1
|
Akat A, Karaöz E. A systematic review of cell therapy modalities and outcomes in cerebral palsy. Mol Cell Biochem 2025; 480:891-922. [PMID: 39033213 DOI: 10.1007/s11010-024-05072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Cerebral palsy is widely recognized as a condition that results in significant physical and cognitive disabilities. Interventions aim to improve the quality of life and reduce disability. Despite numerous treatments and significant advancements, cerebral palsy remains incurable due to its diverse origins. This review evaluated clinical trials, studies, and case reports on various cell therapy approaches for cerebral palsy. It assessed the clinical outcomes of applying different cell types, including mesenchymal stem cells, olfactory ensheathing cells, neural stem/progenitor cells, macrophages, and mononuclear cells derived from peripheral blood, cord blood, and bone marrow. In 60 studies involving 1474 CP patients, six major adverse events (0.41%) and 485 mild adverse events (32.9%) were reported. Favorable therapeutic effects were observed in 54 out of 60 cell therapy trials, indicating a promising potential for cell treatments in cerebral palsy. Intrathecal MSC and BM-MNC applications revealed therapeutic benefits, with MSC studies being generally safer than other cell therapies. However, MSC and BM-MNC trials have shown inconsistent results, with some demonstrating superior efficacy for certain outcomes. Cell dosage, transplantation route, and frequency of administration can affect the efficacy of these therapies. Our findings highlight the promise of cell therapies for improving cerebral palsy treatment and stress the need for ongoing research to refine treatment protocols and enhance safety. To establish conclusive evidence on the comparative effectiveness of various cell types in treating cerebral palsy, randomized, double-blind clinical trials are essential.
Collapse
Affiliation(s)
- Ayberk Akat
- Yıldız Technical University, Davutpaşa Caddesi No.127, Esenler, 34210, Istanbul, Turkey.
| | - Erdal Karaöz
- Liv Hospital Ulus, Regenerative Medicine and Stem Cell Center, Istanbul, Turkey
| |
Collapse
|
2
|
Chen W, Ren Q, Zhou J, Liu W. Mesenchymal Stem Cell-Induced Neuroprotection in Pediatric Neurological Diseases: Recent Update of Underlying Mechanisms and Clinical Utility. Appl Biochem Biotechnol 2024; 196:5843-5858. [PMID: 38261236 DOI: 10.1007/s12010-023-04752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 01/24/2024]
Abstract
Pediatric neurological diseases refer to a group of disorders that affect the nervous system in children. These conditions can have a significant impact on a child's development, cognitive function, motor skills, and overall quality of life. Stem cell therapy is a new and innovative approach to treat various neurological conditions by repairing damaged neurons and replacing those that have been lost. Mesenchymal stem cells (MSCs) have gained significant recognition in this regard due to their ability to differentiate into different cell types. MSCs are multipotent self-replicating stem cells known to render promising results in the treatment of stroke and spinal cord injury in adults. When delivered to the foci of damage in the central nervous system, stem cells begin to differentiate into neural cells under the stimulation of paracrine factors and secrete various neurotrophic factors (NTFs) like nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) that expedite the repair process in injured neurons. In the present review, we will focus on the therapeutic benefits of the MSC-based therapies in salient pediatric neurological disorders including cerebral palsy, stroke, and autism.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurology, People's Liberation Army, Southern Theater, Naval First Hospital, Zhanjiang, 524002, China
| | - Qiaoling Ren
- Department of Neurology, People's Liberation Army, Southern Theater, Naval First Hospital, Zhanjiang, 524002, China
| | - Junchen Zhou
- Department of Acupuncture and Moxibustion, Rehabilitation Medical Center, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000, China
| | - Wenchun Liu
- Department of Neurology, People's Liberation Army, Southern Theater, Naval First Hospital, Zhanjiang, 524002, China.
| |
Collapse
|
3
|
Chrościńska-Kawczyk M, Zdolińska-Malinowska I, Boruczkowski D. The Impact of Umbilical Cord Mesenchymal Stem Cells on Motor Function in Children with Cerebral Palsy: Results of a Real-world, Compassionate use Study. Stem Cell Rev Rep 2024; 20:1636-1649. [PMID: 38877284 DOI: 10.1007/s12015-024-10742-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 06/16/2024]
Abstract
The aim of this study was to analyze the impact of human umbilical cord-derived MSCs (hUC-MSCs) on motor function in children with cerebral palsy (CP). The study enrolled 152 children with CP who received up to two courses of five hUC-MSCs injections. Children's motor functions were assessed with the Gross Motor Function Measure (GMFM), 6-Minute Walk Test (6-MWT), Timed Up and Go test (Up&Go test), and Lovett's test, and mental abilities were assessed with the Clinical Global Impression (CGI) scale. Data collected at visit 1 (baseline) and visit 5 (after four injections) were analyzed retrospectively. After four hUC-MSCs administrations, all evaluated parameters improved. The change in GMFM score, by a median of 1.9 points (IQR: 0.0-8.0), correlated with age. This change was observed in all GFMCS groups and was noticed in all assessed GMFM areas. A median increase of 75 m (IQR: 20.0-115.0) was noted on the 6-MWT, and this correlated with GMFM score change. Time on the Up&Go test was reduced by a median of 2 s (IQR: -3 to - 1) and the change correlated with age, GMFM score at baseline, and the difference observed on the 6-MWT. Results of Lovett's test indicated slight changes in muscle strength. According to the CGI, 75.5% (96/151) of children were seriously (level VI) or significantly ill (level V) at the 1st visit, with any improvement observed in 63.6% (96/151) of patients at the 5th visit, 23.8% (36/151) with improvement (level II) or great improvement (level I). In conclusion, the application of hUC-MSCs generally enhanced functional performance, but individual responses varied. The therapy also benefited children with high level of disability but not to the same extent as the initially less disabled children. Although younger patients responded better to the treatment, older children can also benefit. Trial Registration 152/2018/KB/VII and 119/2021/KB/VIII. Retrospective registration in ClinicalTrials: ongoing.
