1
|
Rios Agudelo PA, Reyes Vélez J, Olivera Angel M, Blanchard AM, Cuesta Astroz Y, Caraballo Guzmán A, Torres Lindarte G. Whole-Genome Sequencing Analysis Revealed High Genomic Variability, Recombination Events and Mobile Genetic Elements in Streptococcus uberis Strains Isolated from Bovine Mastitis in Colombian Dairy Herds. Antibiotics (Basel) 2025; 14:297. [PMID: 40149107 PMCID: PMC11939407 DOI: 10.3390/antibiotics14030297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/13/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
Introduction:Streptococcus uberis is a poorly controlled cause of bovine intramammary infections and a common motivation for the use antibiotics in dairy farms worldwide. Therefore, studying the genomic characteristics of this pathogen is fundamental to understand its complex epidemiology and behavior against antimicrobials. Methods: A comparative genomic analysis of 10 S. uberis strains was performed and their antimicrobial susceptibility was assessed. Results: Ten different novel sequence types were found, and genes (tetM, tetO, patB, lnuC, lnuA, lsaE, ermB, ANT(6)-la) and mobile genetic elements previously associated with antimicrobial resistance (repUS43, ISSag2, and ISEnfa4) and virulence (315.2 phage) were detected. Additionally, our strains had the highest relative rate of recombination to mutation (8.3) compared to other S. uberis strains isolated from different continents (America: 7.7, Asia: 2.9, Europe: 5.4, and Oceania: 6.6). Most of the strains (80%) tested showed phenotypic resistance to clindamycin and 70% exhibited intermediate susceptibility to penicillin. Conclusions: The high heterogeneity of strains observed and the presence of genetic factors linked to antimicrobial resistance represent a challenge for the implementation and surveillance of measures focused on the control and elimination of this pathogen.
Collapse
Affiliation(s)
- Paola A. Rios Agudelo
- Instituto Colombiano de Medicina Tropical, Universidad CES, Cra 43a No. 52 Sur 99, Sabaneta 055450, Antioquia, Colombia; (P.A.R.A.); (J.R.V.); (Y.C.A.); (A.C.G.)
| | - Julián Reyes Vélez
- Instituto Colombiano de Medicina Tropical, Universidad CES, Cra 43a No. 52 Sur 99, Sabaneta 055450, Antioquia, Colombia; (P.A.R.A.); (J.R.V.); (Y.C.A.); (A.C.G.)
| | - Martha Olivera Angel
- Biogenesis Research Group, Faculty of Agriculture Science, University of Antioquia, Cra 75 No. 65-87, Medellín 050010, Antioquia, Colombia;
| | - Adam M. Blanchard
- School of Veterinary and Science, University of Nottingham, Sutton Bonington Campus, Leicestireshire LE12 5RD, UK;
| | - Yesid Cuesta Astroz
- Instituto Colombiano de Medicina Tropical, Universidad CES, Cra 43a No. 52 Sur 99, Sabaneta 055450, Antioquia, Colombia; (P.A.R.A.); (J.R.V.); (Y.C.A.); (A.C.G.)
- Escuela de Microbiología, Universidad de Antioquia, Ciudad Universitaria, Calle 67 No 12 53-108, Medellín 050010, Antioquia, Colombia
| | - Arley Caraballo Guzmán
- Instituto Colombiano de Medicina Tropical, Universidad CES, Cra 43a No. 52 Sur 99, Sabaneta 055450, Antioquia, Colombia; (P.A.R.A.); (J.R.V.); (Y.C.A.); (A.C.G.)
| | - Giovanny Torres Lindarte
- Instituto Colombiano de Medicina Tropical, Universidad CES, Cra 43a No. 52 Sur 99, Sabaneta 055450, Antioquia, Colombia; (P.A.R.A.); (J.R.V.); (Y.C.A.); (A.C.G.)
| |
Collapse
|
2
|
Saenz-de-Juano MD, Silvestrelli G, Buri S, Zinsli LV, Schmelcher M, Ulbrich SE. Mastitis-related Staphylococcus aureus-derived extracellular vesicles induce a pro-inflammatory response in bovine monocyte-derived macrophages. Sci Rep 2025; 15:6059. [PMID: 39972051 PMCID: PMC11840098 DOI: 10.1038/s41598-025-90466-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/13/2025] [Indexed: 02/21/2025] Open
Abstract
Staphylococcus aureus (S. aureus) is one of the most common causative agents of mammary gland infection and mastitis, but the specific role of S. aureus-derived extracellular vesicles (SaEVs) in mastitis has been poorly studied to date. Here, we aimed to investigate the response of bovine monocyte-derived macrophages (boMdM) to SaEVs of the genotype B (GTB) mastitis-related strain M5512B. Specifically, we evaluated the effects on the actin cytoskeleton, gene expression, and the SaEV proteomic cargo. Furthermore, we assessed to what extent the cellular and molecular response of boMdM to SaEVs differed from peripheral mononuclear blood cells (PBMCs) used for in vitro derivation of the former. We observed that SaEVs induced morphological changes in boMdM, leading to a pro-inflammatory and pyroptosis-related increased gene expression. Additionally, our study revealed that boMdM and PBMCs exhibited stimulus-specific differing responses. The proteomic analysis of SaEVs identified clusters of proteins related to virulence and antibiotic resistance, supporting the theory that S. aureus might use EVs to evade host defences and colonize the mammary gland. Our results bring new insights into how SaEVs might impact the host during an S. aureus infection, which can be useful for future S. aureus vaccine development.
Collapse
Affiliation(s)
- Mara D Saenz-de-Juano
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, 8092, Switzerland
| | - Giulia Silvestrelli
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, 8092, Switzerland
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
| | - Samuel Buri
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, 8092, Switzerland
| | - Léa V Zinsli
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, 8092, Switzerland
| | - Mathias Schmelcher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, 8092, Switzerland
- ZHAW School of Life Sciences and Facility Management, Fachstelle Biochemie und Bioanalytik, Einsiedlerstrasse 31, Wädenswil, 8820, Switzerland
| | - Susanne E Ulbrich
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Zurich, 8092, Switzerland.
| |
Collapse
|
3
|
Arsaute S, Reinoso EB, Cecchini ME, Moliva MV, Montironi ID, Cariddi LN. Minthostachys verticillata essential oil modulates cytokine synthesis and Staphylococcus aureus internalization in MAC-T cells at least through TLR4/MyD88/NFkB pathway. Vet Res Commun 2024; 48:3727-3742. [PMID: 39249174 DOI: 10.1007/s11259-024-10526-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
The aim of this study was to evaluate the activation pathway(s) triggered by Minthostachys verticillata essential oil (EO) in bovine mammary epithelial cells (MAC-T) challenged with a strain of bovine Staphylococcus aureus. MAC-T cells were stimulated with EO, S. aureus or pre-treated with EO and then challenged with S. aureus. Cytokine's release was measured by ELISA. The mRNA for TLR2, TLR4, NOD2, MyD88 and NFκB was quantified by RT-qPCR. S. aureus adherence and internalization was also evaluated. MAC-T cells stimulated with S. aureus synthesized high levels of IL-1ß and IL-6 were kept up to 48 h, while IL-4 levels were not altered. Cells pre-treated with EO for 2 and 6 h and then challenged with S. aureus showed a significant increase of IL-1β and IL-6. However, in these cells, a decrease in IL-1ß and IL-6 levels and an increase of IL-4 values was observed from 24 h. No significant increase in the expression levels of TLR2 or NOD2 was detected in all stimulated cells. However, the expression of TLR4, MyD88 and NFκB was increased in cells stimulated with S. aureus at 2 and 6 h as well as in cells pre-treated with EO between 2 and 6 h and then challenged with S. aureus. The NFκB expression levels was similar to control at 24 h in all stimulated cells, although pro-inflammatory cytokine levels and TLR4 and MyD88 expression levels remained high in cells stimulated with S. aureus. This results suggested the activation of other pathways independent of MyD88 by the pathogen that involucrated the activation of others transcription factors. Pre-treatment with EO during 2, 6 and 24 h did not affect S. aureus adherence but decreased its internalization. In conclusion, pre-treatment with EO increased the IL-1β and IL-6 synthesis during the first hours post-challenged with S. aureus up-regulating TLR4/MyD88/NFκB pathway. Furthermore, EO increased the IL-4 levels from 6 to 24 h down-regulating the NFκB and possibly other transcription factors activated by the pathogen, which decreased its internalization into MAC-T cells.
Collapse
Affiliation(s)
- Sofía Arsaute
- Facultad de Ciencias Exactas Físico-Químicas y Naturales, Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, 5800, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biotecnología Ambiental y Salud (INBIAS), Ruta 36 Km 601, Río Cuarto, Córdoba, 5800, Argentina
| | - Elina Beatriz Reinoso
- Facultad de Ciencias Exactas Físico-Químicas y Naturales, Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, 5800, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biotecnología Ambiental y Salud (INBIAS), Ruta 36 Km 601, Río Cuarto, Córdoba, 5800, Argentina
| | - María Eugenia Cecchini
- Facultad de Ciencias Exactas Físico-Químicas y Naturales, Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, 5800, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biotecnología Ambiental y Salud (INBIAS), Ruta 36 Km 601, Río Cuarto, Córdoba, 5800, Argentina
| | - Melina Vanesa Moliva
- Facultad de Ciencias Exactas Físico-Químicas y Naturales, Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, 5800, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biotecnología Ambiental y Salud (INBIAS), Ruta 36 Km 601, Río Cuarto, Córdoba, 5800, Argentina
| | - Ivana Dalila Montironi
- Facultad de Ciencias Exactas Físico-Químicas y Naturales, Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, 5800, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biotecnología Ambiental y Salud (INBIAS), Ruta 36 Km 601, Río Cuarto, Córdoba, 5800, Argentina
| | - Laura Noelia Cariddi
- Facultad de Ciencias Exactas Físico-Químicas y Naturales, Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, 5800, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biotecnología Ambiental y Salud (INBIAS), Ruta 36 Km 601, Río Cuarto, Córdoba, 5800, Argentina.
| |
Collapse
|
4
|
Vander Elst N, Bellemans J, Lavigne R, Briers Y, Meyer E. Endolysin NC5 improves early cloxacillin treatment in a mouse model of Streptococcus uberis mastitis. Appl Microbiol Biotechnol 2024; 108:118. [PMID: 38204128 PMCID: PMC10781846 DOI: 10.1007/s00253-023-12820-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Streptococcus uberis frequently causes bovine mastitis, an infectious udder disease with significant economic implications for dairy cows. Conventional antibiotics, such as cloxacillin, sometimes have limited success in eliminating S. uberis as a stand-alone therapy. To address this challenge, the study objective was to investigate the VersaTile engineered endolysin NC5 as a supplemental therapy to cloxacillin in a mouse model of bovine S. uberis mastitis. NC5 was previously selected based on its intracellular killing and biofilm eradicating activity. To deliver preclinical proof-of-concept of this supplemental strategy, lactating mice were intramammarily infected with a bovine S. uberis field isolate and subsequently treated with cloxacillin (30.0 μg) combined with either a low (23.5 μg) or high (235.0 μg) dose of NC5. An antibiotic monotherapy group, as well as placebo treatment, was included as controls. Two types of responders were identified: fast (n = 17), showing response after 4-h treatment, and slow (n = 10), exhibiting no clear response at 4 h post-treatment across all groups. The high-dose combination therapy in comparison with placebo treatment impacted the hallmarks of mastitis in the fast responders by reducing (i) the bacterial load 13,000-fold (4.11 ± 0.78 Δlog10; p < 0.001), (ii) neutrophil infiltration 5.7-fold (p > 0.05), and (iii) the key pro-inflammatory chemokine IL-8 13-fold (p < 0.01). These mastitis hallmarks typically followed a dose response dependent on the amount of endolysin added. The current in vivo study complements our in vitro data and provides preclinical proof-of-concept of NC5 as an adjunct to intramammary cloxacillin treatment. KEY POINTS: • Engineered endolysin NC5 was preclinically evaluated as add-on to cloxacillin treatment. • Two types of mice (slow and fast responding) were observed. • The add-on treatment decreased bacterial load, neutrophil influx, and pro-inflammatory mediators.
