously described sex differences in human hematopoietic stem cell engraftment in immunodeficient mice were not observed in this model.
Collapse
Affiliation(s)
- Marina E Fomin
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Ashley I Beyer
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Jean Publicover
- †Department of Medicine, University of California, San Francisco, CA, USA
| | - Kai Lu
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Sonia Bakkour
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Graham Simmons
- Blood Systems Research Institute, San Francisco, CA, USA.,‡Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Marcus O Muench
- Blood Systems Research Institute, San Francisco, CA, USA.,‡Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
17
|
Zhang RR, Zheng YW, Taniguchi H. Generation of a Humanized Mouse Liver Using Human Hepatic Stem Cells. J Vis Exp 2016:54167. [PMID: 27684205 PMCID: PMC5091961 DOI: 10.3791/54167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A novel animal model involving chimeric mice with humanized livers established via human hepatocyte transplantation has been developed. These mice, in which the liver has been repopulated with functional human hepatocytes, could serve as a useful tool for investigating human hepatic cell biology, drug metabolism, and other preclinical applications. One of the key factors required for successful transplantation of human hepatocytes into mice is the elimination of the endogenous hepatocytes to prevent competition with the human cells and provide a suitable space and microenvironment for promoting human donor cell expansion and differentiation. To date, two major liver injury mouse models utilizing fumarylacetoacetate hydrolase (Fah) and uroplasminogen activator (uPA) mice have been established. However, Fah mice are used mainly with mature hepatocytes and the application of the uPA model is limited by decreased breeding. To overcome these limitations, Alb-toxin receptor mediated cell knockout (TRECK)/SCID mice were used for in vivo differentiation of immature human hepatocytes and humanized liver generation. Human hepatic stem cells (HpSCs) successfully repopulated the livers of Alb-TRECK/SCID mice that had developed lethal fulminant hepatic failure following diphtheria toxin (DT) treatment. This model of a humanized liver in Alb-TRECK/SCID mice will have functional applications in studies involving drug metabolism and drug-drug interactions and will promote other in vivo and in vitro studies.
Collapse
Affiliation(s)
- Ran-Ran Zhang
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University
| | - Yun-Wen Zheng
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University; Department of Advanced Gastroenterological Surgical Science and Technology, Faculty of Medicine, University of Tsukuba; Regenerative Medicine Research Center, Jiangsu University Hospital;
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University
| |
Collapse
|
18
|
Noulin F. Malaria modeling: In vitro stem cells vs in vivo models. World J Stem Cells 2016; 8:88-100. [PMID: 27022439 PMCID: PMC4807312 DOI: 10.4252/wjsc.v8.i3.88] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/07/2015] [Accepted: 01/29/2016] [Indexed: 02/06/2023] Open
Abstract
The recent development of stem cell research and the possibility of generating cells that can be stably and permanently modified in their genome open a broad horizon in the world of in vitro modeling. The malaria field is gaining new opportunities from this important breakthrough and novel tools were adapted and opened new frontiers for malaria research. In addition to the new in vitro systems, in recent years there were also significant advances in the development of new animal models that allows studying the entire cell cycle of human malaria. In this paper, we review the different protocols available to study human Plasmodium species either by using stem cell or alternative animal models.
Collapse
|
19
|
Scheer N, Wilson ID. A comparison between genetically humanized and chimeric liver humanized mouse models for studies in drug metabolism and toxicity. Drug Discov Today 2015; 21:250-63. [PMID: 26360054 DOI: 10.1016/j.drudis.2015.09.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/07/2015] [Accepted: 09/01/2015] [Indexed: 12/12/2022]
Abstract
Mice that have been genetically humanized for proteins involved in drug metabolism and toxicity and mice engrafted with human hepatocytes are emerging and promising in vivo models for an improved prediction of the pharmacokinetic, drug-drug interaction and safety characteristics of compounds in humans. The specific advantages and disadvantages of these models should be carefully considered when using them for studies in drug discovery and development. Here, an overview on the corresponding genetically humanized and chimeric liver humanized mouse models described to date is provided and illustrated with examples of their utility in drug metabolism and toxicity studies. We compare the strength and weaknesses of the two different approaches, give guidance for the selection of the appropriate model for various applications and discuss future trends and perspectives.
Collapse
Affiliation(s)
| | - Ian D Wilson
- Imperial College London, South Kensington, London SW7 2AZ, UK.
| |
Collapse
|