Collapse
|
4
|
Xiao QX, Geng MJ, Sun YF, Pi Y, Xiong LL. Stem Cell Therapy in Neonatal Hypoxic-Ischemic Encephalopathy and Cerebral Palsy: a Bibliometric Analysis and New Strategy. Mol Neurobiol 2024; 61:4538-4564. [PMID: 38102517 DOI: 10.1007/s12035-023-03848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
The aim of this study was to identify related scientific outputs and emerging topics of stem cells in neonatal hypoxic-ischemic encephalopathy (NHIE) and cerebral palsy (CP) through bibliometrics and literature review. All relevant publications on stem cell therapy for NHIE and CP were screened from websites and analyzed research trends. VOSviewer and CiteSpace were applied to visualize and quantitatively analyze the published literature to provide objective presentation and prediction. In addition, the clinical trials, published articles, and projects of the National Natural Science Foundation of China associated with stem cell therapy for NHIE and CP were summarized. A total of 294 publications were associated with stem cell therapy for NHIE and CP. Most publications and citations came from the USA and China. Monash University and University Medical Center Utrecht produced the most publications. Pediatric research published the most studies on stem cell therapy for NHIE and CP. Heijnen C and Kavelaars A published the most articles. Cluster analyses show that current research trend is more inclined toward the repair mechanism and clinical translation of stem cell therapy for NHIE and CP. By summarizing various studies of stem cells in NHIE and CP, it is indicated that this research direction is a hot topic at present. Furthermore, organoid transplantation, as an emerging and new therapeutic approach, brings new hope for the treatment of NHIE and CP. This study comprehensively summarized and analyzed the research trend of global stem cell therapy for NHIE and CP. It has shown a marked increase in stem cell therapy for NHIE and CP research. In the future, more efforts will be made on exploring stem cell or organoid therapy for NHIE and CP and more valuable related mechanisms of action to achieve clinical translation as soon as possible.
Collapse
Affiliation(s)
- Qiu-Xia Xiao
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Min-Jian Geng
- Department of Anesthesiology, Nanchong Central Hospital, Nanchong, 637000, Sichuan, China
| | - Yi-Fei Sun
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Pi
- Department of Anesthesiology, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Liu-Lin Xiong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
5
|
Mesa Bedoya LE, Camacho Barbosa JC, López Quiceno L, Barrios Arroyave F, Halpert K, España Peña JA, Salazar Uribe JC. The safety profile of mesenchymal stem cell therapy administered through intrathecal injections for treating neurological disorders: a systematic review and meta-analysis of randomised controlled trials. Stem Cell Res Ther 2024; 15:146. [PMID: 38764070 PMCID: PMC11103979 DOI: 10.1186/s13287-024-03748-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Based on previous in vivo studies and human trials, intrathecal cell delivery is a safe and relevant therapeutic tool for improving patient's quality of life with neurological conditions. We aimed to characterise the safety profile of intrathecally delivered Mesenchymal stem cells (MSCs). METHODS Ovid MEDLINE, Embase, Scopus, Cochrane Library, KCI-Korean Journal Database, and Web of Science. Databases were searched from their inception until April 13, 2023. Randomised Controlled Trials (RCTs) that compared intrathecal delivery of MSCs to controls in adult populations were included. Adverse events (AEs) were pooled and meta-analysed using DerSimonian-Laird random effects models with a correction factor 0.5 added to studies with zero count cells. Pooled AEs were described using Risk ratio (RR) and 95% confidence intervals (95% CI). Then, a random-effects meta-regress model on study-level summary data was performed to explore the relationship between the occurrence of AEs and covariates thought to modify the overall effect estimate. Finally, publication bias was assessed. RESULTS 303 records were reviewed, and nine RCTs met the inclusion criteria and were included in the quantitative synthesis (n = 540 patients). MSCs delivered intrathecally, as compared to controls, were associated with an increased probability of AEs of musculoskeletal and connective tissue disorders (categorised by Common Terminology Criteria for Adverse Events-CTCAE version 5.0) (RR: 1.61, 95% CI 1.19-2.19, I2 = 0%). The random-effects meta-regress model suggested that fresh MSCs increased the probability of occurrence of AEs compared to cryopreserved MSCs (RR: 1.554; p-value = 0.048; 95% CI 1.004-2.404), and the multiple-dose, decreased the probability of AEs by 36% compared to single doses (RR: 0.644; p-value = 0.048; 95% CI 0.416-0.996); however, univariate random effects meta-regression models revealed a not significant association between the occurrence of AEs from MSCs intrathecal delivery and each covariate. CONCLUSIONS Intrathecal delivery of MSCs was associated with a slight increase in AEs associated with musculoskeletal and connective tissue disorders, albeit without serious AEs. We conclude that intrathecal MSCs delivery is safe for patients with neurological conditions. However, further high-quality, large-scale RCTs are needed to confirm these findings.