Collapse
Affiliation(s)
- Niels Vander Elst
- Laboratory of Gene Technology, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 21, 3001, Heverlee, Belgium.
- Laboratory of Applied Biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium.
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Julie Bellemans
- Laboratory of Applied Biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 21, 3001, Heverlee, Belgium
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Evelyne Meyer
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| |
Collapse
|
5
|
Hinds A, Ward P, Archer N, Leigh J. Priming from within: TLR2 dependent but receptor independent activation of the mammary macrophage inflammasome by Streptococcus uberis. Front Cell Infect Microbiol 2024; 14:1444178. [PMID: 39463761 PMCID: PMC11502467 DOI: 10.3389/fcimb.2024.1444178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/12/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction Streptococcus uberis is a member of the pyogenic cluster of Streptococcus commonly associated with intramammary infection and mastitis in dairy cattle. It is a poorly controlled globally endemic pathogen responsible for a significant cause of the disease worldwide. The ruminant mammary gland provides an atypical body niche in which immune cell surveillance occurs on both sides of the epithelial tissue. S. uberis does not cause disease in non-ruminant species and is an asymptomatic commensal in other body niches. S. uberis exploits the unusual niche of the mammary gland to initiate an innate response from bovine mammary macrophage (BMMO) present in the secretion (milk) in which it can resist the host immune responses. As a result - and unexpectedly - the host inflammatory response is a key step in the pathogenesis of S.uberis, without which colonisation is impaired. In contrast to other bacteria pathogenic to the bovine mammary gland, S. uberis does not elicit innate responses from epithelial tissues; initial recognition of infection is via macrophages within milk. Methods We dissected the role of the bacterial protein SUB1154 in the inflammasome pathway using ex vivo bovine mammary macrophages isolated from milk, recombinant protein expression, and a panel of inhibitors, agonists, and antagonists. We combine this with reverse-transcription quantitative real-time PCR to investigate the mechanisms underlying SUB1154-mediated priming of the immune response. Results Here, we show that SUB1154 is responsible for priming the NLRP3 inflammasome in macrophages found in the mammary gland. Without SUB1154, IL-1β is not produced, and we were able to restore IL-1β responses to a sub1154 deletion S. uberis mutant using recombinant SUB1154. Surprisingly, only by blocking internalisation, or the cytoplasmic TIR domain of TLR2 were we able to block SUB1154-mediated priming. Discussion Together, our data unifies several contrasting past studies and provides new mechanistic understanding of potential early interactions between pyogenic streptococci and the host.
Collapse
Affiliation(s)
- Abbie Hinds
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- Department of Infection Biology and Microbiomes, University of Liverpool, Cheshire, United Kingdom
| | - Philip Ward
- The Division of Structural Biology (STRUBI) for Genomic Medicine, Oxford, United Kingdom
| | - Nathan Archer
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - James Leigh
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
6
|
Fang B, Yang T, Chen Y, Duan Z, Hu J, Wang Q, He Y, Zhang Y, Dong W, Zhang Q, Zhao X. Activation of ARP2/3 and HSP70 Expression by Lipoteichoic Acid: Potential Bidirectional Regulation of Apoptosis in a Mastitis Inflammation Model. Biomolecules 2024; 14:901. [PMID: 39199289 PMCID: PMC11352453 DOI: 10.3390/biom14080901] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Mastitis typically arises from bacterial invasion, where host cell apoptosis significantly contributes to the inflammatory response. Gram-positive bacteria predominantly utilize the virulence factor lipoteichoic acid (LTA), which frequently leads to chronic breast infections, thereby impacting dairy production and animal husbandry adversely. This study employed LTA to develop models of mastitis in cow mammary gland cells and mice. Transcriptomic analysis identified 120 mRNAs associated with endocytosis and apoptosis pathways that were enriched in the LTA-induced inflammation of the Mammary Alveolar Cells-large T antigen (MAC-T), with numerous differential proteins also concentrated in the endocytosis pathway. Notably, actin-related protein 2/3 complex subunit 3 (ARPC3), actin-related protein 2/3 complex subunit 4 (ARPC4), and the heat shock protein 70 (HSP70) are closely related. STRING analysis revealed interactions among ARPC3, ARPC4, and HSP70 with components of the apoptosis pathway. Histological and molecular biological assessments confirmed that ARPC3, ARPC4, and HSP70 were mainly localized to the cell membrane of mammary epithelial cells. ARPC3 and ARPC4 are implicated in the mechanisms of bacterial invasion and the initiation of inflammation. Compared to the control group, the expression levels of these proteins were markedly increased, alongside the significant upregulation of apoptosis-related factors. While HSP70 appears to inhibit apoptosis and alleviate inflammation, its upregulation presents novel research opportunities. In conclusion, we deduced the development mechanism of ARPC3, ARPC4, and HSP70 in breast inflammation, laying the foundation for further exploring the interaction mechanism between the actin-related protein 2/3 (ARP2/3) complex and HSP70.
Collapse
Affiliation(s)
- Bo Fang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Tingji Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Yan Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Zhiwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Qi Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Yuxuan He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Weitao Dong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Quanwei Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
- College of Life Sciences and Biotechnology, Gansu Agricultural University, Lanzhou 730030, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| |
Collapse
|
7
|
Tomes A, Archer N, Leigh J. Reproducible isolation of bovine mammary macrophages for analysis of host pathogen interactions. BMC Vet Res 2024; 20:96. [PMID: 38461248 PMCID: PMC10924389 DOI: 10.1186/s12917-024-03944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/19/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Macrophages residing in milk are vital during intramammary infections. This study sought to develop a method enabling the investigation of macrophage responses to pathogens. Streptococcus uberis is the predominant cause of bovine mastitis UK-wide and its pathogenesis is unusual compared to other intramammary pathogens. Previous studies utilise macrophage cell lines, isolated bovine blood derived monocytes, or macrophages from raw milk through complex or inconsistent strategies such as fluorescence activated cell sorting (FACS), centrifugation and selective adherence, and CD14 antibody-microbeads. The centrifuge steps required in the initial stages often damage cells. Thus, the aim of this study was to develop a reliable, reproducible, and cost-effective method for isolating mammary macrophages from milk in a way that allows their culture, challenge with bacteria, and measurement of their response ex-vivo. RESULTS This method achieves an average yield of 1.27 × 107 cells per litre of milk. Whole milk with somatic cell range of 45-65 cells/µL produced excellent yields, with efficient isolations accomplished with up to 150 cells/µL. This strategy uses milk diluted in PAE buffer to enable low-speed centrifugation steps followed by seeding on tissue-culture-treated plastic. Seeding 1,000,000 milk-extracted cells onto tissue culture plates was sufficient to obtain 50,000 macrophage. Isolated macrophage remained responsive to challenge, with the highest concentration of IL-1β measured by ELISA at 20 h after challenge with S. uberis. In this model, the optimal multiplicity of infection was found to be 50:1 bacteria:macrophage. No difference in IL-1β production was found between macrophages challenged with live or heat-killed S. uberis. Standardisation of the production of IL-1β to that obtained following macrophage stimulation with LPS allowed for comparisons between preparations. CONCLUSIONS A cost-effective method, utilising low-speed centrifugation followed by adherence to plastic, was established to isolate bovine mammary macrophages from raw milk. This method was shown to be appropriate for bacterial challenge, therefore providing a cost-effective, ex-vivo, and non-invasive model of macrophage-pathogen interactions. The optimal multiplicity of infection for S. uberis challenge was demonstrated and a method for standardisation against LPS described which removes sample variation. This robust method enables, reproducible and reliable interrogation of critical pathogen-host interactions which occur in the mammary gland.
Collapse
Affiliation(s)
- Abbie Tomes
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Nathan Archer
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - James Leigh
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK.
| |
Collapse
|
8
|
Li M, Wang Z, Fu S, Sun N, Li W, Xu Y, Han X, Zhang J, Miao J. Taurine reduction of injury from neutrophil infiltration ameliorates Streptococcus uberis-induced mastitis. Int Immunopharmacol 2023; 124:111028. [PMID: 37857121 DOI: 10.1016/j.intimp.2023.111028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/14/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
Mastitis is a common disease of dairy cows characterized by infiltration of leukocytes, especially neutrophils, resulting in increased permeability of the blood-milk barrier (BMB). Taurine, a functional nutrient, has been shown to have anti-inflammatory and antioxidant effects. Here, we investigated the regulatory effects and mechanisms of taurine on the complex immune network of the mammary gland in Streptococcus uberis (S. uberis) infection. We found that taurine had no direct effect on CXCL2-mediated neutrophil chemotaxis. However, it inhibited MAPK and NF-κB signalings by modulating the activity of TAK1 downstream of TLR2, thereby reducing CXCL2 expression in macrophages to reduce neutrophil recruitment in S. uberis infection. Further, the AMPK/Nrf2 signaling pathway was activated by taurine to help mitigate oxidative damage, apoptosis and disruption of tight junctions in mammary epithelial cells caused by hypochlorous acid, a strong oxidant produced by neutrophils, thus protecting the integrity of the mammary epithelial barrier. Taurine protects the BMB from damage caused by neutrophils via blocking the macrophage-CXCL2-neutrophil signaling axis and increasing the antioxidant capacity of mammary epithelial cells.
Collapse
Affiliation(s)
- Ming Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Zhenglei Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaodong Fu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Naiyan Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Weizhen Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Yuanyuan Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jinqiu Zhang
- National Research Center for Veterinary Vaccine Engineering and Technology of China, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
9
|
Hasankhani A, Bakherad M, Bahrami A, Shahrbabak HM, Pecho RDC, Shahrbabak MM. Integrated analysis of inflammatory mRNAs, miRNAs, and lncRNAs elucidates the molecular interactome behind bovine mastitis. Sci Rep 2023; 13:13826. [PMID: 37620551 PMCID: PMC10449796 DOI: 10.1038/s41598-023-41116-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023] Open
Abstract
Mastitis is known as intramammary inflammation, which has a multifactorial complex phenotype. However, the underlying molecular pathogenesis of mastitis remains poorly understood. In this study, we utilized a combination of RNA-seq and miRNA-seq techniques, along with computational systems biology approaches, to gain a deeper understanding of the molecular interactome involved in mastitis. We retrieved and processed one hundred transcriptomic libraries, consisting of 50 RNA-seq and 50 matched miRNA-seq data, obtained from milk-isolated monocytes of Holstein-Friesian cows, both infected with Streptococcus uberis and non-infected controls. Using the weighted gene co-expression network analysis (WGCNA) approach, we constructed co-expressed RNA-seq-based and miRNA-seq-based modules separately. Module-trait relationship analysis was then performed on the RNA-seq-based modules to identify highly-correlated modules associated with clinical traits of mastitis. Functional enrichment analysis was conducted to understand the functional behavior of these modules. Additionally, we assigned the RNA-seq-based modules to the miRNA-seq-based modules and constructed an integrated regulatory network based on the modules of interest. To enhance the reliability of our findings, we conducted further analyses, including hub RNA detection, protein-protein interaction (PPI) network construction, screening of hub-hub RNAs, and target prediction analysis on the detected modules. We identified a total of 17 RNA-seq-based modules and 3 miRNA-seq-based modules. Among the significant highly-correlated RNA-seq-based modules, six modules showed strong associations with clinical characteristics of mastitis. Functional enrichment analysis revealed that the turquoise module was directly related to inflammation persistence and mastitis development. Furthermore, module assignment analysis demonstrated that the blue miRNA-seq-based module post-transcriptionally regulates the turquoise RNA-seq-based module. We also identified a set of different RNAs, including hub-hub genes, hub-hub TFs (transcription factors), hub-hub lncRNAs (long non-coding RNAs), and hub miRNAs within the modules of interest, indicating their central role in the molecular interactome underlying the pathogenic mechanisms of S. uberis infection. This study provides a comprehensive insight into the molecular crosstalk between immunoregulatory mRNAs, miRNAs, and lncRNAs during S. uberis infection. These findings offer valuable directions for the development of molecular diagnosis and biological therapies for mastitis.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Maryam Bakherad
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Hossein Moradi Shahrbabak
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | | | - Mohammad Moradi Shahrbabak
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
10
|
Wan Z, Fu S, Wang Z, Xu Y, Zhou Y, Lin X, Lan R, Han X, Luo Z, Miao J. FABP4-mediated lipid droplet formation in Streptococcus uberis-infected macrophages supports host defence. Vet Res 2022; 53:90. [PMID: 36371263 PMCID: PMC9652580 DOI: 10.1186/s13567-022-01114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 09/16/2022] [Indexed: 11/15/2022] Open
Abstract
Foamy macrophages containing prominent cytoplasmic lipid droplets (LDs) are found in a variety of infectious diseases. However, their role in Streptococcus uberis-induced mastitis is unknown. Herein, we report that S. uberis infection enhances the fatty acid synthesis pathway in macrophages, resulting in a sharp increase in LD levels, accompanied by a significantly enhanced inflammatory response. This process is mediated by the involvement of fatty acid binding protein 4 (FABP4), a subtype of the fatty acid-binding protein family that plays critical roles in metabolism and inflammation. In addition, FABP4 siRNA inhibitor cell models showed that the deposition of LDs decreased, and the mRNA expression of Tnf, Il1b and Il6 was significantly downregulated after gene silencing. As a result, the bacterial load in macrophages increased. Taken together, these data demonstrate that macrophage LD formation is a host-driven component of the immune response to S. uberis. FABP4 contributes to promoting inflammation via LDs, which should be considered a new target for drug development to treat infections.
