1
|
Poudineh M, Mohammadyari F, Parsamanesh N, Jamialahmadi T, Kesharwani P, Sahebkar A. Cell and gene therapeutic approaches in non-alcoholic fatty liver disease. Gene 2025; 956:149466. [PMID: 40189164 DOI: 10.1016/j.gene.2025.149466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/14/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) refers to a range of conditions marked by the buildup of triglycerides in liver cells, accompanied by inflammation, which contributes to liver damage, clinical symptoms, and histopathological alterations. Multiple molecular pathways contribute to NAFLD pathogenesis, including immune dysregulation, endoplasmic reticulum stress, and tissue injury. Both the innate and adaptive immune systems play crucial roles in disease progression, with intricate crosstalk between liver and immune cells driving NAFLD development. Among emerging therapeutic strategies, cell and gene-based therapies have shown promise. This study reviews the pathophysiological mechanisms of NAFLD and explores the therapeutic potential of cell-based interventions, highlighting their immunomodulatory effects, inhibition of hepatic stellate cells, promotion of hepatocyte regeneration, and potential for hepatocyte differentiation. Additionally, we examine gene delivery vectors designed to target NAFLD, focusing on their role in engineering hepatocytes through gene addition or editing to enhance therapeutic efficacy.
Collapse
Affiliation(s)
| | | | - Negin Parsamanesh
- Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Tananz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh 470003, India.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Centre for Research Impact and Outcome, Chitkara University, Rajpura 140417, Punjab, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Bolinas DKM, Barcena AJR, Mishra A, Bernardino MR, Lin V, Heralde FM, Chintalapani G, Fowlkes NW, Huang SY, Melancon MP. Mesenchymal Stem Cells Loaded in Injectable Alginate Hydrogels Promote Liver Growth and Attenuate Liver Fibrosis in Cirrhotic Rats. Gels 2025; 11:250. [PMID: 40277686 PMCID: PMC12027234 DOI: 10.3390/gels11040250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Cirrhosis, a marker of severe liver diseases, limits future liver remnant (FLR) growth, preventing many cancer patients from undergoing surgery. While portal vein blockade (PVB) techniques are used to stimulate liver regeneration, 20-30% of patients still fail to achieve the required growth. Although mesenchymal stem cell (MSC) therapy improves PVB, its efficacy is limited by poor cell retention. To address this, we utilized alginate hydrogels to deliver MSCs and improve their retention. MSCs were loaded in the hydrogel and injected intraportally in cirrhotic rats. Liver volume, weights, enzyme levels, and histology were monitored. Results showed that the hydrogel maintained 89.0 ± 3.0% cell viability and gradually released MSCs for over two weeks. Furthermore, the rats injected with the MSC-loaded hydrogel demonstrated higher liver volumes (FLR ratio of 0.57 ± 0.32) and weights (FLR ratio of 0.84 ± 0.05). The treated rats exhibited more improved liver enzymes (AST: 72.75 ± 14.17 U/L, ALP: 135.67 ± 41.20 U/L, ALT: 46.00 ± 2.94 U/L) and decreased fibrotic areas in the liver (4.52 ± 0.22%) compared to the control group. Histology revealed increased retention when MSCs were delivered with the hydrogel (37.30 ± 16.10 MSCs/mm2) compared to cells alone (21.70 ± 22.10 MSCs/mm2). Overall, the MSC-loaded hydrogels enhanced the growth and reduced the fibrosis of the liver by promoting cell retention and efficacy in cirrhotic rats. This approach holds significant potential for improving outcomes among cancer patients, offering a promising therapeutic strategy for liver regeneration and treatment of liver diseases.
Collapse
Affiliation(s)
- Dominic Karl M. Bolinas
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.K.M.B.); (A.J.R.B.); (A.M.); (M.R.B.); (V.L.); (G.C.); (S.Y.H.)
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines;
| | - Allan John R. Barcena
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.K.M.B.); (A.J.R.B.); (A.M.); (M.R.B.); (V.L.); (G.C.); (S.Y.H.)
| | - Archana Mishra
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.K.M.B.); (A.J.R.B.); (A.M.); (M.R.B.); (V.L.); (G.C.); (S.Y.H.)
| | - Marvin R. Bernardino
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.K.M.B.); (A.J.R.B.); (A.M.); (M.R.B.); (V.L.); (G.C.); (S.Y.H.)
| | - Vincent Lin
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.K.M.B.); (A.J.R.B.); (A.M.); (M.R.B.); (V.L.); (G.C.); (S.Y.H.)
| | - Francisco M. Heralde
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines;
| | - Gouthami Chintalapani
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.K.M.B.); (A.J.R.B.); (A.M.); (M.R.B.); (V.L.); (G.C.); (S.Y.H.)
| | - Natalie W. Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Steven Y. Huang
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.K.M.B.); (A.J.R.B.); (A.M.); (M.R.B.); (V.L.); (G.C.); (S.Y.H.)
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.K.M.B.); (A.J.R.B.); (A.M.); (M.R.B.); (V.L.); (G.C.); (S.Y.H.)
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
3
|
Wei S, Guan G, Luan X, Yu C, Miao L, Yuan X, Chen P, Di G. NLRP3 inflammasome constrains liver regeneration through impairing MerTK-mediated macrophage efferocytosis. SCIENCE ADVANCES 2025; 11:eadq5786. [PMID: 39742469 DOI: 10.1126/sciadv.adq5786] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
The NOD-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in human acute and chronic liver diseases. However, the role and cell-specific contribution of NLRP3 in liver regeneration remains unclear. Here, we found that NLRP3 was highly activated during the early stage of liver regeneration via 70% partial hepatectomy (PHx) mice model and clinical data. Global NLRP3 depletion or pharmacologically blocking NLRP3 significantly enhanced liver regeneration, while NLRP3 overexpression impaired it after PHx. Furthermore, mice with myeloid-specific knockout of Nlrp3 (Nlrp3Δmye), rather than hepatocyte-specific knockout (Nlrp3Δhep), showed improved liver regeneration compared to control (Nlrp3fl/fl). Mechanistically, deficiency of Nlrp3 promoted myeloid-epithelial-reproductive tyrosine kinase (MerTK)-mediated efferocytosis, thereby inducing macrophages toward a pro-reparative Ly6Clo phenotype. Notably, NLRP3 inhibition by MCC950 effectively reversed the impairment of liver regeneration after PHx in mice fed a high-fat diet. Our findings provide a potential therapeutic strategy for the prevention and treatment of post-hepatectomy liver failure.
