1
|
Zhu (朱培) P, Chao CL, Steffeck AWT, Dang C, Hamlish NX, Pfrender EM, Jiang B, Peek CB. Circadian Dysfunction in the Skeletal Muscle Impairs Limb Perfusion and Muscle Regeneration in Peripheral Artery Disease. Arterioscler Thromb Vasc Biol 2025; 45:e30-e47. [PMID: 39633575 PMCID: PMC11753941 DOI: 10.1161/atvbaha.124.321772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Peripheral artery disease (PAD), caused by atherosclerosis, leads to limb ischemia, muscle damage, and impaired mobility in the lower extremities. Recent studies suggest that circadian rhythm disruptions can hinder vascular repair during ischemia, but the specific tissues involved and the impact on muscle health remain unclear. This study investigates the role of the skeletal muscle circadian clock in muscle adaptation to ischemic stress using a surgical mouse model of hindlimb ischemia. METHODS We performed secondary analysis of publicly available RNA-sequencing data sets derived from patients with PAD to identify the differential expression of circadian-related genes in endothelial cells and ischemic limb skeletal muscles. We used mice with specific genetic loss of the circadian clock activator, BMAL1 (brain and muscle ARNT-like 1), in adult skeletal muscle tissues (Bmal1muscle). Bmal1muscle mice and controls underwent femoral artery ligation surgery to induce hindlimb ischemia. Laser Doppler imaging was used to assess limb perfusion at various time points after the surgery. Muscle tissues were analyzed with RNA sequencing and histological examination to investigate PAD-related muscle pathologies. Additionally, we studied the role of BMAL1 in muscle fiber adaptation to hypoxia using RNA and assay for transposase-accessible chromatin with sequencing analyses in primary myotube culture model. RESULTS Disrupted expression of circadian rhythm-related genes was observed in existing RNA-sequencing data sets from endothelial cells and ischemic limb skeletal muscles derived from patients with PAD. Genetic loss of Bmal1 specifically in adult mouse skeletal muscle tissues delayed reperfusion recovery following induction of hindlimb ischemia. Histological examination of muscle tissues showed reduced regenerated myofiber number and a decreased proportion of type IIB fast-twitch myofibers in Bmal1muscle mouse muscles in the ischemic limbs but not in their contralateral nonischemic limbs. Transcriptomic analysis revealed abrogated metabolic, angiogenic, and myogenic pathways relevant to hypoxia adaptation in Bmal1muscle mouse muscles. These changes were corroborated in Bmal1-deficient cultured primary myotubes cultured under hypoxic conditions. CONCLUSIONS Circadian clock in skeletal muscle is crucial for the muscle's response to hypoxia during hindlimb ischemia. Targeting the muscle circadian clock may have therapeutic potential for enhancing muscle response to reduced blood flow and promoting recovery in conditions such as PAD.
Collapse
Affiliation(s)
- Pei Zhu (朱培)
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Calvin L Chao
- Department of Surgery, Division of Vascular Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Adam W T Steffeck
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Caitlyn Dang
- Department of Surgery, Division of Vascular Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Noah X Hamlish
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Eric M Pfrender
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bin Jiang
- Department of Surgery, Division of Vascular Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA
| | - Clara B Peek
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
2
|
Kahn RE, Zhu P, Roy I, Peek C, Hawley JA, Dayanidhi S. Ablation of satellite cell-specific clock gene, Bmal1, alters force production, muscle damage, and repair following contractile-induced injury. FASEB J 2025; 39:e70325. [PMID: 39812604 PMCID: PMC11734708 DOI: 10.1096/fj.202402145rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Following injury, skeletal muscle undergoes repair via satellite cell (SC)-mediated myogenic progression. In SCs, the circadian molecular clock gene, Bmal1, is necessary for appropriate myogenic progression and repair with evidence that muscle molecular clocks can also affect force production. Utilizing a mouse model allowing for inducible depletion of Bmal1 within SCs, we determined contractile function, SC myogenic progression and muscle damage and repair following eccentric contractile-induced injury. At baseline, SC-Bmal1iKO animals exhibited a ~20-25% reduction in normalized force production (ex vivo and in vivo) versus control SC-Bmal1Cntrl and SC-Bmal1iKO untreated littermates (p < .05). Following contractile injury, SC-Bmal1iKO animals displayed reduced muscle damage and subsequent repair post-injury (Dystrophinnegative fibers 24 h: SC-Bmal1Cntrl 199 ± 41; SC-Bmal1iKO 36 ± 13, p < .05) (eMHC+ fibers 7 day: SC-Bmal1Cntrl 217.8 ± 115.5; SC-Bmal1iKO 27.8 ± 17.3; Centralized nuclei 7 day: SC-Bmal1Cntrl 160.7 ± 70.5; SC-Bmal1iKO 46.2 ± 15.7). SC-Bmal1iKO animals also showed reduced neutrophil infiltration, consistent with less injury (Neutrophil content 24 h: SC-Bmal1Cntrl 2.4 ± 0.4; SC-Bmal1iKO 0.4 ± 0.2, % area fraction, p < .05). SC-Bmal1iKO animals had greater SC activation/proliferation at an earlier timepoint (p < .05) and an unexplained increase in activation 7 days post injury. Collectively, these data suggest SC-Bmal1 plays a regulatory role in force production, influencing the magnitude of muscle damage/repair, with an altered SC myogenic progression following contractile-induced muscle injury.
Collapse
Affiliation(s)
- Ryan E. Kahn
- Exercise and Nutrition Research Program, The Mary MacKillop Institute for Health ResearchAustralian Catholic UniversityMelbourneAustralia
- Shirley Ryan AbilityLabChicagoIllinoisUSA
| | - Pei Zhu
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Ishan Roy
- Shirley Ryan AbilityLabChicagoIllinoisUSA
- Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Clara Peek
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - John A. Hawley
- Exercise and Nutrition Research Program, The Mary MacKillop Institute for Health ResearchAustralian Catholic UniversityMelbourneAustralia
- Department of Sport and Exercise SciencesManchester Metropolitan University Institute of SportManchester
| | - Sudarshan Dayanidhi
- Shirley Ryan AbilityLabChicagoIllinoisUSA
- Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
3
|
Yang S, Ye Z, Chen L, Zhou X, Li W, Cheng F. Circadian Clock Gene Bmal1: A Molecular Bridge from AKI to CKD. Biomolecules 2025; 15:77. [PMID: 39858471 PMCID: PMC11762869 DOI: 10.3390/biom15010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/05/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) represent two frequently observed clinical conditions. AKI is characterized by an abrupt decrease in glomerular filtration rate (GFR), generally associated with elevated serum creatinine (sCr), blood urea nitrogen (BUN), and electrolyte imbalances. This condition usually persists for approximately a week, causing a transient reduction in kidney function. If these abnormalities continue beyond 90 days, the condition is redefined as chronic kidney disease (CKD) or may advance to end-stage renal disease (ESRD). Recent research increasingly indicates that maladaptive repair mechanisms after AKI significantly contribute to the development of CKD. Thus, implementing early interventions to halt the progression from AKI to CKD has the potential to markedly improve patient outcomes. Although considerable research has been conducted, the exact mechanisms linking AKI to CKD are complex, and effective treatments remain limited. Kidney function is influenced by circadian rhythms, with the circadian gene Bmal1 being vital in managing these cycles. Recent research indicates that Bmal1 is significantly involved in the progression of both AKI and CKD. In this study, we conducted a retrospective analysis of Bmal1's role in AKI and CKD, reviewed recent research advancements, and investigated how Bmal1 influences the pathological mechanisms underlying the progression from AKI to CKD. Additionally, we highlighted gaps in the existing research and examined the potential of Bmal1 as a therapeutic target in kidney disease management. This work aims to provide meaningful insights for future studies on the role of the circadian gene Bmal1 in the transition from AKI to CKD, with the goal of identifying therapeutic approaches to mitigate kidney disease progression.
Collapse
Affiliation(s)
- Songyuan Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.Y.); (Z.Y.); (L.C.); (X.Z.)
| | - Zehua Ye
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.Y.); (Z.Y.); (L.C.); (X.Z.)
| | - Lijia Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.Y.); (Z.Y.); (L.C.); (X.Z.)
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.Y.); (Z.Y.); (L.C.); (X.Z.)
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.Y.); (Z.Y.); (L.C.); (X.Z.)
| |
Collapse
|
4
|
Wang T, Zhou D, Hong Z. Sarcopenia and cachexia: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2025; 6:e70030. [PMID: 39764565 PMCID: PMC11702502 DOI: 10.1002/mco2.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 03/17/2025] Open
Abstract
Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ. Recognizing the interplay and distinctions between these disorders is essential for advancing both basic and translational research in this area, enhancing diagnostic accuracy and ultimately achieving effective therapeutic solutions for affected patients. This review discusses the muscle microenvironment's changes contributing to these conditions, recent therapeutic approaches like lifestyle modifications, small molecules, and nutritional interventions, and emerging strategies such as gene editing, stem cell therapy, and gut microbiome modulation. We also address the challenges and opportunities of multimodal interventions, aiming to provide insights into the pathogenesis and molecular mechanisms of sarcopenia and cachexia, ultimately aiding in innovative strategy development and improved treatments.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Dong Zhou
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Zhen Hong
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| |
Collapse
|
5
|
Morena da Silva F, Esser KA, Murach KA, Greene NP. Inflammation o'clock: interactions of circadian rhythms with inflammation-induced skeletal muscle atrophy. J Physiol 2024; 602:6587-6607. [PMID: 37563881 PMCID: PMC10858298 DOI: 10.1113/jp284808] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Circadian rhythms are ∼24 h cycles evident in behaviour, physiology and metabolism. The molecular mechanism directing circadian rhythms is the circadian clock, which is composed of an interactive network of transcription-translation feedback loops. The core clock genes include Bmal1, Clock, Rev-erbα/β, Per and Cry. In addition to keeping time, the core clock regulates a daily programme of gene expression that is important for overall cell homeostasis. The circadian clock mechanism is present in all cells, including skeletal muscle fibres, and disruption of the muscle clock is associated with changes in muscle phenotype and function. Skeletal muscle atrophy is largely associated with a lower quality of life, frailty and reduced lifespan. Physiological and genetic modification of the core clock mechanism yields immune dysfunction, alters inflammatory factor expression and secretion and is associated with skeletal muscle atrophy in multiple conditions, such as ageing and cancer cachexia. Here, we summarize the possible interplay between the circadian clock modulation of immune cells, systemic inflammatory status and skeletal muscle atrophy in chronic inflammatory conditions. Although there is a clear disruption of circadian clocks in various models of atrophy, the mechanism behind such alterations remains unknown. Understanding the modulatory potential of muscle and immune circadian clocks in inflammation and skeletal muscle health is essential for the development of therapeutic strategies to protect skeletal muscle mass and function of patients with chronic inflammation.
Collapse
Affiliation(s)
- Francielly Morena da Silva
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Karyn A Esser
- Department of Physiology and Ageing, College of Medicine, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
| | - Kevin A Murach
- Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Nicholas P Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
6
|
Kelu JJ. Circadian rhythms in muscle health and diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 393:45-72. [PMID: 40390463 DOI: 10.1016/bs.ircmb.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
All major life forms from bacteria to humans have internal clocks that regulate essential biological processes in a roughly 24-h cycle. In mammals, the central clock in the suprachiasmatic nucleus (SCN) is historically considered the top of a hierarchical organisation that dominates subordinate clocks in peripheral tissues and dictates the circadian behaviours of an organism. Recent studies, however, underscore the importance of the local circadian oscillators, such as the skeletal muscle clock, in regulating local metabolism and physiology. Studies in animal models show that the muscle peripheral clock per se is required for the expression of genes involved in glucose, lipid, and amino acid metabolism. Disruption of the muscle clock leads to glucose intolerance, insulin resistance, and alterations in muscle size and force. This highlights the vital role of the muscle clock in controlling muscle physiology and metabolism. In humans, a perturbation in the muscle circadian rhythms is seen in metabolic disorders such as type 2 diabetes, and muscle diseases such as dystrophies. Disruption of muscle metabolism is also seen when the internal rhythms are misaligned with the external rhythms (circadian misalignments) as in shift work. Understanding the mechanisms by which the muscle clock regulates circadian functions may help the development of new strategies, such as chronotherapy, to potentially prevent or treat muscle pathologies and maintain muscle health.