Collapse
Affiliation(s)
- Luz Estella Mesa Bedoya
- BioXcellerator/ BioXscience Advanced Therapies and Translational Medicine, Medellín, Antioquia, Colombia
| | | | - Lucas López Quiceno
- BioXcellerator/ BioXscience Advanced Therapies and Translational Medicine, Medellín, Antioquia, Colombia
| | - Freddy Barrios Arroyave
- BioXcellerator/ BioXscience Advanced Therapies and Translational Medicine, Medellín, Antioquia, Colombia
| | - Karolynn Halpert
- BioXcellerator/ BioXscience Advanced Therapies and Translational Medicine, Medellín, Antioquia, Colombia
| | - Julián Andrés España Peña
- BioXcellerator/ BioXscience Advanced Therapies and Translational Medicine, Medellín, Antioquia, Colombia
| | | |
Collapse
|
6
|
Chen D, Huang H, Saberi H, Sharma HS. Positive and negative cell therapy in randomized control trials for central nervous system diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 171:241-254. [PMID: 37783557 DOI: 10.1016/bs.irn.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Neurorestorative cell therapies have been tested to treat patients with nervous system diseases for over 20 years. Now it is still hard to answer which kinds of cells can really play a role on improving these patients' quality of life. Non-randomized clinical trials or studies could not provide strong evidences in answering this critical question. In this review, we summarized randomized clinical trials of cell therapies for central nervous diseases, such as stroke, spinal cord injury, cerebral palsy (CP), Parkinson's disease (PD), multiple sclerosis (MS), brain trauma, amyotrophic lateral sclerosis (ALS), etc. Most kinds of cell therapies demonstrated negative results for stoke, brain trauma and amyotrophic lateral sclerosis. A few kinds of cell therapies showed neurorestorative effects in this level of evidence-based medicine, such as olfactory ensheating cells for chronic ischemic stroke. Some kinds of cells showed positive or negative effects from different teams in the same or different diseases. We analyzed the possible failed reasons of negative results and the cellular bio-propriety basis of positive results. Based on therapeutic results of randomized control trials and reasonable analysis, we recommend: (1) to further conduct trials for successful cell therapies with positive results to increase neurorestorative effects; (2) to avoid in repeating failed cell therapies with negative results in same diseases because it is nonsense for them to be done with similar treatment methods, such as cell dosage, transplanting way, time of window, etc. Furthermore, we strongly suggest not to do non-randomized clinical trials for cells that had shown negative results in randomized clinical trials.
Collapse
Affiliation(s)
- Di Chen
- Beijing Hongtianji Neuroscience Academy, Beijing, P.R. China
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, P.R. China.
| | - Hooshang Saberi
- Department of Neurosurgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
El Sayed R, Shankar KM, Mankame AR, Cox CS. Innovations in cell therapy in pediatric diseases: a narrative review. Transl Pediatr 2023; 12:1239-1257. [PMID: 37427072 PMCID: PMC10326759 DOI: 10.21037/tp-23-92] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
Background and Objective Stem cell therapy is a regenerative medicine modality that has the potential to decrease morbidity and mortality by promoting tissue regeneration or modulating the inflammatory response. An increase in the number of clinical trials investigating the efficacy and safety of stem cell therapy in pediatric diseases has led to advancements in this field. Currently, multiple sources and types of stem cells have been utilized in the treatment of pediatric diseases. This review aims to inform researchers and clinicians about preclinical and clinical stem cell therapy trials in pediatric patients. We discuss the different types of stem cells and the wide spectrum of stem cell therapy trials for pediatric diseases, with an emphasis on the outcomes and advancements in the field. Methods PubMed and clinicaltrials.gov databases were searched on October 28, 2022 using the following Medical Subject Headings (MeSH) terms "stem cell" or "stem cell therapy" with an age filter <18 years. Our search was limited to publications published between 2000 and 2022. Key Content and Findings Diverse sources of stem cells have different properties and mechanisms of action, which allow tailored application of stem cells according to the pathophysiology of the disease. Advancements in stem cell therapies for pediatric diseases have led to improvements in clinical outcomes in some pediatric diseases or in quality of life, such therapies represent a potential alternative to the current treatment modalities. Conclusions Stem cell therapy in pediatric diseases has shown promising results and outcomes. However, further studies focusing on the implementation and optimal treatment timeframe are needed. An increase in preclinical and clinical trials of stem cell therapy targeting pediatric patients is required to advance our therapeutic applications.
Collapse
Affiliation(s)
- Razan El Sayed
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Center for Translational Injury Research, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Karan Michael Shankar
- Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Atharwa Rajan Mankame
- Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Charles S. Cox
- Department of Pediatric Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Center for Translational Injury Research, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| |
Collapse
|
8
|
Huang H, Ramon-Cueto A, El Masri W, Moviglia GA, Saberi H, Sharma HS, Otom A, Chen L, Siniscalco D, Sarnowska A. Advances in Neurorestoratology-Current status and future developments. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 171:207-239. [PMID: 37783556 DOI: 10.1016/bs.irn.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Neurorestoratology constitutes a novel discipline aimed at the restoration of damaged neural structures and impaired neurological functions. This area of knowledge integrates and compiles all concepts and strategies dealing with the neurorestoration. Although currently, this discipline has already been well recognized by physicians and scientists throughout the world, this article aimed at broadening its knowledge to the academic circle and the public society. Here we shortly introduced why and how Neurorestoratology was born since the fact that the central nervous system (CNS) can be repaired and the subsequent scientific evidence of the neurorestorative mechanisms behind, such as neurostimulation or neuromodulation, neuroprotection, neuroplasticity, neurogenesis, neuroregeneration or axonal regeneration or sprouting, neuroreplacement, loop reconstruction, remyelination, immunoregulation, angiogenesis or revascularization, and others. The scope of this discipline is the improvement of therapeutic approaches for neurological diseases and the development of neurorestorative strategies through the comprehensive efforts of experts in the different areas and all articulated by the associations of Neurorestoratology and its journals. Strikingly, this article additionally explores the "state of art" of the Neurorestoratology field. This includes the development process of the discipline, the achievements and advances of novel neurorestorative treatments, the most efficient procedures exploring and evaluating outcome after the application of pioneer therapies, all the joining of a multidisciplinary expert associations and the specialized journals being more and more impact. We believe that in a near future, this discipline will evolve fast, leading to a general application of cell-based comprehensive neurorestorative treatments to fulfill functional recovery demands for patients with neurological deficits or dysfunctions.
