1
|
Vedder N, Gercke P, Lautenschlager N, Brunn T, Lange T, Schieb J, Vetter C, van Geffen C, Kolahian S. Characterizing the Emergence of Myeloid-Derived Suppressor Cell Subsets in a Murine Model of Pulmonary Fibrosis. FASEB J 2025; 39:e70626. [PMID: 40356473 PMCID: PMC12070151 DOI: 10.1096/fj.202500312rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/25/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025]
Abstract
The immune system plays a major role in pulmonary fibrosis (PF), a devastating lung disease with limited treatment options. Myeloid-derived suppressor cells (MDSCs) are immune cells with remarkable immunosuppressive functions. We hypothesized that their anti-inflammatory activity may dampen PF by inhibiting inflammation and its transition to fibrosis. Here, we studied the emergence of both polymorphonuclear (PMN)- and monocytic (M)-MDSCs in a murine model of PF. We assessed immunological, histopathological, and clinical changes at days 3, 7, 14, and 21 following bleomycin challenge. A comprehensive overview of the role of MDSCs during the acute lung injury and chronic phase of pulmonary fibrosis is provided, along with the effects of MDSCs adoptive transfer and depletion. Inflammation and fibrosis increased over a period of 21 days after bleomycin administration. In the lung, the number of PMN-MDSCs increased, while M-MDSCs decreased over the time following bleomycin challenge. Especially, M-MDSCs showed enhanced suppressive activity on day 3 following bleomycin challenge. Adoptive transfer of PMN-MDSCs attenuated inflammation and fibrosis development. However, depletion of PMN-MDSCs did not lead to an exacerbation of PF. Our results suggest that adoptive transfer of PMN-MDSCs can ameliorate the inflammatory responses and thus the development of fibrosis in a bleomycin-induced pulmonary fibrosis model.
Collapse
Affiliation(s)
- Nora Vedder
- German Center for Lung Research (DZL)Universities of Giessen and Marburg Lung Center (UGMLC) Philipps University MarburgMarburgGermany
| | - Philipp Gercke
- German Center for Lung Research (DZL)Universities of Giessen and Marburg Lung Center (UGMLC) Philipps University MarburgMarburgGermany
| | - Nikoleta Lautenschlager
- German Center for Lung Research (DZL)Universities of Giessen and Marburg Lung Center (UGMLC) Philipps University MarburgMarburgGermany
| | - Tobias Brunn
- German Center for Lung Research (DZL)Universities of Giessen and Marburg Lung Center (UGMLC) Philipps University MarburgMarburgGermany
| | - Tim Lange
- German Center for Lung Research (DZL)Universities of Giessen and Marburg Lung Center (UGMLC) Philipps University MarburgMarburgGermany
| | - Jakob Schieb
- German Center for Lung Research (DZL)Universities of Giessen and Marburg Lung Center (UGMLC) Philipps University MarburgMarburgGermany
| | - Charlotte Vetter
- German Center for Lung Research (DZL)Universities of Giessen and Marburg Lung Center (UGMLC) Philipps University MarburgMarburgGermany
| | - Chiel van Geffen
- German Center for Lung Research (DZL)Universities of Giessen and Marburg Lung Center (UGMLC) Philipps University MarburgMarburgGermany
| | - Saeed Kolahian
- German Center for Lung Research (DZL)Universities of Giessen and Marburg Lung Center (UGMLC) Philipps University MarburgMarburgGermany
- Preclinical Imaging Core Facility, Center for Tumor Biology and Immunology (ZTI)Philipps University MarburgMarburgGermany
| |
Collapse
|
2
|
Zhang N, Chen A, Dong Y, Dou D. Fructus arctii mitigates diabetic nephropathy via the Apoh/PPAR-γ pathway. Mol Immunol 2025; 181:18-28. [PMID: 40056629 DOI: 10.1016/j.molimm.2025.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/11/2025] [Accepted: 02/23/2025] [Indexed: 03/10/2025]
Abstract
BACKGROUND Diabetic nephropathy (DN) is characterized by renal fibrosis and functional decline. Apolipoprotein H (Apoh) and Fructus arctii, a traditional medicinal plant, have demonstrated potential in treating metabolic and fibrotic disorders. This study Focused on revealing the roles of Apoh and Fructus arctii in mitigating DN. METHODS Db/db mice served as an in vivo DN model, and mouse glomerular mesangial cells (mMCs) and renal tubular epithelial cells (mTECs) were treated with high glucose (HG) to simulate DN in vitro. Apoh silencing and overexpression were performed using shRNA and pcDNA3.1 vectors. Fructus arctii was administered to both cellular and animal models to assess its therapeutic potential. Cellular proliferation was measured using CCK-8 and EdU assays, while fibrosis markers were analyzed by Western blot, IHC and RT-qPCR. PPAR-γ pathway involvement was confirmed through treatment with the antagonist GW9662. Renal structural changes were evaluated with histological staining including H&E, PAS, Masson's trichrome, and picrosirius red staining. RESULTS Apoh expression was markedly reduced in HG-treated cells and the kidneys of db/db mice. Overexpression of Apoh suppressed HG-induced proliferation in mMCs and mTECs by downregulating cyclin D1 and PCNA. Additionally, Apoh overexpression alleviated fibrosis by reducing Fibronectin, Collagen I, and α-SMA levels, effects mediated through the PPAR-γ pathway. Treatment with the PPAR-γ antagonist GW9662 reversed these protective effects. In db/db mice, Fructus arctii administration improved renal function by reducing blood glucose, proteinuria, and renal collagen deposition. It also alleviated fibrosis and enhanced Apoh and PPAR-γ expression. Silencing Apoh nullified the protective effects of Fructus arctii on cell proliferation and fibrosis, confirming its reliance on the Apoh/PPAR-γ pathway. CONCLUSION Fructus arctii alleviated DN progression by modulating cell proliferation and renal fibrosis via the Apoh/PPAR-γ pathway.