Collapse
|
11
|
Rainard P, Gilbert FB, Germon P. Immune defenses of the mammary gland epithelium of dairy ruminants. Front Immunol 2022; 13:1031785. [PMID: 36341445 PMCID: PMC9634088 DOI: 10.3389/fimmu.2022.1031785] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
The epithelium of the mammary gland (MG) fulfills three major functions: nutrition of progeny, transfer of immunity from mother to newborn, and its own defense against infection. The defense function of the epithelium requires the cooperation of mammary epithelial cells (MECs) with intraepithelial leucocytes, macrophages, DCs, and resident lymphocytes. The MG is characterized by the secretion of a large amount of a nutrient liquid in which certain bacteria can proliferate and reach a considerable bacterial load, which has conditioned how the udder reacts against bacterial invasions. This review presents how the mammary epithelium perceives bacteria, and how it responds to the main bacterial genera associated with mastitis. MECs are able to detect the presence of actively multiplying bacteria in the lumen of the gland: they express pattern recognition receptors (PRRs) that recognize microbe-associated molecular patterns (MAMPs) released by the growing bacteria. Interactions with intraepithelial leucocytes fine-tune MECs responses. Following the onset of inflammation, new interactions are established with lymphocytes and neutrophils recruited from the blood. The mammary epithelium also identifies and responds to antigens, which supposes an antigen-presenting capacity. Its responses can be manipulated with drugs, plant extracts, probiotics, and immune modifiers, in order to increase its defense capacities or reduce the damage related to inflammation. Numerous studies have established that the mammary epithelium is a genuine effector of both innate and adaptive immunity. However, knowledge gaps remain and newly available tools offer the prospect of exciting research to unravel and exploit the multiple capacities of this particular epithelium.
Collapse
|
12
|
Liu Y, Zhang H, Dong S, Li B, Ma W, Ge L, Hu Z, Su F. Secretion of IFN-γ by Transgenic Mammary Epithelial Cells in vitro Reduced Mastitis Infection Risk in Goats. Front Vet Sci 2022; 9:898635. [PMID: 35812858 PMCID: PMC9263845 DOI: 10.3389/fvets.2022.898635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Mastitis results in great economic loss to the dairy goat industry. Many approaches have attempted to decrease the morbidity associated with this disease, and among these, transgenic strategy have been recognized as a potential approach. A previous mammalian study reports that interferon-gamma (IFN-γ) has potential anti-bacterial bioactivity against infection in vitro; however, its capacity in vivo is ambiguous. In this study, we initially constructed targeting and homologous recombination vectors (containing the IFN-γ gene) and then transferred the vectors into goat mammary gland epithelial cells (GMECs). Enzyme digestion and sequencing analysis indicated that the vectors used in this study were built correctly. Subsequently, monoclonal cells were selected using puromycin and the polymerase chain reaction (PCR) test indicated that IFN-γ was correctly inserted downstream of the casein promoter. Monoclonal cells were then assessed for reducible expression, and reverse transcriptase-PCR (RT-PCR) and Western blot tests confirmed that monoclonal cells could express IFN-γ. Finally, anti-bacterial capacity was evaluated using bacterial counts and flow cytometry analysis. Decreased bacterial counts and cell apoptosis rates in transgenic GMECs demonstrated that the secretion of IFN-γ could inhibit bacterial proliferation. Therefore, IFN-γ gene transfection in goat mammary epithelial cells could inhibit bacterial proliferation and reduce the risk of mammary gland infection in goats.
Collapse
Affiliation(s)
- Ying Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Shasha Dong
- Department of Cardiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Boyu Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Weiming Ma
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Lijiang Ge
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Zhiyong Hu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science, Shandong Agricultural University, Taian, China
- Zhiyong Hu
| | - Feng Su
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science, Shandong Agricultural University, Taian, China
- *Correspondence: Feng Su
| |
Collapse
|
13
|
A dominant clonal lineage of Streptococcus uberis in cattle in Germany. Antonie van Leeuwenhoek 2022; 115:857-870. [PMID: 35489013 PMCID: PMC9206625 DOI: 10.1007/s10482-022-01740-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/09/2022] [Indexed: 11/01/2022]
Abstract
Bovine mastitis causes enormous economic losses in the dairy industry with Streptococcus uberis as one of the most common bacterial pathogens causing clinical and subclinical variations. In most cases mastitis can be cured by intramammary administration of antimicrobial agents. However, the severity of the clinical manifestations can vary greatly from mild to severe symtoms. In this study, a comparative genomic analysis of 24 S. uberis isolates from three dairy farms in Germany, affected by different courses of infection was conducted. While there were sporadic mild infections in farm A and B, a large number of infections were observed within a very short period of time in farm C. The comparison of virulence genes, antimicrobial resistance genes and prophage regions revealed no features that might be responsible for this severe course. However, almost all isolates from farm C showed the same, novel MLST profile (ST1373), thus a clonal outbreak cannot be excluded, whereby the actual reason for the particular virulence remains unknown. This study demonstrates the importance of extensive metagenomic studies, including the host genomes and the environment, to gain further evidence on the pathogenicity of S. uberis.
Collapse
|
14
|
Progress towards the Elusive Mastitis Vaccines. Vaccines (Basel) 2022; 10:vaccines10020296. [PMID: 35214754 PMCID: PMC8876843 DOI: 10.3390/vaccines10020296] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 01/25/2023] Open
Abstract
Mastitis is a major problem in dairy farming. Vaccine prevention of mammary bacterial infections is of particular interest in helping to deal with this issue, all the more so as antibacterial drug inputs in dairy farms must be reduced. Unfortunately, the effectiveness of current vaccines is not satisfactory. In this review, we examine the possible reasons for the current shortcomings of mastitis vaccines. Some reasons stem from the peculiarities of the mammary gland immunobiology, others from the pathogens adapted to the mammary gland niche. Infection does not induce sterilizing protection, and recurrence is common. Efficacious vaccines will have to elicit immune mechanisms different from and more effective than those induced by infection. We propose focusing our research on a few points pertaining to either the current immune knowledge or vaccinology approaches to get out of the current deadlock. A possible solution is to focus on the contribution of cell-mediated immunity to udder protection based on the interactions of T cells with the mammary epithelium. On the vaccinology side, studies on the orientation of the immune response by adjuvants, the route of vaccine administration and the delivery systems are among the keys to success.
Collapse
|
15
|
Mucoid bovine mastitis isolates of Streptococcus uberis - difficulties in identification. VETERINARSKI GLASNIK 2022. [DOI: 10.2298/vetgl210929003s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Highly mucoid Streptococcus uberis were isolated on blood agar from five milk
samples originating from two dairy cow farms. All the isolates were CAMP
test and esculin hydrolysis negative. Matrix-assisted laser
desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)
following prior extraction with 70% formic acid was used for identification
to the species level. Given that it is plausible that such strains could be
isolated in the future from dairy cows by laboratories in Serbia and the
Balkans, we consider this case report to be a useful instruction for
veterinary bacteriology laboratories.
Collapse
|
16
|
Oftedal TF, Ovchinnikov KV, Hestad KA, Goldbeck O, Porcellato D, Narvhus J, Riedel CU, Kjos M, Diep DB. Ubericin K, a New Pore-Forming Bacteriocin Targeting mannose-PTS. Microbiol Spectr 2021; 9:e0029921. [PMID: 34643411 PMCID: PMC8515946 DOI: 10.1128/spectrum.00299-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/10/2021] [Indexed: 11/20/2022] Open
Abstract
Bovine mastitis infection in dairy cattle is a significant economic burden for the dairy industry globally. To reduce the use of antibiotics in treatment of clinical mastitis, new alternative treatment options are needed. Antimicrobial peptides from bacteria, also known as bacteriocins, are potential alternatives for combating mastitis pathogens. In search of novel bacteriocins against mastitis pathogens, we screened samples of Norwegian bovine raw milk and found a Streptococcus uberis strain with potent antimicrobial activity toward Enterococcus, Streptococcus, Listeria, and Lactococcus. Whole-genome sequencing of the strain revealed a multibacteriocin gene cluster encoding one class IIb bacteriocin, two class IId bacteriocins, in addition to a three-component regulatory system and a dedicated ABC transporter. Isolation and purification of the antimicrobial activity from culture supernatants resulted in the detection of a 6.3-kDa mass peak by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, a mass corresponding to the predicted size of one of the class IId bacteriocins. The identification of this bacteriocin, called ubericin K, was further confirmed by in vitro protein synthesis, which showed the same inhibitory spectrum as the purified antimicrobial compound. Ubericin K shows highest sequence similarity to the class IId bacteriocins bovicin 255, lactococcin A, and garvieacin Q. We found that ubericin K uses the sugar transporter mannose phosphotransferase (PTS) as a target receptor. Further, by using the pHlourin sensor system to detect intracellular pH changes due to leakage across the membrane, ubericin K was shown to be a pore former, killing target cells by membrane disruption. IMPORTANCE Bacterial infections in dairy cows are a major burden to farmers worldwide because infected cows require expensive treatments and produce less milk. Today, infected cows are treated with antibiotics, a practice that is becoming less effective due to antibiotic resistance. Compounds other than antibiotics also exist that kill bacteria causing infections in cows; these compounds, known as bacteriocins, are natural products produced by other bacteria in the environment. In this work, we discover a new bacteriocin that we call ubericin K, which kills several species of bacteria known to cause infections in dairy cows. We also use in vitro synthesis as a novel method for rapidly characterizing bacteriocins directly from genomic data, which could be useful for other researchers. We believe that ubericin K and the methods described in this work will aid in the transition away from antibiotics in the dairy industry.