Collapse
Affiliation(s)
- Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, P.R. China.
| | - Almudena Ramon-Cueto
- Health Center Colmenar Norte, Plaza de Los Ríos 1, Colmenar Viejo, Madrid, Spain
| | - Wagih El Masri
- Robert Jones & Agnes Hunt Orthopaedic Hospital, Spinal Injuries Keele University, Oswestry, United Kingdom
| | - Gustavo A Moviglia
- Wake Forest Institute for Regenerative Medicine. Winston Salem, NC, United States
| | - Hooshang Saberi
- Department of Neurosurgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Ali Otom
- Royal Specialty Center for Spine & M-Skeletal Disorders, Amman, Jordan
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital of Beijing University of Traditional Chinese Medicine, Beijing, P.R. China
| | - Dario Siniscalco
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anna Sarnowska
- Mossakowski Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
9
|
Huang H, Sanberg PR, Moviglia GA, Sharma A, Chen L, Chen D. Clinical results of neurorestorative cell therapies and therapeutic indications according to cellular bio-proprieties. Regen Ther 2023; 23:52-59. [PMID: 37122360 PMCID: PMC10130496 DOI: 10.1016/j.reth.2023.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Cell therapies have been explored to treat patients with nervous diseases for over 20 years. Even though most kinds of cell therapies demonstrated neurorestorative effects in non-randomized clinical trials; the effects of the majority type cells could not be confirmed by randomized controlled trials. In this review, clinical therapeutic results of neurorestorative cell therapies according to cellular bio-proprieties or cellular functions were introduced. Currently it was demonstrated from analysis of this review that some indications of cell therapies were not appropriate, they might be reasons why their neurorestorative effects could not be proved by multicenter, randomized, double blind, placebo-controlled clinical trials. Theoretically if one kind of cell therapy has neurorestorative effects according to its cellular bio-proprieties, it should have appropriate indications. The cell therapies with special bio-properties is promising if the indication selections are appropriate, such as olfactory ensheathing cells for chronic ischemic stroke, and their neurorestorative effects can be confirmed by higher level clinical trials of evidence-based medicine.
Collapse
Affiliation(s)
- Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing 100143, China
- Corresponding author.
| | - Paul R. Sanberg
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa 33612, Florida, USA
| | | | - Alok Sharma
- Department of Neurosurgery, LTM Medical College, LTMG Hospital, Mumbai, India
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100700, China
| | - Di Chen
- Beijing Hongtianji Neuroscience Academy, Beijing 100143, China
| |
Collapse
|
10
|
Valsecchi C, Croce S, Lenta E, Acquafredda G, Comoli P, Avanzini MA. TITLE: New therapeutic approaches in pediatric diseases: Mesenchymal stromal cell and mesenchymal stromal cell-derived extracellular vesicles as new drugs. Pharmacol Res 2023; 192:106796. [PMID: 37207738 DOI: 10.1016/j.phrs.2023.106796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Mesenchymal Stromal Cell (MSC) clinical applications have been widely reported and their therapeutic potential has been documented in several diseases. MSCs can be isolated from several human tissues and easily expanded in vitro, they are able to differentiate in a variety of cell lineages, and they are known to interact with most immunological cells, showing immunosuppressive and tissue repair properties. Their therapeutic efficacy is closely associated with the release of bioactive molecules, namely Extracellular Vesicles (EVs), effective as their parental cells. EVs isolated from MSCs act by fusing with target cell membrane and releasing their content, showing a great potential for the treatment of injured tissues and organs, and for the modulation of the host immune system. EV-based therapies provide, as major advantages, the possibility to cross the epithelium and blood barrier and their activity is not influenced by the surrounding environment. In the present review, we deal with pre-clinical reports and clinical trials to provide data in support of MSC and EV clinical efficacy with particular focus on neonatal and pediatric diseases. Considering pre-clinical and clinical data so far available, it is likely that cell-based and cell-free therapies could become an important therapeutic approach for the treatment of several pediatric diseases.
Collapse
Affiliation(s)
- Chiara Valsecchi
- Pediatric Hematology Oncology Unit and Cell Factory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy.
| | - Stefania Croce
- Cell Factory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy.
| | - Elisa Lenta
- Cell Factory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy.
| | - Gloria Acquafredda
- Pediatric Hematology Oncology Unit and Cell Factory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy.
| | - Patrizia Comoli
- Pediatric Hematology Oncology Unit and Cell Factory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy.
| | - Maria Antonietta Avanzini
- Pediatric Hematology Oncology Unit and Cell Factory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy.
| |
Collapse
|
11
|
Lv Z, Li Y, Wang Y, Cong F, Li X, Cui W, Han C, Wei Y, Hong X, Liu Y, Ma L, Jiao Y, Zhang C, Li H, Jin M, Wang L, Ni S, Liu J. Safety and efficacy outcomes after intranasal administration of neural stem cells in cerebral palsy: a randomized phase 1/2 controlled trial. Stem Cell Res Ther 2023; 14:23. [PMID: 36759901 PMCID: PMC9910250 DOI: 10.1186/s13287-022-03234-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/05/2022] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Neural stem cells (NSCs) are believed to have the most therapeutic potential for neurological disorders because they can differentiate into various neurons and glial cells. This research evaluated the safety and efficacy of intranasal administration of NSCs in children with cerebral palsy (CP). The functional brain network (FBN) analysis based on electroencephalogram (EEG) and voxel-based morphometry (VBM) analysis based on T1-weighted images were performed to evaluate functional and structural changes in the brain. METHODS A total of 25 CP patients aged 3-12 years were randomly assigned to the treatment group (n = 15), which received an intranasal infusion of NSCs loaded with nasal patches and rehabilitation therapy, or the control group (n = 10) received rehabilitation therapy only. The primary endpoints were the safety (assessed by the incidence of adverse events (AEs), laboratory and imaging examinations) and the changes in the Gross Motor Function Measure-88 (GMFM-88), the Activities of Daily Living (ADL) scale, the Sleep Disturbance Scale for Children (SDSC), and some adapted scales. The secondary endpoints were the FBN and VBM analysis. RESULTS There were only four AEs happened during the 24-month follow-up period. There was no significant difference in the laboratory examinations before and after treatment, and the magnetic resonance imaging showed no abnormal nasal and intracranial masses. Compared to the control group, patients in the treatment group showed apparent improvements in GMFM-88 and ADL 24 months after treatment. Compared with the baseline, the scale scores of the Fine Motor Function, Sociability, Life Adaptability, Expressive Ability, GMFM-88, and ADL increased significantly in the treatment group 24 months after treatment, while the SDSC score decreased considerably. Compared with baseline, the FBN analysis showed a substantial decrease in brain network energy, and the VBM analysis showed a significant increase in gray matter volume in the treatment group after NSCs treatment. CONCLUSIONS Our results showed that intranasal administration of NSCs was well-tolerated and potentially beneficial in children with CP. TRIAL REGISTRATION The study was registered in ClinicalTrials.gov (NCT03005249, registered 29 December 2016, https://www. CLINICALTRIALS gov/ct2/show/NCT03005249 ) and the Medical Research Registration Information System (CMR-20161129-1003).