Collapse
Affiliation(s)
- Na Zhang
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221018, China
| | - Anhui Chen
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221018, China
| | - Yuwei Dong
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221018, China.
| | - Deqiang Dou
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, China.
| |
Collapse
|
3
|
Ghemiș L, Goriuc A, Minea B, Botnariu GE, Mârțu MA, Ențuc M, Cioloca D, Foia LG. Myeloid-Derived Suppressor Cells (MDSCs) and Obesity-Induced Inflammation in Type 2 Diabetes. Diagnostics (Basel) 2024; 14:2453. [PMID: 39518420 PMCID: PMC11544947 DOI: 10.3390/diagnostics14212453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Type 2 diabetes mellitus is a complex metabolic disorder characterized by insulin resistance and, subsequently, decreased insulin secretion. This condition is closely linked to obesity, a major risk factor that boosts the development of chronic systemic inflammation, which, in turn, is recognized for its crucial role in the onset of insulin resistance. Under conditions of obesity, adipose tissue, particularly visceral fat, becomes an active endocrine organ that releases a wide range of pro-inflammatory mediators, including cytokines, chemokines, and adipokines. These mediators, along with cluster of differentiation (CD) markers, contribute to the maintenance of systemic low-grade inflammation, promote cellular signaling and facilitate the infiltration of inflammatory cells into tissues. Emerging studies have indicated the accumulation of a new cell population in the adipose tissue in these conditions, known as myeloid-derived suppressor cells (MDSCs). These cells possess the ability to suppress the immune system, impacting obesity-related chronic inflammation. Given the limited literature addressing the role of MDSCs in the context of type 2 diabetes, this article aims to explore the complex interaction between inflammation, obesity, and MDSC activity. Identifying and understanding the role of these immature cells is essential not only for improving the management of type 2 diabetes but also for the potential development of targeted therapeutic strategies aimed at both glycemic control and the reduction in associated inflammation.
Collapse
Affiliation(s)
- Larisa Ghemiș
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (L.G.); (A.G.); (B.M.); (L.G.F.)
| | - Ancuța Goriuc
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (L.G.); (A.G.); (B.M.); (L.G.F.)
| | - Bogdan Minea
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (L.G.); (A.G.); (B.M.); (L.G.F.)
| | - Gina Eosefina Botnariu
- Department of Internal Medicine II, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania
- Department of Diabetes, Nutrition and Metabolic Diseases, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Maria-Alexandra Mârțu
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania;
| | - Melissa Ențuc
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania;
| | - Daniel Cioloca
- Department of Oro-Dental Prevention, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania;
| | - Liliana Georgeta Foia
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (L.G.); (A.G.); (B.M.); (L.G.F.)
| |
Collapse
|
4
|
Kamiya M, Carter H, Espindola MS, Doyle TJ, Lee JS, Merriam LT, Zhang F, Kawano-Dourado L, Sparks JA, Hogaboam CM, Moore BB, Oldham WM, Kim EY. Immune mechanisms in fibrotic interstitial lung disease. Cell 2024; 187:3506-3530. [PMID: 38996486 PMCID: PMC11246539 DOI: 10.1016/j.cell.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 07/14/2024]
Abstract
Fibrotic interstitial lung diseases (fILDs) have poor survival rates and lack effective therapies. Despite evidence for immune mechanisms in lung fibrosis, immunotherapies have been unsuccessful for major types of fILD. Here, we review immunological mechanisms in lung fibrosis that have the potential to impact clinical practice. We first examine innate immunity, which is broadly involved across fILD subtypes. We illustrate how innate immunity in fILD involves a complex interplay of multiple cell subpopulations and molecular pathways. We then review the growing evidence for adaptive immunity in lung fibrosis to provoke a re-examination of its role in clinical fILD. We close with future directions to address key knowledge gaps in fILD pathobiology: (1) longitudinal studies emphasizing early-stage clinical disease, (2) immune mechanisms of acute exacerbations, and (3) next-generation immunophenotyping integrating spatial, genetic, and single-cell approaches. Advances in these areas are essential for the future of precision medicine and immunotherapy in fILD.
Collapse
Affiliation(s)
- Mari Kamiya
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Hannah Carter
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Milena S Espindola
- Division of Pulmonary and Critical Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Tracy J Doyle
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Joyce S Lee
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Louis T Merriam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Fan Zhang
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Leticia Kawano-Dourado
- Hcor Research Institute, Hcor Hospital, Sao Paulo - SP 04004-030, Brazil; Pulmonary Division, Heart Institute (InCor), University of Sao Paulo, São Paulo - SP 05403-900, Brazil
| | - Jeffrey A Sparks
- Harvard Medical School, Boston, MA 02115, USA; Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Cory M Hogaboam
- Division of Pulmonary and Critical Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Bethany B Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Edy Y Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Chen L, Lu S, Wu Z, Zhang E, Cai Q, Zhang X. Innate immunity in diabetic nephropathy: Pathogenic mechanisms and therapeutic targets. MEDCOMM – FUTURE MEDICINE 2024; 3. [DOI: 10.1002/mef2.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/18/2024] [Indexed: 01/02/2025]
Abstract
AbstractDiabetic nephropathy (DN) represents a prevalent chronic microvascular complication of diabetes mellitus (DM) and is a major cause of end‐stage renal disease. The anfractuous surrounding of DN pathogenesis and the intricate nature of this metabolic disorder often pose challenges in both the diagnosis and treatment of DN compared to other kidney diseases. Hyperglycaemia in DM predispose vulnerable renal cells into microenvironmental disequilibrium and thereby results in innate immunocytes infiltration including neutrophils, macrophages, myeloid‐derived suppressor cells, dendritic cells, and so forth. These immune cells play dual roles in kidney injury and closely correlated with the degree of proteinuria in DN patients. Additionally, innate immune signaling cascades, initiated by altered metabolic and hemodynamic in diabetic context, are crucial in instigating and perpetuating renal inflammation, which detrimentally contribute to DN pathogenesis. As such, anti‐inflammatory therapies, particularly those targeting innate immunity, hold renoprotective promise in DN. In this article, we reviewed the origin and feature of the above four prominent kidney innate immune cells, analyze their pathogenic role in DN, and discuss potential targeted‐therapeutic strategies, aiming to enhance the current understanding of renal innate immunity and hence help to discover promising therapeutic approaches for DN.