Collapse
Affiliation(s)
- Jeffrey J Kelu
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom.
| |
Collapse
|
7
|
Gallero S, Persson KW, Henríquez-Olguín C. Unresolved questions in the regulation of skeletal muscle insulin action by reactive oxygen species. FEBS Lett 2024; 598:2145-2159. [PMID: 38803005 DOI: 10.1002/1873-3468.14937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
Reactive oxygen species (ROS) are well-established signaling molecules implicated in a wide range of cellular processes, including both oxidative stress and intracellular redox signaling. In the context of insulin action within its target tissues, ROS have been reported to exert both positive and negative regulatory effects. However, the precise molecular mechanisms underlying this duality remain unclear. This Review examines the complex role of ROS in insulin action, with a particular focus on skeletal muscle. We aim to address three critical aspects: (a) the proposed intracellular pro-oxidative redox shift elicited by insulin, (b) the evidence supporting that redox-sensitive cysteine modifications impact insulin signaling and action, and (c) cellular mechanisms underlying how ROS can paradoxically act as both enhancers and inhibitors of insulin action. This Review underscores the urgent need for more systematic research to identify specific reactive species, redox targets, and the physiological significance of redox signaling in maintaining insulin action and metabolic health, with a particular emphasis on human skeletal muscle.
Collapse
Affiliation(s)
- Samantha Gallero
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Kaspar W Persson
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Carlos Henríquez-Olguín
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
- Exercise Science Laboratory, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
8
|
Guo M, Shen F, Guo X, Zhang J, Ma Y, Wu X, Zuo H, Yao J, Hu Y, Wang D, Li Y, Li J, Qiu J, Yu J, Meng M, Zheng Y, Chen X, Gong M, Liu K, Jin L, Ren X, Zhang Q, Zhao Y, Gu X, Shen F, Li D, Gao L, Liu C, Zhou F, Li M, Wang J, Ding S, Ma X, Lu J, Xie C, Xiao J, Xu L. BMAL1/PGC1α4-FNDC5/irisin axis impacts distinct outcomes of time-of-day resistance exercise. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 14:100968. [PMID: 39187065 PMCID: PMC11863284 DOI: 10.1016/j.jshs.2024.100968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/21/2024] [Accepted: 05/15/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Resistance exercise leads to improved muscle function and metabolic homeostasis. Yet how circadian rhythm impacts exercise outcomes and its molecular transduction remains elusive. METHODS Human volunteers were subjected to 4 weeks of resistance training protocols at different times of day to assess training outcomes and their associations with myokine irisin. Based on rhythmicity of Fibronectin type III domain containing 5 (FNDC5/irisin), we trained wild type and FNDC5 knockout mice at late active phase (high FNDC5/irisin level) or late rest phase (low FNDC5/irisin level) to analyze exercise benefits on muscle function and metabolic homeostasis. Molecular analysis was performed to understand the regulatory mechanisms of FNDC5 rhythmicity and downstream signaling transduction in skeletal muscle. RESULTS In this study, we showed that regular resistance exercises performed at different times of day resulted in distinct training outcomes in humans, including exercise benefits and altered plasma metabolomics. We found that muscle FNDC5/irisin levels exhibit rhythmicity. Consistent with human data, compared to late rest phase (low irisin level), mice trained chronically at late active phase (high irisin level) gained more muscle capacity along with improved metabolic fitness and metabolomics/lipidomics profiles under a high-fat diet, whereas these differences were lost in FNDC5 knockout mice. Mechanistically, Basic helix-loop-helix ARNT like 1 (BMAL1) and Peroxisome proliferative activated receptor, gamma, coactivator 1 alpha 4 (PGC1α4) induce FNDC5/irisin transcription and rhythmicity, and the signaling is transduced via αV integrin in muscle. CONCLUSION Together, our results offered novel insights that exercise performed at distinct times of day determines training outcomes and metabolic benefits through the rhythmic regulation of the BMAL1/PGC1α4-FNDC5/irisin axis.
Collapse
Affiliation(s)
- Mingwei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Fei Shen
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Institute of Physical Education, Jiangsu Normal University, Xuzhou 221116, China
| | - Xiaozhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jun Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ying Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xia Wu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hui Zuo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jing Yao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yepeng Hu
- Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yu Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jin Li
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jian Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Meiyao Meng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ying Zheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xin Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingkai Gong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Kailin Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Ling Jin
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Xiangyu Ren
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Qiang Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Yu Zhao
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Xuejiang Gu
- Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Feixia Shen
- Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Liangcai Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Fei Zhou
- Cambridge-Suda Genomic Resource Center, Medical College of Soochow University, Suzhou 215123, China
| | - Mian Li
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiqiu Wang
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shuzhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jian Lu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, China.
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China.
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
9
|
McHill AW, Butler MP. Eating Around the Clock: Circadian Rhythms of Eating and Metabolism. Annu Rev Nutr 2024; 44:25-50. [PMID: 38848598 PMCID: PMC11849495 DOI: 10.1146/annurev-nutr-062122-014528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The time of day that we eat is increasingly recognized as contributing as importantly to overall health as the amount or quality of the food we eat. The endogenous circadian clock has evolved to promote intake at optimal times when an organism is intended to be awake and active, but electric lights and abundant food allow eating around the clock with deleterious health outcomes. In this review, we highlight literature pertaining to the effects of food timing on health, beginning with animal models and then translation into human experiments. We emphasize the pitfalls and opportunities that technological advances bring in bettering understanding of eating behaviors and their association with health and disease. There is great promise for restricting the timing of food intake both in clinical interventions and in public health campaigns for improving health via nonpharmacological therapies.
Collapse
Affiliation(s)
- Andrew W McHill
- Sleep, Chronobiology, and Health Laboratory, School of Nursing, Oregon Health & Science University, Portland, Oregon, USA
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA
| | - Matthew P Butler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA;
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
10
|
Caputo R, Idini A, Greco CM. Circadian rhythms and cardiac physiology: An essential interplay. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 393:15-44. [PMID: 40390462 DOI: 10.1016/bs.ircmb.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Virtually every cell in the human body contains a molecular circadian clock that orchestrates the rhythmic oscillations of a multitude of tissue-specific functions. This is evident in the heart, where circadian rhythms are seen in various cardiac functions. Genetic disruption of clock genes has underscored their significance in regulating multiple aspects of cardiac physiology. In this review, we report the principal findings regarding the impact of clock gene manipulation (whole body or cardiomyocyte specific) on cardiac function. Furthermore, we present the current knowledge on the circadian clock in the different cell populations in the heart-cardiomyocytes, endothelial cells, fibroblasts, and immune cells. While increasing studies have shown mechanistic links between core clock components and cardiomyocytes-specific genes, the information of clock function within other cardiac cells in the heart is extremely limited. This review underlines the need to gain more information on the temporal segregation of clock processes in cardiac-especially in non-cardiomyocytes-cells, as clock-controlled mechanism may be target of chronotherapy to optimize current treatments for cardiovascular diseases.
Collapse
Affiliation(s)
- Rosanna Caputo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; IRCCS Humanitas Research Hospital, Milan, Italy
| | - Alessandra Idini
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; IRCCS Humanitas Research Hospital, Milan, Italy
| | - Carolina Magdalen Greco
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; IRCCS Humanitas Research Hospital, Milan, Italy.
| |
Collapse
|
11
|
Otsuka K, Beaty LA, Sato M, Shitakura K, Kikuchi T, Okajima K, Terada S, Cornelissen G. Chronobioethics: Symphony of biological clocks observed by 7-day/24-hour ambulatory blood pressure monitoring and cardiovascular health. Biomed J 2024:100753. [PMID: 38906327 DOI: 10.1016/j.bj.2024.100753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND The high prevalence of desynchronized biological rhythms is becoming a primary public health concern. We assess complex and diverse inter-modulations among multi-frequency rhythms present in blood pressure (BP) and heart rate (HR). SUBJECTS and Methods: We performed 7-day/24-hour Ambulatory BP Monitoring in 220 (133 women) residents (23 to 74 years) of a rural Japanese town in Kochi Prefecture under everyday life conditions. RESULTS A symphony of biological clocks contributes to the preservation of a synchronized circadian system. (1) Citizens with an average 12.02-h period had fewer vascular variability disorders than those with shorter (11.37-h) or longer (12.88-h) periods (P<0.05), suggesting that the circasemidian rhythm is potentially important for human health. (2) An appropriate BP-HR coupling promoted healthier circadian profiles than a phase-advanced BP: lower 7-day nighttime SBP (106.8 vs. 112.9 mmHg, P=0.0469), deeper nocturnal SBP dip (20.5% vs. 16.8%, P=0.0101), and less frequent incidence of masked non-dipping (0.53 vs. 0.86, P=0.0378), identifying the night as an important time window. CONCLUSION Adaptation to irregular schedules in everyday life occurs unconsciously at night, probably initiated from the brain default mode network, in coordination with the biological clock system, including a reinforced about 12-hour clock, as "a biological clock-guided core integration system".
Collapse
Affiliation(s)
- Kuniaki Otsuka
- Department of Chronomics and Gerontology, Tokyo Women's Medical University, Tokyo, Japan; Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN, USA.
| | - Larry A Beaty
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN, USA
| | - Madoka Sato
- Department of Medicine, Jyoban Hospital, Fukushima, Japan
| | - Kazunobu Shitakura
- Cardiovascular Internal Medicine, Higashi Omiya General Hospital, Saitama, Japan
| | - Tomoko Kikuchi
- Cardiovascular Internal Medicine, Higashi Omiya General Hospital, Saitama, Japan
| | - Kiyotaka Okajima
- Cardiovascular Internal Medicine, Higashi Omiya General Hospital, Saitama, Japan
| | - Shigehiko Terada
- Advanced Medical Center, Shonan Kamukura General Hospital, Kanagawa, Japan
| | | |
Collapse
|
12
|
Kumar A, Vaca-Dempere M, Mortimer T, Deryagin O, Smith JG, Petrus P, Koronowski KB, Greco CM, Segalés J, Andrés E, Lukesova V, Zinna VM, Welz PS, Serrano AL, Perdiguero E, Sassone-Corsi P, Benitah SA, Muñoz-Cánoves P. Brain-muscle communication prevents muscle aging by maintaining daily physiology. Science 2024; 384:563-572. [PMID: 38696572 DOI: 10.1126/science.adj8533] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/26/2024] [Indexed: 05/04/2024]
Abstract
A molecular clock network is crucial for daily physiology and maintaining organismal health. We examined the interactions and importance of intratissue clock networks in muscle tissue maintenance. In arrhythmic mice showing premature aging, we created a basic clock module involving a central and a peripheral (muscle) clock. Reconstituting the brain-muscle clock network is sufficient to preserve fundamental daily homeostatic functions and prevent premature muscle aging. However, achieving whole muscle physiology requires contributions from other peripheral clocks. Mechanistically, the muscle peripheral clock acts as a gatekeeper, selectively suppressing detrimental signals from the central clock while integrating important muscle homeostatic functions. Our research reveals the interplay between the central and peripheral clocks in daily muscle function and underscores the impact of eating patterns on these interactions.
