1
|
Thottappillil N, Li Z, Xing X, Arondekar S, Zhu M, Cherief M, Qin Q, Zhou M, Archer M, Broderick K, Pèault B, Lee M, James AW. ZIC1 transcription factor overexpression in segmental bone defects is associated with brown adipogenic and osteogenic differentiation. Stem Cells 2025; 43:sxaf013. [PMID: 40151950 DOI: 10.1093/stmcls/sxaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Transcriptional factor regulation is central to the lineage commitment of stem/ progenitor cells. ZIC1 (ZIC family member 1) is a C2H2-type zinc finger transcription factor expressed during development, brown fat, and certain cancers. Previously, we observed that overexpression of ZIC1 induces osteogenic differentiation at the expense of white adipogenic differentiation. In the present study, the feasibility of ZIC1 overexpressed human progenitor cells in critical-sized bone defects was studied. To achieve this, human adipose stem/stromal cells with other without lentiviral ZIC1 overexpression were implanted in a femoral segmental defect model in NOD-SCIDγ mice. Results showed that ZIC1 overexpressed cells induced osteogenic differentiation by protein markers in a critical-sized femoral segment defect compared to empty lentiviral control, although bone union was not observed. The immunohistochemical evaluation showed that implantation of ZIC1 overexpression cells led to an increase in osteoblast antigen expression (RUNX2, OCN), activation of Hedgehog signaling (Patched1), and an increase in brown adipogenesis markers (ZIC1, EBF2). In contrast, no change in bone defect-associated vasculature was observed (CD31, Endomucin). Together, these data suggest that overexpression of the ZIC1 transcription factor in progenitor cells is associated with differentiation towards osteoblastic and brown adipogenic cell fates.
Collapse
Affiliation(s)
- Neelima Thottappillil
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Xin Xing
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Shreya Arondekar
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Manyu Zhu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Myles Zhou
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Mary Archer
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Kristen Broderick
- Department of Plastic Surgery, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Bruno Pèault
- UCLA and Orthopedic Hospital Department of Orthopedic Surgery and the Orthopedic Hospital Research Center, Los Angeles, CA 90095, United States
| | - Min Lee
- Division of Advanced Prosthodontics, Department of Bioengineering, UCLA School of Dentistry, Los Angeles, CA 90005, United States
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| |
Collapse
|
2
|
Pieles O, Morsczeck C. The Role of Protein Kinase C During the Differentiation of Stem and Precursor Cells into Tissue Cells. Biomedicines 2024; 12:2735. [PMID: 39767642 PMCID: PMC11726769 DOI: 10.3390/biomedicines12122735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/05/2025] Open
Abstract
Protein kinase C (PKC) plays an essential role during many biological processes including development from early embryonic stages until the terminal differentiation of specialized cells. This review summarizes the current knowledge about the involvement of PKC in molecular processes during the differentiation of stem/precursor cells into tissue cells with a particular focus on osteogenic, adipogenic, chondrogenic and neuronal differentiation by using a comprehensive approach. Interestingly, studies examining the overall role of PKC, or one of its three isoform groups (classical, novel and atypical PKCs), often showed controversial results. A discrete observation of distinct isoforms demonstrated that the impact on differentiation differs highly between the isoforms, and that during a certain process, the influence of only some isoforms is crucial, while others are less important. In particular, PKCβ inhibits, and PKCδ strongly supports osteogenesis, whereas it is the other way around for adipogenesis. PKCε is another isoform that overwhelmingly supports adipogenic differentiation. In addition, PKCα plays an important role in chondrogenesis, while neuronal differentiation has been positively associated with numerous isoforms including classical, novel and atypical PKCs. In a cellular context, various upstream mediators, like the canonical and non-canonical Wnt pathways, endogenously control PKC activity and thus, their activity interferes with the influence of PKC on differentiation. Downstream of PKC, several proteins and pathways build the molecular bridge between the enzyme and the control of differentiation, of which only a few have been well characterized so far. In this context, PKC also cooperates with other kinases like Akt or protein kinase A (PKA). Furthermore, PKC is capable of directly phosphorylating transcription factors with pivotal function for a certain developmental process. Ultimately, profound knowledge about the role of distinct PKC isoforms and the involved signaling pathways during differentiation constitutes a promising tool to improve the use of stem cells in regenerative therapies by precisely manipulating the activity of PKC or downstream effectors.