Collapse
Affiliation(s)
- Le‐Xin Chen
- School of Pharmaceutical Science Guangzhou University of Chinese Medicine Guangzhou PR China
| | - Shu‐Ru Lu
- School of Pharmaceutical Science Guangzhou University of Chinese Medicine Guangzhou PR China
| | - Zhi‐Hao Wu
- School of Pharmaceutical Science Guangzhou University of Chinese Medicine Guangzhou PR China
| | - En‐Xin Zhang
- Shenzhen Bao'an Authentic TCM Therapy Hospital Shenzhen PR China
| | - Qing‐Qun Cai
- The First Affiliated Hospital Guangzhou University of Chinese Medicine Guangzhou PR China
| | - Xiao‐Jun Zhang
- School of Pharmaceutical Science Guangzhou University of Chinese Medicine Guangzhou PR China
| |
Collapse
|
6
|
Saad EE, Michel R, Borahay MA. Immunosuppressive tumor microenvironment and uterine fibroids: Role in collagen synthesis. Cytokine Growth Factor Rev 2024; 75:93-100. [PMID: 37839993 PMCID: PMC10922281 DOI: 10.1016/j.cytogfr.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Uterine fibroids (UF), also called uterine leiomyoma, is one of the most prevalent uterine tumors. UF represents a serious women's health global problem with a significant physical, emotional, and socioeconomic impact. Risk factors for UF include racial disparities, age, race, hormonal factors, obesity, and lifestyle (diet, physical activity, and stress. There are several biological contributors to UF pathogenesis such as cellular proliferation, angiogenesis, and extracellular matrix (ECM) accumulation. This review addresses tumor immune microenvironment as a novel mediator of ECM deposition. Polarization of immune microenvironment towards the immunosuppressive phenotype has been associated with ECM deposition. Immunosuppressive cells include M2 macrophage, myeloid-derived suppressor cells (MDSCs), and Th17 cells, and their secretomes include interleukin 4 (IL-4), IL-10, IL-13, IL-17, IL-22, arginase 1, and transforming growth factor-beta (TGF-β1). The change in the immune microenvironment not only increase tumor growth but also aids in collagen synthesis and ECM disposition, which is one of the main hallmarks of UF pathogenesis. This review invites further investigations on the change in the UF immune microenvironment as well as a novel targeting approach instead of the traditional UF hormonal and supportive treatment.
Collapse
Affiliation(s)
- Eslam E Saad
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rachel Michel
- Department of Population, Family, and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, MD 21205, USA
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
7
|
Xiong X, Zhang Y, Wen Y. Diverse functions of myeloid-derived suppressor cells in autoimmune diseases. Immunol Res 2024; 72:34-49. [PMID: 37733169 PMCID: PMC10811123 DOI: 10.1007/s12026-023-09421-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Since myeloid-derived suppressor cells (MDSCs) were found suppressing immune responses in cancer and other pathological conditions, subsequent researchers have pinned their hopes on the suppressive function against immune damage in autoimmune diseases. However, recent studies have found key distinctions of MDSC immune effects in cancer and autoimmunity. These include not only suppression and immune tolerance, but MDSCs also possess pro-inflammatory effects and exacerbate immune disorders during autoimmunity, while promoting T cell proliferation, inducing Th17 cell differentiation, releasing pro-inflammatory cytokines, and causing direct tissue damage. Additionally, MDSCs could interact with surrounding cells to directly cause tissue damage or repair, sometimes even as an inflammatory indicator in line with disease severity. These diverse manifestations could be partially attributed to the heterogeneity of MDSCs, but not all. The different disease types, disease states, and cytokine profiles alter the diverse phenotypes and functions of MDSCs, thus leading to the impairment or obversion of MDSC suppression. In this review, we summarize the functions of MDSCs in several autoimmune diseases and attempt to elucidate the mechanisms behind their actions.
Collapse
Affiliation(s)
- Xin Xiong
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Wen
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Shu J, Wang K, Liu Y, Zhang J, Ding X, Sun H, Wu J, Huang B, Qiu J, Sheng H, Lu L. Trichosanthin alleviates streptozotocin-induced type 1 diabetes mellitus in mice by regulating the balance between bone marrow-derived IL6 + and IL10 + MDSCs. Heliyon 2024; 10:e22907. [PMID: 38187307 PMCID: PMC10770427 DOI: 10.1016/j.heliyon.2023.e22907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 01/09/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) occupy a pivotal role in the intricate pathogenesis of the autoimmune disorder, Type 1 diabetes mellitus (T1DM). Since our previous work demonstrated that trichosanthin (TCS), an active compound of Chinese herb medicine Tian Hua Fen, regulated immune response, we aimed to clarify the efficacy and molecular mechanism of TCS in the treatment of T1DM. To this end, T1DM mouse model was established by streptozotocin (STZ) induction. The mice were randomly divided into normal control group (Ctl), T1DM group (STZ), TCS treated diabetic group (STZ + TCS) and insulin-treated diabetic group (STZ + insulin). Our comprehensive evaluation encompassed variables such as blood glucose, glycosylated hemoglobin, body weight, pertinent biochemical markers, pancreatic histopathology, and the distribution of immune cell populations. Furthermore, we meticulously isolated MDSCs from the bone marrow of T1DM mice, probing into the expressions of genes pertaining to the advanced glycation end product receptor (RAGE)/NF-κB signaling pathway through RT-qPCR. Evidently, TCS exhibited a substantial capacity to effectively counteract the T1DM-induced elevation in random blood glucose, glycosylated hemoglobin, and IL-6 levels in plasma. Pathological scrutiny underscored the ability of TCS to mitigate the damage incurred by islets. Intriguingly, TCS interventions engendered a reduction in the proportion of MDSCs within the bone marrow, particularly within the IL-6+ MDSC subset. In contrast, IL-10+ MDSCs exhibited an elevation following TCS treatment. Moreover, we observed a significant down-regulation of relative mRNA of pro-inflammatory genes, including arginase 1 (Arg1), inducible nitric oxide synthase (iNOS), RAGE and NF-κB, within MDSCs due to the influence of TCS. It decreases total MDSCs and regulates the balance between IL-6+ and IL-10+ MDSCs thus alleviating the symptoms of T1DM. TCS also down-regulates the RAGE/NF-κB signaling pathway, making it a promising alternative therapeutic treatment for T1DM. Collectively, our study offered novel insights into the underlying mechanism by which TCS serves as a promising therapeutic intervention for T1DM.