Collapse
Affiliation(s)
- Susu Wei
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
- Qilu Zhongke Academy of Modern Microbiology Technology, Jinan, China
| | - Ge Guan
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaoyu Luan
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Chaoqun Yu
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Longyu Miao
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xinying Yuan
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Peng Chen
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Guohu Di
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Chen Z, Xia X, Yao M, Yang Y, Ao X, Zhang Z, Guo L, Xu X. The dual role of mesenchymal stem cells in apoptosis regulation. Cell Death Dis 2024; 15:250. [PMID: 38582754 PMCID: PMC10998921 DOI: 10.1038/s41419-024-06620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Mesenchymal stem cells (MSCs) are widely distributed pluripotent stem cells with powerful immunomodulatory capacity. MSCs transplantation therapy (MSCT) is widely used in the fields of tissue regeneration and repair, and treatment of inflammatory diseases. Apoptosis is an important way for tissues to maintain cell renewal, but it also plays an important role in various diseases. And many studies have shown that MSCs improves the diseases by regulating cell apoptosis. The regulation of MSCs on apoptosis is double-sided. On the one hand, MSCs significantly inhibit the apoptosis of diseased cells. On the other hand, MSCs also promote the apoptosis of tumor cells and excessive immune cells. Furthermore, MSCs regulate apoptosis through multiple molecules and pathways, including three classical apoptotic signaling pathways and other pathways. In this review, we summarize the current evidence on the regulation of apoptosis by MSCs.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Department of General Surgery, The 906th Hospital of PLA, Ningbo, 315040, Zhejiang, China
| | - Xuewei Xia
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400042, China
| | - Mengwei Yao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yi Yang
- Department of Rheumatology and Immunology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiang Ao
- Department of orthopedics, The 953th Hospital of PLA, Shigatse Branch of Xinqiao Hospital, Army Medical University, Shigatse, 857000, China
| | - Zhaoqi Zhang
- Department of Neurosurgery, The 906th Hospital of PLA, Ningbo, 315040, Zhejiang, China
| | - Li Guo
- Endocrinology Department, First Affiliated Hospital, Army Medical University, Chongqing, 400038, China.
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
5
|
Tietze L, Christ M, Yu J, Stock P, Nickel S, Schulze A, Bartels M, Tautenhahn HM, Christ B. Approaching Thrombospondin-1 as a Potential Target for Mesenchymal Stromal Cells to Support Liver Regeneration after Partial Hepatectomy in Mouse and Humans. Cells 2024; 13:529. [PMID: 38534373 PMCID: PMC10969617 DOI: 10.3390/cells13060529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Extended liver resection carries the risk of post-surgery liver failure involving thrombospondin-1-mediated aggravation of hepatic epithelial plasticity and function. Mesenchymal stromal cells (MSCs), by interfering with thrombospondin-1 (THBS1), counteract hepatic dysfunction, though the mechanisms involved remain unknown. Herein, two-thirds partial hepatectomy in mice increased hepatic THBS1, downstream transforming growth factor-β3, and perturbation of liver tissue homeostasis. All these events were ameliorated by hepatic transfusion of human bone marrow-derived MSCs. Treatment attenuated platelet and macrophage recruitment to the liver, both major sources of THBS1. By mitigating THBS1, MSCs muted surgery-induced tissue deterioration and dysfunction, and thus supported post-hepatectomy regeneration. After liver surgery, patients displayed increased tissue THBS1, which is associated with functional impairment and may indicate a higher risk of post-surgery complications. Since liver dysfunction involving THBS1 improves with MSC treatment in various animal models, it seems feasible to also modulate THBS1 in humans to impede post-surgery acute liver failure.
Collapse
Affiliation(s)
- Lysann Tietze
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (L.T.); (M.C.); (P.S.); (S.N.)
| | - Madlen Christ
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (L.T.); (M.C.); (P.S.); (S.N.)
| | - Jiyeon Yu
- Klinik für Allgemein-, Viszeral- und Thoraxchirurgie, Helios Park-Klinikum Leipzig, 04289 Leipzig, Germany; (J.Y.); (M.B.)
| | - Peggy Stock
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (L.T.); (M.C.); (P.S.); (S.N.)
| | - Sandra Nickel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (L.T.); (M.C.); (P.S.); (S.N.)
| | - Annelie Schulze
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (L.T.); (M.C.); (P.S.); (S.N.)
| | - Michael Bartels
- Klinik für Allgemein-, Viszeral- und Thoraxchirurgie, Helios Park-Klinikum Leipzig, 04289 Leipzig, Germany; (J.Y.); (M.B.)
| | - Hans-Michael Tautenhahn
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (L.T.); (M.C.); (P.S.); (S.N.)
- Division of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany
- Research Programme “Else Kröner-Forschungskolleg AntiAge”, Jena University Hospital, 07747 Jena, Germany
| | - Bruno Christ
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (L.T.); (M.C.); (P.S.); (S.N.)
- Division of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany
| |
Collapse
|
6
|
Cuadra B, Silva V, Huang YL, Diaz Y, Rivas C, Molina C, Simon V, Bono MR, Morales B, Rosemblatt M, Silva S, Acuña R, Ezquer F, Ezquer M. The Immunoregulatory and Regenerative Potential of Activated Human Stem Cell Secretome Mitigates Acute-on-Chronic Liver Failure in a Rat Model. Int J Mol Sci 2024; 25:2073. [PMID: 38396750 PMCID: PMC10889754 DOI: 10.3390/ijms25042073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a syndrome marked by sudden liver function decline and multiorgan failure, predominantly acute kidney injury (AKY), in patients with chronic liver disease. Unregulated inflammation is a hallmark of ACLF; however, the key drivers of ACLF are not fully understood. This study explores the therapeutic properties of human mesenchymal stem cell (MSC) secretome, particularly focusing on its enhanced anti-inflammatory and pro-regenerative properties after the in vitro preconditioning of the cells. We evaluated the efficacy of the systemic administration of MSC secretome in preventing liver failure and AKI in a rat ACLF model where chronic liver disease was induced using by the administration of porcine serum, followed by D-galN/LPS administration to induce acute failure. After ACLF induction, animals were treated with saline (ACLF group) or MSC-derived secretome (ACLF-secretome group). The study revealed that MSC-secretome administration strongly reduced liver histological damage in the ACLF group, which was correlated with higher hepatocyte proliferation, increased hepatic and systemic anti-inflammatory molecule levels, and reduced neutrophil and macrophage infiltration. Additionally, renal examination revealed that MSC-secretome treatment mitigated tubular injuries, reduced apoptosis, and downregulated injury markers. These improvements were linked to increased survival rates in the ACLF-secretome group, endorsing MSC secretomes as a promising therapy for multiorgan failure in ACLF.