Collapse
Affiliation(s)
| | - Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany;
| |
Collapse
|
3
|
Fan T, Zhu J, Liu W, Qu R, Khan AU, Shi Y, Liu J, Zhou Z, Xu C, Dai J, Ouyang J. SUN1 inhibits osteogenesis and promotes adipogenesis of human adipose-derived stem cells by regulating α-tubulin and CD36 expression. J Cell Mol Med 2024; 28:e70143. [PMID: 39383106 PMCID: PMC11463318 DOI: 10.1111/jcmm.70143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/29/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024] Open
Abstract
Sad and UNC84 domain 1 (SUN1) is a kind of nuclear envelope protein with established involvement in cellular processes, including nuclear motility and meiosis. SUN1 plays an intriguing role in human adipose-derived stem cells (hASCs) differentiation; however, this role remains largely undefined. This study was undertaken to investigate the role of SUN1 in hASCs differentiation, as well as its underlying mechanisms. Employing siRNAs, we selectively downregulated SUN1 and CD36 expression. Microtubules were depolymerized using nocodazole, and PPARγ was activated using rosiglitazone. Western blotting was performed to quantify SUN1, PPARγ, α-tubulin, CD36, OPN, and adiponectin protein expression levels. Alkaline phosphatase and Oil red O staining were used to assess osteogenesis and adipogenesis, respectively. Downregulated SUN1 expression increased osteogenesis and decreased adipogenesis in hASCs, concomitant with upregulated α-tubulin expression and downregulated CD36 expression, alongside reduced nuclear localization of PPARγ. Microtubule depolymerization increased CD36 expression. Rescue experiments indicated that microtubule depolymerization counteracted the downregulated SUN1-induced phenotypic changes. This study demonstrates that SUN1 influences the differentiation of hASCs towards osteogenic and adipogenic lineages, indicating its essential role in cell fate.
Collapse
Affiliation(s)
- Tingyu Fan
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics & Guangdong Engineering Research Center for Translation of Medical 3D Printing Application & National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University) & National Key Discipline of Human Anatomy, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Jinhui Zhu
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics & Guangdong Engineering Research Center for Translation of Medical 3D Printing Application & National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University) & National Key Discipline of Human Anatomy, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Wenqing Liu
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics & Guangdong Engineering Research Center for Translation of Medical 3D Printing Application & National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University) & National Key Discipline of Human Anatomy, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics & Guangdong Engineering Research Center for Translation of Medical 3D Printing Application & National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University) & National Key Discipline of Human Anatomy, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Asmat Ullah Khan
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics & Guangdong Engineering Research Center for Translation of Medical 3D Printing Application & National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University) & National Key Discipline of Human Anatomy, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Yulian Shi
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics & Guangdong Engineering Research Center for Translation of Medical 3D Printing Application & National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University) & National Key Discipline of Human Anatomy, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Jiaxuan Liu
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics & Guangdong Engineering Research Center for Translation of Medical 3D Printing Application & National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University) & National Key Discipline of Human Anatomy, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Zhitao Zhou
- Central LaboratorySouthern Medical UniversityGuangzhouChina
| | - Chujiang Xu
- Department of Orthopedics, TCM‐Integrated HospitalSouthern Medical UniversityGuangzhouChina
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics & Guangdong Engineering Research Center for Translation of Medical 3D Printing Application & National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University) & National Key Discipline of Human Anatomy, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics & Guangdong Engineering Research Center for Translation of Medical 3D Printing Application & National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University) & National Key Discipline of Human Anatomy, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
4
|
Gu H, Pan Y, Xiao H, Zhao L, Tang Y, Ge W. Knockdown of LAP2α inhibits adipogenesis of human adipose-derived stem cells and ameliorates high-fat diet-induced obesity. FASEB J 2024; 38:e23664. [PMID: 38775797 DOI: 10.1096/fj.202302435rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024]
Abstract
Adipogenesis, a pivotal cellular process involving the differentiation of mesenchymal stem cells (MSCs) to mature adipocytes, plays a significant role in various physiological functions. Dysregulation of adipogenesis is implicated in conditions such as obesity. However, the complete molecular understanding of adipogenesis remains elusive. This study aimed to uncover the novel role of lamina-associated polypeptide 2 alpha (LAP2α) in human adipose-derived stem cells (hASCs) adipogenesis and its impact on high-fat diet (HFD)-induced obesity and associated metabolic disturbances. LAP2α expression was assessed during the adipogenic differentiation of hASCs using RT-qPCR and western blotting. The functional role of LAP2α in adipogenesis was explored both in vitro and in vivo through loss- and gain-of-function studies. Moreover, mice with HFD-induced obesity received lentivirus injection to assess the effect of LAP2α knockdown on fat accumulation. Molecular mechanisms underlying LAP2α in adipogenic differentiation were investigated using RT-qPCR, Western blotting, immunofluorescence staining, and Oil Red O staining. LAP2α expression was upregulated during hASCs adipogenic differentiation. LAP2α knockdown hindered adipogenesis, while LAP2α overexpression promoted adipogenic differentiation. Notably, LAP2α deficiency resisted HFD-induced obesity, improved glucose intolerance, mitigated insulin resistance, and prevented fatty liver development. Mechanistically, LAP2α knockdown attenuated signal transducer and activator of transcription 3 (STAT3) activation by reducing the protein level of phosphorylated STAT3. A STAT3 activator (Colivelin) counteracted the negative impact of LAP2α deficiency on hASCs adipogenic differentiation. Taken together, our current study established LAP2α as a crucial regulator of hASCs adipogenic differentiation, unveiling a new therapeutic target for obesity prevention.