Collapse
Affiliation(s)
- Jie Shu
- Department of Clinical Laboratory, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xian Xia Road, Shanghai, 200336, China
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 Chong Qing South Road, 200025, China
| | - Kefan Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 Chong Qing South Road, 200025, China
| | - Yuting Liu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 Chong Qing South Road, 200025, China
| | - Jie Zhang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 Chong Qing South Road, 200025, China
| | - Xuping Ding
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 Chong Qing South Road, 200025, China
| | - Hanxiao Sun
- Department of Clinical Laboratory, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xian Xia Road, Shanghai, 200336, China
| | - Jiaoxiang Wu
- Department of Clinical Laboratory, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xian Xia Road, Shanghai, 200336, China
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ju Qiu
- The Key Laboratory of Stem Cell Biology, Shanghai Institutes of Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Huiming Sheng
- Department of Clinical Laboratory, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xian Xia Road, Shanghai, 200336, China
| | - Liming Lu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 Chong Qing South Road, 200025, China
| |
Collapse
|
9
|
Su H, Wu H, Wu S, Zhou M. Effects of electroacupuncture at KI3 and ST36 on the hypothalamic paraventricular nucleus in a rat model of chronic glomerulonephritis. Acupunct Med 2023; 41:307-316. [PMID: 37166069 DOI: 10.1177/09645284231166718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
OBJECTIVE The hypothalamic paraventricular nucleus (PVN) acts as a critical integrating center of endocrine/autonomic responses and regulates visceral functional activities. However, its involvement in electroacupuncture (EA) treatment of chronic glomerulonephritis (CGN) remains unclear. METHODS Over four experiments, we randomized 111 rats into: control, untreated model (CGN) or EA-treated model (CGN + EA) groups, a model group receiving EA after PVN damage (CGN + EA + Lesion) or untreated model groups injected with adeno-associated viral vectors encoding human M4 muscarinic receptor (CGN + hM4D) or enhanced green fluorescent protein (CGN + EGFP). CGN was modeled by intraperitoneal injection of bovine serum albumin for 2 weeks. Rats in the CGN + EA and CGN + EA + Lesion groups received EA at bilateral ST36 and KI3 for 14 days. Urine/serum samples were collected to evaluate inflammatory factors and changes in renal function. RESULTS EA inhibited the release of interleukin (IL)-6, tumor necrosis factor (TNF)-α and IL-1β, and decreased urine protein (PRO), creatinine (Cre) and blood urea nitrogen (BUN) levels. PVN damage influenced the effect of EA on the levels of these parameters. EA appeared to inhibit the firing frequency and spectral energy of PVN neurons. In the viral vector experiment, levels of PRO, Cre, IL-6, IL-1β and TNF-α in the CGN group were increased in CGN versus control groups (p < 0.0001), decreased in CGN + hM4D versus CGN groups (p < 0.05) and did not differ between CGN + EGFP and control groups (p > 0.05). CONCLUSION Our findings indicate that EA at ST36 and KI3 improves CGN in this rat model by weakening the activity of PVN neurons, alleviating impairment of renal function impairment and restricting the release of inflammatory factors.
Collapse
Affiliation(s)
- Hang Su
- Graduate School of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Haosheng Wu
- Graduate School of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Shengbing Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Meiqi Zhou
- Anhui Academy of Traditional Medicine, Bozhou Institute of Chinese Medicine, Bozhou, China
| |
Collapse
|
10
|
Liu Z, Zhang M, Shi X, Zhao W, Cao C, Jin L, Wang Y, Xiao J. Decreased programmed cell death ligand 2-positive monocytic myeloid-derived suppressor cells and programmed cell death protein 1-positive T-regulatory cells in patients with type 2 diabetes: implications for immunopathogenesis. Endocr Connect 2023; 12:e230218. [PMID: 37410080 PMCID: PMC10448569 DOI: 10.1530/ec-23-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/03/2023] [Indexed: 07/07/2023]
Abstract
Objectives The activation of immune cells plays a significant role in the progression of type 2 diabetes. This study aimed to investigate the potential role of myeloid-derived suppressor cells (MDSCs) and T-regulatory cells (Tregs) in type 2 diabetes. Methods A total of 61 patients diagnosed with type 2 diabetes were recruited. Clinical characteristics were reviewed and peripheral blood samples were collected. We calculated the percentage of different cells. Frequencies of MDSC subsets refered to the percentage of G-MDSCs (CD15+CD33+CD11b+CD14-HLA-DR-/low) in CD45 positive cells and the percentage of M-MDSCs (CD14+CD15-CD11b+CD33+HLA-DR-/low) in lymphocytes plus monocytes. Results Frequencies of programmed cell death ligand 1-positive granulocytic MDSCs (PD-L1+ G-MDSCs), programmed cell death ligand 2-positive monocytic MDSCs (PD-L2+ M-MDSCs), PD-L2+ G-MDSC, and programmed cell death protein 1-positive Tregs (PD-1+Tregs) were decreased in patients with type 2 diabetes. The frequency of PD-1+ Tregs was positively related to PD-L2+ M-MDSCs (r= 0.357, P = 0.009) and negatively related to HbA1c (r = -0.265, P = 0.042), fasting insulin level (r = -0.260, P = 0.047), and waist circumference (r = -0.373, P = 0.005). Conclusions Decreased PD-L2+ M-MDSCs and PD-1+ Tregs may promote effector T cell activation, leading to chronic low-grade inflammation in type 2 diabetes. These findings highlight the contribution of MDSCs and Tregs to the immunopathogenesis of type 2 diabetes and suggest their potential as targets for new therapeutic approaches.
Collapse
Affiliation(s)
- Zhaoxiang Liu
- Department of Endocrinology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Mingqiang Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xiaohu Shi
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenhui Zhao
- Department of Endocrinology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Chenxiang Cao
- Department of Endocrinology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Lixia Jin
- Department of Endocrinology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yanlei Wang
- Department of Endocrinology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jianzhong Xiao
- Department of Endocrinology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
11
|
Li TT, Lin CL, Chiang M, He JT, Hung CH, Hsieh CC. Cytokine-Induced Myeloid-Derived Suppressor Cells Demonstrate Their Immunoregulatory Functions to Prolong the Survival of Diabetic Mice. Cells 2023; 12:1507. [PMID: 37296628 PMCID: PMC10253032 DOI: 10.3390/cells12111507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Type 1 diabetes is an inflammatory state. Myeloid-derived suppressive cells (MDSCs) originate from immature myeloid cells and quickly expand to control host immunity during infection, inflammation, trauma, and cancer. This study presents an ex vivo procedure to develop MDSCs from bone marrow cells propagated from granulocyte-macrophage-colony-stimulating factor (GM-CSF), interleukin (IL)-6, and IL-1β cytokines expressing immature morphology and high immunosuppression of T-cell proliferation. The adoptive transfer of cytokine-induced MDSCs (cMDSCs) improved the hyperglycemic state and prolonged the diabetes-free survival of nonobese diabetic (NOD) mice with severe combined immune deficiency (SCID) induced by reactive splenic T cells harvested from NOD mice. In addition, the application of cMDSCs reduced fibronectin production in the renal glomeruli and improved renal function and proteinuria in diabetic mice. Moreover, cMDSCs use mitigated pancreatic insulitis to restore insulin production and reduce the levels of HbA1c. In conclusion, administering cMDSCs propagated from GM-CSF, IL-6, and IL-1β cytokines provides an alternative immunotherapy protocol for treating diabetic pancreatic insulitis and renal nephropathy.