Collapse
Affiliation(s)
- Zhongyue Lv
- grid.452435.10000 0004 1798 9070Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011 Liaoning China ,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning China
| | - Ying Li
- grid.452435.10000 0004 1798 9070Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011 Liaoning China ,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning China
| | - Yachen Wang
- grid.452435.10000 0004 1798 9070Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011 Liaoning China ,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning China
| | - Fengyu Cong
- grid.30055.330000 0000 9247 7930School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning Province, China ,grid.9681.60000 0001 1013 7965Faculty of Information Technology, University of Jyvaskyla, 40014 Jyvaskyla, Finland
| | - Xiaoyan Li
- grid.452435.10000 0004 1798 9070Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011 Liaoning China ,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning China
| | - Wanming Cui
- grid.452435.10000 0004 1798 9070Department of Ent, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning China
| | - Chao Han
- grid.452435.10000 0004 1798 9070Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011 Liaoning China ,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning China
| | - Yushan Wei
- grid.452435.10000 0004 1798 9070Scientific Research Department, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning China
| | - Xiaojun Hong
- grid.452435.10000 0004 1798 9070Neurophysiological Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning China
| | - Yong Liu
- grid.452435.10000 0004 1798 9070Department of Rehabilitation, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning China
| | - Luyi Ma
- grid.452435.10000 0004 1798 9070Department of Pediatrics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning China
| | - Yang Jiao
- grid.452435.10000 0004 1798 9070Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011 Liaoning China ,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning China ,grid.452435.10000 0004 1798 9070Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning China
| | - Chi Zhang
- grid.30055.330000 0000 9247 7930School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Huanjie Li
- grid.30055.330000 0000 9247 7930School of Biomedical Engineering, Dalian University of Technology, Dalian, Liaoning China
| | - Mingyan Jin
- grid.30055.330000 0000 9247 7930School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Liang Wang
- grid.452435.10000 0004 1798 9070Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011 Liaoning China ,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning China
| | - Shiwei Ni
- grid.452435.10000 0004 1798 9070Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011 Liaoning China ,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning China
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian, 116011, Liaoning, China. .,Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning, China.
| |
Collapse
|
12
|
Luo Y, Qu J, He Z, Zhang M, Zou Z, Li L, Zhang Y, Ye J. Human Umbilical Cord Mesenchymal Stem Cells Improve the Status of Hypoxic/Ischemic Cerebral Palsy Rats by Downregulating NogoA/NgR/Rho Pathway. Cell Transplant 2023; 32:9636897231210069. [PMID: 37982384 PMCID: PMC10664427 DOI: 10.1177/09636897231210069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 11/21/2023] Open
Abstract
Human umbilical cord mesenchymal stem cells (hUCMSC) have shown promising potential in ameliorating brain injury, but the mechanism is unclear. We explore the role of NogoA/NgR/Rho pathway in mediating hUCMSC to improve neurobehavioral status and alleviate brain injury in hypoxia/ischemia-induced CP (cerebral palsy) rat model in order to promote the clinical application of stem cell therapy in CP. The injury model of HT22 cells was established after 3 h hypoxia, and then co-cultured with hUCMSC. The rat model of CP was established by ligation of the left common carotid artery for 2.5 h. Subsequently, hUCMSC was administered via the tail vein once a week for a total of four times. The neurobehavioral status of CP rats was determined by behavioral experiment, and the pathological brain injury was determined by pathological staining method. The mRNA and protein expressions of NogoA, NgR, RhoA, Rac1, and CDC42 in brain tissues of rats in all groups and cell groups were detected by real-time quantitative polymerase chain reaction (RT-qPCR), Western blot, and immunofluorescence. The CP rats exhibited obvious motor function abnormalities and pathological damage. Compared with the control group, hUCMSC transplantation could significantly improve the neurobehavioral situation and attenuate brain pathological injury in CP rats. The relative expression of NogoA, NgR, RhoA mRNA, and protein in brain tissues of rats in the CP group was significantly higher than the rats in the sham and CP+hUCMSC group. The relative expression of Rac1, CDC42 mRNA, and protein in brain tissues of rats in the CP group was significantly lower than the rats in the sham and CP+hUCMSC group. The animal experiment results were consistent with the experimental trend of hypoxic injury of HT22 cells. This study confirmed that hUCMSC can efficiently improve neurobehavioral status and alleviate brain injury in hypoxia/ischemia-induced CP rat model and HT22 cell model through downregulating the NogoA/NgR/Rho pathway.