Collapse
Affiliation(s)
- Thomas F. Oftedal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Kirill V. Ovchinnikov
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Kai A. Hestad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Oliver Goldbeck
- Institute of Microbiology and Biotechnology, Ulm University, Ulm, Germany
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Judith Narvhus
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Dzung B. Diep
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
17
|
Cheng C, Zhang L, Mu J, Tian Q, Liu Y, Ma X, Fu Y, Liu Z, Li Z. Effect of Lactobacillus johnsonii Strain SQ0048 on the TLRs-MyD88/NF-κB Signaling Pathway in Bovine Vaginal Epithelial Cells. Front Vet Sci 2021; 8:670949. [PMID: 34447797 PMCID: PMC8383737 DOI: 10.3389/fvets.2021.670949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] Open
Abstract
Vaginal inflammation is a common disease of the dairy cows' reproductive tract. Lactic acid bacteria can combat purulent inflammation caused by pathogenic bacteria and regulate the NF-κB signaling pathway mediated by toll-like receptors (TLRs) in the inflammatory response. We studied the effect of Lactobacillus johnsonii SQ0048, an isolate with antibacterial activity, on the NF-κB signaling pathway in cow vaginal epithelial cells. The expression levels of serial effectors related to the TLRs-MyD88/NF-κB signaling pathway (TLR2, TLR4, MyD88, IKK, NF-κB, IL-1β, IL-6, TNF-α, and IL-10) were measured with real-time polymerase chain reaction (RT-PCR), ELISA, and Western blot analyses. TLR2 and TLR4 were activated by SQ0048 cells, as noted by increased mRNA expression levels of TLR2 and TLR4 in SQ0048-treated bovine vaginal epithelial cells relative to control cells (P <0.01). SQ0048 treatment also significantly increased MyD88 and IKK expression, and activated NF-κB in vaginal epithelial cells (P <0.01). In addition, SQ0048 treatment also significantly increased mRNA expression levels of IL-1β, IL-6, and TNF-α, but decreased IL-10 mRNA expression levels (P <0.01). These data indicate that strain SQ0048 presence can improve the immune functions of cow vaginal epithelial cells by activating TLRs-MyD88/NF-κB signaling pathways. However, further in vivo studies are required to confirm these findings.
Collapse
Affiliation(s)
- Chao Cheng
- College of Life Science and Technology, Jining Normal University, Jining, China
| | | | - Junxiang Mu
- College of Life Science and Technology, Jining Normal University, Jining, China
| | | | - Yanming Liu
- Inner Mongolia Shuangqi Pharmaceutical Co., Ltd., Hohhot, China
| | - Xiaohong Ma
- Inner Mongolia Shuangqi Pharmaceutical Co., Ltd., Hohhot, China
| | - Yanru Fu
- Hohhot Vocational College, Hohhot, China
| | - Zhiguo Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhenjun Li
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
18
|
Silva VM, Souza MT, Blagitz MG, Souza FN, Batista CF, Alves AJ, Fernandes ACC, Sanchez EMR, Ordinola-Ramirez CM, da Costa L, Della Libera AMMP. Milk lymphocyte profile and macrophage functions: new insights into the immunity of the mammary gland in quarters infected with Corynebacterium bovis. BMC Vet Res 2021; 17:282. [PMID: 34433467 PMCID: PMC8390291 DOI: 10.1186/s12917-021-02989-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/29/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUNDS The present study explored the viability of bovine milk macrophages, their intracellular production of reactive oxygen and nitrogen species (RONS), and their phagocytosis of Staphylococcus aureus, as well as the profile of lymphocytes, from healthy udder quarters and udder quarters infected by Corynebacterium bovis. The study included 28 healthy udder quarters from 12 dairy cows and 20 udder quarters infected by C. bovis from 10 dairy cows. The percentages of macrophages and lymphocytes were identified by flow cytometry using monoclonal antibodies. Macrophage viability, RONS production, and S. aureus phagocytosis were evaluated by flow cytometry. RESULTS Milk samples from quarters infected with C. bovis showed a lower percentage of macrophages but an increased number of milk macrophages per mL and a higher percentage of macrophages that produced intracellular RONS and phagocytosed S. aureus. No effect of C. bovis infection on macrophage viability was found. Udder quarters infected by C. bovis showed a higher percentage of T cells and CD4+ T lymphocytes, but no effect was found on the percentage of CD8+ CD4- T, CD8- CD4- T, or B lymphocytes. CONCLUSIONS Thus, our results corroborate, at least in part, the finding that intramammary infections by C. bovis may offer protection against intramammary infections by major pathogens.
Collapse
Affiliation(s)
- Vitória M Silva
- Núcleo Aplicado à Produção e Sanidade da Glândula Mamária, Departamento de Ciências Veterinárias, Centro de Ciências Agrárias, Universidade Federal da Paraíba, 58397-000, Areia, Brazil
| | - Marina T Souza
- Núcleo Aplicado à Produção e Sanidade da Glândula Mamária, Departamento de Ciências Veterinárias, Centro de Ciências Agrárias, Universidade Federal da Paraíba, 58397-000, Areia, Brazil
| | - Maiara G Blagitz
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, 05508-270, São Paulo, Brazil
| | - Fernando N Souza
- Núcleo Aplicado à Produção e Sanidade da Glândula Mamária, Departamento de Ciências Veterinárias, Centro de Ciências Agrárias, Universidade Federal da Paraíba, 58397-000, Areia, Brazil.
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, 05508-270, São Paulo, Brazil.
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal da Paraíba, 58397- 000, Areia, Brazil.
| | - Camila F Batista
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, 05508-270, São Paulo, Brazil
| | - Alexandre J Alves
- Núcleo Aplicado à Produção e Sanidade da Glândula Mamária, Departamento de Ciências Veterinárias, Centro de Ciências Agrárias, Universidade Federal da Paraíba, 58397-000, Areia, Brazil
| | - Artur C C Fernandes
- Núcleo Aplicado à Produção e Sanidade da Glândula Mamária, Departamento de Ciências Veterinárias, Centro de Ciências Agrárias, Universidade Federal da Paraíba, 58397-000, Areia, Brazil
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal da Paraíba, 58397- 000, Areia, Brazil
| | - Eduardo M R Sanchez
- Departamento de Salud Publica, Facultad de Ciencias de La Salud, Universidad Nacional Toribio Rodriguez de Mendoza de Amazonas, 01000, Chachapoyas, Peru
- Laboratório de Sorologia e Imunobiologia, Instituto de Medicina Tropical, Universidade de São Paulo, 05403-000, São Paulo, Brazil
| | - Carla M Ordinola-Ramirez
- Departamento de Salud Publica, Facultad de Ciencias de La Salud, Universidad Nacional Toribio Rodriguez de Mendoza de Amazonas, 01000, Chachapoyas, Peru
| | - Luciana da Costa
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, 43210, USA
| | - Alice M M P Della Libera
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, 05508-270, São Paulo, Brazil
| |
Collapse
|
19
|
Kerro Dego O, Almeida R, Ivey S, Agga GE. Evaluation of Streptococcus uberis Surface Proteins as Vaccine Antigens to Control S. uberis Mastitis in Dairy Cows. Vaccines (Basel) 2021; 9:868. [PMID: 34451993 PMCID: PMC8402608 DOI: 10.3390/vaccines9080868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 11/22/2022] Open
Abstract
There is no effective vaccine against Streptococcus uberis mastitis in dairy cows. Objectives of this study were (1) to extract S. uberis surface proteins (SUSP) and determine immunoreactivity in vitro and (2) immunogenicity and efficacy in vivo. SUSP was extracted from S. uberis, and their immunoreactivity was tested by western blot. In total, 26 Jersey dairy cows were randomly divided into four groups. Groups 1, 2, and 3 were vaccinated subcutaneously with 4 mg, 1 mg, and 100 μg of SUSP, respectively, with Freund's incomplete adjuvant. Group 4 (control) was injected with placebo. S. uberis UT888 was infused into two contralateral quarters of each cow during early lactation. Somatic cell count (SCC), bacteria count in milk, and mastitis were monitored. Our results show that SUSP contains multiple protein bands, that ranged from 10 to 100 kDa. All vaccinates showed an increased anti-SUSP IgG antibody. The SCC of all experimentally infected quarters increased after challenge but slightly decreased after day 3 with no significant difference among groups. Milk bacterial count was significantly (p < 0.05) reduced in high and medium doses vaccinated groups than low and control groups. In conclusion, SUSP vaccine is immunogenic and showed a promising efficacy to control bovine S. uberis mastitis.
Collapse
Affiliation(s)
- Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA; (R.A.); (S.I.)
| | - Raul Almeida
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA; (R.A.); (S.I.)
| | - Susan Ivey
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA; (R.A.); (S.I.)
| | - Getahun E. Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Bowling Green, KY 42101, USA;
| |
Collapse
|
20
|
Zeng J, Wang Y, Fan L, Yang N, Pan J, Han Y, Wang X, Li Q, Guo G, Zheng J, Zeng W. Novel Streptococcus uberis sequence types causing bovine subclinical mastitis in Hainan, China. J Appl Microbiol 2021; 132:1666-1674. [PMID: 34309977 DOI: 10.1111/jam.15235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 11/27/2022]
Abstract
AIM To determine the molecular epidemiology, genotypes, and phenotypes of the major species of Streptococcus associated with bovine subclinical mastitis in Hainan, China. METHODS AND RESULTS In total, 150 subclinical mastitis milk samples were collected from two large dairy farms in Hainan. On the basis of biochemical tests and 16S rDNA sequencing, 39 samples were Streptococcus positive and the most frequently isolated species was Streptococcus uberis (n=29, 74.4%). According to multilocus sequence typing (MLST), and assays of biofilm formation, antimicrobial susceptibility, resistance and virulence genes, the S. uberis isolates were clustered into nine new sequence types (STs; ST986-ST994), but were not merged into a clonal group (except for ST991 (CC143)). All isolates produced biofilm, but most weakly. The dominant virulence pattern was hasABC + sua + gapC + oppF + pauA + mtuA + cfu (27/29, 91.1%), based on the 11 virulence genes tested. The majority of isolates (88.46%) carried at least one resistance gene and more than half (58.62%) were multidrug-resistant. The main resistance genes were linB (65.5%), ermB (37.9%), and tetS (34.5%), among the six antibiotic resistance genes and 11 antimicrobials tested. CONCLUSION Environmental S. uberis is important in bovine subclinical mastitis in Hainan. SIGNIFICANCE AND IMPACT OF THE STUDY S. uberis isolates in Hainan, China, show distinct MLST, virulence, and antibiotic resistance characteristics.
Collapse
Affiliation(s)
- Jifeng Zeng
- Lab of Microbial Engineering (Infection and Immunity), Hainan University, Haikou, 570228, China
| | - Yu Wang
- Lab of Microbial Engineering (Infection and Immunity), Hainan University, Haikou, 570228, China
| | - Lixia Fan
- Lab of Microbial Engineering (Infection and Immunity), Hainan University, Haikou, 570228, China
| | - Nuo Yang
- Lab of Microbial Engineering (Infection and Immunity), Hainan University, Haikou, 570228, China
| | - Jiwen Pan
- Lab of Microbial Engineering (Infection and Immunity), Hainan University, Haikou, 570228, China
| | - Yu Han
- Lab of Microbial Engineering (Infection and Immunity), Hainan University, Haikou, 570228, China
| | - Xin Wang
- Lab of Microbial Engineering (Infection and Immunity), Hainan University, Haikou, 570228, China
| | - Qian Li
- Lab of Microbial Engineering (Infection and Immunity), Hainan University, Haikou, 570228, China
| | - Guiying Guo
- Lab of Microbial Engineering (Infection and Immunity), Hainan University, Haikou, 570228, China
| | - Jiping Zheng
- Lab of Microbial Engineering (Infection and Immunity), Hainan University, Haikou, 570228, China
| | - Weixin Zeng
- Department of Pharmacy, Beijing Shijitan Hospital, Beijing, 100038, China
| |
Collapse
|
21
|
Swartz T, Bradford B, Mamedova L. Diverging in vitro inflammatory responses toward Streptococcus uberis in mouse macrophages either preconditioned or continuously treated with β-hydroxybutyrate. JDS COMMUNICATIONS 2021; 2:142-147. [PMID: 36339507 PMCID: PMC9623636 DOI: 10.3168/jdsc.2020-0038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/10/2021] [Indexed: 11/24/2022]
Abstract
β-Hydroxybutyrate preconditioning reduced Tlr2 and tended to reduce Il10 expression. Continuous β-hydroxybutyrate treatment increased Tlr2 and Il10 expression. Diverging responses due to the timing of BHB treatment suggest opposing mechanisms.