Collapse
Affiliation(s)
- Barbara Cuadra
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| | - Veronica Silva
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| | - Ya-Lin Huang
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| | - Yael Diaz
- Departamento de Biotecnología, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile; (Y.D.); (C.R.); (C.M.)
| | - Claudio Rivas
- Departamento de Biotecnología, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile; (Y.D.); (C.R.); (C.M.)
| | - Cristobal Molina
- Departamento de Biotecnología, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile; (Y.D.); (C.R.); (C.M.)
| | - Valeska Simon
- Departamento de Biología, Facultad de Ciencias, Universidad del Chile, Las Encinas 3370, Ñuñoa, Santiago 7800020, Chile; (V.S.); (M.R.B.)
| | - Maria Rosa Bono
- Departamento de Biología, Facultad de Ciencias, Universidad del Chile, Las Encinas 3370, Ñuñoa, Santiago 7800020, Chile; (V.S.); (M.R.B.)
| | - Bernardo Morales
- Facultad de Ciencias de la Salud, Universidad del Alba, Atrys Chile, Guardia Vieja 339, Providencia, Santiago 7510249, Chile;
| | - Mario Rosemblatt
- Centro de Ciencia & Vida, Av. Del Valle Norte 725, Huechuraba, Santiago 8580702, Chile;
| | - Sebastian Silva
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| | - Rodrigo Acuña
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| |
Collapse
|
7
|
Kholodenko IV, Kholodenko RV, Yarygin KN. The Crosstalk between Mesenchymal Stromal/Stem Cells and Hepatocytes in Homeostasis and under Stress. Int J Mol Sci 2023; 24:15212. [PMID: 37894893 PMCID: PMC10607347 DOI: 10.3390/ijms242015212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Liver diseases, characterized by high morbidity and mortality, represent a substantial medical problem globally. The current therapeutic approaches are mainly aimed at reducing symptoms and slowing down the progression of the diseases. Organ transplantation remains the only effective treatment method in cases of severe liver pathology. In this regard, the development of new effective approaches aimed at stimulating liver regeneration, both by activation of the organ's own resources or by different therapeutic agents that trigger regeneration, does not cease to be relevant. To date, many systematic reviews and meta-analyses have been published confirming the effectiveness of mesenchymal stromal cell (MSC) transplantation in the treatment of liver diseases of various severities and etiologies. However, despite the successful use of MSCs in clinical practice and the promising therapeutic results in animal models of liver diseases, the mechanisms of their protective and regenerative action remain poorly understood. Specifically, data about the molecular agents produced by these cells and mediating their therapeutic action are fragmentary and often contradictory. Since MSCs or MSC-like cells are found in all tissues and organs, it is likely that many key intercellular interactions within the tissue niches are dependent on MSCs. In this context, it is essential to understand the mechanisms underlying communication between MSCs and differentiated parenchymal cells of each particular tissue. This is important both from the perspective of basic science and for the development of therapeutic approaches involving the modulation of the activity of resident MSCs. With regard to the liver, the research is concentrated on the intercommunication between MSCs and hepatocytes under normal conditions and during the development of the pathological process. The goals of this review were to identify the key factors mediating the crosstalk between MSCs and hepatocytes and determine the possible mechanisms of interaction of the two cell types under normal and stressful conditions. The analysis of the hepatocyte-MSC interaction showed that MSCs carry out chaperone-like functions, including the synthesis of the supportive extracellular matrix proteins; prevention of apoptosis, pyroptosis, and ferroptosis; support of regeneration; elimination of lipotoxicity and ER stress; promotion of antioxidant effects; and donation of mitochondria. The underlying mechanisms suggest very close interdependence, including even direct cytoplasm and organelle exchange.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Roman V. Kholodenko
- Laboratory of Molecular Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
8
|
Huang YL, De Gregorio C, Silva V, Elorza ÁA, Léniz P, Aliaga-Tobar V, Maracaja-Coutinho V, Budini M, Ezquer F, Ezquer M. Administration of Secretome Derived from Human Mesenchymal Stem Cells Induces Hepatoprotective Effects in Models of Idiosyncratic Drug-Induced Liver Injury Caused by Amiodarone or Tamoxifen. Cells 2023; 12:cells12040636. [PMID: 36831304 PMCID: PMC9954258 DOI: 10.3390/cells12040636] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Drug-induced liver injury (DILI) is one of the leading causes of acute liver injury. While many factors may contribute to the susceptibility to DILI, obese patients with hepatic steatosis are particularly prone to suffer DILI. The secretome derived from mesenchymal stem cell has been shown to have hepatoprotective effects in diverse in vitro and in vivo models. In this study, we evaluate whether MSC secretome could improve DILI mediated by amiodarone (AMI) or tamoxifen (TMX). Hepatic HepG2 and HepaRG cells were incubated with AMI or TMX, alone or with the secretome of MSCs obtained from human adipose tissue. These studies demonstrate that coincubation of AMI or TMX with MSC secretome increases cell viability, prevents the activation of apoptosis pathways, and stimulates the expression of priming phase genes, leading to higher proliferation rates. As proof of concept, in a C57BL/6 mouse model of hepatic steatosis and chronic exposure to AMI, the MSC secretome was administered endovenously. In this study, liver injury was significantly attenuated, with a decrease in cell infiltration and stimulation of the regenerative response. The present results indicate that MSC secretome administration has the potential to be an adjunctive cell-free therapy to prevent liver failure derived from DILI caused by TMX or AMI.
Collapse
Affiliation(s)
- Ya-Lin Huang
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - Cristian De Gregorio
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - Verónica Silva
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - Álvaro A. Elorza
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Ciencias de la Vida, Universidad Andres Bello, Santiago 7610658, Chile
| | - Patricio Léniz
- Unidad de Cirugía Plástica, Reparadora y Estética, Clínica Alemana, Santiago 7610658, Chile
| | - Víctor Aliaga-Tobar
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
- Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua 7610658, Chile
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
- Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
| | - Mauricio Budini
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago 7610658, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
- Correspondence: (F.E.); (M.E.); Tel.: +56-990-699-272 (F.E.); +56-976-629-880 (M.E.)
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
- Correspondence: (F.E.); (M.E.); Tel.: +56-990-699-272 (F.E.); +56-976-629-880 (M.E.)
| |
Collapse
|
9
|
Xu J, Chen P, Yu C, Shi Q, Wei S, Li Y, Qi H, Cao Q, Guo C, Wu X, Di G. Hypoxic bone marrow mesenchymal stromal cells‐derived exosomal
miR
‐182‐5p promotes liver regeneration via
FOXO1
‐mediated macrophage polarization. FASEB J 2022; 36:e22553. [DOI: 10.1096/fj.202101868rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jing Xu
- School of Basic Medicine, College of Medicine Qingdao University Qingdao China
| | - Peng Chen
- School of Basic Medicine, College of Medicine Qingdao University Qingdao China
| | - Chaoqun Yu
- School of Basic Medicine, College of Medicine Qingdao University Qingdao China
| | - Qiangqiang Shi
- School of Basic Medicine, College of Medicine Qingdao University Qingdao China
| | - Susu Wei
- School of Basic Medicine, College of Medicine Qingdao University Qingdao China
| | - Yaxin Li
- School of Basic Medicine, College of Medicine Qingdao University Qingdao China
| | - Hongzhao Qi
- Institute for Translational Medicine Qingdao University Qingdao China
| | - Qilong Cao
- Qingdao Haier Biotech Co.Ltd Qingdao China
| | - Chuanlong Guo
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Xianggen Wu
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Guohu Di
- School of Basic Medicine, College of Medicine Qingdao University Qingdao China
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine Qingdao University Qingdao China
| |
Collapse
|
10
|
Zhang L, Ma XJN, Fei YY, Han HT, Xu J, Cheng L, Li X. Stem cell therapy in liver regeneration: Focus on mesenchymal stem cells and induced pluripotent stem cells. Pharmacol Ther 2022; 232:108004. [PMID: 34597754 DOI: 10.1016/j.pharmthera.2021.108004] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/11/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023]
Abstract
The liver has the ability to repair itself after injury; however, a variety of pathological changes in the liver can affect its ability to regenerate, and this could lead to liver failure. Mesenchymal stem cells (MSCs) are considered a good source of cells for regenerative medicine, as they regulate liver regeneration through different mechanisms, and their efficacy has been demonstrated by many animal experiments and clinical studies. Induced pluripotent stem cells, another good source of MSCs, have also made great progress in the establishment of organoids, such as liver disease models, and in drug screening. Owing to the recent developments in MSCs and induced pluripotent stem cells, combined with emerging technologies including graphene, nano-biomaterials, and gene editing, precision medicine and individualized clinical treatment may be realized in the near future.