Collapse
Affiliation(s)
- Arun Kumar
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Mireia Vaca-Dempere
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Thomas Mortimer
- Institute for Research in Biomedicine (IRB), Barcelona, The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Oleg Deryagin
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Jacob G Smith
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Paul Petrus
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
- Department of Medicine (H7), Karolinska Institutet, Stockholm 141 86, Sweden
| | - Kevin B Koronowski
- Department of Biochemistry & Structural Biology, Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Carolina M Greco
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
- Department of Biomedical Sciences, Humanitas University and Humanitas Research Hospital IRCCS, 20089, Rozzano (Milan), Italy
| | - Jessica Segalés
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Eva Andrés
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Vera Lukesova
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Valentina M Zinna
- Institute for Research in Biomedicine (IRB), Barcelona, The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Patrick-Simon Welz
- Cancer Research Programme, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Antonio L Serrano
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Altos Labs Inc., San Diego Institute of Science, San Diego, CA 92121, USA
| | - Eusebio Perdiguero
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Altos Labs Inc., San Diego Institute of Science, San Diego, CA 92121, USA
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
- Deceased
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB), Barcelona, The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Altos Labs Inc., San Diego Institute of Science, San Diego, CA 92121, USA
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
13
|
Zampieri S, Bersch I, Smeriglio P, Barbieri E, Boncompagni S, Maccarone MC, Carraro U. Program with last minute abstracts of the Padua Days on Muscle and Mobility Medicine, 27 February - 2 March, 2024 (2024Pdm3). Eur J Transl Myol 2024; 34:12346. [PMID: 38305708 PMCID: PMC11017178 DOI: 10.4081/ejtm.2024.12346] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/03/2024] Open
Abstract
During the 2023 Padua Days on Muscle and Mobility Medicine the 2024 meeting was scheduled from 28 February to 2 March 2024 (2024Pdm3). During autumn 2023 the program was expanded with Scientific Sessions which will take place over five days (in 2024 this includes February 29), starting from the afternoon of 27 February 2024 in the Conference Rooms of the Hotel Petrarca, Thermae of Euganean Hills (Padua), Italy. As per consolidated tradition, the second day will take place in Padua, for the occasion in the Sala San Luca of the Monastery of Santa Giustina in Prato della Valle, Padua, Italy. Confirming the attractiveness of the Padua Days on Muscle and Mobility Medicine, over 100 titles were accepted until 15 December 2023 (many more than expected), forcing the organization of parallel sessions on both 1 and 2 March 2024. The five days will include lectures and oral presentations of scientists and clinicians from Argentina, Austria, Belgium, Brazil, Bulgaria, Canada, Denmark, Egypt, France, Germany, Iceland, Ireland, Italy, Romania, Russia, Slovenia, Switzerland, UK and USA. Only Australia, China, India and Japan are missing from this edition. But we are confident that authors from those countries who publish articles in the PAGEpress: European Journal of Translational Myology (EJTM: 2022 ESCI Clarivate's Impact Factor: 2.2; SCOPUS Cite Score: 3.2) will decide to join us in the coming years. Together with the program established by 31 January 2024, the abstracts will circulate during the meeting only in the electronic version of the EJTM Issue 34 (1) 2024. See you soon in person at the Hotel Petrarca in Montegrotto Terme, Padua, for the inauguration scheduled the afternoon of 27 February 2024 or on-line for free via Zoom. Send us your email address if you are not traditional participants listed in Pdm3 and EJTM address books.
Collapse
Affiliation(s)
- Sandra Zampieri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy; Department of Biomedical Sciences, University of Padova, Padua, Italy; Interdepartmental Research Centre of Myology, University of Padova, Padua, Italy; Armando Carraro & Carmela Mioni-Carraro Foundation for Translational Myology, Padua.
| | - Ines Bersch
- Swiss Paraplegic Centre Nottwil, Nottwil, Switzerland; International FES Centre®, Swiss Paraplegic Centre Nottwil, Nottwil.
| | - Piera Smeriglio
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris.
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino (PU).
| | - Simona Boncompagni
- Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti.
| | | | - Ugo Carraro
- Department of Biomedical Sciences, University of Padova, Padua, Italy; Interdepartmental Research Centre of Myology, University of Padova, Padua, Italy; Armando Carraro & Carmela Mioni-Carraro Foundation for Translational Myology, Padua.
| |
Collapse
|
14
|
Zhang L, Zhang C, Zheng J, Wang Y, Wei X, Yang Y, Zhao Q. miR-155-5p/Bmal1 Modulates the Senescence and Osteogenic Differentiation of Mouse BMSCs through the Hippo Signaling Pathway. Stem Cell Rev Rep 2024; 20:554-567. [PMID: 38150082 PMCID: PMC10837250 DOI: 10.1007/s12015-023-10666-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND The core clock gene brain and muscle ARNT like-1 (Bmal1) is involved in the regulation of bone tissue aging. However, current studies are mostly limited to the establishment of the association between Bmal1 and bone senescence, without in-depth exploration of its main upstream and downstream regulatory mechanisms. METHODS The luciferase reporter assay, RT-qPCR and Western blotting were performed to detect the interaction between miR-155-5p and Bmal1. The effects of miR-155-5p and Bmal1 on the aging and osteogenic differentiation ability of mouse bone marrow mesenchymal stem cells (BMSCs) were investigated by cell counting kit-8 (CCK-8) assay, flow cytometry, β-gal staining, alkaline phosphatase quantitative assay and alizarin red staining in vitro. The potential molecular mechanism was identified by ChIP-Seq, RNA-seq database analysis and immunofluorescence staining. RESULTS The expression of Bmal1 declined with age, while the miR-155-5p was increased. miR-155-5p and Bmal1 repressed each other's expression, and miR-155-5p targeted the Bmal1. Besides, miR-155-5p inhibited the proliferation and osteogenic differentiation of BMSCs, promoted cell apoptosis and senescence, inhibited the expression and nuclear translocation of YAP and TAZ. However, Bmal1 facilitated the osteogenic differentiation and suppressed the aging of BMSCs, meanwhile inactivated the Hippo pathway. Moreover, YAP inhibitors abrogated the positive regulation of aging and osteogenic differentiation in BMSCs by miR-155-5p and Bmal1. CONCLUSION In mouse BMSCs, miR-155-5p and Bmal1 regulated the aging and osteogenic differentiation ability of BMSCs mainly through the Hippo signaling pathway. Our findings provide new insights for the interventions in bone aging.
Collapse
Affiliation(s)
- Lanxin Zhang
- Department of Orthodontics, State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China School & Hospital of Stomatology, Sichuan University, 14, 3Rd Section of Ren Min Nan Rd, Chengdu, 610041, China
| | - Chengxiaoxue Zhang
- Department of Orthodontics, State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China School & Hospital of Stomatology, Sichuan University, 14, 3Rd Section of Ren Min Nan Rd, Chengdu, 610041, China
| | - Jiawen Zheng
- Department of Orthodontics, State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China School & Hospital of Stomatology, Sichuan University, 14, 3Rd Section of Ren Min Nan Rd, Chengdu, 610041, China
| | - Yuhong Wang
- Department of Stomatology, West China Fourth Hospital, Sichuan University, 18, 3Rd Section of Ren Min Nan Rd, Chengdu, 610041, China
| | - Xiaoyu Wei
- Department of Orthodontics, State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China School & Hospital of Stomatology, Sichuan University, 14, 3Rd Section of Ren Min Nan Rd, Chengdu, 610041, China
| | - Yuqing Yang
- Department of Orthodontics, State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China School & Hospital of Stomatology, Sichuan University, 14, 3Rd Section of Ren Min Nan Rd, Chengdu, 610041, China
| | - Qing Zhao
- Department of Orthodontics, State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China School & Hospital of Stomatology, Sichuan University, 14, 3Rd Section of Ren Min Nan Rd, Chengdu, 610041, China.
| |
Collapse
|
15
|
Inyushkin AN, Poletaev VS, Inyushkina EM, Kalberdin IS, Inyushkin AA. Irisin/BDNF signaling in the muscle-brain axis and circadian system: A review. J Biomed Res 2023; 38:1-16. [PMID: 38164079 PMCID: PMC10818175 DOI: 10.7555/jbr.37.20230133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 01/03/2024] Open
Abstract
In mammals, the timing of physiological, biochemical and behavioral processes over a 24-h period is controlled by circadian rhythms. To entrain the master clock located in the suprachiasmatic nucleus of the hypothalamus to a precise 24-h rhythm, environmental zeitgebers are used by the circadian system. This is done primarily by signals from the retina via the retinohypothalamic tract, but other cues like exercise, feeding, temperature, anxiety, and social events have also been shown to act as non-photic zeitgebers. The recently identified myokine irisin is proposed to serve as an entraining non-photic signal of exercise. Irisin is a product of cleavage and modification from its precursor membrane fibronectin type Ⅲ domain-containing protein 5 (FNDC5) in response to exercise. Apart from well-known peripheral effects, such as inducing the "browning" of white adipocytes, irisin can penetrate the blood-brain barrier and display the effects on the brain. Experimental data suggest that FNDC5/irisin mediates the positive effects of physical activity on brain functions. In several brain areas, irisin induces the production of brain-derived neurotrophic factor (BDNF). In the master clock, a significant role in gating photic stimuli in the retinohypothalamic synapse for BDNF is suggested. However, the brain receptor for irisin remains unknown. In the current review, the interactions of physical activity and the irisin/BDNF axis with the circadian system are reconceptualized.
Collapse
Affiliation(s)
- Alexey N. Inyushkin
- Department of Human & Animal Physiology, Samara National Research University, Samara 443011, Russia
| | - Vitalii S. Poletaev
- Department of Human & Animal Physiology, Samara National Research University, Samara 443011, Russia
| | - Elena M. Inyushkina
- Department of Human & Animal Physiology, Samara National Research University, Samara 443011, Russia
| | - Igor S. Kalberdin
- Department of Human & Animal Physiology, Samara National Research University, Samara 443011, Russia
| | - Andrey A. Inyushkin
- Department of Human & Animal Physiology, Samara National Research University, Samara 443011, Russia
| |
Collapse
|
16
|
Huang T, Zhou J, Wang B, Wang X, Xiao W, Yang M, Liu Y, Wang Q, Xiang Y, Lan X. Integrated Amino Acids and Transcriptome Analysis Reveals Arginine Transporter SLC7A2 Is a Novel Regulator of Myogenic Differentiation. Int J Mol Sci 2023; 25:95. [PMID: 38203268 PMCID: PMC10778648 DOI: 10.3390/ijms25010095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Skeletal muscle differentiation is a precisely coordinated process. While many of the molecular details of myogenesis have been investigated extensively, the dynamic changes and functions of amino acids and related transporters remain unknown. In this study, we conducted a comprehensive analysis of amino acid levels during different time points of C2C12 myoblast differentiation using high-performance liquid chromatography (HPLC). Our findings revealed that the levels of most amino acids exhibited an initial increase at the onset of differentiation, reaching their peak typically on the fourth or sixth day, followed by a decline on the eighth day. Particularly, arginine and branched-chain amino acids showed a prominent increase during this period. Furthermore, we used RNA-seq analysis to show that the gene encoding the arginine transporter, Slc7a2, is significantly upregulated during differentiation. Knockdown of Slc7a2 gene expression resulted in a significant decrease in myoblast proliferation and led to a reduction in the expression levels of crucial myogenic regulatory factors, hindering the process of myoblast differentiation, fusion, and subsequent myotube formation. Lastly, we assessed the expression level of Slc7a2 during aging in humans and mice and found an upregulation of Slc7a2 expression during the aging process. These findings collectively suggest that the arginine transporter SLC7A2 plays a critical role in facilitating skeletal muscle differentiation and may hold potential as a therapeutic target for sarcopenia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yang Xiang
- Metabolic Control and Aging—Jiangxi Key Laboratory of Human Aging, Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang 330031, China (Q.W.)
| | - Xinqiang Lan
- Metabolic Control and Aging—Jiangxi Key Laboratory of Human Aging, Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang 330031, China (Q.W.)
| |
Collapse
|
17
|
Kim YK, Choe HK. Core clock gene, Bmal1, is required for optimal second-level interval production. Anim Cells Syst (Seoul) 2023; 27:425-435. [PMID: 38125761 PMCID: PMC10732218 DOI: 10.1080/19768354.2023.2290827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023] Open
Abstract
Perception and production of second-level temporal intervals are critical in several behavioral and cognitive processes, including adaptive anticipation, motor control, and social communication. These processes are impaired in several neurological and psychological disorders, such as Parkinson's disease and attention-deficit hyperactivity disorder. Although evidence indicates that second-level interval timing exhibit circadian patterns, it remains unclear whether the core clock machinery controls the circadian pattern of interval timing. To investigate the role of core clock molecules in interval timing capacity, we devised a behavioral assay called the interval timing task to examine prospective motor interval timing ability. In this task, the mouse produces two separate nose pokes in a pretrained second-level interval to obtain a sucrose solution as a reward. We discovered that interval perception in wild-type mice displayed a circadian pattern, with the best performance observed during the late active phase. To investigate whether the core molecular clock is involved in the circadian control of interval timing, we employed Bmal1 knockout mice (BKO) in the interval timing task. The interval production of BKO did not display any difference between early and late active phase, without reaching the optimal interval production level observed in wild-type. In summary, we report that the core clock gene Bmal1 is required for the optimal performance of prospective motor timing typically observed during the late part of the active period.