Hyperketonemia is a common condition in early-lactation dairy cows that has been associated with an increase in the risk of infectious disease. Recent mouse studies have elucidated an anti-inflammatory effect of the ketone body β-hydroxybutyrate (BHB). Therefore, the objective of this study was to determine whether BHB altered inflammatory responses in macrophages challenged with the common mastitis pathogen Streptococcus uberis. A secondary objective was to determine whether the inflammatory response to the S. uberis challenge was dependent on whether BHB was present in the medium during the challenge (i.e., preconditioned vs. continuous treatment). Two cell culture experiments were conducted. In the first experiment, mouse macrophages (RAW 264.7 line) were preconditioned with BHB (0, 0.6, 1.2, and 1.8 mM) for 24 h; the medium was then replaced with a standard cell culture medium, and the cells were challenged or not with S. uberis for an additional 6 h. In the second experiment, a similar protocol was used; however, cells were preconditioned with BHB (0, 0.6, 1.2, and 1.8 mM) for 24 h, the medium was replaced with fresh medium containing the same concentration of BHB, and cells were either challenged or not with S. uberis for 6 h. In both experiments, relative transcript abundance of cell membrane receptors (Tlr2 and Gpr109a), cytokines (Il1b, Il10, Tnf, and Tgfb1), and chemokines (Cxcl2 and Ccl5) were determined using quantitative real-time PCR and normalized against the geometric mean of Hprt and B2m. Data were analyzed using a linear mixed model, and orthogonal contrasts were conducted to examine the effect of S. uberis challenge and BHB treatment. Streptococcus uberis activated the macrophages, noted by greater transcript abundance of analyzed genes. Intriguingly, in both experiments, the S. uberis challenge increased expression of Gpr109a, which encodes a receptor that is ligated by BHB. Paradoxically, preconditioning macrophages with BHB increased transcript abundance of the immunosuppressive cytokine Tgfb1 and increased that of the neutrophil chemoattractant Cxcl2. Preconditioning decreased Tlr2 and tended to decrease Il10 transcript abundance. In opposition to the preconditioning experiment, continuous treatment of BHB during the S. uberis challenge linearly increased abundance of Tlr2 and Il10 transcripts. Continuous BHB treatment also increased expression of Il1b. In conclusion, BHB treatment altered macrophage inflammatory responses during an S. uberis challenge; however, the direction of this response was dependent on whether BHB was added to the medium during the S. uberis challenge. Future studies should be conducted using bovine macrophages and in vivo approaches to examine BHB effects during an S. uberis challenge.
Collapse
Affiliation(s)
- T.H. Swartz
- Department of Animal Science, Michigan State University, East Lansing 48824
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
- Corresponding author
| | - B.J. Bradford
- Department of Animal Science, Michigan State University, East Lansing 48824
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - L.K. Mamedova
- Department of Animal Science, Michigan State University, East Lansing 48824
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| |
Collapse
|
22
|
Archer N, Egan SA, Coffey TJ, Emes RD, Addis MF, Ward PN, Blanchard AM, Leigh JA. A Paradox in Bacterial Pathogenesis: Activation of the Local Macrophage Inflammasome Is Required for Virulence of Streptococcus uberis. Pathogens 2020; 9:pathogens9120997. [PMID: 33260788 PMCID: PMC7768481 DOI: 10.3390/pathogens9120997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/12/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Streptococcus uberis is a common cause of intramammary infection and mastitis in dairy cattle. Unlike other mammary pathogens, S. uberis evades detection by mammary epithelial cells, and the host–pathogen interactions during early colonisation are poorly understood. Intramammary challenge of dairy cows with S. uberis (strain 0140J) or isogenic mutants lacking the surface-anchored serine protease, SUB1154, demonstrated that virulence was dependent on the presence and correct location of this protein. Unlike the wild-type strain, the mutant lacking SUB1154 failed to elicit IL-1β from ex vivo CD14+ cells obtained from milk (bovine mammary macrophages, BMM), but this response was reinstated by complementation with recombinant SUB1154; the protein in isolation elicited no response. Production of IL-1β was ablated in the presence of various inhibitors, indicating dependency on internalisation and activation of NLRP3 and caspase-1, consistent with inflammasome activation. Similar transcriptomic changes were detected in ex vivo BMM in response to the wild-type or the SUB1154 deletion mutant, consistent with S. uberis priming BMM, enabling the SUB1154 protein to activate inflammasome maturation in a transcriptionally independent manner. These data can be reconciled in a novel model of pathogenesis in which, paradoxically, early colonisation is dependent on the innate response to the initial infection.
Collapse
Affiliation(s)
- Nathan Archer
- School of Veterinary Medicine and Sciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK; (N.A.); (S.A.E.); (T.J.C.); (R.D.E.); (A.M.B.)
| | - Sharon A. Egan
- School of Veterinary Medicine and Sciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK; (N.A.); (S.A.E.); (T.J.C.); (R.D.E.); (A.M.B.)
| | - Tracey J. Coffey
- School of Veterinary Medicine and Sciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK; (N.A.); (S.A.E.); (T.J.C.); (R.D.E.); (A.M.B.)
| | - Richard D. Emes
- School of Veterinary Medicine and Sciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK; (N.A.); (S.A.E.); (T.J.C.); (R.D.E.); (A.M.B.)
- Advanced Data Analysis Centre, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - M. Filippa Addis
- Porto Conte Ricerche, 07041 Alghero, Italy;
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 20133 Milan, Italy
| | - Philip N. Ward
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK;
| | - Adam M. Blanchard
- School of Veterinary Medicine and Sciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK; (N.A.); (S.A.E.); (T.J.C.); (R.D.E.); (A.M.B.)
| | - James A. Leigh
- School of Veterinary Medicine and Sciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK; (N.A.); (S.A.E.); (T.J.C.); (R.D.E.); (A.M.B.)
- Correspondence:
| |
Collapse
|
23
|
Ma X, Wang R, Yu S, Lu G, Yu Y, Jiang C. Anti-Inflammatory Activity of Oligomeric Proanthocyanidins Via Inhibition of NF-κB and MAPK in LPS-Stimulated MAC-T Cells. J Microbiol Biotechnol 2020; 30:1458-1466. [PMID: 32876071 PMCID: PMC9728330 DOI: 10.4014/jmb.2006.06030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
Oligomeric proanthocyanidins (OPCs), classified as condensed tannins, have significant antioxidation, anti-inflammation and anti-cancer effects. This study was performed to investigate the anti-inflammatory effects of OPCs and the mechanism underlying these effects in lipopolysaccharide (LPS)-stimulated bovine mammary epithelial cells (MAC-T). Real-time PCR and ELISA assays indicated that OPC treatment at 1, 3 and 5 μg/ml significantly reduced the mRNA and protein, respectively, of oxidant indicators cyclooxygenase-2 (COX-2) (p < 0.05) and inducible nitric oxide synthase (iNOS) (p < 0.01) as well as inflammation cytokines interleukin (IL)-6 (p < 0.01), IL-1β (p < 0.01) and tumor necrosis factor-α (TNF-α) (p < 0.05) in LPS-induced MAC-T cells. Moreover, OPCs downregulated LPSinduced phosphorylation of p65 and inhibitor of nuclear factor kappa B (NF-κB) (IκB) in the NF-κB signaling pathway (p < 0.01), and they inhibited p65 translocation from the cytoplasm to the nucleus as revealed by immunofluorescence test and western blot. Additionally, OPCs decreased phosphorylation of p38, extracellular signal regulated kinase and c-jun NH2-terminal kinase in the MAPK signaling pathway (p < 0.01). In conclusion, the anti-inflammatory and antioxidant activities of OPCs involve NF-κB and MAPK signaling pathways, thus inhibiting expression of pro-inflammatory factors and oxidation indicators. These findings provide novel experimental evidence for the further practical application of OPCs in prevention and treatment of bovine mastitis.
Collapse
Affiliation(s)
- Xiao Ma
- Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chonqing 400715, P.R. China
| | - Ruihong Wang
- Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chonqing 400715, P.R. China
| | - Shitian Yu
- Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chonqing 400715, P.R. China
| | - Guicong Lu
- Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chonqing 400715, P.R. China
| | - Yongxiong Yu
- Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chonqing 400715, P.R. China,Y.X.Yu E-mail:
| | - Caode Jiang
- Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chonqing 400715, P.R. China,Corresponding authors C.D.Jiang Phone/Fax: +86-023-68251196 E-mail:
| |
Collapse
|
24
|
Bochniarz M, Szczubiał M, Brodzki P, Krakowski L, Dąbrowski R. Serum amyloid A as an marker of cow֨ s mastitis caused by Streptococcus sp. Comp Immunol Microbiol Infect Dis 2020; 72:101498. [PMID: 32505957 DOI: 10.1016/j.cimid.2020.101498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/19/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022]
Abstract
The aim of the study was to evaluate the concentrations of amyloid A in serum (SAA) and in milk (MAA) of cows with mastitis caused by Streptococcus agalactiae, Streptococcus dysgalactiae and Streptococcus uberis and healthy cows. The blood and milk samples were obtained from Holstein-Friesian cows with clinical signs of mastitis from two tie-stall housing systems herds in the Lublin region in Poland. A total of 80 milk and serum samples from 30 cows with mastitis and 10 healthy cows were selected for study. In the quarter milk samples from cows with mastitis Streptococcus strains were isolated: Strep. agalactiae (7 cows), Strep. dysgalactiae (9 cows) and Strep. uberis (14 cows). The present study indicates that amyloid A concentration was significantly higher in milk of cows with mastitis compared to control cows (1134.25 ng/mL and 324.50 ng/mL, P < 0.001). The highest concentration of amyloid A was found in milk of cows with mastitis caused by Strep. agalactiae and Strep. uberis whereas lowest in the milk of cows with mastitis caused by Strep. dysgalactiae (3882.50 ng/mL, 2587.75 ng/mL and 812.00 ng/mL, respectively). No statistically significant difference in amyloid A concentration in serum was revealed between all unhealthy cows and control group (2140.00 ng/mL and 2510.00 ng/mL, P > 0.05). There was also no statistically significant difference between the level of amyloid A in serum and in milk of cows with mastitis caused by Strep. agalactiae and Strep. uberis. Whereas, in the case of Strep. dysgalactiae, like in the group of healthy cows, the level of amyloid A was significantly higher in serum compared to this in milk (2100 ng/mL and 812.00 ng/mL, P < 0.001; 2510.00 ng/mL and 324.50 ng/mL, P < 0.001; respectively).
Collapse
Affiliation(s)
- Mariola Bochniarz
- Department and Clinic of Animal Reproduction, Faculty of Veterinary Medicine, University of Life Sciences, Gleboka 30, 20-612, Lublin, Poland.
| | - Marek Szczubiał
- Department and Clinic of Animal Reproduction, Faculty of Veterinary Medicine, University of Life Sciences, Gleboka 30, 20-612, Lublin, Poland
| | - Piotr Brodzki
- Department and Clinic of Animal Reproduction, Faculty of Veterinary Medicine, University of Life Sciences, Gleboka 30, 20-612, Lublin, Poland
| | - Leszek Krakowski
- Department and Clinic of Animal Reproduction, Faculty of Veterinary Medicine, University of Life Sciences, Gleboka 30, 20-612, Lublin, Poland
| | - Roman Dąbrowski
- Department and Clinic of Animal Reproduction, Faculty of Veterinary Medicine, University of Life Sciences, Gleboka 30, 20-612, Lublin, Poland
| |
Collapse
|
25
|
Ballas P, Gabler C, Wagener K, Drillich M, Ehling-Schulz M. Streptococcus uberis strains originating from bovine uteri provoke upregulation of pro-inflammatory factors mRNA expression of endometrial epithelial cells in vitro. Vet Microbiol 2020; 245:108710. [PMID: 32456828 DOI: 10.1016/j.vetmic.2020.108710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/08/2020] [Accepted: 04/27/2020] [Indexed: 11/20/2022]
Abstract
Streptococcus uberis is an opportunistic pathogen involved in various infections of cattle. It is a well-known etiological agent of bovine mastitis and has recently also been linked to postpartum endometritis in dairy cows. S. uberis is frequently isolated from the uterus of postpartum cows but its actual contribution to host pathophysiology is unknown and information on S. uberis virulence factors potentially involved in the disease is lacking. To gain first insights into the role of S. uberis in the pathology of bovine endometritis, a cell-culture-based infection model was employed to study inflammatory host responses and investigate cytotoxic effects. A comprehensive strain panel, comprising 53 strains previously isolated from bovine uteri, was compiled and screened for known virulence factor genes. Isolates showing distinct virulence gene patterns were used to study their impact on cellular viability and influence on mRNA expression of pro-inflammatory factors in endometrial epithelial cells. Our study revealed that S. uberis negatively impacts the viability of endometrial epithelial cells and provokes an upregulation of specific pro-inflammatory factors, although with certain strains having a greater effect than others. Especially, mRNA expression of IL1A and CXCL8 as well as CXCL1/2 and PTGS2 was found to be stimulated by S. uberis. These results suggest that S. uberis might indeed contribute to the establishment of bovine endometritis.