Collapse
Affiliation(s)
- Lu Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, PR China; Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, PR China; The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China
| | - Xiao-Jing-Nan Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China
| | - Yuan-Yuan Fei
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, PR China; Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, PR China
| | - Heng-Tong Han
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China
| | - Jun Xu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China
| | - Lu Cheng
- Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, PR China
| | - Xun Li
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, PR China; Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, PR China; Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, PR China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou 730000, PR China; The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
11
|
New Perspectives to Improve Mesenchymal Stem Cell Therapies for Drug-Induced Liver Injury. Int J Mol Sci 2022; 23:ijms23052669. [PMID: 35269830 PMCID: PMC8910533 DOI: 10.3390/ijms23052669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury (DILI) is one of the leading causes of acute liver injury. Many factors may contribute to the susceptibility of patients to this condition, making DILI a global medical problem that has an impact on public health and the pharmaceutical industry. The use of mesenchymal stem cells (MSCs) has been at the forefront of regenerative medicine therapies for many years, including MSCs for the treatment of liver diseases. However, there is currently a huge gap between these experimental approaches and their application in clinical practice. In this concise review, we focus on the pathophysiology of DILI and highlight new experimental approaches conceived to improve cell-based therapy by the in vitro preconditioning of MSCs and/or the use of cell-free products as treatment for this liver condition. Finally, we discuss the advantages of new approaches, but also the current challenges that must be addressed in order to develop safer and more effective procedures that will allow cell-based therapies to reach clinical practice, enhancing the quality of life and prolonging the survival time of patients with DILI.
Collapse
|
12
|
Correia de Sousa M, Calo N, Sobolewski C, Gjorgjieva M, Clément S, Maeder C, Dolicka D, Fournier M, Vinet L, Montet X, Dufour JF, Humar B, Negro F, Sempoux C, Foti M. Mir-21 Suppression Promotes Mouse Hepatocarcinogenesis. Cancers (Basel) 2021; 13:4983. [PMID: 34638467 PMCID: PMC8508272 DOI: 10.3390/cancers13194983] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
The microRNA 21 (miR-21) is upregulated in almost all known human cancers and is considered a highly potent oncogene and potential therapeutic target for cancer treatment. In the liver, miR-21 was reported to promote hepatic steatosis and inflammation, but whether miR-21 also drives hepatocarcinogenesis remains poorly investigated in vivo. Here we show using both carcinogen (Diethylnitrosamine, DEN) or genetically (PTEN deficiency)-induced mouse models of hepatocellular carcinoma (HCC), total or hepatocyte-specific genetic deletion of this microRNA fosters HCC development-contrasting the expected oncogenic role of miR-21. Gene and protein expression analyses of mouse liver tissues further indicate that total or hepatocyte-specific miR-21 deficiency is associated with an increased expression of oncogenes such as Cdc25a, subtle deregulations of the MAPK, HiPPO, and STAT3 signaling pathways, as well as alterations of the inflammatory/immune anti-tumoral responses in the liver. Together, our data show that miR-21 deficiency promotes a pro-tumoral microenvironment, which over time fosters HCC development via pleiotropic and complex mechanisms. These results question the current dogma of miR-21 being a potent oncomiR in the liver and call for cautiousness when considering miR-21 inhibition for therapeutic purposes in HCC.
Collapse
Affiliation(s)
- Marta Correia de Sousa
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Nicolas Calo
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Monika Gjorgjieva
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Sophie Clément
- Division of Clinical Pathology, Geneva University Hospitals, 1206 Geneva, Switzerland; (S.C.); (F.N.)
| | - Christine Maeder
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Dobrochna Dolicka
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Margot Fournier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| | - Laurent Vinet
- Department of Radiology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (L.V.); (X.M.)
| | - Xavier Montet
- Department of Radiology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (L.V.); (X.M.)
| | - Jean-François Dufour
- Department for Visceral Surgery and Medicine, University Hospital Bern, 3010 Bern, Switzerland;
| | - Bostjan Humar
- Department of Visceral & Transplantation Surgery, University Hospital Zürich, 8006 Zürich, Switzerland;
| | - Francesco Negro
- Division of Clinical Pathology, Geneva University Hospitals, 1206 Geneva, Switzerland; (S.C.); (F.N.)
| | - Christine Sempoux
- Service of Clinical Pathology, University Institute of Pathology, Vaud University Hospital Center, 1011 Lausanne, Switzerland;
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; (M.C.d.S.); (N.C.); (C.S.); (M.G.); (C.M.); (D.D.); (M.F.)