Collapse
Affiliation(s)
- Yoon Kyoung Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Han Kyoung Choe
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, Republic of Korea
- Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| |
Collapse
|
18
|
Xia Y, Yao B, Fu Z, Li L, Jin S, Qu B, Huang Y, Ding H. Clock genes regulate skeletal muscle energy metabolism through NAMPT/NAD +/SIRT1 following heavy-load exercise. Am J Physiol Regul Integr Comp Physiol 2023; 325:R490-R503. [PMID: 37545421 PMCID: PMC11178296 DOI: 10.1152/ajpregu.00261.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
The biological clock is an invisible "clock" in the organism, which can regulate behavior, physiology, and biochemical reactions. However, the relationship between clock genes and energy metabolism in postexercise skeletal muscle is not well known. The purpose of this study was to determine the mechanisms through which peripheral clock genes regulate energy metabolism in skeletal muscle. We analyzed the rhythm of mRNA expression of the clock genes Bmal1 and Clock in skeletal muscle following heavy-load exercise and measured related indicators of mitochondrial structure and function. We obtained the following experimental results. First, heavy-load exercise induced loss of circadian rhythm of Bmal1 between ZT0 and ZT24, and the circadian rhythm of Clock was not restored between ZT0 and ZT72. Second, analysis of mitochondrial morphology in group E showed abnormal swelling and ridge structure damage at ZT0, which recovered somewhat at ZT24 and ZT48, and the damage had essentially disappeared by ZT72. Third, the expression of NAMPT/NAD+/SIRT1 signaling axis proteins in group E was abnormal at ZT0, the content of NAMPT and the activity of SIRT1 significantly increased, and the content of NAD+ significantly decreased. Fourth, the expression of BMAL1 and PGC-1α in group E significantly increased, whereas the ATP and ADP content, as well as the activities of COXII and COXIV, were significantly changed. Finally, the colocalization of BMAL1 and SIRT1 in group E was significantly upregulated at ZT0. These results suggest that the skeletal muscle clock gene Bmal1 may regulate the energy metabolism level of skeletal muscle after exercise through the NAMPT/NAD+/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Yu Xia
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Binyu Yao
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Zeting Fu
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Lunyu Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Songlin Jin
- College of Physical Education and Health, Geely University of China, Chengdu, China
| | - Bo Qu
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Ying Huang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Haili Ding
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| |
Collapse
|
19
|
Bahramzadeh A, Bolandnazar K, Meshkani R. Resveratrol as a potential protective compound against skeletal muscle insulin resistance. Heliyon 2023; 9:e21305. [PMID: 38027557 PMCID: PMC10660041 DOI: 10.1016/j.heliyon.2023.e21305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
The increasing prevalence of type 2 diabetes has become a major global problem. Insulin resistance has a central role in pathophysiology of type 2 diabetes. Skeletal muscle is responsible for the disposal of most of the glucose under conditions of insulin stimulation, and insulin resistance in skeletal muscle causes dysregulation of glucose homeostasis in the whole body. Despite the current pharmaceutical and non-pharmacological treatment strategies to combat diabetes, there is still a need for new therapeutic agents due to the limitations of the therapeutic agents. Meanwhile, plant polyphenols have attracted the attention of researchers for their use in the treatment of diabetes and have gained popularity. Resveratrol, a stilbenoid polyphenol, exists in various plant sources, and a growing body of evidence suggests its beneficial properties, including antidiabetic activities. The present review aimed to provide a summary of the role of resveratrol in insulin resistance in skeletal muscle and its related mechanisms. To achieve the objectives, by searching the PubMed, Scopus and Web of Science databases, we have summarized the results of all cell culture, animal, and human studies that have investigated the effects of resveratrol in different models on insulin resistance in skeletal muscle.
Collapse
Affiliation(s)
- Arash Bahramzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Bolandnazar
- Department of Biological Sciences and Technology, Islamic Azad University of Mashhad, Mashhad, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Hill DP, Drabkin HJ, Smith CL, Van Auken KM, D’Eustachio P. Biochemical pathways represented by Gene Ontology-Causal Activity Models identify distinct phenotypes resulting from mutations in pathways. Genetics 2023; 225:iyad152. [PMID: 37579192 PMCID: PMC10550311 DOI: 10.1093/genetics/iyad152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/13/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023] Open
Abstract
Gene inactivation can affect the process(es) in which that gene acts and causally downstream ones, yielding diverse mutant phenotypes. Identifying the genetic pathways resulting in a given phenotype helps us understand how individual genes interact in a functional network. Computable representations of biological pathways include detailed process descriptions in the Reactome Knowledgebase and causal activity flows between molecular functions in Gene Ontology-Causal Activity Models (GO-CAMs). A computational process has been developed to convert Reactome pathways to GO-CAMs. Laboratory mice are widely used models of normal and pathological human processes. We have converted human Reactome GO-CAMs to orthologous mouse GO-CAMs, as a resource to transfer pathway knowledge between humans and model organisms. These mouse GO-CAMs allowed us to define sets of genes that function in a causally connected way. To demonstrate that individual variant genes from connected pathways result in similar but distinguishable phenotypes, we used the genes in our pathway models to cross-query mouse phenotype annotations in the Mouse Genome Database (MGD). Using GO-CAM representations of 2 related but distinct pathways, gluconeogenesis and glycolysis, we show that individual causal paths in gene networks give rise to discrete phenotypic outcomes resulting from perturbations of glycolytic and gluconeogenic genes. The accurate and detailed descriptions of gene interactions recovered in this analysis of well-studied processes suggest that this strategy can be applied to less well-understood processes in less well-studied model systems to predict phenotypic outcomes of novel gene variants and to identify potential gene targets in altered processes.
Collapse
Affiliation(s)
- David P Hill
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | - Kimberly M Van Auken
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Peter D’Eustachio
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
21
|
Hill DP, Drabkin HJ, Smith CL, Van Auken KM, D’Eustachio P. Biochemical Pathways Represented by Gene Ontology Causal Activity Models Identify Distinct Phenotypes Resulting from Mutations in Pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541760. [PMID: 37293039 PMCID: PMC10245817 DOI: 10.1101/2023.05.22.541760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gene inactivation can affect the process(es) in which that gene acts and causally downstream ones, yielding diverse mutant phenotypes. Identifying the genetic pathways resulting in a given phenotype helps us understand how individual genes interact in a functional network. Computable representations of biological pathways include detailed process descriptions in the Reactome Knowledgebase, and causal activity flows between molecular functions in Gene Ontology-Causal Activity Models (GO-CAMs). A computational process has been developed to convert Reactome pathways to GO-CAMs. Laboratory mice are widely used models of normal and pathological human processes. We have converted human Reactome GO-CAMs to orthologous mouse GO-CAMs, as a resource to transfer pathway knowledge between humans and model organisms. These mouse GO-CAMs allowed us to define sets of genes that function in a connected and well-defined way. To test whether individual genes from well-defined pathways result in similar and distinguishable phenotypes, we used the genes in our pathway models to cross-query mouse phenotype annotations in the Mouse Genome Database (MGD). Using GO-CAM representations of two related but distinct pathways, gluconeogenesis and glycolysis, we can identify causal paths in gene networks that give rise to discrete phenotypic outcomes for perturbations of glycolysis and gluconeogenesis. The accurate and detailed descriptions of gene interactions recovered in this analysis of well-studied processes suggest that this strategy can be applied to less well-understood processes in less well-studied model systems to predict phenotypic outcomes of novel gene variants and to identify potential gene targets in altered processes.
Collapse
Affiliation(s)
| | | | | | - Kimberly M Van Auken
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA 91125 USA
| | - Peter D’Eustachio
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York NY 10016 USA
| |
Collapse
|
22
|
Hariri A, Mirian M, Zarrabi A, Kohandel M, Amini-Pozveh M, Aref AR, Tabatabaee A, Prabhakar PK, Sivakumar PM. The circadian rhythm: an influential soundtrack in the diabetes story. Front Endocrinol (Lausanne) 2023; 14:1156757. [PMID: 37441501 PMCID: PMC10333930 DOI: 10.3389/fendo.2023.1156757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/03/2023] [Indexed: 07/15/2023] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) has been the main category of metabolic diseases in recent years due to changes in lifestyle and environmental conditions such as diet and physical activity. On the other hand, the circadian rhythm is one of the most significant biological pathways in humans and other mammals, which is affected by light, sleep, and human activity. However, this cycle is controlled via complicated cellular pathways with feedback loops. It is widely known that changes in the circadian rhythm can alter some metabolic pathways of body cells and could affect the treatment process, particularly for metabolic diseases like T2DM. The aim of this study is to explore the importance of the circadian rhythm in the occurrence of T2DM via reviewing the metabolic pathways involved, their relationship with the circadian rhythm from two perspectives, lifestyle and molecular pathways, and their effect on T2DM pathophysiology. These impacts have been demonstrated in a variety of studies and led to the development of approaches such as time-restricted feeding, chronotherapy (time-specific therapies), and circadian molecule stabilizers.
Collapse
Affiliation(s)
- Amirali Hariri
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Türkiye
| | - Mohammad Kohandel
- Department of Applied Mathematics, Faculty of Mathematics, University of Waterloo, Waterloo, ON, Canada
| | - Maryam Amini-Pozveh
- Department of Prosthodontics Dentistry, Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, MA, United States
- Translational Sciences, Xsphera Biosciences Inc., Boston, MA, United States
| | - Aliye Tabatabaee
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pranav Kumar Prabhakar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Division of Research and Development, Lovely Professional University, Phagwara Punjab, India
| | - Ponnurengam Malliappan Sivakumar
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
23
|
Watanabe A, Koike H, Kumagami N, Shimba S, Manabe I, Oishi Y. Arntl deficiency in myeloid cells reduces neutrophil recruitment and delays skeletal muscle repair. Sci Rep 2023; 13:6747. [PMID: 37185573 PMCID: PMC10130093 DOI: 10.1038/s41598-023-33830-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
After a muscle injury, a process comprising inflammation, repair, and regeneration must occur in a time-sensitive manner for skeletal muscle to be adequately repaired and regenerated. This complex process is assumed to be controlled by various myeloid cell types, including monocytes and macrophages, though the mechanism is not fully understood. Aryl hydrocarbon receptor nuclear translocator-like (Arntl or Bmal1) is a transcription factor that controls the circadian rhythm and has been implicated in regulating myeloid cell functions. In the present study, we generated myeloid cell-specific Arntl conditional knockout (cKO) mice to assess the role of Arntl expressed in myeloid cell populations during the repair process after muscle injury. Myeloid cell-specific Arntl deletion impaired muscle regeneration after cardiotoxin injection. Flow cytometric analyses revealed that, in cKO mice, the numbers of infiltrating neutrophils and Ly6Chi monocytes within the injured site were reduced on days 1 and 2, respectively, after muscle injury. Moreover, neutrophil migration and the numbers of circulating monocytes were significantly reduced in cKO mice, which suggests these effects may account, at least in part, for the impaired regeneration. These findings suggest that Arntl, expressed in the myeloid lineage regulates neutrophil and monocyte recruitment and is therefore required for skeletal muscle regeneration.