Collapse
Affiliation(s)
- Yaoling Luo
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiayang Qu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- School of Rehabilitation Medicine Gannan Medical University, Ganzhou, China
| | - Zhengyi He
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Minhong Zhang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhengwei Zou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Lincai Li
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | | | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, China
| |
Collapse
|
13
|
Qu J, Zhou L, Zhang H, Han D, Luo Y, Chen J, Li L, Zou Z, He Z, Zhang M, Ye J. Efficacy and safety of stem cell therapy in cerebral palsy: A systematic review and meta-analysis. Front Bioeng Biotechnol 2022; 10:1006845. [PMID: 36588957 PMCID: PMC9794999 DOI: 10.3389/fbioe.2022.1006845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Aim: Although the efficacy and safety of stem cell therapy for cerebral palsy has been demonstrated in previous studies, the number of studies is limited and the treatment protocols of these studies lack consistency. Therefore, we included all relevant studies to date to explore factors that might influence the effectiveness of treatment based on the determination of safety and efficacy. Methods: The data source includes PubMed/Medline, Web of Science, EMBASE, Cochrane Library, from inception to 2 January 2022. Literature was screened according to the PICOS principle, followed by literature quality evaluation to assess the risk of bias. Finally, the outcome indicators of each study were extracted for combined analysis. Results: 9 studies were included in the current analysis. The results of the pooled analysis showed that the improvements in both primary and secondary indicators except for Bayley Scales of Infant and Toddler Development were more skewed towards stem cell therapy than the control group. In the subgroup analysis, the results showed that stem cell therapy significantly increased Gross Motor Function Measure (GMFM) scores of 3, 6, and 12 months. Besides, improvements in GMFM scores were more skewed toward umbilical cord mesenchymal stem cells, low dose, and intrathecal injection. Importantly, there was no significant difference in the adverse events (RR = 1.13; 95% CI = [0.90, 1.42]) between the stem cell group and the control group. Conclusion: The results suggested that stem cell therapy for cerebral palsy was safe and effective. Although the subgroup analysis results presented guiding significance in the selection of clinical protocols for stem cell therapy, high-quality RCTs validations are still needed.
Collapse
Affiliation(s)
- Jiayang Qu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China,School of Rehabilitation Medicine Gannan Medical University, GanZhou City, Jiangxi, China,The First Clinical College of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Lin Zhou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hao Zhang
- The First Clinical College of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Dongmiao Han
- School of Rehabilitation Medicine Gannan Medical University, GanZhou City, Jiangxi, China
| | - Yaolin Luo
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China,Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junming Chen
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China,School of Rehabilitation Medicine Gannan Medical University, GanZhou City, Jiangxi, China
| | - Lincai Li
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhengwei Zou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhengyi He
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China,Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Minhong Zhang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China,Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China,Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, China,Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China,*Correspondence: Junsong Ye,
| |
Collapse
|
14
|
Finch-Edmondson M, Paton MCB, Honan I, Karlsson P, Stephenson C, Chiu D, Reedman S, Griffin AR, Morgan C, Novak I. Are We Getting It Right? A Scoping Review of Outcomes Reported in Cell Therapy Clinical Studies for Cerebral Palsy. J Clin Med 2022; 11:7319. [PMID: 36555936 PMCID: PMC9786692 DOI: 10.3390/jcm11247319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Cell therapies are an emergent treatment for cerebral palsy (CP) with promising evidence demonstrating efficacy for improving gross motor function. However, families value improvements in a range of domains following intervention and the non-motor symptoms, comorbidities and complications of CP can potentially be targeted by cell therapies. We conducted a scoping review to describe all outcomes that have been reported in cell therapy studies for CP to date, and to examine what instruments were used to capture these. Through a systematic search we identified 54 studies comprising 2066 participants that were treated with a range of cell therapy interventions. We categorized the reported 53 unique outcome instruments and additional descriptive measures into 10 categories and 12 sub-categories. Movement and Posture was the most frequently reported outcome category, followed by Safety, however Quality of Life, and various prevalent comorbidities and complications of CP were infrequently reported. Notably, many outcome instruments used do not have evaluative properties and thus are not suitable for measuring change following intervention. We provide a number of recommendations to ensure that future trials generate high-quality outcome data that is aligned with the priorities of the CP community.
Collapse
Affiliation(s)
- Megan Finch-Edmondson
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Madison C. B. Paton
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Ingrid Honan
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Petra Karlsson
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Candice Stephenson
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Darryl Chiu
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Sarah Reedman
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Alexandra R. Griffin
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Catherine Morgan
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Iona Novak
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
15
|
The 2021 yearbook of Neurorestoratology. JOURNAL OF NEURORESTORATOLOGY 2022. [DOI: 10.1016/j.jnrt.2022.100008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
16
|
Huang H, Al Zoubi ZM, Moviglia G, Sharma HS, Sarnowska A, Sanberg PR, Chen L, Xue Q, Siniscalco D, Feng S, Saberi H, Guo X, Xue M, Dimitrijevic MR, Andrews RJ, Mao G, Zhao RC, Han F. Clinical cell therapy guidelines for neurorestoration (IANR/CANR 2022). JOURNAL OF NEURORESTORATOLOGY 2022. [DOI: 10.1016/j.jnrt.2022.100015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
17
|
Wilson H, de Natale ER, Politis M. Concise Review: Recent advances in neuroimaging techniques to assist clinical trials on cell-based therapies in neurodegenerative diseases. Stem Cells 2022; 40:724-735. [PMID: 35671344 DOI: 10.1093/stmcls/sxac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/17/2022] [Indexed: 11/14/2022]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), are progressive disorders for which a curative therapy is still lacking. Cell-based therapy aims at replacing dysfunctional cellular populations by repairing damaged tissue and by enriching the microenvironment of selective brain areas, and thus constitutes a promising disease-modifying treatment of neurodegenerative diseases. Scientific research has engineered a wide range of human-derived cellular populations to help overcome some of the logistical, safety, and ethical issues associated with this approach. Open-label studies and clinical trials in human participants have employed neuroimaging techniques, such as positron emission tomography (PET) and magnetic resonance imaging (MRI), to assess the success of the transplantation, to evaluate the functional integration of the implanted tissue into the host environment and to understand the pathophysiological changes associated with the therapy. Neuroimaging has constituted an outcome measure of large, randomized clinical trials, and has given answers to clarify the pathophysiology underlying some of the complications linked with this therapy. Novel PET radiotracers and MRI sequences for the staging of neurodegenerative diseases and to study alterations at molecular level significantly expands the translational potential of neuroimaging to assist pre-clinical and clinical research on cell-based therapy in these disorders. This concise review summarizes the current use of neuroimaging in human studies of cell-based replacement therapy and focuses on future application of PET and MRI techniques to evaluate the pathophysiology and treatment efficacy, as well as to aid patient selection and as an outcome measure to improve treatment success.