| |
Collapse
|
13
|
Gu C, Du W, Chai M, Jin Z, Zhou Y, Guo P, Zhou Y, Tan WS. Human umbilical cord-derived mesenchymal stem cells affect urea synthesis and the cell apoptosis of human induced hepatocytes by secreting IL-6 in a serum-free co-culture system. Biotechnol J 2021; 17:e2100096. [PMID: 34378873 DOI: 10.1002/biot.202100096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND Bioartificial livers (BALs) are emerging as a potential supportive therapy for liver diseases. However, the maintenance of hepatocyte function and viability is a major challenge. Mesenchymal stem cells (MSCs) have attracted extensive attention for providing trophic support to hepatocytes, but only few studies have explored the interaction between human MSCs and human hepatocytes, and very little is known about the underlying molecular mechanisms whereby MSCs affect hepatocyte function, especially in serum-free medium (SFM). CONCLUSION The SFM co-culture strategy showed major advantages in maintaining hiHep function and viability, which is of great significance for the clinical application of hiHeps in BALs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ce Gu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wenjing Du
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Miaomiao Chai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ziyang Jin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yi Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Pan Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
14
|
Hassan SA, Elghait ATA, Abdelqader ZS, Meligy FY. Therapeutic efficiency of adipose-derived mesenchymal stem cells in healing of experimentally induced gastric ulcers in rats. Anat Cell Biol 2021; 54:361-374. [PMID: 34290152 PMCID: PMC8493023 DOI: 10.5115/acb.21.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/27/2022] Open
Abstract
Gastric (peptic) ulcer is a major gastrointestinal disorder with high morbidity and mortality. While several drugs have been used to treat gastric ulcers, such as proton pump inhibitor-based triple therapy for Helicobacter pylori eradication, but hey result in adverse side effects. Therefore, development of new alternative therapies is desirable. Many recent studies have shown that mesenchymal stem cells (MSCs) might have an enhancing effect on the ulcerated gastric mucosa. The aim of this study is to evaluate the efficacy of MSCs in the treatment of indomethacin-induced gastric ulcer, and to compare it with the normal ulcer autohealing. This work was performed on 36 adult male albino rats, divided into four groups: Group I (control group), Group II (ulcer group), Group III (autohealing group), and Group IV (stem cells-treated group). The histological changes of gastric mucosa were examined in sections stained with H&E using light microscope for expression of vascular endothelial growth factors (VEGF) and proliferating cell nuclear antigen (PCNA) in immunohistochemical stained sections using image analyzer. The results from MSCs-treated group revealed restoration of the normal architecture of the gastric mucosa with comparison to the autohealing group which showed excessive granulation tissue and heavy cellular infiltration with disorganized architecture of the fundic mucosa. Immunohistochemical examination showed strong expression of both VEGF and PCNA in the MSCs-treated group. So it was concluded that MSCs accelerate gastric ulcer healing when injected intraperitoneally, compared to autohealing process which showed delayed healing.
Collapse
Affiliation(s)
- Safaa A Hassan
- Histology and Cell Biology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amal Taha Abou Elghait
- Histology and Cell Biology Department, Faculty of Medicine, Assiut University, Assiut, Egypt.,Histology and Cell Biology Department, Sphinx University, Assiut, Egypt
| | - Zainab S Abdelqader
- Histology and Cell Biology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Fatma Y Meligy
- Histology and Cell Biology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
15
|
Abstract
Due to the ability to differentiate into variety of cell types, mesenchymal stem cells (MSCs) hold promise as source in cell-based therapy for treating injured tissue and degenerative diseases. The potential use of MSCs to replace or repair damaged tissues may depend on the efficient differentiation protocols to derive specialized cells without any negative side effects. Identification of appropriate cues that support the lineage-specific differentiation of stem cells is critical for tissue healing and cellular therapy. Recently, a number of stimuli have been utilized to direct the differentiation of stem cells. Biochemical stimuli such as small molecule, growth factor and miRNA have been traditionally used to regulate the fate of stem cells. In recent years, many studies have reported that biophysical stimuli including cyclic mechanical strain, fluid shear stress, microgravity, electrical stimulation, matrix stiffness and topography can also be sensed by stem cells through mechanical receptors, thus affecting the stem cell behaviors including their differentiation potential. In this paper, we review all the most recent literature on the application of biochemical and biophysical cues on regulating MSC differentiation. An extensive literature search was done using electronic database (Medline/Pubmed). Although there are still some challenges that need to be taken into consideration before translating these methods into clinics, biochemical and biophysical stimulation appears to be an attractive method to manipulate the lineage commitment of MSCs.
Collapse
|
16
|
Yang S, Yang R, Wang H, Huang Y, Jia Y. CDK5RAP3 Deficiency Restrains Liver Regeneration after Partial Hepatectomy Triggering Endoplasmic Reticulum Stress. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2403-2416. [PMID: 32926856 DOI: 10.1016/j.ajpath.2020.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022]
Abstract
CDK5 regulatory subunit-associated protein 3 (CDK5RAP3) plays a crucial role in mammalian liver development and hepatic function by controlling hepatocyte proliferation and differentiation, glucose and lipid metabolism, UFMylation, and endoplasmic reticulum homeostasis. However, the role of CDK5RAP3 in liver regeneration remains unknown. A liver-specific Cdk5rap3 knockout (CKO) mouse model was used to study the function of CDK5RAP3 during liver regeneration induced by standard two-thirds partial hepatectomy (PHx). Twenty-four hours after PHx, the liver-to-body weight ratio was markedly higher in CKO mice than in wild-type mice. However, this ratio did not increase significantly and gradually over time after PHx in CKO mice. Hepatocyte proliferation was significantly delayed in CKO mice compared with wild-type mice. Meanwhile, CDK5RAP3 deficiency increased lipid accumulation, impaired glycogen synthesis, and lowered blood glucose levels after PHx. Critically, the absence of CDK5RAP3 seemed to promote an inflammatory response and induce apoptosis at a late stage of liver regeneration. In addition, CDK5RAP3 deficiency disrupted UFMylation homeostasis and aggravated endoplasmic reticulum stress in hepatocytes after PHx. Taken together, these data suggest that CDK5RAP3 enhances liver regeneration, at least partially via controlling cell cycle and glucose and lipid metabolism.
Collapse
Affiliation(s)
- Shuchun Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huanmin Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Huang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yuyan Jia
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
17
|
Hu C, Wu Z, Li L. Mesenchymal stromal cells promote liver regeneration through regulation of immune cells. Int J Biol Sci 2020; 16:893-903. [PMID: 32071558 PMCID: PMC7019139 DOI: 10.7150/ijbs.39725] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023] Open
Abstract
The liver is sensitive to pathogen-induced acute or chronic liver injury, and liver transplantation (LT) is the only effective strategy for end-stage liver diseases. However, the clinical application is limited by a shortage of liver organs, immunological rejection and high cost. Mesenchymal stromal cell (MSC)-based therapy has gradually become a hot topic for promoting liver regeneration and repairing liver injury in various liver diseases, since MSCs are reported to migrate toward injured tissues, undergo hepatogenic differentiation, inhibit inflammatory factor release and enhance the proliferation of liver cells in vivo. MSCs exert immunoregulatory effects through cell-cell contact and the secretion of anti-inflammatory factors to inhibit liver inflammation and promote liver regeneration. In addition, MSCs are reported to effectively inhibit the activation of cells of the innate immune system, including macrophages, natural killer (NK) cells, dendritic cells (DCs), monocytes and other immune cells, and inhibit the activation of cells of the adaptive immune system, including T lymphocytes, B lymphocytes and subsets of T cells or B cells. In the current review, we mainly focus on the potential effects and mechanisms of MSCs in inhibiting the activation of immune cells to attenuate liver injury in models or patients with acute liver failure (ALF), nonalcoholic fatty liver disease (NAFLD), and liver fibrosis and in patients or models after LT. We highlight that MSC transplantation may replace general therapies for eliminating acute or chronic liver injury in the near future.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Zhongwen Wu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Lanjuan Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| |
Collapse
|
18
|
Adipose-Derived Stem Cell Transplantation Attenuates Inflammation and Promotes Liver Regeneration after Ischemia-Reperfusion and Hemihepatectomy in Swine. Stem Cells Int 2019; 2019:2489584. [PMID: 31827526 PMCID: PMC6885808 DOI: 10.1155/2019/2489584] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/17/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023] Open
Abstract
Aim To study the anti-inflammatory and liver regenerative effects of adipose-derived mesenchymal stem cells (ADSCs) on a porcine model of ischemia-reperfusion (IR) and hemihepatectomy. Methods Eighteen healthy Bama miniature pigs were randomly divided into the sham-operated (sham), untreated IR injury (IRI), and ADSC-transplanted (ADSC) groups. Hepatic IR was established by laparoscopic hemihepatectomy. ADSCs were transplanted directly into the liver parenchyma after the surgery. Hepatic inflammation and liver regeneration were evaluated by histopathological examination and assessment of relevant cytokines and other factors. Results ADSC transplantation successfully ameliorated the IRI-induced histopathological damage and the high levels of pro-inflammatory cytokines like IL-1β, IL-6, and TNF-α. In addition, the ADSCs enhanced the expression of the anti-inflammatory IL-10, regenerative factors including HGF, Cyclin D1, and proliferating cell nuclear antigen (PCNA), and angiogenic factors like VEGF, ANG-1, and ANG-2. Conclusions ADSCs attenuated the hepatic IRI-induced inflammatory response and promoted liver regeneration.