Collapse
Affiliation(s)
- Hang Gu
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, P.R. China
| | - Yuan Pan
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, P.R. China
| | - Han Xiao
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, P.R. China
| | - Lijun Zhao
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, P.R. China
| | - Yiman Tang
- Fourth Clinical Division, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, P.R. China
| | - Wenshu Ge
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, P.R. China
| |
Collapse
|
5
|
Gui Y, Qian X, Ding Y, Chen Q, Fangyu Ye, Ye Y, Hou Y, Yu J, Zhao L. c-Fos regulated by TMPO/ERK axis promotes 5-FU resistance via inducing NANOG transcription in colon cancer. Cell Death Dis 2024; 15:61. [PMID: 38233377 PMCID: PMC10794174 DOI: 10.1038/s41419-024-06451-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Acquired drug resistance is one of the most common limitations for the clinical response of colon cancer to 5-Fluorouracil (5-FU)-based chemotherapy. The relevant molecular mechanisms might be diversity, but still not be elucidated clearly. In this study, we aimed to investigate the potential mechanisms of c-Fos, a subfamily of activator protein-1, in 5-FU chemoresistance. We determined that phosphorylated c-Fos promoted colon cancer cells resistance to 5-FU by facilitating the cancer stemness. Mechanically, 5-FU treatment induced autolysosome-dependent degradation of TMPO, which subsequently triggered ERK-mediated phosphorylation of c-Fos. Additionally, c-Fos was found to bind to the promoter of NANOG and phosphorylation of c-Fos at Ser 374 was required for its regulation of NANOG expression. NANOG ablation impaired c-Fos/p-c-Fos induced 5-FU resistance and stemness. Taken together, these findings revealed that TMPO-mediated phosphorylation of c-Fos conferred 5-FU resistance by regulating NANOG expression and promoting cell stemness in colon cancer cells. c-Fos could be as a therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Yanping Gui
- Public Experimental Platform, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaoping Qian
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China
| | - Youxiang Ding
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated to Medical College of Nanjing University, Nanjing, 210008, China
| | - Qianqian Chen
- Public Experimental Platform, China Pharmaceutical University, Nanjing, 211198, China
| | - Fangyu Ye
- Public Experimental Platform, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuting Ye
- Public Experimental Platform, China Pharmaceutical University, Nanjing, 211198, China
| | - Yingjian Hou
- Public Experimental Platform, China Pharmaceutical University, Nanjing, 211198, China
| | - Jun Yu
- Jiangsu Cancer Hospital, Nanjing, 210009, China
| | - Li Zhao
- Public Experimental Platform, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
6
|
Tang X, Wang Z, Wang J, Cui S, Xu R, Wang Y. Functions and regulatory mechanisms of resting hematopoietic stem cells: a promising targeted therapeutic strategy. Stem Cell Res Ther 2023; 14:73. [PMID: 37038215 PMCID: PMC10088186 DOI: 10.1186/s13287-023-03316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/29/2023] [Indexed: 04/12/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are the common and essential precursors of all blood cells, including immune cells, and they are responsible for the lifelong maintenance and damage repair of blood tissue homeostasis. The vast majority (> 95%) of HSCs are in a resting state under physiological conditions and are only activated to play a functional role under stress conditions. This resting state affects their long-term survival and is also closely related to the lifelong maintenance of hematopoietic function; however, abnormal changes may also be an important factor leading to the decline of immune function in the body and the occurrence of diseases in various systems. While the importance of resting HSCs has attracted increasing research attention, our current understanding of this topic remains insufficient, and the direction of clinical targeted treatments is unclear. Here, we describe the functions of HSCs, analyze the regulatory mechanisms that affect their resting state, and discuss the relationship between resting HSCs and different diseases, with a view to providing guidance for the future clinical implementation of related targeted treatments.