Collapse
Affiliation(s)
- Tung-Teng Li
- Division of General Surgery, Chang-Gung Memorial Hospital, Chiayi 61302, Taiwan; (T.-T.L.)
| | - Chun-Liang Lin
- Department of Nephrology, Chang-Gung Memorial Hospital, Chiayi 61302, Taiwan;
- Kidney and Diabetic Complications Research Team (KDCRT), Chang-Gung Memorial Hospital, Chiayi 61302, Taiwan
- College of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan
| | - Meihua Chiang
- Division of General Surgery, Chang-Gung Memorial Hospital, Chiayi 61302, Taiwan; (T.-T.L.)
| | - Jie-Teng He
- Division of General Surgery, Chang-Gung Memorial Hospital, Chiayi 61302, Taiwan; (T.-T.L.)
| | - Chien-Hui Hung
- College of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan
- Division of Infectious Diseases, Chang-Gung Memorial Hospital, Chiayi 61302, Taiwan
| | - Ching-Chuan Hsieh
- Division of General Surgery, Chang-Gung Memorial Hospital, Chiayi 61302, Taiwan; (T.-T.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang-Gung Memorial Hospital, Chiayi 61302, Taiwan
- College of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
12
|
Hsieh CC, Chang CC, Hsu YC, Lin CL. Immune Modulation by Myeloid-Derived Suppressor Cells in Diabetic Kidney Disease. Int J Mol Sci 2022; 23:13263. [PMID: 36362050 PMCID: PMC9655277 DOI: 10.3390/ijms232113263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 09/22/2023] Open
Abstract
Diabetic kidney disease (DKD) frequently leads to end-stage renal disease and other life-threatening illnesses. The dysregulation of glomerular cell types, including mesangial cells, endothelial cells, and podocytes, appears to play a vital role in the development of DKD. Myeloid-derived suppressor cells (MDSCs) exhibit immunoregulatory and anti-inflammatory properties through the depletion of L-arginine that is required by T cells, through generation of oxidative stress, interference with T-cell recruitment and viability, proliferation of regulatory T cells, and through the promotion of pro-tumorigenic functions. Under hyperglycemic conditions, mouse mesangial cells reportedly produce higher levels of fibronectin and pro-inflammatory cytokines. Moreover, the number of MDSCs is noticeably decreased, weakening inhibitory immune activities, and creating an inflammatory environment. In diabetic mice, immunotherapy with MDSCs that were induced by a combination of granulocyte-macrophage colony-stimulating factor, interleukin (IL)-1β, and IL-6, reduced kidney to body weight ratio, fibronectin expression, and fibronectin accumulation in renal glomeruli, thus ameliorating DKD. In conclusion, MDSCs exhibit anti-inflammatory activities that help improve renal fibrosis in diabetic mice. The therapeutic targeting of the proliferative or immunomodulatory pathways of MDSCs may represent an alternative immunotherapeutic strategy for DKD.
Collapse
Affiliation(s)
- Ching-Chuan Hsieh
- Division of General Surgery, Chang Gung Memorial Hospital, Chiayi 261363, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 261363, Taiwan
| | - Cheng-Chih Chang
- Division of General Surgery, Chang Gung Memorial Hospital, Chiayi 261363, Taiwan
| | - Yung-Chien Hsu
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 261363, Taiwan
- Division of Nephrology, Chang Gung Memorial Hospital, Chiayi 261363, Taiwan
| | - Chun-Liang Lin
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 261363, Taiwan
- Division of Nephrology, Chang Gung Memorial Hospital, Chiayi 261363, Taiwan
| |
Collapse
|
13
|
van Geffen C, Heiss C, Deißler A, Kolahian S. Pharmacological modulation of myeloid-derived suppressor cells to dampen inflammation. Front Immunol 2022; 13:933847. [PMID: 36110844 PMCID: PMC9468781 DOI: 10.3389/fimmu.2022.933847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population with potent suppressive and regulative properties. MDSCs’ strong immunosuppressive potential creates new possibilities to treat chronic inflammation and autoimmune diseases or induce tolerance towards transplantation. Here, we summarize and critically discuss different pharmacological approaches which modulate the generation, activation, and recruitment of MDSCs in vitro and in vivo, and their potential role in future immunosuppressive therapy.
Collapse
|
14
|
Wang S, Tan Q, Hou Y, Dou H. Emerging Roles of Myeloid-Derived Suppressor Cells in Diabetes. Front Pharmacol 2021; 12:798320. [PMID: 34975496 PMCID: PMC8716856 DOI: 10.3389/fphar.2021.798320] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes is a syndrome characterized by hyperglycemia with or without insulin resistance. Its etiology is attributed to the combined action of genes, environment and immune cells. Myeloid-derived suppressor cell (MDSC) is a heterogeneous population of immature cells with immunosuppressive ability. In recent years, different studies have debated the quantity, activity changes and roles of MDSC in the diabetic microenvironment. However, the emerging roles of MDSC have not been fully documented with regard to their interactions with diabetes. Here, the manifestations of MDSC and their subsets are reviewed with regard to the incidence of diabetes and diabetic complications. The possible drugs targeting MDSC are discussed with regard to their potential of treating diabetes. We believe that understanding MDSC will offer opportunities to explain pathological characteristics of different diabetes. MDSC also will be used for personalized immunotherapy of diabetes.