Collapse
Affiliation(s)
- Aiko Watanabe
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
- Department of Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hiroyuki Koike
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Naoki Kumagami
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
- Department of Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Shigeki Shimba
- Department of Health Science, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | - Ichiro Manabe
- Department of Systems Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8670, Japan
| | - Yumiko Oishi
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| |
Collapse
|
24
|
Juliana N, Azmi L, Effendy NM, Mohd Fahmi Teng NI, Abu IF, Abu Bakar NN, Azmani S, Yazit NAA, Kadiman S, Das S. Effect of Circadian Rhythm Disturbance on the Human Musculoskeletal System and the Importance of Nutritional Strategies. Nutrients 2023; 15:nu15030734. [PMID: 36771440 PMCID: PMC9920183 DOI: 10.3390/nu15030734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
The circadian system in the human body responds to daily environmental changes to optimise behaviour according to the biological clock and also influences various physiological processes. The suprachiasmatic nuclei are located in the anterior hypothalamus of the brain, and they synchronise to the 24 h light/dark cycle. Human physiological functions are highly dependent on the regulation of the internal circadian clock. Skeletal muscles comprise the largest collection of peripheral clocks in the human body. Both central and peripheral clocks regulate the interaction between the musculoskeletal system and energy metabolism. The skeletal muscle circadian clock plays a vital role in lipid and glucose metabolism. The pathogenesis of osteoporosis is related to an alteration in the circadian rhythm. In the present review, we discuss the disturbance of the circadian rhythm and its resultant effect on the musculoskeletal system. We also discuss the nutritional strategies that are potentially effective in maintaining the system's homeostasis. Active collaborations between nutritionists and physiologists in the field of chronobiological and chrononutrition will further clarify these interactions. This review may be necessary for successful interventions in reducing morbidity and mortality resulting from musculoskeletal disturbances.
Collapse
Affiliation(s)
- Norsham Juliana
- Faculty Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
- Correspondence: ; Tel.: +60-13-331-1706
| | - Liyana Azmi
- Faculty Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Nadia Mohd Effendy
- Faculty Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | | | - Izuddin Fahmy Abu
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang 43000, Malaysia
| | - Nur Nabilah Abu Bakar
- Faculty Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Sahar Azmani
- Faculty Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Noor Anisah Abu Yazit
- Faculty Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Suhaini Kadiman
- Anaesthesia and Intensive Care Unit, National Heart Institute, Kuala Lumpur 50400, Malaysia
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman
| |
Collapse
|
25
|
Cermakian N, Labrecque N. Regulation of Cytotoxic CD8+ T Cells by the Circadian Clock. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:12-18. [PMID: 36542828 DOI: 10.4049/jimmunol.2200516] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/22/2022] [Indexed: 12/24/2022]
Abstract
Most aspects of physiology, including immunity, present 24-h variations called circadian rhythms. In this review, we examine the literature on the circadian regulation of CD8+ T cells, which are important to fight intracellular infections and tumors. CD8+ T cells express circadian clock genes, and ∼6% of their transcriptome presents circadian oscillations. CD8+ T cell counts present 24-h rhythms in the blood and in secondary lymphoid organs, which depend on the clock in these cells as well as on hormonal rhythms. Moreover, the strength of the response of these cells to Ag presentation varies according to time of day, a rhythm dependent on the CD8+ T cell clock. The relevance of CD8+ T cell circadian rhythms is shown by the daily variations in the fight of intracellular infections. Such a circadian regulation also has implications for cancer, as well as the optimization of vaccination and immunotherapy.
Collapse
Affiliation(s)
- Nicolas Cermakian
- Laboratory of Molecular Chronobiology, Douglas Research Centre, Montreal, Quebec, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Nathalie Labrecque
- Maisonneuve Rosemont Hospital Research Centre, Montreal, Quebec, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; and.,Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
26
|
Mansingh S, Handschin C. Time to Train: The Involvement of the Molecular Clock in Exercise Adaptation of Skeletal Muscle. Front Physiol 2022; 13:902031. [PMID: 35547572 PMCID: PMC9081842 DOI: 10.3389/fphys.2022.902031] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/08/2022] [Indexed: 11/23/2022] Open
Abstract
Circadian rhythms regulate a host of physiological processes in a time-dependent manner to maintain homeostasis in response to various environmental stimuli like day and night cycles, food intake, and physical activity. Disruptions in circadian rhythms due to genetic mutations, shift work, exposure to artificial light sources, aberrant eating habits, and abnormal sleep cycles can have dire consequences for health. Importantly, exercise training efficiently ameliorates many of these adverse effects and the role of skeletal muscle in mediating the benefits of exercise is a topic of great interest. However, the molecular and physiological interactions between the clock, skeletal muscle function and exercise are poorly understood, and are most likely a combination of molecular clock components directly acting in muscle as well as in concordance with other peripheral metabolic organ systems like the liver. This review aims to consolidate existing experimental evidence on the involvement of molecular clock factors in exercise adaptation of skeletal muscle and to highlight the existing gaps in knowledge that need to be investigated to develop therapeutic avenues for diseases that are associated with these systems.
Collapse
|
27
|
Quattrocelli M, Wintzinger M, Miz K, Levine DC, Peek CB, Bass J, McNally EM. Muscle mitochondrial remodeling by intermittent glucocorticoid drugs requires an intact circadian clock and muscle PGC1α. SCIENCE ADVANCES 2022; 8:eabm1189. [PMID: 35179955 PMCID: PMC8856622 DOI: 10.1126/sciadv.abm1189] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Exogenous glucocorticoids interact with the circadian clock, but little attention is paid to the timing of intake. We recently found that intermittent once-weekly prednisone improved nutrient oxidation in dystrophic muscle. Here, we investigated whether dosage time affected prednisone effects on muscle bioenergetics. In mice treated with once-weekly prednisone, drug dosing in the light-phase promoted nicotinamide adenine dinucleotide (NAD+) levels and mitochondrial function in wild-type muscle, while this response was lost with dark-phase dosing. These effects depended on a normal circadian clock since they were disrupted in muscle from [Brain and muscle Arnt-like protein-1 (Bmal1)]-knockout mice. The light-phase prednisone pulse promoted BMAL1-dependent glucocorticoid receptor recruitment on noncanonical targets, including Nampt and Ppargc1a [peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α)]. In mice with muscle-restricted inducible PGC1α ablation, bioenergetic stimulation by light-phase prednisone required PGC1α. These results demonstrate that glucocorticoid "chronopharmacology" for muscle bioenergetics requires an intact clock and muscle PGC1α activity.
Collapse
Affiliation(s)
- Mattia Quattrocelli
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michelle Wintzinger
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Karen Miz
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Daniel C. Levine
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Clara Bien Peek
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joseph Bass
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
28
|
Wang XL, Kooijman S, Gao Y, Tzeplaeff L, Cosquer B, Milanova I, Wolff SEC, Korpel N, Champy MF, Petit-Demoulière B, Goncalves Da Cruz I, Sorg-Guss T, Rensen PCN, Cassel JC, Kalsbeek A, Boutillier AL, Yi CX. Microglia-specific knock-down of Bmal1 improves memory and protects mice from high fat diet-induced obesity. Mol Psychiatry 2021; 26:6336-6349. [PMID: 34050326 PMCID: PMC8760060 DOI: 10.1038/s41380-021-01169-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 02/04/2023]
Abstract
Microglia play a critical role in maintaining neural function. While microglial activity follows a circadian rhythm, it is not clear how this intrinsic clock relates to their function, especially in stimulated conditions such as in the control of systemic energy homeostasis or memory formation. In this study, we found that microglia-specific knock-down of the core clock gene, Bmal1, resulted in increased microglial phagocytosis in mice subjected to high-fat diet (HFD)-induced metabolic stress and likewise among mice engaged in critical cognitive processes. Enhanced microglial phagocytosis was associated with significant retention of pro-opiomelanocortin (POMC)-immunoreactivity in the mediobasal hypothalamus in mice on a HFD as well as the formation of mature spines in the hippocampus during the learning process. This response ultimately protected mice from HFD-induced obesity and resulted in improved performance on memory tests. We conclude that loss of the rigorous control implemented by the intrinsic clock machinery increases the extent to which microglial phagocytosis can be triggered by neighboring neurons under metabolic stress or during memory formation. Taken together, microglial responses associated with loss of Bmal1 serve to ensure a healthier microenvironment for neighboring neurons in the setting of an adaptive response. Thus, microglial Bmal1 may be an important therapeutic target for metabolic and cognitive disorders with relevance to psychiatric disease.
Collapse
Affiliation(s)
- Xiao-Lan Wang
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centres (UMC), University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam University Medical Centres (UMC), University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Sander Kooijman
- Department of Medicine, Divison of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Yuanqing Gao
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centres (UMC), University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam University Medical Centres (UMC), University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Laura Tzeplaeff
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France
| | - Brigitte Cosquer
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France
- CNRS UMR 7364, LNCA, Strasbourg, France
| | - Irina Milanova
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centres (UMC), University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam University Medical Centres (UMC), University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Samantha E C Wolff
- Laboratory of Endocrinology, Amsterdam University Medical Centres (UMC), University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Nikita Korpel
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centres (UMC), University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam University Medical Centres (UMC), University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Marie-France Champy
- PHENOMIN-ICS, Institut Clinique de la souris, CNRS, UMR7104, Illkirch, France
- INSERM, U964, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Benoit Petit-Demoulière
- PHENOMIN-ICS, Institut Clinique de la souris, CNRS, UMR7104, Illkirch, France
- INSERM, U964, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Isabelle Goncalves Da Cruz
- PHENOMIN-ICS, Institut Clinique de la souris, CNRS, UMR7104, Illkirch, France
- INSERM, U964, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Tania Sorg-Guss
- PHENOMIN-ICS, Institut Clinique de la souris, CNRS, UMR7104, Illkirch, France
- INSERM, U964, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Patrick C N Rensen
- Department of Medicine, Divison of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jean-Christophe Cassel
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France
- CNRS UMR 7364, LNCA, Strasbourg, France
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centres (UMC), University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam University Medical Centres (UMC), University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Anne-Laurence Boutillier
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France.
- CNRS UMR 7364, LNCA, Strasbourg, France.
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centres (UMC), University of Amsterdam, Amsterdam, The Netherlands.
- Laboratory of Endocrinology, Amsterdam University Medical Centres (UMC), University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands.
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
29
|
Gabriel BM, Altıntaş A, Smith JAB, Sardon-Puig L, Zhang X, Basse AL, Laker RC, Gao H, Liu Z, Dollet L, Treebak JT, Zorzano A, Huo Z, Rydén M, Lanner JT, Esser KA, Barrès R, Pillon NJ, Krook A, Zierath JR. Disrupted circadian oscillations in type 2 diabetes are linked to altered rhythmic mitochondrial metabolism in skeletal muscle. SCIENCE ADVANCES 2021; 7:eabi9654. [PMID: 34669477 PMCID: PMC8528429 DOI: 10.1126/sciadv.abi9654] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/25/2021] [Indexed: 05/03/2023]
Abstract
Circadian rhythms are generated by an autoregulatory feedback loop of transcriptional activators and repressors. Circadian rhythm disruption contributes to type 2 diabetes (T2D) pathogenesis. We elucidated whether altered circadian rhythmicity of clock genes is associated with metabolic dysfunction in T2D. Transcriptional cycling of core-clock genes BMAL1, CLOCK, and PER3 was altered in skeletal muscle from individuals with T2D, and this was coupled with reduced number and amplitude of cycling genes and disturbed circadian oxygen consumption. Inner mitochondria–associated genes were enriched for rhythmic peaks in normal glucose tolerance, but not T2D, and positively correlated with insulin sensitivity. Chromatin immunoprecipitation sequencing identified CLOCK and BMAL1 binding to inner-mitochondrial genes associated with insulin sensitivity, implicating regulation by the core clock. Inner-mitochondria disruption altered core-clock gene expression and free-radical production, phenomena that were restored by resveratrol treatment. We identify bidirectional communication between mitochondrial function and rhythmic gene expression, processes that are disturbed in diabetes.