Collapse
Affiliation(s)
- Heather Wilson
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, UK
| | | | - Marios Politis
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, UK
| |
Collapse
|
18
|
Casteleiro Costa P, Wang B, Filan C, Bowles-Welch A, Yeago C, Roy K, Robles FE. Functional imaging with dynamic quantitative oblique back-illumination microscopy. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:066502. [PMID: 35773755 PMCID: PMC9243522 DOI: 10.1117/1.jbo.27.6.066502] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE Quantitative oblique back-illumination microscopy (qOBM) is a recently developed label-free imaging technique that enables 3D quantitative phase imaging of thick scattering samples with epi-illumination. Here, we propose dynamic qOBM to achieve functional imaging based on subcellular dynamics, potentially indicative of metabolic activity. We show the potential utility of this novel technique by imaging adherent mesenchymal stromal cells (MSCs) grown in bioreactors, which can help address important unmet needs in cell manufacturing for therapeutics. AIM We aim to develop dynamic qOBM and demonstrate its potential for functional imaging based on cellular and subcellular dynamics. APPROACH To obtain functional images with dynamic qOBM, a sample is imaged over a period of time and its temporal signals are analyzed. The dynamic signals display an exponential frequency response that can be analyzed with phasor analysis. Functional images of the dynamic signatures are obtained by mapping the frequency dynamic response to phasor space and color-coding clustered signals. RESULTS Functional imaging with dynamic qOBM provides unique information related to subcellular activity. The functional qOBM images of MSCs not only improve conspicuity of cells in complex environments (e.g., porous micro-carriers) but also reveal two distinct cell populations with different dynamic behavior. CONCLUSIONS In this work we present a label-free, fast, and scalable functional imaging approach to study and intuitively display cellular and subcellular dynamics. We further show the potential utility of this novel technique to help monitor adherent MSCs grown in bioreactors, which can help achieve quality-by-design of cell products, a significant unmet need in the field of cell therapeutics. This approach also has great potential for dynamic studies of other thick samples, such as organoids.
Collapse
Affiliation(s)
- Paloma Casteleiro Costa
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, Georgia, United States
| | - Bryan Wang
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Georgia Institute of Technology, Marcus Center for Therapeutic Cell Characterization and Manufacturing, Atlanta, Georgia, United States
| | - Caroline Filan
- Georgia Institute of Technology, Nuclear & Radiological Engineering and Medical Physics Program, Atlanta, Georgia, United States
| | - Annie Bowles-Welch
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Georgia Institute of Technology, Marcus Center for Therapeutic Cell Characterization and Manufacturing, Atlanta, Georgia, United States
| | - Carolyn Yeago
- Georgia Institute of Technology, Marcus Center for Therapeutic Cell Characterization and Manufacturing, Atlanta, Georgia, United States
| | - Krishnendu Roy
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Georgia Institute of Technology, Marcus Center for Therapeutic Cell Characterization and Manufacturing, Atlanta, Georgia, United States
| | - Francisco E. Robles
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, Georgia, United States
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| |
Collapse
|
19
|
Villa Nova M, Gan K, Wacker MG. Biopredictive tools for the development of injectable drug products. Expert Opin Drug Deliv 2022; 19:671-684. [PMID: 35603724 DOI: 10.1080/17425247.2022.2081682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Biopredictive release tests are commonly used in the evaluation of oral medicines. They support decision-making in formulation development and allow predictions of the expected in-vivo performances. So far, there is limited experience in the application of these methodologies to injectable drug products. AREAS COVERED Parenteral drug products cover a variety of dosage forms and administration sites including subcutaneous, intramuscular, and intravenous injections. In this area, developing biopredictive and biorelevant methodologies often confronts us with unique challenges and knowledge gaps. Here, we provide a formulation-centric approach and explain the key considerations and workflow when designing biopredictive assays. Also, we outline the key role of computational methods in achieving clinical relevance and put all considerations into context using liposomal nanomedicines as an example. EXPERT OPINION Biopredictive tools are the need of the hour to exploit the tremendous opportunities of injectable drug products. A growing number of biopharmaceuticals such as peptides, proteins, and nucleic acids require different strategies and a better understanding of the influences on drug absorption. Here, our design strategy must maintain the balance of robustness and complexity required for effective formulation development.