Collapse
Affiliation(s)
- Shiqi Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
15
|
Hickson LJ, Abedalqader T, Ben-Bernard G, Mondy JM, Bian X, Conley SM, Zhu X, Herrmann SM, Kukla A, Lorenz EC, Kim SR, Thorsteinsdottir B, Lerman LO, Murad MH. A systematic review and meta-analysis of cell-based interventions in experimental diabetic kidney disease. Stem Cells Transl Med 2021; 10:1304-1319. [PMID: 34106528 PMCID: PMC8380442 DOI: 10.1002/sctm.19-0419] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Regenerative, cell‐based therapy is a promising treatment option for diabetic kidney disease (DKD), which has no cure. To prepare for clinical translation, this systematic review and meta‐analysis summarized the effect of cell‐based interventions in DKD animal models and treatment‐related factors modifying outcomes. Electronic databases were searched for original investigations applying cell‐based therapy in diabetic animals with kidney endpoints (January 1998‐May 2019). Weighted or standardized mean differences were estimated for kidney outcomes and pooled using random‐effects models. Subgroup analyses tested treatment‐related factor effects for outcomes (creatinine, urea, urine protein, fibrosis, and inflammation). In 40 studies (992 diabetic rodents), therapy included mesenchymal stem/stromal cells (MSC; 61%), umbilical cord/amniotic fluid cells (UC/AF; 15%), non‐MSC (15%), and cell‐derived products (13%). Tissue sources included bone marrow (BM; 65%), UC/AF (15%), adipose (9%), and others (11%). Cell‐based therapy significantly improved kidney function while reducing injury markers (proteinuria, histology, fibrosis, inflammation, apoptosis, epithelial‐mesenchymal‐transition, oxidative stress). Preconditioning, xenotransplantation, and disease‐source approaches were effective. MSC and UC/AF cells had greater effect on kidney function while cell products improved fibrosis. BM and UC/AF tissue sources more effectively improved kidney function and proteinuria vs adipose or other tissues. Cell dose, frequency, and administration route also imparted different benefits. In conclusion, cell‐based interventions in diabetic animals improved kidney function and reduced injury with treatment‐related factors modifying these effects. These findings may aid in development of optimal repair strategies through selective use of cells/products, tissue sources, and dose administrations to allow for successful adaptation of this novel therapeutic in human DKD.
Collapse
Affiliation(s)
- LaTonya J Hickson
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, Florida, USA.,Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Kern Center Affiliate, Mayo Clinic, Rochester, Minnesota, USA
| | - Tala Abedalqader
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Gift Ben-Bernard
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jayla M Mondy
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Xiaohui Bian
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Sabena M Conley
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Xiangyang Zhu
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sandra M Herrmann
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Aleksandra Kukla
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Elizabeth C Lorenz
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Kern Center Affiliate, Mayo Clinic, Rochester, Minnesota, USA
| | - Seo Rin Kim
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Bjorg Thorsteinsdottir
- Kern Center Affiliate, Mayo Clinic, Rochester, Minnesota, USA.,Division of Preventative Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - M Hassan Murad
- Kern Center Affiliate, Mayo Clinic, Rochester, Minnesota, USA.,Division of Preventative Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
16
|
van Geffen C, Deißler A, Quante M, Renz H, Hartl D, Kolahian S. Regulatory Immune Cells in Idiopathic Pulmonary Fibrosis: Friends or Foes? Front Immunol 2021; 12:663203. [PMID: 33995390 PMCID: PMC8120991 DOI: 10.3389/fimmu.2021.663203] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
The immune system is receiving increasing attention for interstitial lung diseases, as knowledge on its role in fibrosis development and response to therapies is expanding. Uncontrolled immune responses and unbalanced injury-inflammation-repair processes drive the initiation and progression of idiopathic pulmonary fibrosis. The regulatory immune system plays important roles in controlling pathogenic immune responses, regulating inflammation and modulating the transition of inflammation to fibrosis. This review aims to summarize and critically discuss the current knowledge on the potential role of regulatory immune cells, including mesenchymal stromal/stem cells, regulatory T cells, regulatory B cells, macrophages, dendritic cells and myeloid-derived suppressor cells in idiopathic pulmonary fibrosis. Furthermore, we review the emerging role of regulatory immune cells in anti-fibrotic therapy and lung transplantation. A comprehensive understanding of immune regulation could pave the way towards new therapeutic or preventive approaches in idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Chiel van Geffen
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University Hospital Tübingen, Tübingen, Germany
| | - Astrid Deißler
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University Hospital Tübingen, Tübingen, Germany.,Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Markus Quante
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University of Marburg, Marburg, Germany.,Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| | - Dominik Hartl
- Department of Pediatrics I, Eberhard Karls University of Tübingen, Tübingen, Germany.,Dominik Hartl, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Saeed Kolahian
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University Hospital Tübingen, Tübingen, Germany.,Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University of Marburg, Marburg, Germany.,Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| |
Collapse
|
17
|
Dong J, Ding L, Wang L, Yang Z, Wang Y, Zang Y, Cao X, Tang L. Effects of bradykinin on proliferation, apoptosis, and cycle of glomerular mesangial cells via the TGF-β1/Smad signaling pathway. Turk J Biol 2021; 45:17-25. [PMID: 33597818 PMCID: PMC7877713 DOI: 10.3906/biy-2007-58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/19/2020] [Indexed: 12/25/2022] Open
Abstract