Collapse
Affiliation(s)
- Brendan M. Gabriel
- Department of Physiology and Pharmacology, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
- Aberdeen Cardiovascular and Diabetes Centre, The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Ali Altıntaş
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonathon A. B. Smith
- Department of Physiology and Pharmacology, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Laura Sardon-Puig
- Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Xiping Zhang
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Astrid L. Basse
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rhianna C. Laker
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hui Gao
- Department of Biosciences and Nutrition (BioNut), Karolinska Institutet, Stockholm, Sweden
| | - Zhengye Liu
- Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology, Karolinska Institutet, Stockholm, Sweden
| | - Lucile Dollet
- Department of Physiology and Pharmacology, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Jonas T. Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
- Departament de Bioquímica y Biomedicina Molecular, Facultat de Biologia, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain
| | - Zhiguang Huo
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Mikael Rydén
- Department of Medicine (H7), Unit for Endocrinology and Diabetes, Karolinska Institutet, Stockholm, Sweden
| | - Johanna T. Lanner
- Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology, Karolinska Institutet, Stockholm, Sweden
| | - Karyn A. Esser
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolas J. Pillon
- Department of Physiology and Pharmacology, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R. Zierath
- Department of Physiology and Pharmacology, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
30
|
Li MD, Xin H, Yuan Y, Yang X, Li H, Tian D, Zhang H, Zhang Z, Han TL, Chen Q, Duan G, Ju D, Chen K, Deng F, He W. Circadian Clock-Controlled Checkpoints in the Pathogenesis of Complex Disease. Front Genet 2021; 12:721231. [PMID: 34557221 PMCID: PMC8452875 DOI: 10.3389/fgene.2021.721231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/16/2021] [Indexed: 12/26/2022] Open
Abstract
The circadian clock coordinates physiology, metabolism, and behavior with the 24-h cycles of environmental light. Fundamental mechanisms of how the circadian clock regulates organ physiology and metabolism have been elucidated at a rapid speed in the past two decades. Here we review circadian networks in more than six organ systems associated with complex disease, which cluster around metabolic disorders, and seek to propose critical regulatory molecules controlled by the circadian clock (named clock-controlled checkpoints) in the pathogenesis of complex disease. These include clock-controlled checkpoints such as circadian nuclear receptors in liver and muscle tissues, chemokines and adhesion molecules in the vasculature. Although the progress is encouraging, many gaps in the mechanisms remain unaddressed. Future studies should focus on devising time-dependent strategies for drug delivery and engagement in well-characterized organs such as the liver, and elucidating fundamental circadian biology in so far less characterized organ systems, including the heart, blood, peripheral neurons, and reproductive systems.
Collapse
Affiliation(s)
- Min-Dian Li
- Department of Cardiology and the Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Haoran Xin
- Department of Cardiology and the Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yinglin Yuan
- Medical Center of Hematology, The Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Xinqing Yang
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hongli Li
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dingyuan Tian
- Department of Cardiology and the Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hua Zhang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhihui Zhang
- Department of Cardiology and the Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ting-Li Han
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guangyou Duan
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Dapeng Ju
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ka Chen
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Fang Deng
- Key Laboratory of Extreme Environmental Medicine, Department of Pathophysiology, College of High Altitude Military Medicine, Ministry of Education of China, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenyan He
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
31
|
Wang XL, Li L. Circadian Clock Regulates Inflammation and the Development of Neurodegeneration. Front Cell Infect Microbiol 2021; 11:696554. [PMID: 34595127 PMCID: PMC8476957 DOI: 10.3389/fcimb.2021.696554] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
The circadian clock regulates numerous key physiological processes and maintains cellular, tissue, and systemic homeostasis. Disruption of circadian clock machinery influences key activities involved in immune response and brain function. Moreover, Immune activation has been closely linked to neurodegeneration. Here, we review the molecular clock machinery and the diurnal variation of immune activity. We summarize the circadian control of immunity in both central and peripheral immune cells, as well as the circadian regulation of brain cells that are implicated in neurodegeneration. We explore the important role of systemic inflammation on neurodegeneration. The circadian clock modulates cellular metabolism, which could be a mechanism underlying circadian control. We also discuss the circadian interventions implicated in inflammation and neurodegeneration. Targeting circadian clocks could be a potential strategy for the prevention and treatment of inflammation and neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiao-Lan Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lianjian Li
- Department of Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
32
|
Morris H, Gonçalves CF, Dudek M, Hoyland J, Meng QJ. Tissue physiology revolving around the clock: circadian rhythms as exemplified by the intervertebral disc. Ann Rheum Dis 2021; 80:828-839. [PMID: 33397731 DOI: 10.1136/annrheumdis-2020-219515] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/07/2023]
Abstract
Circadian clocks in the brain and peripheral tissues temporally coordinate local physiology to align with the 24 hours rhythmic environment through light/darkness, rest/activity and feeding/fasting cycles. Circadian disruptions (during ageing, shift work and jet-lag) have been proposed as a risk factor for degeneration and disease of tissues, including the musculoskeletal system. The intervertebral disc (IVD) in the spine separates the bony vertebrae and permits movement of the spinal column. IVD degeneration is highly prevalent among the ageing population and is a leading cause of lower back pain. The IVD is known to experience diurnal changes in loading patterns driven by the circadian rhythm in rest/activity cycles. In recent years, emerging evidence indicates the existence of molecular circadian clocks within the IVD, disruption to which accelerates tissue ageing and predispose animals to IVD degeneration. The cell-intrinsic circadian clocks in the IVD control key aspects of physiology and pathophysiology by rhythmically regulating the expression of ~3.5% of the IVD transcriptome, allowing cells to cope with the drastic biomechanical and chemical changes that occur throughout the day. Indeed, epidemiological studies on long-term shift workers have shown an increased incidence of lower back pain. In this review, we summarise recent findings of circadian rhythms in health and disease, with the IVD as an exemplar tissue system. We focus on rhythmic IVD functions and discuss implications of utilising biological timing mechanisms to improve tissue health and mitigate degeneration. These findings may have broader implications in chronic rheumatic conditions, given the recent findings of musculoskeletal circadian clocks.
Collapse
Affiliation(s)
- Honor Morris
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Cátia F Gonçalves
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Michal Dudek
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Judith Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
- NIHR Manchester Musculoskeletal Biomedical Research Centre, Manchester University, NHS Foundation Trust, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Qing-Jun Meng
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
33
|
Abdel-Rahman EA, Hosseiny S, Aaliya A, Adel M, Yasseen B, Al-Okda A, Radwan Y, Saber SH, Elkholy N, Elhanafy E, Walker EE, Zuniga-Hertz JP, Patel HH, Griffiths HR, Ali SS. Sleep/wake calcium dynamics, respiratory function, and ROS production in cardiac mitochondria. J Adv Res 2021; 31:35-47. [PMID: 34194831 PMCID: PMC8240107 DOI: 10.1016/j.jare.2021.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/24/2020] [Accepted: 01/07/2021] [Indexed: 12/22/2022] Open
Abstract
Introduction Incidents of myocardial infarction and sudden cardiac arrest vary with time of the day, but the mechanism for this effect is not clear. We hypothesized that diurnal changes in the ability of cardiac mitochondria to control calcium homeostasis dictate vulnerability to cardiovascular events. Objectives Here we investigate mitochondrial calcium dynamics, respiratory function, and reactive oxygen species (ROS) production in mouse heart during different phases of wake versus sleep periods. Methods We assessed time-of-the-day dependence of calcium retention capacity of isolated heart mitochondria from young male C57BL6 mice. Rhythmicity of mitochondrial-dependent oxygen consumption, ROS production and transmembrane potential in homogenates were explored using the Oroboros O2k Station equipped with a fluorescence detection module. Changes in expression of essential clock and calcium dynamics genes/proteins were also determined at sleep versus wake time points. Results Our results demonstrate that cardiac mitochondria exhibit higher calcium retention capacity and higher rates of calcium uptake during sleep period. This was associated with higher expression of clock gene Bmal1, lower expression of per2, greater expression of MICU1 gene (mitochondrial calcium uptake 1), and lower expression of the mitochondrial transition pore regulator gene cyclophilin D. Protein levels of mitochondrial calcium uniporter (MCU), MICU2, and sodium/calcium exchanger (NCLX) were also higher at sleep onset relative to wake period. While complex I and II-dependent oxygen utilization and transmembrane potential of cardiac mitochondria were lower during sleep, ROS production was increased presumably due to mitochondrial calcium sequestration. Conclusions Taken together, our results indicate that retaining mitochondrial calcium in the heart during sleep dissipates membrane potential, slows respiratory activities, and increases ROS levels, which may contribute to increased vulnerability to cardiac stress during sleep-wake transition. This pronounced daily oscillations in mitochondrial functions pertaining to stress vulnerability may at least in part explain diurnal prevalence of cardiac pathologies.
Collapse
Affiliation(s)
- Engy A. Abdel-Rahman
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
- 57357 Children's Cancer Hospital, Basic Research Department, Cairo, Egypt
- Department of Pharmacology, Faculty of Medicine, Assuit University, Assuit, Egypt
| | - Salma Hosseiny
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
| | - Abdullah Aaliya
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
| | - Mohamed Adel
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
| | - Basma Yasseen
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
- 57357 Children's Cancer Hospital, Basic Research Department, Cairo, Egypt
| | - Abdelrahman Al-Okda
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
| | - Yasmine Radwan
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
| | - Saber H. Saber
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
| | - Nada Elkholy
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
| | - Eslam Elhanafy
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
| | - Emily E. Walker
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Juan P. Zuniga-Hertz
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hemal H. Patel
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Sameh S. Ali
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
- 57357 Children's Cancer Hospital, Basic Research Department, Cairo, Egypt
| |
Collapse
|
34
|
Gabriel BM, Zierath JR. Zeitgebers of skeletal muscle and implications for metabolic health. J Physiol 2021; 600:1027-1036. [PMID: 33963554 DOI: 10.1113/jp280884] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/04/2021] [Indexed: 12/25/2022] Open
Abstract
Metabolic health is a crucial area of current research, and is an outcome of innate physiology, and interactions with the environment. Environmental cues, such as the Earth's day-night rhythm, partly regulate diurnal hormones and metabolites. Circadian physiology consists of highly conserved biological processes over ∼24-h cycles, which are influenced by external cues (Zeitgebers - 'time-keepers'). Skeletal muscle has diurnal variations of a large magnitude, owing in part to the strong nature of physical activity throughout the day and other external Zeitgebers. The orchestration of whole-body and skeletal muscle metabolism is a complex, finely tuned process, and molecular diurnal variations are regulated by a transcription-translation feedback loop controlled by the molecular clock, as well as non-transcriptional metabolic processes. The mitochondrion may play an important role in regulating diurnal metabolites within skeletal muscle, given its central role in the regulation of NAD+ /NADH, O2 , reactive oxygen species and redox metabolism. These molecular pathways display diurnal variation and illustrate the complex orchestration of circadian metabolism in skeletal muscle. Probably the most robust Zeitgeber of skeletal muscle is exercise, which alters glucose metabolism and flux, in addition to a range of other diurnal metabolic pathways. Indeed, performing exercise at different times of the day may alter metabolism and health outcomes in some cohorts. The objective of this Symposium Review is to briefly cover the current literature, and to speculate regarding future areas of research. Thus, we postulate that metabolic health may be optimized by altering the timing of external cues such as diet and exercise.
Collapse
Affiliation(s)
- Brendan M Gabriel
- Aberdeen Cardiovascular & Diabetes Centre, The Rowett Institute, University of Aberdeen, Aberdeen, UK.,Department of Physiology and Pharmacology, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Eat, Train, Sleep-Retreat? Hormonal Interactions of Intermittent Fasting, Exercise and Circadian Rhythm. Biomolecules 2021; 11:biom11040516. [PMID: 33808424 PMCID: PMC8065500 DOI: 10.3390/biom11040516] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 01/08/2023] Open
Abstract
The circadian rhythmicity of endogenous metabolic and hormonal processes is controlled by a complex system of central and peripheral pacemakers, influenced by exogenous factors like light/dark-cycles, nutrition and exercise timing. There is evidence that alterations in this system may be involved in the pathogenesis of metabolic diseases. It has been shown that disruptions to normal diurnal rhythms lead to drastic changes in circadian processes, as often seen in modern society due to excessive exposure to unnatural light sources. Out of that, research has focused on time-restricted feeding and exercise, as both seem to be able to reset disruptions in circadian pacemakers. Based on these results and personal physical goals, optimal time periods for food intake and exercise have been identified. This review shows that appropriate nutrition and exercise timing are powerful tools to support, rather than not disturb, the circadian rhythm and potentially contribute to the prevention of metabolic diseases. Nevertheless, both lifestyle interventions are unable to address the real issue: the misalignment of our biological with our social time.