Collapse
Affiliation(s)
- Panagiotis Ballas
- Functional Microbiology, Institute for Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria; Clinical Unit for Herd Health Management in Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Christoph Gabler
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Karen Wagener
- Clinical Unit for Herd Health Management in Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Marc Drillich
- Clinical Unit for Herd Health Management in Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Monika Ehling-Schulz
- Functional Microbiology, Institute for Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
26
|
Rohmeier L, Petzl W, Koy M, Eickhoff T, Hülsebusch A, Jander S, Macias L, Heimes A, Engelmann S, Hoedemaker M, Seyfert HM, Kühn C, Schuberth HJ, Zerbe H, Meyerholz MM. In vivo model to study the impact of genetic variation on clinical outcome of mastitis in uniparous dairy cows. BMC Vet Res 2020; 16:33. [PMID: 32005239 PMCID: PMC6995066 DOI: 10.1186/s12917-020-2251-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In dairy herds, mastitis causes detrimental economic losses. Genetic selection offers a sustainable tool to select animals with reduced susceptibility towards postpartum diseases. Studying underlying mechanisms is important to assess the physiological processes that cause differences between selected haplotypes. Therefore, the objective of this study was to establish an in vivo infection model to study the impact of selecting for alternative paternal haplotypes in a particular genomic region on cattle chromosome 18 for mastitis susceptibility under defined conditions in uniparous dairy cows. RESULTS At the start of pathogen challenge, no significant differences between the favorable (Q) and unfavorable (q) haplotypes were detected. Intramammary infection (IMI) with Staphylococcus aureus 1027 (S. aureus, n = 24, 96 h) or Escherichia coli 1303 (E. coli, n = 12, 24 h) was successfully induced in all uniparous cows. This finding was confirmed by clinical signs of mastitis and repeated recovery of the respective pathogen from milk samples of challenged quarters in each animal. After S. aureus challenge, Q-uniparous cows showed lower somatic cell counts 24 h and 36 h after challenge (P < 0.05), lower bacterial shedding in milk 12 h after challenge (P < 0.01) and a minor decrease in total milk yield 12 h and 24 h after challenge (P < 0.01) compared to q-uniparous cows. CONCLUSION An in vivo infection model to study the impact of genetic selection for mastitis susceptibility under defined conditions in uniparous dairy cows was successfully established and revealed significant differences between the two genetically selected haplotype groups. This result might explain their differences in susceptibility towards IMI. These clinical findings form the basis for further in-depth molecular analysis to clarify the underlying genetic mechanisms for mastitis resistance.
Collapse
Affiliation(s)
- L. Rohmeier
- Clinic for Ruminants with Ambulatory Clinic and Herd Health Services, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Sonnenstrasse 16, 85764 Oberschleissheim, Germany
- Clinic for Swine, Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - W. Petzl
- Clinic for Ruminants with Ambulatory Clinic and Herd Health Services, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Sonnenstrasse 16, 85764 Oberschleissheim, Germany
| | - M. Koy
- Immunology Unit, University of Veterinary Medicine Hannover Foundation, Bünteweg 2, 30559 Hannover, Germany
- Clinic for Poultry, University of Veterinary Medicine Hannover Foundation, Bünteweg, 17 30559 Hannover, Germany
| | - T. Eickhoff
- Immunology Unit, University of Veterinary Medicine Hannover Foundation, Bünteweg 2, 30559 Hannover, Germany
| | - A. Hülsebusch
- Immunology Unit, University of Veterinary Medicine Hannover Foundation, Bünteweg 2, 30559 Hannover, Germany
| | - S. Jander
- Immunology Unit, University of Veterinary Medicine Hannover Foundation, Bünteweg 2, 30559 Hannover, Germany
| | - L. Macias
- Clinic for Ruminants with Ambulatory Clinic and Herd Health Services, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Sonnenstrasse 16, 85764 Oberschleissheim, Germany
| | - A. Heimes
- Leibniz Institute for Farm Animal Biology, Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - S. Engelmann
- Technical University Braunschweig, Institute for Microbiology, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Helmholtz Center for Infection Research, Microbial Proteomics, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - M. Hoedemaker
- Clinic for Cattle, University of Veterinary Medicine Hannover Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - H. M. Seyfert
- Leibniz Institute for Farm Animal Biology, Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - C. Kühn
- Leibniz Institute for Farm Animal Biology, Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Agricultural and Environmental Faculty, University Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
| | - H. J. Schuberth
- Immunology Unit, University of Veterinary Medicine Hannover Foundation, Bünteweg 2, 30559 Hannover, Germany
| | - H. Zerbe
- Clinic for Ruminants with Ambulatory Clinic and Herd Health Services, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Sonnenstrasse 16, 85764 Oberschleissheim, Germany
| | - M. M. Meyerholz
- Clinic for Ruminants with Ambulatory Clinic and Herd Health Services, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Sonnenstrasse 16, 85764 Oberschleissheim, Germany
- Immunology Unit, University of Veterinary Medicine Hannover Foundation, Bünteweg 2, 30559 Hannover, Germany
| |
Collapse
|
27
|
Wald R, Baumgartner M, Gutschireiter J, Bazzanella B, Lichtmannsperger K, Wagner M, Wittek T, Stessl B. Comparison of the population structure of Streptococcus uberis mastitis isolates from Austrian small-scale dairy farms and a Slovakian large-scale farm. J Dairy Sci 2019; 103:1820-1830. [PMID: 31837784 DOI: 10.3168/jds.2019-16930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022]
Abstract
Streptococcus uberis, a major mastitis pathogen associated with intramammary infections (IMI), can be found ubiquitously in the cow's environment. Although Strep. uberis is reported to be susceptible to most antimicrobials, in practice poor responses to treatment and recurrent mastitis are observed. This can be explained by reinfection or by persistence of strains. We hypothesized that among a heterogeneous group of Strep. uberis mastitis isolates, some predominant host-adapted clones might be recurrently isolated from IMI. Therefore, the aim of this pilot study was to determine the Strep. uberis genotype variety found among small-scale dairy herds (127 Austrian dairy farms) and compare this with a large-scale herd (a Slovakian dairy farm). We determined the occurrence and strain diversity of Strep. uberis (n = 309) isolates using molecular analysis. Streptococcus uberis isolates from aseptically collected quarter milk samples were genotypically characterized using pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing. The Strep. uberis strain set covered isolates from 4 Austrian federal areas [Lower Austria (n = 67), Upper Austria (n = 8), Salzburg (n = 51), and Styria (n = 1)] and the Bratislava Region of Slovakia (n = 1). The PFGE analysis resulted in 187 SmaI profiles with 151 unique profiles. Simpson's index of diversity was 0.988. Individual cows (n = 17) harbored up to 3 different PFGE types in the udder. Dairy cows shared distinct PFGE types within a farm. Seven PFGE types were widely distributed among Austrian dairy farms. In the Slovakian farm, 10 predominant PFGE types were recurrently isolated from the same quarters; these genotypes were assigned as persisters. We identified novel sequence types (ST) using multilocus sequence typing related to the global clonal complexes ST5 and ST143. We concluded that Strep. uberis IMI are caused by strains with a wide heterogeneity of PFGE types. This large number of unique subtypes indicates a high diversity of Strep. uberis in the environment. In the large herd, molecular epidemiological results revealed that specific strains might be involved in contagious transmission events and potentially lead to persistence.
Collapse
Affiliation(s)
- Regina Wald
- University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, 1210 Vienna, Austria
| | - Martina Baumgartner
- University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, 1210 Vienna, Austria
| | - Julia Gutschireiter
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department of Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Benjamin Bazzanella
- University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, 1210 Vienna, Austria
| | - Katharina Lichtmannsperger
- University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, 1210 Vienna, Austria
| | - Martin Wagner
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department of Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Thomas Wittek
- University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, 1210 Vienna, Austria
| | - Beatrix Stessl
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department of Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, 1210 Vienna, Austria.
| |
Collapse
|
28
|
Katsafadou AI, Politis AP, Mavrogianni VS, Barbagianni MS, Vasileiou NGC, Fthenakis GC, Fragkou IA. Mammary Defences and Immunity against Mastitis in Sheep. Animals (Basel) 2019; 9:E726. [PMID: 31561433 PMCID: PMC6826578 DOI: 10.3390/ani9100726] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 12/26/2022] Open
Abstract
The objectives of this review paper are to present udder defences, including teat of the udder, mammary epithelial cells, leucocytes, immunoglobulins, complement system and chemical antibacterial agents, to describe cooperation and interactions between them and to elaborate on potentials regarding their significance in mammary immunisation strategies. The teat of the udder provides initial protection to the mammary gland. The mammary epithelial cells synthesise antibacterial proteins and the leucocytes produce various inflammation mediators (cytokines or chemokines), phagocytose bacteria and recognise antigenic structures. In the mammary gland, four immunoglobulins (IgG1, IgG2, IgM and IgA) have important roles against bacterial pathogens. The complement system is a collection of proteins, participating in the inflammatory process through various pathways. Other components contributing to humoral mammary defence include lactoferrin, lysozyme and the lactoperoxidase/myeloperoxidase systems, as well as oligosaccharides, gangliosides, reactive oxygen species, acute phase proteins (e.g., haptoglobin and serum amyloid A), ribonucleases and a wide range of antimicrobial peptides. Management practices, genetic variations and nutrition can influence mammary defences and should be taken into account in the formulation of prevention strategies against ovine mastitis.
Collapse
|
29
|
Montironi ID, Reinoso EB, Paullier VC, Siri MI, Pianzzola MJ, Moliva M, Campra N, Bagnis G, Ferreira LaRocque-de-Freitas I, Decote-Ricardo D, Freire-de-Lima CG, Raviolo JM, Cariddi LN. Minthostachys verticillata essential oil activates macrophage phagocytosis and modulates the innate immune response in a murine model of Enterococcus faecium mastitis. Res Vet Sci 2019; 125:333-344. [PMID: 31352282 DOI: 10.1016/j.rvsc.2019.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/13/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022]
|
30
|
Keane OM. Symposium review: Intramammary infections-Major pathogens and strain-associated complexity. J Dairy Sci 2019; 102:4713-4726. [PMID: 30827546 DOI: 10.3168/jds.2018-15326] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 01/08/2019] [Indexed: 01/30/2023]
Abstract
Intramammary infection (IMI) is one of the most costly diseases to the dairy industry. It is primarily due to bacterial infection and the major intramammary pathogens include Escherichia coli, Streptococcus uberis, and Staphylococcus aureus. The severity and outcome of IMI is dependent on several host factors including innate host resistance, energy balance, immune status, parity, and stage of lactation. Additionally, the infecting organism can influence the host immune response and progression of disease. It is increasingly recognized that not only the infecting pathogen species, but also the strain, can affect the transmission, severity, and outcome of IMI. For each of 3 major IMI-associated pathogens, S. aureus, Strep. uberis, and E. coli, specific strains have been identified that are adapted to the intramammary environment. Strain-dependent variation in the host immune response to infection has also been reported. The diversity of strains associated with IMI must be considered if vaccines effective against the full repertoire of mammary pathogenic strains are to be developed. Although important advances have been made recently in understanding the molecular mechanism underpinning strain-specific virulence, further research is required to fully elucidate the cellular and molecular pathogenesis of mammary adapted strains and the role of the strain in influencing the pathophysiology of infection. Improved understanding of molecular pathogenesis of strains associated with bovine IMI will contribute to the development of new control strategies, therapies, and vaccines. The development of enabling technologies such as pathogenomics, transcriptomics, and proteomics can facilitate system-level studies of strain-specific molecular pathogenesis and the identification of key mediators of host-pathogen interactions.