Collapse
|
19
|
You Y, Wen DG, Gong JP, Liu ZJ. Research Status of Mesenchymal Stem Cells in Liver Transplantation. Cell Transplant 2019; 28:1490-1506. [PMID: 31512503 PMCID: PMC6923564 DOI: 10.1177/0963689719874786] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Liver transplantation has been deemed the best choice for end-stage liver disease
patients but immune rejection after surgery is still a serious problem. Patients have to
take immunosuppressive drugs for a long time after liver transplantation, and this often
leads to many side effects. Mesenchymal stem cells (MSCs) gradually became of interest to
researchers because of their powerful immunomodulatory effects. In the past, a large
number of in vitro and in vivo studies have demonstrated the great potential of MSCs for
participation in posttransplant immunomodulation. In addition, MSCs also have properties
that may potentially benefit patients undergoing liver transplantation. This article aims
to provide an overview of the current understanding of the immunomodulation achieved by
the application of MSCs in liver transplantation, to discuss the problems that may be
encountered when using MSCs in clinical practice, and to describe some of the underlying
capabilities of MSCs in liver transplantation. Cell–cell contact, soluble molecules, and
exosomes have been suggested to be critical approaches to MSCs’ immunoregulation in vitro;
however, the exact mechanism, especially in vivo, is still unclear. In recent years, the
clinical safety of MSCs has been proven by a series of clinical trials. The obstacles to
the clinical application of MSCs are decreasing, but large sample clinical trials
involving MSCs are still needed to further study their clinical effects.
Collapse
Affiliation(s)
- Yu You
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China.,Yu You and Di-guang Wen are equal contributors and co-first authors of this article
| | - Di-Guang Wen
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China.,Yu You and Di-guang Wen are equal contributors and co-first authors of this article
| | - Jian-Ping Gong
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China
| | - Zuo-Jin Liu
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China
| |
Collapse
|
20
|
Castro BBA, Arriel K, Renó P, Sanders-Pinheiro H. Modelos experimentais de obesidade: análise crítica do perfil metabólico e da aplicabilidade. HU REVISTA 2019. [DOI: 10.34019/1982-8047.2018.v44.14053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Introdução: a prevalência da obesidade e de outras doenças relacionadas está aumentando em todo o mundo de forma preocupante. Caracterizada pelo aumento do peso corporal ou do acúmulo excessivo de gordura corporal, a obesidade tem sido associada ao aumento da mortalidade decorrente de maior incidência de hipertensão, diabetes e vários tipos de câncer. Os modelos animais fornecem dados fundamentais para a compreensão dos parâmetros básicos que regulam os componentes do nosso balanço energético. Objetivo: esta revisão selecionou artigos que utilizaram modelos animais (ratos e camundongos) de obesidade focando nas principais alterações metabólicas causadas pela obesidade com o objetivo de apresentar os principais modelos utilizados nos últimos 5 anos. Material e Métodos: Foram realizadas duas buscas na base de dados PubMed utilizando as expressões: “obesity” AND “metabolism” AND “animal model” AND “mice” e “obesity” AND “metabolism” AND “animal model” AND “rat”, sendo selecionados os estudos considerados mais relevantes a partir dos critérios: descrição detalhada do modelo experimental e análise dos parâmetros metabólicos de interesse: peso, perfil lipídico e perfil glicêmico. Outras referências foram utilizadas para elucidar melhor os modelos encontrados e também aqueles que não foram citados, mas, que possuem importância no entendimento da evolução dos modelos animais de obesidade. Resultados: A espécie mais utilizada foi o camundongo, o sexo predominante foi o masculino, a faixa etária dos roedores variou de neonatos até 44 semanas e o período de acompanhamento chegou até 53 semanas. A obesidade foi confirmada pelo aumento significativo do peso e na maioria dos estudos foram encontradas alterações no metabolismo lipídico e glicêmico. Encontramos cinco grupos de mecanismos de indução da obesidade porém a maioria dos estudos utilizou dietas hiperlipídicas, modelo que mais se assemelha às alterações metabólicas encontradas em humanos. Conclusão: Investigar as causas e efeitos da obesidade induzida em modelos experimentais pode fornecer uma melhor compreensão da fisiopatologia da obesidade, e proporcionar novas opções de prevenção e tratamento.
Collapse
|
21
|
Wabitsch S, Benzing C, Krenzien F, Splith K, Haber PK, Arnold A, Nösser M, Kamali C, Hermann F, Günther C, Hirsch D, Sauer IM, Pratschke J, Schmelzle M. Human Stem Cells Promote Liver Regeneration After Partial Hepatectomy in BALB/C Nude Mice. J Surg Res 2019; 239:191-200. [PMID: 30844633 DOI: 10.1016/j.jss.2019.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/16/2019] [Accepted: 02/05/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been suggested to augment liver regeneration after surgically and pharmacologically induced liver failure. To further investigate this we processed human bone marrow-derived MSC according to good manufacturing practice (GMP) and tested those cells for their modulatory capacities of metabolic alterations and liver regeneration after partial hepatectomy in BALB/c nude mice. METHODS Human MSCs were obtained by bone marrow aspiration of healthy donors as in a previously described GMP process. Transgenic GFP-MSCs were administered i.p. 24 h after 70% hepatectomy in BALB/c nude mice, whereas control mice received phosphate-buffered saline. Mice were sacrificed 2, 3, and 5 d after partial hepatectomy. Blood and organs were harvested and metabolic alterations as well as liver regeneration subsequently assessed by liver function tests, multianalyte profiling immunoassays, histology, and immunostaining. RESULTS Hepatocyte and sinusoidal endothelial cell proliferation were significantly increased after partial hepatectomy in mice receiving MSC compared to control mice (Hepatocyte postoperative day 3, P < 0.01; endothelial cell postoperative day 5, P < 0.05). Hepatocyte fat accumulation correlated inversely with hepatocyte proliferation (r2 = 0.4064, P < 0.01) 2 d after partial hepatectomy, with mice receiving MSC being protected from severe fat accumulation. No GFP-positive cells could be detected in the samples. Serum levels of IL-6, HGF, and IL-10 were significantly decreased at day 3 in mice receiving MSC when compared to control mice (P < 0.05). Relative body weight loss was significantly attenuated after partial hepatectomy in mice receiving MSC (2 d and 3 d, both P < 0.001) with a trend toward a faster relative restoration of liver weight, when compared to control mice. CONCLUSIONS Human bone marrow-derived MSC attenuate metabolic alterations and improve liver regeneration after partial hepatectomy in BALB/c nude mice. Obtained results using GMP-processed human MSC suggest functional links between fat accumulation and hepatocyte proliferation, without any evidence for cellular homing. This study using GMP-proceeded MSC has important regulatory implications for an urgently needed translation into a clinical trial.