Collapse
|
36
|
Woller A, Gonze D. Circadian Misalignment and Metabolic Disorders: A Story of Twisted Clocks. BIOLOGY 2021; 10:biology10030207. [PMID: 33801795 PMCID: PMC8001388 DOI: 10.3390/biology10030207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 01/18/2023]
Abstract
Simple Summary In mammals, many physiological processes follow a 24 h rhythmic pattern. These rhythms are governed by a complex network of circadian clocks, which perceives external time cues (notably light and nutrients) and adjusts the timing of metabolic and physiological functions to allow a proper adaptation of the organism to the daily changes in the environmental conditions. Circadian rhythms originate at the cellular level through a transcriptional–translational regulatory network involving a handful of clock genes. In this review, we show how adverse effects caused by ill-timed feeding or jet lag can lead to a dysregulation of this genetic clockwork, which in turn results in altered metabolic regulation and possibly in diseases. We also show how computational modeling can complement experimental observations to understand the design of the clockwork and the onset of metabolic disorders. Abstract Biological clocks are cell-autonomous oscillators that can be entrained by periodic environmental cues. This allows organisms to anticipate predictable daily environmental changes and, thereby, to partition physiological processes into appropriate phases with respect to these changing external conditions. Nowadays our 24/7 society challenges this delicate equilibrium. Indeed, many studies suggest that perturbations such as chronic jet lag, ill-timed eating patterns, or shift work increase the susceptibility to cardiometabolic disorders, diabetes, and cancers. However the underlying mechanisms are still poorly understood. A deeper understanding of this complex, dynamic system requires a global holistic approach for which mathematical modeling can be highly beneficial. In this review, we summarize several experimental works pertaining to the effect of adverse conditions on clock gene expression and on physiology, and we show how computational models can bring interesting insights into the links between circadian misalignment and metabolic diseases.
Collapse
Affiliation(s)
- Aurore Woller
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Didier Gonze
- Unité de Chronobiologie Théorique, Faculté des Sciences CP 231, Université Libre de Bruxelles, Bvd du Triomphe, 1050 Bruxelles, Belgium
- Correspondence:
| |
Collapse
|
37
|
Wang M, Yu D, Zheng L, Hong B, Li H, Hu X, Zhang K, Mou Y. Mechanical Stress Affects Circadian Rhythm in Skeletal Muscle (C2C12 Myoblasts) by Reducing Per/Cry Gene Expression and Increasing Bmal1 Gene Expression. Med Sci Monit 2021; 27:e928359. [PMID: 33444293 PMCID: PMC7814509 DOI: 10.12659/msm.928359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Circadian rhythm can modulate normal activity of humans in adapting to daily environment changes. Mechanical stress loading affects skeletal muscle development and bio-functions. This study aimed to investigate the effects of mechanical stress loading on circadian rhythm in skeletal muscle (C2C12 cells) and to explore the associated mechanism. MATERIAL AND METHODS C2C12 myoblasts were cultured and treated with mechanical stress loading. After mechanical stress loading for 6 h,12 h, and 24 h, we observed the C2C12 myoblasts and determined gene transcription and protein expression of Clock genes, including Clock, Bmal1, Per, and Cry using RT-PCR and western blot assay. RESULTS Mechanical stress loading triggered C2C12 cells growing by force direction and enhanced the cell proliferation at 6 h, 12 h, and 24 h. Gene transcription and protein expression of the core Clock-associated molecules, Clock and Bmal1, increased from start of loading to 12 h, and decreased from 12 h to 24 h. Gene transcription and protein expression of core Clock-associated molecules, Cry and Per, decreased in the first 12 h (from 6 h to 12 h) and increased in the last 12 h (from 12 h to 24 h). CONCLUSIONS Our study revealed that mechanical stress loading affected circadian rhythm in skeletal muscle (C2C12 myoblasts) through reducing Per/Cry and enhancing Clock/Bmal1 gene expression. This study provides insights for investigating circadian rhythm and associated bio-functions of humans.
Collapse
Affiliation(s)
- Mengjia Wang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, P.R. China
| | - Da Yu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Lichun Zheng
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, P.R. China
| | - Bing Hong
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, P.R. China
| | - Houxuan Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, P.R. China
| | - Xiaobei Hu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, P.R. China
| | - Kun Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, P.R. China
| | - Yongbin Mou
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
38
|
Mayeuf-Louchart A. [The muscle biological clock]. Med Sci (Paris) 2021; 36 Hors série n° 2:10-12. [PMID: 33427629 DOI: 10.1051/medsci/2020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The biological clock plays an essential role in the control of muscle activity, by dissociating temporally the metabolic functions of skeletal muscle. Exercise capacity also displays a circadian rhythm. Alterations in biological rhythm, as in shift workers, alter muscle function and are associated with the development of sarcopenia.
Collapse
Affiliation(s)
- Alicia Mayeuf-Louchart
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000 Lille, France
| |
Collapse
|
39
|
Wang XL, Wolff SEC, Korpel N, Milanova I, Sandu C, Rensen PCN, Kooijman S, Cassel JC, Kalsbeek A, Boutillier AL, Yi CX. Deficiency of the Circadian Clock Gene Bmal1 Reduces Microglial Immunometabolism. Front Immunol 2020; 11:586399. [PMID: 33363534 PMCID: PMC7753637 DOI: 10.3389/fimmu.2020.586399] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/06/2020] [Indexed: 01/25/2023] Open
Abstract
Microglia are brain immune cells responsible for immune surveillance. Microglial activation is, however, closely associated with neuroinflammation, neurodegeneration, and obesity. Therefore, it is critical that microglial immune response appropriately adapts to different stressors. The circadian clock controls the cellular process that involves the regulation of inflammation and energy hemostasis. Here, we observed a significant circadian variation in the expression of markers related to inflammation, nutrient utilization, and antioxidation in microglial cells isolated from mice. Furthermore, we found that the core clock gene-Brain and Muscle Arnt-like 1 (Bmal1) plays a role in regulating microglial immune function in mice and microglial BV-2 cells by using quantitative RT-PCR. Bmal1 deficiency decreased gene expression of pro-inflammatory cytokines, increased gene expression of antioxidative and anti-inflammatory factors in microglia. These changes were also observed in Bmal1 knock-down microglial BV-2 cells under lipopolysaccharide (LPS) and palmitic acid stimulations. Moreover, Bmal1 deficiency affected the expression of metabolic associated genes and metabolic processes, and increased phagocytic capacity in microglia. These findings suggest that Bmal1 is a key regulator in microglial immune response and cellular metabolism.
Collapse
Affiliation(s)
- Xiao-Lan Wang
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Amsterdam, Netherlands
| | - Samantha E. C. Wolff
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Amsterdam, Netherlands
| | - Nikita Korpel
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Amsterdam, Netherlands
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Irina Milanova
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Amsterdam, Netherlands
| | - Cristina Sandu
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Patrick C. N. Rensen
- Department of Medicine, Divison of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Sander Kooijman
- Department of Medicine, Divison of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Jean-Christophe Cassel
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France
- CNRS UMR 7364, LNCA, Strasbourg, France
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Amsterdam, Netherlands
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Anne-Laurence Boutillier
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France
- CNRS UMR 7364, LNCA, Strasbourg, France
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Amsterdam, Netherlands
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| |
Collapse
|
40
|
Tan X, van Egmond LT, Cedernaes J, Benedict C. The role of exercise-induced peripheral factors in sleep regulation. Mol Metab 2020; 42:101096. [PMID: 33045432 PMCID: PMC7585947 DOI: 10.1016/j.molmet.2020.101096] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Recurrently disrupted sleep is a widespread phenomenon in our society. This is worrisome as chronically impaired sleep increases the risk of numerous diseases that place a heavy burden on health services worldwide, including type 2 diabetes, obesity, depression, cardiovascular disease, and dementia. Therefore, strategies mitigating the current societal sleep crisis are needed. SCOPE OF REVIEW Observational and interventional studies have found that regular moderate to intensive exercise is associated with better subjective and objective sleep in humans, with and without pre-existing sleep disturbances. Here, we summarize recent findings from clinical studies in humans and animal experiments suggesting that molecules that are expressed, produced, and released by the skeletal muscle in response to exercise may contribute to the sleep-improving effects of exercise. MAJOR CONCLUSIONS Exercise-induced skeletal muscle recruitment increases blood concentrations of signaling molecules, such as the myokine brain-derived neurotrophic factor (BDNF), which has been shown to increase the depth of sleep in animals. As reviewed herein, BDNF and other muscle-induced factors are likely to contribute to the sleep-promoting effects of exercise. Despite progress in the field, however, several fundamental questions remain. For example, one central question concerns the optimal time window for exercise to promote sleep. It is also unknown whether the production of muscle-induced peripheral factors promoting sleep is altered by acute and chronic sleep disturbances, which has become increasingly common in the modern 24/7 lifestyle.
Collapse
Affiliation(s)
- Xiao Tan
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
41
|
Zhang H, Liang J, Chen N. Do not neglect the role of circadian rhythm in muscle atrophy. Ageing Res Rev 2020; 63:101155. [PMID: 32882420 DOI: 10.1016/j.arr.2020.101155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/04/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022]
Abstract
In addition to its role in movement, human skeletal muscle also plays important roles in physiological activities related to metabolism and the endocrine system. Aging and disease onset and progression can induce the reduction of skeletal muscle mass and function, thereby exacerbating skeletal muscle atrophy. Recent studies have confirmed that skeletal muscle atrophy is mainly controlled by the balance between protein synthesis and degradation, the activation of satellite cells, and mitochondrial quality in skeletal muscle. Circadian rhythm is an internal rhythm related to an organism's adaptation to light-dark or day-night cycles of the planet, and consists of a core biological clock and a peripheral biological clock. Skeletal muscle, as the most abundant tissue in the human body, is an essential part of the peripheral biological clock in humans. Increasing evidence has confirmed that maintaining a normal circadian rhythm can be beneficial for increasing protein content, improving mitochondrial quality, and stimulating regeneration and repairing of cells in skeletal muscle to prevent or alleviate skeletal muscle atrophy. In this review, we summarize the roles and underlying mechanisms of circadian rhythm in delaying skeletal muscle atrophy, which will provide a theoretical reference for incorporating aspects of circadian rhythm to the prevention and treatment of skeletal muscle atrophy.
Collapse
Affiliation(s)
- Hu Zhang
- Graduate School, Wuhan Sports University, Wuhan 430079, China
| | - Jiling Liang
- Graduate School, Wuhan Sports University, Wuhan 430079, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
42
|
Finger AM, Dibner C, Kramer A. Coupled network of the circadian clocks: a driving force of rhythmic physiology. FEBS Lett 2020; 594:2734-2769. [PMID: 32750151 DOI: 10.1002/1873-3468.13898] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/06/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022]
Abstract
The circadian system is composed of coupled endogenous oscillators that allow living beings, including humans, to anticipate and adapt to daily changes in their environment. In mammals, circadian clocks form a hierarchically organized network with a 'master clock' located in the suprachiasmatic nucleus of the hypothalamus, which ensures entrainment of subsidiary oscillators to environmental cycles. Robust rhythmicity of body clocks is indispensable for temporally coordinating organ functions, and the disruption or misalignment of circadian rhythms caused for instance by modern lifestyle is strongly associated with various widespread diseases. This review aims to provide a comprehensive overview of our current knowledge about the molecular architecture and system-level organization of mammalian circadian oscillators. Furthermore, we discuss the regulatory roles of peripheral clocks for cell and organ physiology and their implication in the temporal coordination of metabolism in human health and disease. Finally, we summarize methods for assessing circadian rhythmicity in humans.