Collapse
Affiliation(s)
- Xinyu Tang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhenzhen Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingyi Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Siyuan Cui
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruirong Xu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China.
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China.
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yan Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, 250014, China.
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, China.
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
7
|
Kim K, Kim JH, Kim I, Seong S, Han JE, Lee KB, Koh JT, Kim N. Transcription Factor Lmx1b Negatively Regulates Osteoblast Differentiation and Bone Formation. Int J Mol Sci 2022; 23:5225. [PMID: 35563615 PMCID: PMC9103437 DOI: 10.3390/ijms23095225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 01/09/2023] Open
Abstract
The LIM-homeodomain transcription factor Lmx1b plays a key role in body pattern formation during development. Although Lmx1b is essential for the normal development of multiple tissues, its regulatory mechanism in bone cells remains unclear. Here, we demonstrated that Lmx1b negatively regulates bone morphogenic protein 2 (BMP2)-induced osteoblast differentiation. Overexpressed Lmx1b in the osteoblast precursor cells inhibited alkaline phosphatase (ALP) activity and nodule formation, as well as the expression of osteoblast maker genes, including runt-related transcription factor 2 (Runx2), alkaline phosphatase (Alpl), bone sialoprotein (Ibsp), and osteocalcin (Bglap). Conversely, the knockdown of Lmx1b in the osteoblast precursors enhanced the osteoblast differentiation and function. Lmx1b physically interacted with and repressed the transcriptional activity of Runx2 by reducing the recruitment of Runx2 to the promoter region of its target genes. In vivo analysis of BMP2-induced ectopic bone formation revealed that the knockdown of Lmx1b promoted osteogenic differentiation and bone regeneration. Our data demonstrate that Lmx1b negatively regulates osteoblast differentiation and function through regulation of Runx2 and provides a molecular basis for therapeutic targets for bone diseases.
Collapse
Affiliation(s)
- Kabsun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (K.K.); (J.H.K.); (I.K.); (S.S.)
| | - Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (K.K.); (J.H.K.); (I.K.); (S.S.)
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea;
| | - Inyoung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (K.K.); (J.H.K.); (I.K.); (S.S.)
| | - Semun Seong
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (K.K.); (J.H.K.); (I.K.); (S.S.)
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea;
| | - Jeong Eun Han
- Department of Orthopedic Surgery, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (J.E.H.); (K.-B.L.)
| | - Keun-Bae Lee
- Department of Orthopedic Surgery, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (J.E.H.); (K.-B.L.)
| | - Jeong-Tae Koh
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea;
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (K.K.); (J.H.K.); (I.K.); (S.S.)
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea;
| |
Collapse
|
8
|
Sidorenko E, Sokolova M, Pennanen AP, Kyheröinen S, Posern G, Foisner R, Vartiainen MK. Lamina-associated polypeptide 2α is required for intranuclear MRTF-A activity. Sci Rep 2022; 12:2306. [PMID: 35145145 PMCID: PMC8831594 DOI: 10.1038/s41598-022-06135-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
Myocardin-related transcription factor A (MRTF-A), a coactivator of serum response factor (SRF), regulates the expression of many cytoskeletal genes in response to cytoplasmic and nuclear actin dynamics. Here we describe a novel mechanism to regulate MRTF-A activity within the nucleus by showing that lamina-associated polypeptide 2α (Lap2α), the nucleoplasmic isoform of Lap2, is a direct binding partner of MRTF-A, and required for the efficient expression of MRTF-A/SRF target genes. Mechanistically, Lap2α is not required for MRTF-A nuclear localization, unlike most other MRTF-A regulators, but is required for efficient recruitment of MRTF-A to its target genes. This regulatory step takes place prior to MRTF-A chromatin binding, because Lap2α neither interacts with, nor specifically influences active histone marks on MRTF-A/SRF target genes. Phenotypically, Lap2α is required for serum-induced cell migration, and deregulated MRTF-A activity may also contribute to muscle and proliferation phenotypes associated with loss of Lap2α. Our studies therefore add another regulatory layer to the control of MRTF-A-SRF-mediated gene expression, and broaden the role of Lap2α in transcriptional regulation.