Collapse
Affiliation(s)
- O M Keane
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland C15 PW93.
| |
Collapse
|
31
|
Li B, Xi P, Wang Z, Han X, Xu Y, Zhang Y, Miao J. PI3K/Akt/mTOR signaling pathway participates in Streptococcus uberis-induced inflammation in mammary epithelial cells in concert with the classical TLRs/NF-ĸB pathway. Vet Microbiol 2018; 227:103-111. [PMID: 30473339 DOI: 10.1016/j.vetmic.2018.10.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022]
Abstract
Mammary epithelial cells (MECs) play an important role in debating Streptococcus uberis (S. uberis) infection. Toll like receptor (TLR) engagement leads to the recruitment of phosphatidylinositol 3 kinases (PI3K). In order to investigate the relationship of TLRs/NF-κB and PI3K/Akt/mTOR signaling pathways in S. uberis infection in MECs, we challenged MECs (EpH4-Ev) with S. uberis 0140 J and quantified the adaptor molecules in these two signaling pathways, as-well-as proinflammatory cytokines and cell damage. The results indicate that the host's responses to virulent S. uberis infection are complex. In MECs, both TLR2 and TLR4 are detecting S. uberis infection and TLR2 is the principal receptor. The role of the PI3K/Akt/mTOR pathway in inflammatory regulation is independent of the activation of TLRs/NF-κB. Cross-talk between PI3K/Akt/mTOR and TLRs/NF-κB signaling pathways promote inflammation. This study increases our understanding of the molecular defense mechanisms of MECs in S. uberis mastitis, and provides theoretical support for the prevention of this disease.
Collapse
Affiliation(s)
- Bin Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Panpan Xi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenglei Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yuanyuan Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanshu Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
32
|
Rainard P, Foucras G. A Critical Appraisal of Probiotics for Mastitis Control. Front Vet Sci 2018; 5:251. [PMID: 30364110 PMCID: PMC6191464 DOI: 10.3389/fvets.2018.00251] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/19/2018] [Indexed: 01/13/2023] Open
Abstract
The urge to reduce antimicrobials use in dairy farming has prompted a search for alternative solutions. As infections of the mammary gland is a major reason for antibiotic administration to dairy ruminants, mammary probiotics have recently been presented as a possible alternative for the treatment of mastitis. To assess the validity of this proposal, we performed a general appraisal of the knowledge related to probiotics for mammary health by examining their potential modes of action and assessing the compatibility of these mechanisms with the immunobiology of mammary gland infections. Then we analyzed the literature published on the subject, taking into account the preliminary in vitro experiments and the in vivo trials. Preliminary experiments aimed essentially at exploring in vitro the capacity of putative probiotics, mainly lactic acid bacteria (LABs), to interfere with mastitis-associated bacteria or to interact with mammary epithelial cells. A few studies used LABs selected on the basis of bacteriocin production or the capacity to adhere to epithelial cells to perform in vivo experiments. Intramammary infusion of LABs showed that LABs are pro-inflammatory for the mammary gland, inducing an intense influx of neutrophils into milk during lactation and at drying-off. Yet, their capacity to cure mastitis remains to be established. A few preliminary studies tackle the possibility of using probiotics to interfere with the teat apex microbiota or to prevent the colonization of the teat canal by pathogenic bacteria. From the analysis of the published literature, it appears that currently there is no sound scientific foundation for the use of probiotics to prevent or treat mastitis. We conclude that the prospects for oral probiotics are not promising for ruminants, those for intramammary probiotics should be considered with caution, but that teat apex probiotics deserve further research.
Collapse
Affiliation(s)
- Pascal Rainard
- ISP, INRA, Université de Tours, UMR 1282, Nouzilly, France
| | - Gilles Foucras
- IHAP, Université de Toulouse, ENVT, INRA, UMR1225, Toulouse, France
| |
Collapse
|
33
|
Günther J, Seyfert HM. The first line of defence: insights into mechanisms and relevance of phagocytosis in epithelial cells. Semin Immunopathol 2018; 40:555-565. [PMID: 30182191 PMCID: PMC6223882 DOI: 10.1007/s00281-018-0701-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/09/2018] [Indexed: 12/16/2022]
Abstract
Epithelial tissues cover most of the external and internal surfaces of the body and its organs. Inevitably, these tissues serve as first line of defence against inorganic, organic, and microbial intruders. Epithelial cells are the main cell type of these tissues. Besides their function as cellular barrier, there is growing evidence that epithelial cells are of particular relevance as initial sensors of danger and also as executers of adequate defence responses. These cells feature various essential functions to maintain tissue integrity in health and disease. In this review, we survey some of the different innate immune functions of epithelial cells in mucosal tissues being constantly exposed to a plethora of harmless contaminants but also of pathogens. We discuss how epithelial cells avoid inadequate immune responses in such conditions. In particular, we will focus on the diverse types and mechanisms of phagocytosis used by epithelial cells to not only maintain homeostasis but to also harness the host response against invading pathogens.
Collapse
Affiliation(s)
- Juliane Günther
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, 18196, Dummerstorf, Germany.
| | - Hans-Martin Seyfert
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, 18196, Dummerstorf, Germany
| |
Collapse
|
34
|
Rainard P, Foucras G, Boichard D, Rupp R. Invited review: Low milk somatic cell count and susceptibility to mastitis. J Dairy Sci 2018; 101:6703-6714. [PMID: 29803421 DOI: 10.3168/jds.2018-14593] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/13/2018] [Indexed: 12/17/2022]
Abstract
An enduring controversy exists about low milk cell counts and susceptibility to mastitis. The concentration of milk leukocytes, or somatic cell count (SCC), is a well-established direct indicator of mammary gland inflammation that is highly correlated with the presence of a mammary infection. The SCC is also used as a trait for the selection of dairy ruminants less prone to mastitis. As selection programs favor animals with less SCC, and as milk cells contribute to the defense of the mammary gland, the idea that susceptibility to mastitis could possibly be increased in the long term has been put forward and is still widely debated. Epidemiological and experimental studies aimed at relating SCC to susceptibility to mastitis have yielded results that seem contradictory at first sight. Nevertheless, by taking into account the immunobiology of milk and mammary tissue cells and their role in the defense against infection, along with recent studies on SCC-based divergent selection of animals, the issue can be settled. Apparent SCC-linked susceptibility to mastitis is a phenotypic trait that may be linked to immunomodulation but not to selection.
Collapse
Affiliation(s)
- P Rainard
- ISP, Université de Tours, INRA, UMR1282, F-37380 Nouzilly, France.
| | - G Foucras
- IHAP, Université de Toulouse, ENVT, INRA, UMR1225, F-31076 Toulouse, France
| | - D Boichard
- GABI, INRA, AgroParisTech, Université Paris Saclay, F-78350 Jouy-en-Josas, France
| | - R Rupp
- GenPhySE, Université de Toulouse, INRA, F-31320 Castanet-Tolosan, France
| |
Collapse
|
35
|
Bhattarai D, Worku T, Dad R, Rehman ZU, Gong X, Zhang S. Mechanism of pattern recognition receptors (PRRs) and host pathogen interplay in bovine mastitis. Microb Pathog 2018; 120:64-70. [PMID: 29635052 DOI: 10.1016/j.micpath.2018.04.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 04/01/2018] [Accepted: 04/06/2018] [Indexed: 02/08/2023]
Abstract
Bacterial infection in the mammary gland parenchyma induces local and subsequently systemic inflammation that results in a complex disease. Mastitis in bovine is the result of various factors which function together. This review is aimed to analyze the factors involved in the pathogenesis of common bacterial species for bovine mastitis. The bacterial growth patterns, signaling pathway and the pathogen-associated molecular patterns (PAMPs) which activate immune responses is discussed. Clear differences in bacterial infection pattern are shown between bacterial species and illustrated TLRs, NLRs and RLGs molecular mechanism for the initiation of intramammary infection. The underlying reasons for the differences and the resulting host response are analyzed. Understandings of the mechanisms that activate and regulate these responses are central to the development of efficient anticipatory and treatment management. The knowledge of bovine mammary gland to common mastitis causing pathogens with possible immune mechanism could be a new conceptual understanding for the prospect of mastitis control program.
Collapse
Affiliation(s)
- Dinesh Bhattarai
- Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430071, China.
| | - Tesfaye Worku
- Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430071, China
| | - Rahim Dad
- Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430071, China
| | - Zia Ur Rehman
- Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430071, China
| | - Xiaoling Gong
- The Agricultural Broadcasting and Television School in Hubei Province, Wuhan, 430064, China
| | - Shujun Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430071, China.
| |
Collapse
|
36
|
Kerro Dego O, Almeida R, Saxton A, Abdi R, Ensermu D, Oliver S. Bovine intramammary infection associated immunogenic surface proteins of Streptococcus uberis. Microb Pathog 2018; 115:304-311. [DOI: 10.1016/j.micpath.2017.12.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/14/2017] [Accepted: 12/14/2017] [Indexed: 11/24/2022]
|
37
|
Petzl W, Zerbe H, Günther J, Seyfert HM, Hussen J, Schuberth HJ. Pathogen-specific responses in the bovine udder. Models and immunoprophylactic concepts. Res Vet Sci 2017; 116:55-61. [PMID: 29275905 DOI: 10.1016/j.rvsc.2017.12.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/28/2017] [Accepted: 12/17/2017] [Indexed: 12/20/2022]
Abstract
Bovine mastitis is a disease of major economic effects on the dairy industry worldwide. Experimental in vivo infection models have been widely proven as an effective tool for the investigation of pathogen-specific host immune responses. Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) are two common mastitis pathogens with an opposite clinical outcome of the disease. E. coli and S. aureus have proven to be valid surrogates to model clinical and subclinical mastitis respectively. Contemporary transcriptome profiling studies demonstrated that the transcriptomic response in the teat reflects the course of pathogen-specific mastitis, being ultimately determined by the immune response of the mammary epithelial cells. After an experimental in vivo challenge, E. coli induces a vigorous early transcriptional response in udder tissue being quantitatively and - notably - qualitatively distinct from the much weaker response against an S. aureus infection. E. coli mastitis models proved that the local response in the infected udder quarters is accompanied by a response in non-infected neighbouring udder quarters modulating systemically their immune responsiveness. Immunomodulation of the udder was investigated in animal models. Pathophysiological consequences were studied after intramammary administration of cytokines, chemokines, growth factors, steroidal anti-inflammatory drugs, or priming of tissue resident cells with pathogen-derived molecules. The latter approaches resulted only in a temporal protection of the udder, reducing transiently the risk of infection but sustained lowering of the severity of an eventually occurring mastitis. They offer an alternative to vaccination trials, which over decades also did not yield protection against new infections.
Collapse
Affiliation(s)
- Wolfram Petzl
- Clinic for Ruminants with Ambulance and Herd Health Services, Centre for Clinical Veterinary Medicine, LMU Munich, Germany
| | - Holm Zerbe
- Clinic for Ruminants with Ambulance and Herd Health Services, Centre for Clinical Veterinary Medicine, LMU Munich, Germany
| | - Juliane Günther
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Dummerstorf, Germany
| | - Hans-Martin Seyfert
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Dummerstorf, Germany
| | - Jamal Hussen
- Department of Microbiology and Parasitology, College of Veterinary Medicine, King Faisal University, Al Ahsaa, Saudi Arabia
| | | |
Collapse
|
38
|
Klaas IC, Zadoks RN. An update on environmental mastitis: Challenging perceptions. Transbound Emerg Dis 2017; 65 Suppl 1:166-185. [PMID: 29083115 DOI: 10.1111/tbed.12704] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Indexed: 12/15/2022]
Abstract
Environmental mastitis is the most common and costly form of mastitis in modern dairy herds where contagious transmission of intramammary pathogens is controlled through implementation of standard mastitis prevention programmes. Environmental mastitis can be caused by a wide range of bacterial species, and binary classification of species as contagious or environmental is misleading, particularly for Staphylococcus aureus, Streptococcus uberis and other streptococcal species, including Streptococcus agalactiae. Bovine faeces, the indoor environment and used pasture are major sources of mastitis pathogens, including Escherichia coli and S. uberis. A faeco-oral transmission cycle may perpetuate and amplify the presence of such pathogens, including Klebsiella pneumoniae and S. agalactiae. Because of societal pressure to reduce reliance on antimicrobials as tools for mastitis control, management of environmental mastitis will increasingly need to be based on prevention. This requires a reduction in environmental exposure through bedding, pasture and pre-milking management and enhancement of the host response to bacterial challenge. Efficacious vaccines are available to reduce the impact of coliform mastitis, but vaccine development for gram-positive mastitis has not progressed beyond the "promising" stage for decades. Improved diagnostic tools to identify causative agents and transmission patterns may contribute to targeted use of antimicrobials and intervention measures. The most important tool for improved uptake of known mastitis prevention measures is communication. Development of better technical or biological tools for management of environmental mastitis must be accompanied by development of appropriate incentives and communication strategies for farmers and veterinarians, who may be confronted with government-mandated antimicrobial use targets if voluntary reduction is not implemented.