Collapse
Affiliation(s)
- Anna-Marie Finger
- Laboratory of Chronobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Charna Dibner
- Division of Endocrinology, Diabetes, Nutrition, and Patient Education, Department of Medicine, University Hospital of Geneva, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Achim Kramer
- Laboratory of Chronobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
43
|
Kemler D, Wolff CA, Esser KA. Time-of-day dependent effects of contractile activity on the phase of the skeletal muscle clock. J Physiol 2020; 598:3631-3644. [PMID: 32537739 PMCID: PMC7479806 DOI: 10.1113/jp279779] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
Key points Disruptions in circadian rhythms across an organism are associated with negative health outcomes, such as cardiometabolic and neurodegenerative diseases. Exercise has been proposed as a time cue for the circadian clock in rodents and humans. In this study, we assessed the effect of a single bout of endurance exercise on the skeletal muscle clock in vivo and a bout of muscle contractions in vitro. Timing of exercise or contractions influences the directional response of the muscle clock phase in vivo and in vitro. Our findings demonstrate that muscle contractions, as a component of exercise, can directly modulate the expression of muscle clock components in a time‐of‐day dependent manner.
Abstract Exercise has been proposed to be a zeitgeber for the muscle circadian clock mechanism. However, this is not well defined and it is unknown if exercise timing induces directional shifts of the muscle clock. Our purpose herein was to assess the effect of one bout of treadmill exercise on skeletal muscle clock phase changes. We subjected PERIOD2::LUCIFERASE mice (n = 30F) to one 60 min treadmill exercise bout at three times of day. Exercise at ZT5, 5 h after lights on, induced a phase advance (100.2 ± 25.8 min; P = 0.0002), whereas exercise at ZT11, 1 h before lights off, induced a phase delay (62.1 ± 21.1 min; P = 0.0003). Exercise at ZT17, middle of the dark phase, did not alter the muscle clock phase. Exercise induces diverse systemic changes so we developed an in vitro model system to examine the effects of contractile activity on muscle clock phase. Contractions applied at peak or trough Bmal1 expression induced significant phase delays (applied at peak: 27.2 ± 10.2 min; P = 0.0017; applied at trough: 64.6 ± 6.5 min, P < 0.0001). Contractions applied during the transition from peak to trough Bmal1 expression induced a phase advance (49.8 ± 23.1 min; P = 0.0051). Lastly, contractions at different times of day resulted in differential changes of core clock gene expression, demonstrating an exercise and clock interaction, providing insight into potential mechanisms of exercise‐induced phase shifts. These data demonstrate that muscle contractions, as part of exercise, are sufficient to shift the muscle circadian clock phase, likely through changes in core clock gene expression. Additionally, our findings that exercise induces directional muscle clock phase changes confirms that exercise is a bona fide environmental time cue for skeletal muscle. Disruptions in circadian rhythms across an organism are associated with negative health outcomes, such as cardiometabolic and neurodegenerative diseases. Exercise has been proposed as a time cue for the circadian clock in rodents and humans. In this study, we assessed the effect of a single bout of endurance exercise on the skeletal muscle clock in vivo and a bout of muscle contractions in vitro. Timing of exercise or contractions influences the directional response of the muscle clock phase in vivo and in vitro. Our findings demonstrate that muscle contractions, as a component of exercise, can directly modulate the expression of muscle clock components in a time‐of‐day dependent manner.
Collapse
Affiliation(s)
- Denise Kemler
- Department of Physiology and Functional Genomics, University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA.,Myology Institute, University of Florida, 1200 Newell Drive, Gainesville, FL, 32610, USA
| | - Christopher A Wolff
- Department of Physiology and Functional Genomics, University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA.,Myology Institute, University of Florida, 1200 Newell Drive, Gainesville, FL, 32610, USA
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA.,Myology Institute, University of Florida, 1200 Newell Drive, Gainesville, FL, 32610, USA
| |
Collapse
|
44
|
Benitah SA, Welz PS. Circadian Regulation of Adult Stem Cell Homeostasis and Aging. Cell Stem Cell 2020; 26:817-831. [DOI: 10.1016/j.stem.2020.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
45
|
Aoyama S, Shibata S. Time-of-Day-Dependent Physiological Responses to Meal and Exercise. Front Nutr 2020; 7:18. [PMID: 32181258 PMCID: PMC7059348 DOI: 10.3389/fnut.2020.00018] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/13/2020] [Indexed: 12/26/2022] Open
Abstract
The mammalian circadian clock drives the temporal coordination in cellular homeostasis and it leads the day-night fluctuation of physiological functions, such as sleep/wake cycle, hormonal secretion, and body temperature. The mammalian circadian clock system in the body is classified hierarchically into two classes, the central clock in the suprachiasmatic nucleus (SCN) of the hypothalamus and the peripheral clocks in peripheral tissues such as the intestine and liver, as well as other brain areas outside the SCN. The circadian rhythm of various tissue-specific functions is mainly controlled by each peripheral clock and partially by the central clock as well. The digestive, absorptive, and metabolic capacities of nutrients also show the day-night variations in several peripheral tissues such as small intestine and liver. It is therefore indicated that the bioavailability or metabolic capacity of nutrients depends on the time of day. In fact, the postprandial response of blood triacylglycerol to a specific diet and glucose tolerance exhibit clear time-of-day effects. Meal frequency and distribution within a day are highly related to metabolic functions, and optimal time-restricted feeding has the potential to prevent several metabolic dysfunctions. In this review, we summarize the time-of-day-dependent postprandial response of macronutrients to each meal and the involvement of circadian clock system in the time-of-day effect. Furthermore, the chronic beneficial and adverse effects of meal time and eating pattern on metabolism and its related diseases are discussed. Finally, we discuss the timing-dependent effects of exercise on the day-night variation of exercise performance and therapeutic potential of time-controlled-exercise for promoting general health.
Collapse
Affiliation(s)
- Shinya Aoyama
- Graduate School of Biomedical Science, Nagasaki University, Nagasaki, Japan
| | - Shigenobu Shibata
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
46
|
Dibner C. The importance of being rhythmic: Living in harmony with your body clocks. Acta Physiol (Oxf) 2020; 228:e13281. [PMID: 30980501 DOI: 10.1111/apha.13281] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 02/06/2023]
Abstract
Circadian rhythms have developed in all light-sensitive organisms, including humans, as a fundamental anticipatory mechanism that enables proactive adaptation to environmental changes. The circadian system is organized in a highly hierarchical manner, with clocks operative in most cells of the body ensuring the temporal coordination of physiological processes. Circadian misalignment, stemming from modern life style, draws increasing attention due to its tight association with the development of metabolic, cardiovascular, inflammatory and mental diseases as well as cancer. This review highlights recent findings emphasizing the role of the circadian system in the temporal orchestration of physiology, with a particular focus on implications of circadian misalignment in human pathologies.
Collapse
Affiliation(s)
- Charna Dibner
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Medicine University Hospital of Geneva Geneva Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine University of Geneva Geneva Switzerland
- Diabetes Center, Faculty of Medicine University of Geneva Geneva Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3) Geneva Switzerland
| |
Collapse
|
47
|
Vitale JA, Bonato M, La Torre A, Banfi G. The Role of the Molecular Clock in Promoting Skeletal Muscle Growth and Protecting against Sarcopenia. Int J Mol Sci 2019; 20:ijms20174318. [PMID: 31484440 PMCID: PMC6747101 DOI: 10.3390/ijms20174318] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 12/12/2022] Open
Abstract
The circadian clock has a critical role in many physiological functions of skeletal muscle and is essential to fully understand the precise underlying mechanisms involved in these complex interactions. The importance of circadian expression for structure, function and metabolism of skeletal muscle is clear when observing the muscle phenotype in models of molecular clock disruption. Presently, the maintenance of circadian rhythms is emerging as an important new factor in human health, with disruptions linked to ageing, as well as to the development of many chronic diseases, including sarcopenia. Therefore, the aim of this review is to present the latest findings demonstrating how circadian rhythms in skeletal muscle are important for maintenance of the cellular physiology, metabolism and function of skeletal muscle. Moreover, we will present the current knowledge about the tissue-specific functions of the molecular clock in skeletal muscle.
Collapse
Affiliation(s)
- Jacopo A Vitale
- IRCCS Istituto Ortopedico Galeazzi, LaMSS-Laboratory of Movement and Sport Science, Via Giuseppe Galeazzi 4, 20161 Milano, Italy
| | - Matteo Bonato
- IRCCS Istituto Ortopedico Galeazzi, LaMSS-Laboratory of Movement and Sport Science, Via Giuseppe Galeazzi 4, 20161 Milano, Italy.
| | - Antonio La Torre
- IRCCS Istituto Ortopedico Galeazzi, LaMSS-Laboratory of Movement and Sport Science, Via Giuseppe Galeazzi 4, 20161 Milano, Italy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Giuseppe Colombo 71, 20133 Milano, Italy
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, LaMSS-Laboratory of Movement and Sport Science, Via Giuseppe Galeazzi 4, 20161 Milano, Italy
- Vita-Salute San Raffaele University, via Olgettina 58, 20132 Milano, Italy
| |
Collapse
|
48
|
Effects of day-time feeding on murine skeletal muscle growth and synthesis. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2019. [DOI: 10.1016/j.jnim.2019.100099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
49
|
Abstract
Perturbed diurnal rhythms are becoming increasingly evident as deleterious events in the pathology of metabolic diseases. Exercise is well characterized as a crucial intervention in the prevention and treatment of individuals with metabolic diseases. Little is known, however, regarding optimizing the timing of exercise bouts in order to maximize their health benefits. Furthermore, exercise is a potent modulator of skeletal muscle metabolism, and it is clear that skeletal muscle has a strong circadian profile. In humans, mitochondrial function peaks in the late afternoon, and the circadian clock might be inherently impaired in myotubes from patients with metabolic disease. Timing exercise bouts to coordinate with an individual's circadian rhythms might be an efficacious strategy to optimize the health benefits of exercise. The role of exercise as a Zeitgeber can also be used as a tool in combating metabolic disease. Shift work is known to induce acute insulin resistance, and appropriately timed exercise might improve health markers in shift workers who are at risk of metabolic disease. In this Review, we discuss the literature regarding diurnal skeletal muscle metabolism and the interaction with exercise bouts at different times of the day to combat metabolic disease.
Collapse
Affiliation(s)
- Brendan M Gabriel
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
50
|
Hodge BA, Zhang X, Gutierrez-Monreal MA, Cao Y, Hammers DW, Yao Z, Wolff CA, Du P, Kemler D, Judge AR, Esser KA. MYOD1 functions as a clock amplifier as well as a critical co-factor for downstream circadian gene expression in muscle. eLife 2019; 8:e43017. [PMID: 30789342 PMCID: PMC6398978 DOI: 10.7554/elife.43017] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/20/2019] [Indexed: 01/13/2023] Open
Abstract
In the present study we show that the master myogenic regulatory factor, MYOD1, is a positive modulator of molecular clock amplitude and functions with the core clock factors for expression of clock-controlled genes in skeletal muscle. We demonstrate that MYOD1 directly regulates the expression and circadian amplitude of the positive core clock factor Bmal1. We identify a non-canonical E-box element in Bmal1 and demonstrate that is required for full MYOD1-responsiveness. Bimolecular fluorescence complementation assays demonstrate that MYOD1 colocalizes with both BMAL1 and CLOCK throughout myonuclei. We demonstrate that MYOD1 and BMAL1:CLOCK work in a synergistic fashion through a tandem E-box to regulate the expression and amplitude of the muscle specific clock-controlled gene, Titin-cap (Tcap). In conclusion, these findings reveal mechanistic roles for the muscle specific transcription factor MYOD1 in the regulation of molecular clock amplitude as well as synergistic regulation of clock-controlled genes in skeletal muscle.
Collapse
Affiliation(s)
- Brian A Hodge
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleUnited States
| | - Xiping Zhang
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleUnited States
| | | | - Yi Cao
- Department of Bioinformatics and Computational BiologyGenentech IncSouth San FranciscoUnited States
| | - David W Hammers
- Department of Pharmacology and TherapeuticsUniversity of Florida Health Science CenterGainesvilleUnited States
| | - Zizhen Yao
- Allen Institute for Brain ScienceSeattleUnited States
| | - Christopher A Wolff
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleUnited States
| | - Ping Du
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleUnited States
| | - Denise Kemler
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleUnited States
| | - Andrew R Judge
- Department of Physical TherapyUniversity of Florida Health Science CenterGainesvilleUnited States
| | - Karyn A Esser
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleUnited States
| |
Collapse
|