Collapse
Affiliation(s)
| | - Maria Sokolova
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Antti P Pennanen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Salla Kyheröinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Guido Posern
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Roland Foisner
- Max Perutz Labs, Center for Medical Biochemistry, Medical University of Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria
| | | |
Collapse
|
9
|
NOD2 is involved in regulating odontogenic differentiation of DPSCs suppressed by MDP through NF-κB/p65 signaling. Cytotechnology 2022; 74:259-270. [PMID: 35464161 PMCID: PMC8975988 DOI: 10.1007/s10616-022-00526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/28/2022] [Indexed: 11/03/2022] Open
Abstract
Dental pulp stem cells (DPSCs) are well known for their capable of both self-renewal and multilineage differentiation. Dental tissue diseases, include caries, are often accompanied by inflammatory microenvironment, and muramyl dipeptide (MDP) is involved in the inflammatory stimuli to influence the differentiation of DPSCs. Nucleotide-binding oligomerization domain 2 (NOD2), a member of the cytosolic Nod-like receptor (NLR) family, plays a key role in inflammatory homeostasis regulation, but the role of NOD2 in DPSCs differentiation under inflammatory is still unclear. In this study, we identified that MDP suppressed odontogenic differentiation of DPSCs via NOD2/ NF-κB/p65 signaling pathway. Alizarin red staining and ALP activity showed the odontogenic differentiation was suppressed by MDP in a concentration-dependent manner, and the expression of dentin differentiation marker protein dentin matrix protein 1 (DMP-1) and dentin Sialophosphoprotein (DSPP) also indicated the same results. The expression of NOD2 increased gradually with the concentration of MDP as well as the phosphorylation and nuclear translocation of p65, which meant NF-κB signaling pathway was activated. Further, the interference of NOD2 inhibited the phosphorylation and nuclear translocation of p65 and reversed the MDP-mediated decrease of odontoblast differentiation of DPSCs. Our study showed that MDP can inhibit the odontoblast differentiation of DPSCs in a concentration-dependent manner. The NF-κB signaling pathway was activated by increasing expression of NOD2. Interference of NOD2 reversed the negative ability odontoblast differentiation of DPSCs in the inflammatory environment. Our study might provide a theoretical basis for the clinical treatment for dentinogenesis of DPSCs.
Collapse
|
10
|
Pieles O, Reichert TE, Morsczeck C. Classical isoforms of protein kinase C (PKC) and Akt regulate the osteogenic differentiation of human dental follicle cells via both β-catenin and NF-κB. Stem Cell Res Ther 2021; 12:242. [PMID: 33853677 PMCID: PMC8048169 DOI: 10.1186/s13287-021-02313-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Human dental follicle cells (DFCs) are the precursor cells of the periodontium with a high potential for regenerative therapies of (alveolar) bone. However, the molecular mechanisms of osteogenic differentiation are inadequately understood. Classical isoforms of protein kinase C (PKC) are reported to inhibit osteogenesis of stem/precursor cells. This study evaluated the role of classical PKCs and potential downstream targets on the osteogenic differentiation of DFCs. METHODS DFCs were osteogenic differentiated with dexamethasone or bone morphogenetic protein 2 (BMP2). Expression of PKC and potential upstream/downstream regulators was manipulated using activators, inhibitors, and small interfering ribonucleic acid (siRNA). Expression of proteins was examined by Western blot analysis, while the activation levels of enzymes and transcription factors were examined by their phosphorylation states or by specific activation assays. Expression levels of osteogenic markers were examined by RT-qPCR (reverse transcription-quantitative polymerase chain reaction) analysis. Activity of alkaline phosphatase (ALP) and accumulation of calcium nodules by Alizarin Red staining were measured as indicators of mineralization. RESULTS Classical PKCs like PKCα inhibit the osteogenic differentiation of DFCs, but do not interfere with the induction of differentiation. Inhibition of classical PKCs by Gö6976 enhanced activity of Akt after osteogenic induction. Akt was also regulated during differentiation and especially disturbed BMP2-induced mineralization. The PKC/Akt axis was further shown to regulate the canonical Wnt signaling pathway and eventually nuclear expression of active β-catenin during dexamethasone-induced osteogenesis. Moreover, the nuclear factor "kappa-light-chain-enhancer" of activated B cells (NF-κB) pathway is regulated during osteogenic differentiation of DFCs and via the PKC/Akt axis and disturbs the mineralization. Upstream, parathyroid hormone-related protein (PTHrP) sustained the activity of PKC, while Wnt5a inhibited it. CONCLUSIONS Our results demonstrate that classical PKCs like PKCα and Akt regulate the osteogenic differentiation of DFCs partly via both β-catenin and NF-κB.
Collapse
Affiliation(s)
- Oliver Pieles
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Torsten E Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|