Collapse
Affiliation(s)
- Mônica Villa Nova
- State University of Maringá, Department of Pharmacy, Maringá, Paraná, Brazil
| | - Kennard Gan
- National University of Singapore, Department of Pharmacy, Singapore
| | | |
Collapse
|
20
|
Zarrabi M, Akbari MG, Amanat M, Majmaa A, Moaiedi AR, Montazerlotfelahi H, Nouri M, Hamidieh AA, Badv RS, Karimi H, Rabbani A, Mohebbi A, Rahimi-Dehgolan S, Rahimi R, Dehghan E, Vosough M, Abroun S, Shamsabadi FM, Tavasoli AR, Alizadeh H, Pak N, Zamani GR, Mohammadi M, Javadzadeh M, Ghofrani M, Hassanpour SH, Heidari M, Taghdiri MM, Mohseni MJ, Noparast Z, Masoomi S, Goudarzi M, Mohamadpour M, Shodjaee R, Samimi S, Mohammad M, Gholami M, Vafaei N, Koochakzadeh L, Valizadeh A, Malamiri RA, Ashrafi MR. The safety and efficacy of umbilical cord blood mononuclear cells in individuals with spastic cerebral palsy: a randomized double-blind sham-controlled clinical trial. BMC Neurol 2022; 22:123. [PMID: 35351020 PMCID: PMC8966246 DOI: 10.1186/s12883-022-02636-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION The current multi-center, randomized, double-blind study was conducted among children with cerebral palsy (CP) to assess the safety and efficacy of umbilical cord blood mononuclear cell (UCB-MNC). We performed the diffusion tensor imaging to assess the changes in the white matter structure. METHODS Males and females aged 4 to 14 years old with spastic CP were included. Eligible participants were allocated in 4:1 ratio to be in the experimental or control groups; respectively. Individuals who were assigned in UCB-MNC group were tested for human leukocyte antigen (HLA) and fully-matched individuals were treated with UCB-MNCs. A single dose (5 × 106 /kg) UCB-MNCs were administered via intrathecal route in experimental group. The changes in gross motor function measure (GMFM)-66 from baseline to one year after treatment were the primary endpoints. The mean changes in modified Ashworth scale (MAS), pediatric evaluation of disability inventory (PEDI), and CP quality of life (CP-QoL) were also evaluated and compared between groups. The mean changes in fractional anisotropy (FA) and mean diffusivity (MD) of corticospinal tract (CST) and posterior thalamic radiation (PTR) were the secondary endpoints. Adverse events were safety endpoint. RESULTS There were 72 included individuals (36 cases in each group). The mean GMFM-66 scores increased in experimental group; compared to baseline (+ 9.62; 95%CI: 6.75, 12.49) and control arm (β: 7.10; 95%CI: 2.08, 12.76; Cohen's d: 0.62) and mean MAS reduced in individuals treated with UCB-MNCs compared to the baseline (-0.87; 95%CI: -1.2, -0.54) and control group (β: -0.58; 95%CI: -1.18, -0.11; Cohen's d: 0.36). The mean PEDI scores and mean CP-QoL scores in two domains were higher in the experimental group compared to the control. The imaging data indicated that mean FA increased and MD decreased in participants of UCB-MNC group indicating improvements in white matter structure. Lower back pain, headaches, and irritability were the most common adverse events within 24 h of treatment that were related to lumbar puncture. No side effects were observed during follow-up. CONCLUSIONS This trial showed that intrathecal injection of UCB-MNCs were safe and effective in children with CP. TRIAL REGISTRATION The study was registered with ClinicalTrials.gov ( NCT03795974 ).
Collapse
Affiliation(s)
- Morteza Zarrabi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Masood Ghahvechi Akbari
- Physical Medicine and Rehabilitation Department, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Man Amanat
- Division of Neurogenetics and Neuroscience, The Moser Center for Leukodystrophies, Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Anahita Majmaa
- Pediatrics Center of Excellence, Pediatric Intensive Unit, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Moaiedi
- Department of Pediatric Neurology, Clinical Research Development Center of Children Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hadi Montazerlotfelahi
- Department of Pediatrics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Masoumeh Nouri
- R & D Department, Royan Stem Cell Technology Co, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatrics Center of Excellence Pediatric Hematology, Oncology and Stem Cell Transplantation Department, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shervin Badv
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Karimi
- Neurorehabilitation Research Center University of Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Ali Rabbani
- Pediatrics Center of Excellence Pediatric Endocrinology Department, Growth and Development Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Mohebbi
- Pediatrics Center of Excellence, Growth and Development Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Rahimi-Dehgolan
- Physical Medicine and Rehabilitation Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Rosa Rahimi
- Physical Medicine and Rehabilitation Department, Khatamolanbia Hospital, Tehran, Iran
| | - Ensieh Dehghan
- Transplantation Department, Royan Stem Cell Technology Co, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saeed Abroun
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Ali Reza Tavasoli
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Houman Alizadeh
- Pediatrics Center of Excellence, Department of Radiology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Pak
- Pediatrics Center of Excellence, Department of Radiology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholam Reza Zamani
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Mohammadi
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Javadzadeh
- Department of Pediatric Neurology, Mofid Children's Hospital, Pediatric Neurology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ghofrani
- Department of Pediatric Neurology, Mofid Children's Hospital, Pediatric Neurology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Hossein Hassanpour
- Department of Pediatric Neurology, Aliasghar Children's Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Heidari
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Taghdiri
- Department of Pediatric Neurology, Mofid Children's Hospital, Pediatric Neurology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohamad Javad Mohseni
- Pediatric Urology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Noparast
- Department of Pediatric Nephrology, Bahrami Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Safdar Masoomi
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Goudarzi
- Department of Pediatric Anesthesiology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masood Mohamadpour
- Pediatrics Center of Excellence, Pediatric Intensive Unit, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Shodjaee
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Solaleh Samimi
- Physical Medicine and Rehabilitation Department, Khatamolanbia Hospital, Tehran, Iran
| | | | - Mona Gholami
- Physical Medicine and Rehabilitation Department, Khatamolanbia Hospital, Tehran, Iran
| | - Nahid Vafaei
- Faculty of Medicine, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Leyli Koochakzadeh
- Pediatrics Center of Excellence Pediatric Hematology, Department of Hematology & Oncology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Valizadeh
- Faculty of Medicine, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Azizi Malamiri
- Department of Paediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoud Reza Ashrafi
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|