Collapse
Affiliation(s)
- I C Klaas
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - R N Zadoks
- Moredun Research Institute, Penicuik, UK.,Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
39
|
Breyne K, Steenbrugge J, Demeyere K, Vanden Berghe T, Meyer E. Preconditioning with Lipopolysaccharide or Lipoteichoic Acid Protects against Staphylococcus aureus Mammary Infection in Mice. Front Immunol 2017; 8:833. [PMID: 28791009 PMCID: PMC5522847 DOI: 10.3389/fimmu.2017.00833] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/30/2017] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus is one of the most causative agents of mastitis and is associated with chronic udder infections. The persistency of the pathogen is believed to be the result of an insufficient triggering of local inflammatory signaling. In this study, the preclinical mastitis model was used, aiming to evaluate if lipopolysaccharide (LPS) or lipoteichoic acid (LTA) preconditioning could aid the host in more effectively clearing or at least limiting a subsequent S. aureus infection. A prototypic Gram-negative virulence factor, i.e., LPS and Gram-positive virulence factor, i.e., LTA were screened whether they were able to boost the local immune compartment. Compared to S. aureus-induced inflammation, both toxins had a remarkable high potency to efficiently induce two novel selected innate immunity biomarkers i.e., lipocalin 2 (LCN2) and chitinase 3-like 1 (CHI3L1). When combining mammary inoculation of LPS or LTA prior to a local S. aureus infection, we were able to modulate the innate immune response, reduce local bacterial loads, and induce either LCN2 or CHI3L1 at 24 h post-infection. Clodronate depletion of mammary macrophages also identified that macrophages contribute only to a limited extend to the LPS/LTA-induced immunomodulation upon S. aureus infection. Based on histological neutrophil influx evaluation, concomitant local cytokine profiles and LCN2/CHI3L1 patterns, the macrophage-independent signaling plays a major role in the LPS- or LTA-pretreated S. aureus-infected mouse mammary gland. Our results highlight the importance of a vigilant microenvironment during the innate immune response of the mammary gland and offer novel insights for new approaches concerning effective immunomodulation against a local bacterial infection.
Collapse
Affiliation(s)
- Koen Breyne
- Biochemistry, Faculty of Veterinary Medicine, Department of Pharmacology, Toxicology and Biochemistry, Ghent University, Merelbeke, Belgium
| | - Jonas Steenbrugge
- Biochemistry, Faculty of Veterinary Medicine, Department of Pharmacology, Toxicology and Biochemistry, Ghent University, Merelbeke, Belgium
| | - Kristel Demeyere
- Biochemistry, Faculty of Veterinary Medicine, Department of Pharmacology, Toxicology and Biochemistry, Ghent University, Merelbeke, Belgium
| | - Tom Vanden Berghe
- Peter Vandenabeele Lab, Inflammation Research Center, Department of Biomedical Molecular Biology, VIB, Ghent University, Zwijnaarde, Belgium
| | - Evelyne Meyer
- Biochemistry, Faculty of Veterinary Medicine, Department of Pharmacology, Toxicology and Biochemistry, Ghent University, Merelbeke, Belgium
| |
Collapse
|
40
|
Koshiishi T, Watanabe M, Miyake H, Hisaeda K, Isobe N. Cellular and soluble components decrease the viable pathogen counts in milk from dairy cows with subclinical mastitis. J Vet Med Sci 2017; 79:1389-1393. [PMID: 28690278 PMCID: PMC5573827 DOI: 10.1292/jvms.17-0269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The present study was undertaken to clarify the factors that reduce the viable pathogen
count in milk collected from the udders of subclinical mastitic cows during preservation.
Milk was centrifuged to divide somatic cells (cellular components, precipitates) and
antimicrobial peptides (soluble components, supernatants without fat layer); each fraction
was cultured with bacteria, and the number of viable bacteria was assessed prior to and
after culture. In 28.8% of milk samples, we noted no viable bacteria immediately after
collection; this value increased significantly after a 5-hr incubation of milk with
cellular components but not with soluble components (48.1 and 28.8%, respectively). After
culture with cellular components, the numbers of bacteria (excluding
Staphylococcus aureus and Streptococcus uberis) and
yeast decreased dramatically, although the differences were not statistically significant.
After cultivation with soluble components, only yeasts showed a tendency toward decreased
mean viability, whereas the mean bacterial counts of S. uberis and
T. pyogenes tended to increase after 5-hr preservation with soluble
components. These results suggest that most pathogens in high somatic cell count (SCC)
milk decreased during preservation at 15 to 25°C, due to both the cellular components and
antimicrobial components in the milk. Particularly, the cellular components more potently
reduced bacterial counts during preservation.
Collapse
Affiliation(s)
- Tomoko Koshiishi
- Nanyo Veterinary Clinic, Ehime P.F.A.M.A.A. Seiyo, Ehime 797-1211, Japan
| | - Masako Watanabe
- Touyo Veterinary Clinic, Ehime P.F.A.M.A.A. Saijo, Ehime 799-1312, Japan
| | - Hajime Miyake
- Oozu Veterinary Clinic, Ehime P.F.A.M.A.A. Oozu, Ehime 795-0064, Japan
| | - Keiichi Hisaeda
- Nanyo Veterinary Clinic, Ehime P.F.A.M.A.A. Seiyo, Ehime 797-1211, Japan
| | - Naoki Isobe
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| |
Collapse
|
41
|
Gupta SK, Haigh BJ, Seyfert HM, Griffin FJ, Wheeler TT. Bovine milk RNases modulate pro-inflammatory responses induced by nucleic acids in cultured immune and epithelial cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 68:87-97. [PMID: 27871831 DOI: 10.1016/j.dci.2016.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 06/06/2023]
Abstract
Activation of innate immune receptors by exogenous substances is crucial for the detection of microbial pathogens and a subsequent inflammatory response. The inflammatory response to microbial lipopolysaccharide via Toll-like receptor 4 (TLR4) is facilitated by soluble accessory proteins, but the role of such proteins in the activation of other pathogen recognition receptors for microbial nucleic acid is not well understood. Here we demonstrate that RNase4 and RNase5 purified from bovine milk bind to Salmonella typhimurium DNA and stimulate pro-inflammatory responses induced by nucleic acid mimetics and S. typhimurium DNA in an established mouse macrophage cell culture model, RAW264.7, as well as in primary bovine mammary epithelial cells. RNase4 and 5 also modulated pro-inflammatory signalling in response to nucleic acids in bovine peripheral blood mononuclear cells, although producing a distinct response. These results support a role for RNase4 and RNase5 in mediating inflammatory signals in both immune and epithelial cells, involving mechanisms that are cell-type specific.
Collapse
Affiliation(s)
- Sandeep K Gupta
- Dairy Foods, AgResearch, Ruakura Research Centre, Hamilton, New Zealand; Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand; Leibniz-Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany.
| | - Brendan J Haigh
- Dairy Foods, AgResearch, Ruakura Research Centre, Hamilton, New Zealand.
| | - Hans-Martin Seyfert
- Leibniz-Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany.
| | - Frank J Griffin
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
42
|
Apoptosis of Endothelial Cells by 13-HPODE Contributes to Impairment of Endothelial Barrier Integrity. Mediators Inflamm 2016; 2016:9867138. [PMID: 27818578 PMCID: PMC5080509 DOI: 10.1155/2016/9867138] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/30/2016] [Indexed: 01/19/2023] Open
Abstract
Inflammation is an essential host response during bacterial infections such as bovine mastitis. Endothelial cells are critical for an appropriate inflammatory response and loss of vascular barrier integrity is implicated in the pathogenesis of Streptococcus uberis-induced mastitis. Previous studies suggested that accumulation of linoleic acid (LA) oxygenation products derived from 15-lipoxygenase-1 (15-LOX-1) metabolism could regulate vascular functions. The initial LA derivative from the 15-LOX-1 pathway, 13-hydroperoxyoctadecadienoic acid (HPODE), can induce endothelial death, whereas the reduced hydroxyl product, 13-hydroxyoctadecadienoic acid (HODE), is abundantly produced during vascular activation. However, the relative contribution of specific LA-derived metabolites on impairment of mammary endothelial integrity is unknown. Our hypothesis was that S. uberis-induced LA-derived 15-LOX-1 oxygenation products impair mammary endothelial barrier integrity by apoptosis. Exposure of bovine mammary endothelial cells (BMEC) to S. uberis did not increase 15-LOX-1 LA metabolism. However, S. uberis challenge of bovine monocytes demonstrated that monocytes may be a significant source of both 13-HPODE and 13-HODE during mastitis. Exposure of BMEC to 13-HPODE, but not 13-HODE, significantly reduced endothelial barrier integrity and increased apoptosis. Changing oxidant status by coexposure to an antioxidant during 13-HPODE treatment prevented adverse effects of 13-HPODE, including amelioration of apoptosis. A better understanding of how the oxidant status of the vascular microenvironment impacts endothelial barrier properties could lead to more efficacious treatments for S. uberis mastitis.
Collapse
|
43
|
Günther J, Koy M, Berthold A, Schuberth HJ, Seyfert HM. Comparison of the pathogen species-specific immune response in udder derived cell types and their models. Vet Res 2016; 47:22. [PMID: 26830914 PMCID: PMC4736154 DOI: 10.1186/s13567-016-0307-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/17/2015] [Indexed: 01/07/2023] Open
Abstract
The outcome of an udder infection (mastitis) largely depends on the species of the invading pathogen. Gram-negative pathogens, such as Escherichia coli often elicit acute clinical mastitis while Gram-positive pathogens, such as Staphylococcus aureus tend to cause milder subclinical inflammations. It is unclear which type of the immune competent cells residing in the udder governs the pathogen species-specific physiology of mastitis and which established cell lines might provide suitable models. We therefore profiled the pathogen species-specific immune response of different cell types derived from udder and blood. Primary cultures of bovine mammary epithelial cells (pbMEC), mammary derived fibroblasts (pbMFC), and bovine monocyte-derived macrophages (boMdM) were challenged with heat-killed E. coli, S. aureus and S. uberis mastitis pathogens and their immune response was scaled against the response of established models for MEC (bovine MAC-T) and macrophages (murine RAW 264.7). Only E. coli provoked a full scale immune reaction in pbMEC, fibroblasts and MAC-T cells, as indicated by induced cytokine and chemokine expression and NF-κB activation. Weak reactions were induced by S. aureus and none by S. uberis challenges. In contrast, both models for macrophages (boMdM and RAW 264.7) reacted strongly against all the three pathogens accompanied by strong activation of NF-κB factors. Hence, the established cell models MAC-T and RAW 264.7 properly reflected key aspects of the pathogen species-specific immune response of the respective parental cell type. Our data imply that the pathogen species-specific physiology of mastitis likely relates to the respective response of MEC rather to that of professional immune cells.
Collapse
Affiliation(s)
- Juliane Günther
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany.
| | - Mirja Koy
- Immunology Unit, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany.
| | - Anne Berthold
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany.
| | - Hans-Joachim Schuberth
- Immunology Unit, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany.
| | - Hans-Martin Seyfert
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany.
| |
Collapse
|