We aimed to assess the effects of bradykinin (BK) on the proliferation, apoptosis, and cycle of glomerular mesangial cells via the transforming growth factor-β 1 (TGF-β1)/Smad signaling pathway. Rat glomerular mesangial cells, HBZY-1, were divided into normal group (untreated), model group (5 ng/L TGF-β1), BK group (5 ng/L TGF-β1 + 1 ng/L BK), and inhibitor group [5 ng/L TGF-β1 + 1 ng/L LY2109761 (TGF-β1-specific inhibitor)]. The cell proliferation, cycle, apoptosis, expression of type I collagen (Col-1), and protein expressions of Col-1, TGF-β1, and phosphorylated Smad2 (p-Smad2) were detected by EdU labeling, flow cytometry, acridine orange/ethidium bromide (AO/EB) dual staining, immunofluorescence assay, and Western blotting, respectively. Compared with the normal group, the cell proliferation rate (P = 0.02) and protein expression levels of Col-1 (P = 0.02), TGF-β1 (P = 0.01), p-Smad2 (P = 0.02), and p-Smad7 (P = 0.00) in the model group significantly increased, and apoptosis rate (P = 0.01) significantly decreased. Compared with the model group, the BK and inhibitor groups significantly decreased in proliferation rate (P = 0.01) and protein expression levels of Col-1 (P = 0.01), TGF-β1 (P = 0.01), and p-Smad2 (P = 0.00). Also, they were significantly elevated in apoptosis rate (P = 0.02) and p-Smad7 protein expression (P = 0.02). BK regulates the proliferation, apoptosis, and the cycle of glomerular mesangial cells by inhibiting the TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Ji Dong
- Department of Medicine, Henan Medical College, Zhengzhou, Henan Province China
| | - Li Ding
- Henan Institute for Occupational Medicine, Zhengzhou, Henan Province China
| | - Liuwei Wang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province China
| | - Zijun Yang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province China
| | - Yulin Wang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province China
| | - Ying Zang
- Department of Medicine, Henan Medical College, Zhengzhou, Henan Province China
| | - Xuexia Cao
- Department of Medicine, Henan Medical College, Zhengzhou, Henan Province China
| | - Lin Tang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province China
| |
Collapse
|
18
|
Qiu Y, Cao Y, Tu G, Li J, Su Y, Fang F, Zhang X, Cang J, Rong R, Luo Z. Myeloid-Derived Suppressor Cells Alleviate Renal Fibrosis Progression via Regulation of CCL5-CCR5 Axis. Front Immunol 2021; 12:698894. [PMID: 34566958 PMCID: PMC8460909 DOI: 10.3389/fimmu.2021.698894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Renal fibrosis is inevitable in all progressive chronic kidney diseases (CKDs) and represents a serious public health problem. Immune factors contribute to the progression of renal fibrosis. Thus, it is very possible that immunosuppression cells, such as myeloid-derived suppressor cells (MDSCs), could bring benefits to renal fibrosis. Herein, this study investigated the antifibrotic and reno-protective effect of MDSCs and the possible mechanisms. METHODS Murine and cell models of unilateral ureter obstruction (UUO) renal fibrosis were used. Bone marrow-induced MDSCs and granulocyte-macrophage colony-stimulating factor (GM-CSF) were pretreated before surgery. Kidney weight, pathological injury, extracellular matrix deposition, and epithelial-mesenchymal transition progression were examined. Transforming growth factor (TGF)-β1)/Smad/Snail signaling pathway involvement was investigated through Western blotting and quantitative PCR (qPCR). Accumulation of MDSC, CD4+ T cell, regulatory T (Treg), and T helper 1 (TH1) cell accumulation, and CCL5 and CCR5 expression level in MDSCs and non-MDSCs were evaluated using flow cytometry. RESULTS In vitro- and in vivo-induced MDSCs significantly ameliorated UUO-induced tubulointerstitial fibrosis, inhibited the TGF-β1/Smad/Snail signaling pathway, and enhanced MDSC and Treg infiltration in the kidney while downregulating the TH1 cells. Both in vitro and in vivo experiments confirmed CCL5 elevation in the two MDSC-treated groups. CONCLUSION In vitro- and in vivo-induced MDSCs alleviated renal fibrosis similarly through promoting the CCL5-CCR5 axis interaction and TGF-β1/Smad/Snail signaling pathway inhibition. Our results indicate an alternative treatment for renal fibrosis.
Collapse
Affiliation(s)
- Yue Qiu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yirui Cao
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Guowei Tu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiawei Li
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Ying Su
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fang Fang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuepeng Zhang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Cang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Jing Cang, ; Ruiming Rong, ; Zhe Luo,
| | - Ruiming Rong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
- *Correspondence: Jing Cang, ; Ruiming Rong, ; Zhe Luo,
| | - Zhe Luo
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Critical Care Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- *Correspondence: Jing Cang, ; Ruiming Rong, ; Zhe Luo,
| |
Collapse
|
19
|
Mao L, Liu L, Zhang T, Qin H, Wu X, Xu Y. Histone Deacetylase 11 Contributes to Renal Fibrosis by Repressing KLF15 Transcription. Front Cell Dev Biol 2020; 8:235. [PMID: 32363192 PMCID: PMC7180197 DOI: 10.3389/fcell.2020.00235] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Renal fibrosis represents a key pathophysiological process in patients with chronic kidney diseases (CKD) and is typically associated with a poor prognosis. Renal tubular epithelial cells (RTECs), in response to a host of pro-fibrogenic stimuli, can trans-differentiate into myofibroblast-like cells and produce extracellular matrix proteins to promote renal fibrosis. In the present study we investigated the role of histone deacetylase 11 (HDAC11) in this process and the underlying mechanism. We report that expression levels of HDAC11 were up-regulated in the kidneys in several different animal models of renal fibrosis. HDAC11 was also up-regulated by treatment of Angiotensin II (Ang II) in cultured RTECs. Consistently, pharmaceutical inhibition with a small-molecule inhibitor of HDAC11 (quisinostat) attenuated unilateral ureteral obstruction (UUO) induced renal fibrosis in mice. Similarly, HDAC11 inhibition by quisinostat or HDAC11 depletion by siRNA blocked Ang II induced pro-fibrogenic response in cultured RTECs. Mechanistically, HDAC11 interacted with activator protein 2 (AP-2α) to repress the transcription of Kruppel-like factor 15 (KLF15). In accordance, KLF15 knockdown antagonized the effect of HDAC11 inhibition or depletion and enabled Ang II to promote fibrogenesis in RTECs. Therefore, we data unveil a novel AP-2α-HDAC11-KLF15 axis that contributes to renal fibrosis.