Collapse
Affiliation(s)
- Simon Wabitsch
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitaetsmedizin, Berlin, Germany.
| | - Christian Benzing
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitaetsmedizin, Berlin, Germany
| | - Felix Krenzien
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitaetsmedizin, Berlin, Germany
| | - Katrin Splith
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitaetsmedizin, Berlin, Germany
| | - Philipp Konstantin Haber
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitaetsmedizin, Berlin, Germany
| | - Alexander Arnold
- Departement of Pathology, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitaetsmedizin, Berlin, Germany
| | - Maximilian Nösser
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitaetsmedizin, Berlin, Germany
| | - Can Kamali
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitaetsmedizin, Berlin, Germany
| | | | | | | | - Igor M Sauer
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitaetsmedizin, Berlin, Germany
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitaetsmedizin, Berlin, Germany
| | - Moritz Schmelzle
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitaetsmedizin, Berlin, Germany
| |
Collapse
|
22
|
Liu Q, Pu S, Chen L, Shen J, Cheng S, Kuang J, Li H, Wu T, Li R, Jiang W, Zou M, Zhang Z, Li Y, Li J, He J. Liver-specific Sirtuin6 ablation impairs liver regeneration after 2/3 partial hepatectomy. Wound Repair Regen 2019; 27:366-374. [PMID: 30706567 DOI: 10.1111/wrr.12703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/20/2018] [Accepted: 01/24/2019] [Indexed: 02/05/2023]
Abstract
Sirtuin 6 (Sirt6) is an NAD+-dependent deacetylase that regulates central metabolic functions such as glucose homeostasis, fat metabolism, and cell apoptosis. However, the tissue-specific function of Sirt6 in liver regeneration remains unknown. Here, we show that liver-specific Sirt6 knockout (Sirt6LKO) impaired liver reconstitution after 2/3 partial hepatectomy, which was attributed to an alteration of cell cycle progression. Sirt6 LKO delayed hepatocyte transition into S phase during liver regeneration, as shown by the analysis of cell cycle-related proteins and the immuno staining of Ki-67 and 5-bromo-2-deoxyuridine (BrdU). The delayed cell cycle in Sirt6 LKO mice was attributed to the disruption of m-TOR and Akt activity, which is an important pro-proliferation pathway in liver regeneration. Sirt6 LKO also reduced carbon tetrachloride (CCl4 )-induced liver damage. Our results suggest that Sirt6 LKO impaired liver regeneration via delayed cell cycle and impaired m-TOR and Akt activity.
Collapse
Affiliation(s)
- Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, Chengdu, Sichuan, 610041, China
| | - Shiyun Pu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, Chengdu, Sichuan, 610041, China.,Department of Pharmacy, State Key Laboratory of Biotherapy, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lei Chen
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, Chengdu, Sichuan, 610041, China.,Department of Pharmacy, State Key Laboratory of Biotherapy, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jing Shen
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, Chengdu, Sichuan, 610041, China.,Department of Pharmacy, State Key Laboratory of Biotherapy, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shihai Cheng
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, Chengdu, Sichuan, 610041, China.,Department of Pharmacy, State Key Laboratory of Biotherapy, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiangying Kuang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, Chengdu, Sichuan, 610041, China.,Department of Pharmacy, State Key Laboratory of Biotherapy, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hong Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, Chengdu, Sichuan, 610041, China.,Department of Pharmacy, State Key Laboratory of Biotherapy, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tong Wu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, Chengdu, Sichuan, 610041, China.,Department of Pharmacy, State Key Laboratory of Biotherapy, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rui Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, Chengdu, Sichuan, 610041, China.,Department of Pharmacy, State Key Laboratory of Biotherapy, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wei Jiang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Min Zou
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhiyong Zhang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, Chengdu, Sichuan, 610041, China
| | - Jian Li
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jinhan He
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, Chengdu, Sichuan, 610041, China.,Department of Pharmacy, State Key Laboratory of Biotherapy, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
23
|
Alwahsh SM, Rashidi H, Hay DC. Liver cell therapy: is this the end of the beginning? Cell Mol Life Sci 2018; 75:1307-1324. [PMID: 29181772 PMCID: PMC5852182 DOI: 10.1007/s00018-017-2713-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/08/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022]
Abstract
The prevalence of liver diseases is increasing globally. Orthotopic liver transplantation is widely used to treat liver disease upon organ failure. The complexity of this procedure and finite numbers of healthy organ donors have prompted research into alternative therapeutic options to treat liver disease. This includes the transplantation of liver cells to promote regeneration. While successful, the routine supply of good quality human liver cells is limited. Therefore, renewable and scalable sources of these cells are sought. Liver progenitor and pluripotent stem cells offer potential cell sources that could be used clinically. This review discusses recent approaches in liver cell transplantation and requirements to improve the process, with the ultimate goal being efficient organ regeneration. We also discuss the potential off-target effects of cell-based therapies, and the advantages and drawbacks of current pre-clinical animal models used to study organ senescence, repopulation and regeneration.