Collapse
Affiliation(s)
- Lei Mao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Li Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Tao Zhang
- Department of Geriatric Nephrology, Jiangsu Province Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Qin
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiaoyan Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
20
|
Islam J, Lee HJ, Yang SH, Kim DK, Joo KW, Kim YS, Seo SU, Seong SY, Lee DS, Youn JI, Han SS. Expansion of Myeloid-Derived Suppressor Cells Correlates with Renal Progression in Type 2 Diabetic Nephropathy. Immune Netw 2020; 20:e18. [PMID: 32395370 PMCID: PMC7192828 DOI: 10.4110/in.2020.20.e18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/27/2020] [Accepted: 02/06/2020] [Indexed: 01/04/2023] Open
Abstract
Type 2 diabetic nephropathy (T2DN) progresses with an increasingly inflammatory milieu, wherein various immune cells are relevant. Herein, we investigated the levels of myeloid-derived suppressor cells (MDSCs) and their clinical implication in patients with T2DN. A total of 91 subjects (T2DN, n=80; healthy, n=11) were recruited and their PBMCs were used for flow cytometric analysis of polymorphonuclear (PMN-) and monocytic (M-) MDSCs, in addition to other immune cell subsets. The risk of renal progression was evaluated according to the quartiles of MDSC levels using the Cox model. The proportion of MDSCs in T2DN patients was higher than in healthy individuals (median, 6.7% vs. 2.5%). PMN-MDSCs accounted for 96% of MDSCs, and 78% of PMN-MDSCs expressed Lox-1. The expansion of PMN-MDSCs was not related to the stage of T2DN or other kidney disease parameters such as glomerular filtration rate and proteinuria. The production of ROS in PMN-MDSCs of patients was higher than in neutrophils of patients or in immune cells of healthy individuals, and this production was augmented under hyperglycemic conditions. The 4th quartile group of PMN-MDSCs had a higher risk of renal progression than the 1st quartile group, irrespective of adjusting for multiple clinical and laboratory variables. In conclusion, PMN-MDSCs are expanded in patients with T2DN, and may represent as an immunological biomarker of renal progression.
Collapse
Affiliation(s)
- Jahirul Islam
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hack June Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Seung Hee Yang
- Kidney Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
- Kidney Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| | - Kwon Wook Joo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
- Kidney Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| | - Yon Su Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
- Kidney Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| | - Sang-Uk Seo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon 25159, Korea
| | - Seung-Yong Seong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon 25159, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Dong-Sup Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Je-In Youn
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon 25159, Korea
- Research Institute, ProGen Inc., Seongnam 13488, Korea
| | - Seung Seok Han
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
- Kidney Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
21
|
Wang B, Dong G, Zhang Q, Yan F, Li Z, Li C, Zhang H, Ma Q, Dai J, Si C, Xiong H. The inhibitor of autophagy SBI-0206965 aggravates atherosclerosis through decreasing myeloid-derived suppressor cells. Exp Ther Med 2019; 19:1370-1378. [PMID: 32010311 PMCID: PMC6966176 DOI: 10.3892/etm.2019.8317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis (AS) is currently the leading cause of mortality worldwide, with the development of new strategies to prevent the formation and rupture of atherosclerotic plaques being a paramount area of research. Amounting evidence suggests autophagy has an important role in the pathogenesis of AS and may be a potential therapeutic target. In this study, the effect of SBI-0206965(6965), a novel inhibitor of autophagy, was tested on the development of AS in apolipoprotein E deficient (ApoE−/−) mice. Systemic application of 6965 was found to aggravate AS, with increased plaque size and decreased plaque stability in comparison with the control. Of note, it was observed that 6965 decreased the proportion of myeloid-derived suppressor cells (MDSCs). Further investigation demonstrated MDSCs markedly alleviated AS in ApoE−/− mice; while 6965 reduced the viability and promoted apoptosis of MDSCs in vitro. This is the first study describing an association between autophagy and MDSCs in AS models, providing a novel mechanism to potentially target in the management of this condition.
Collapse
Affiliation(s)
- Bo Wang
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China.,Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Qingqiing Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Zhihua Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Qun Ma
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Jun Dai
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Chuanping Si
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Huabao Xiong
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
22
|
Ponomarev AV, Shubina IZ. Insights Into Mechanisms of Tumor and Immune System Interaction: Association With Wound Healing. Front Oncol 2019; 9:1115. [PMID: 31709183 PMCID: PMC6823879 DOI: 10.3389/fonc.2019.01115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022] Open
Abstract
A large number of studies have presented a great deal of information about tumor and immune system interaction. Nevertheless, the problem of tumor evasion from the immune reaction is still difficult to resolve. Understanding the ways in which immunosuppressive tumor microenvironment develops and maintains its potential is of utmost importance to ensure the best use of the suppressed immune functions. The study presents a review covering the data on tumor-associated antigens, mechanisms of tumor evasion from the immune reactions, and search for common immunosuppressive processes of tumor growth and normal wound healing. The study discusses the important role of monocytes/macrophages in the regulation of immune system reactions. We suggest that the simultaneous actions of growth factors and pro-inflammatory cytokines may result in the suppression of the immune system. The study describes intracellular signaling molecules that take part in the regulation of the myeloid cell functions. If the hypothesis is proved correct, the indicated interaction of cytokines could be regarded as a prospective target for antitumor therapy.
Collapse
Affiliation(s)
| | - Irina Zh Shubina
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| |
Collapse
|
23
|
Consonni FM, Porta C, Marino A, Pandolfo C, Mola S, Bleve A, Sica A. Myeloid-Derived Suppressor Cells: Ductile Targets in Disease. Front Immunol 2019; 10:949. [PMID: 31130949 PMCID: PMC6509569 DOI: 10.3389/fimmu.2019.00949] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/12/2019] [Indexed: 12/15/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of immature myeloid cells with major regulatory functions and rise during pathological conditions, including cancer, infections and autoimmune conditions. MDSC expansion is generally linked to inflammatory processes that emerge in response to stable immunological stress, which alter both magnitude and quality of the myelopoietic output. Inability to reinstate physiological myelopoiesis would fall in an “emergency state” that perpetually reprograms myeloid cells toward suppressive functions. While differentiation and reprogramming of myeloid cells toward an immunosuppressive phenotype can be considered the result of a multistep process that originates in the bone marrow and culminates in the tumor microenvironment, the identification of its driving events may offer potential therapeutic approaches in different pathologies. Indeed, whereas expansion of MDSCs, in both murine and human tumor bearers, results in reduced immune surveillance and antitumor cytotoxicity, placing an obstacle to the effectiveness of anticancer therapies, adoptive transfer of MDSCs has shown therapeutic benefits in autoimmune disorders. Here, we describe relevant mechanisms of myeloid cell reprogramming leading to generation of suppressive MDSCs and discuss their therapeutic ductility in disease.
Collapse
Affiliation(s)
| | - Chiara Porta
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy.,Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Arianna Marino
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Chiara Pandolfo
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Silvia Mola
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy.,Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Augusto Bleve
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Antonio Sica
- Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| |
Collapse
|