Collapse
Affiliation(s)
- Salamah M Alwahsh
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
| | - Hassan Rashidi
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - David C Hay
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
24
|
Despeyroux A, Duret C, Gondeau C, Perez-Gracia E, Chuttoo L, de Boussac H, Briolotti P, Bony C, Noël D, Jorgensen C, Larrey D, Daujat-Chavanieu M, Herrero A. Mesenchymal stem cells seeded on a human amniotic membrane improve liver regeneration and mouse survival after extended hepatectomy. J Tissue Eng Regen Med 2017; 12:1062-1073. [PMID: 29106037 DOI: 10.1002/term.2607] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 10/01/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022]
Abstract
Liver failure remains the leading cause of post-operative mortality after hepatectomy. This study investigated the effect of treatment with allogenic mesenchymal stem cells (MSCs) on survival and liver regeneration 48 hr and 7 days after 80% hepatectomy in C57Bl/6 mice. To optimize their biodistribution, MSCs were grown on acellular human amniotic membranes (HAM) and applied as a patch on the remnant liver. This approach was compared with MSC infusion and HAM patch alone. Hepatectomized mice without any treatment were used as control group. Survival rate was calculated and biological and histopathological parameters were analysed to monitor liver function and regeneration. MSCs grown on HAM retained their ability to proliferate, to differentiate into osteoblasts and adipocytes and to respond to pro-inflammatory stimuli. Extended hepatectomy (80%) led to liver failure that resulted in death within 72 hr in 76% of mice. MSC infusion showed an early but transitory positive effect on survival. MSC/HAM patches stimulated regeneration and significantly improved survival rate (54% vs. 24% in the control group at 7 days). They also decreased the severity of hepatectomy-induced steatosis, suggesting a modulation of lipid metabolism in hepatocytes. MSCs were still present on HAM at Days 2 and 7 posthepatectomy. In conclusion, engineered tissue constructs that combine MSCs and HAM improve survival and liver regeneration after 80% hepatectomy in mice. These encouraging results pave the way to potential clinical application.
Collapse
Affiliation(s)
- Aure Despeyroux
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France.,UMR1183, Montpellier University, Montpellier, France.,Departments of General Surgery, Division of Transplantation, College of Medicine, University of Montpellier, Montpellier, France
| | - Cédric Duret
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France.,UMR1183, Montpellier University, Montpellier, France.,CHU Montpellier, Institute for Regenerative Medicine and Biotherapy, Montpellier, France
| | - Claire Gondeau
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France.,UMR1183, Montpellier University, Montpellier, France.,Department of Hepato-gastroenterology A, Saint Eloi Hospital, CHU, Montpellier, France
| | - Esther Perez-Gracia
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France.,UMR1183, Montpellier University, Montpellier, France
| | - Lisa Chuttoo
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France.,UMR1183, Montpellier University, Montpellier, France
| | - Hugues de Boussac
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France.,UMR1183, Montpellier University, Montpellier, France
| | - Philippe Briolotti
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France.,UMR1183, Montpellier University, Montpellier, France
| | - Claire Bony
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France.,UMR1183, Montpellier University, Montpellier, France
| | - Danièle Noël
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France.,UMR1183, Montpellier University, Montpellier, France.,Clinical Unit for Osteoarticular Diseases and Department for Biotherapy, Lapeyronie Hospital, Montpellier, France
| | - Christian Jorgensen
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France.,UMR1183, Montpellier University, Montpellier, France.,Clinical Unit for Osteoarticular Diseases and Department for Biotherapy, Lapeyronie Hospital, Montpellier, France
| | - Dominique Larrey
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France.,UMR1183, Montpellier University, Montpellier, France.,Department of Hepato-gastroenterology A, Saint Eloi Hospital, CHU, Montpellier, France
| | - Martine Daujat-Chavanieu
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France.,UMR1183, Montpellier University, Montpellier, France.,CHU Montpellier, Institute for Regenerative Medicine and Biotherapy, Montpellier, France
| | - Astrid Herrero
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, Montpellier, France.,UMR1183, Montpellier University, Montpellier, France.,Departments of General Surgery, Division of Transplantation, College of Medicine, University of Montpellier, Montpellier, France
| |
Collapse
|
25
|
Xie Y, Li X, Xu J, Jiang Q, Xie H, He J, Chen D. Two phenolic antioxidants in Suoyang enhance viability of •OH-damaged mesenchymal stem cells: comparison and mechanistic chemistry. Chem Cent J 2017; 11:84. [PMID: 29086885 PMCID: PMC5572787 DOI: 10.1186/s13065-017-0313-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/20/2017] [Indexed: 01/10/2023] Open
Abstract
Background Suoyang originates from a psammophyte named Cynomorium songaricum Rupr and has been known as a phenolic-antioxidant-enriched traditional Chinese herbal medicine. The present study attempted to investigate the protective effect of phenolic antioxidants in Suoyang towards •OH-mediated MSCs and then further discusses the chemical mechanisms. Methods The lyophilized aqueous extract of Suoyang (LAS) was prepared and characterized using HPLC. Then, two phenolic antioxidant references, epicatechin and luteolin-7-O-β-D-glucoside, along with LAS, were investigated for their effects on the viability of •OH-treated MSCs using the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl (MTT) assay. The comparison and mechanistic chemistry of epicatechin and luteolin-7-O-β-D-glucoside were further explored using various antioxidant assays, including PTIO•-scavenging, FRAP (ferric ion reducing antioxidant power), ABTS+•-scavenging, and DPPH•-scavenging. Their Fe2+-binding capacities were also compared using ultraviolet (UV) spectra. Results The HPLC analysis indicated that there are 8 phenolic antioxidants in LAS, including epicatechin, luteolin-7-O-β-D-glucoside, gallic acid, protocatechuic acid, catechin, isoquercitrin, phlorizin, and naringenin. The MTT assay revealed that epicatechin could more effectively increase the survival of •OH-treated MSCs than luteolin-7-O-β-D-glucoside. Similarly, epicatechin exhibited higher antioxidant abilities than luteolin-7-O-β-D-glucoside in the DPPH•-scavenging, ABTS+•-scavenging, FRAP, and PTIO•-scavenging assays. In the Fe2+-binding assay, luteolin-7-O-β-D-glucoside gave a stronger UV peak at 600 nm, with ε = 2.62 × 106 M−1 cm−1, while epicatechin produced two peaks at 450 nm (ε = 8.47 × 105 M−1 cm−1) and 750 nm (ε = 9.68 × 105 M−1 cm−1). Conclusion As two reference antioxidants in Suoyang, epicatechin and luteolin-7-O-β-D-glucoside can enhance the viability of •OH-damaged MSCs. Such a beneficial effect may be from their antioxidant effects, including direct-antioxidant and indirect-antioxidant (i.e., Fe2+-binding) processes. In the direct-antioxidant process, proton (H+), one electron (e), or even hydrogen-atom (•H) transfer may occur to fulfill radical-scavenging (especially •OH-scavenging); in this aspect, epicatechin is superior to luteolin-7-O-β-D-glucoside due to the presence of more phenolic –OHs. The additional –OHs can also be responsible for the better cytoprotective effect. In terms of indirect-antioxidant potential, however, epicatechin is inferior to luteolin-7-O-β-D-glucoside due to the absence of a hydroxyl-keto moiety. These findings will provide new information about medicinal psammophytes for MSC transplantation. Electronic supplementary material The online version of this article (doi:10.1186/s13065-017-0313-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yulu Xie
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.,Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China. .,Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jieying Xu
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Qian Jiang
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.,Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hong Xie
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.,Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jianfeng He
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.,Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Dongfeng Chen
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China. .,School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China. .,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|