1
|
Wang M, Li M, Yan G, Li H, Zhou J, Yang A. Epidemiological investigation, isolation, and pathogenicity of porcine epidemic diarrhea virus subtype G2c in Sichuan province. Arch Virol 2025; 170:129. [PMID: 40377695 DOI: 10.1007/s00705-025-06308-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/18/2025] [Indexed: 05/18/2025]
Abstract
Continued outbreaks of porcine epidemic diarrhea are causing serious economic losses to the swine industry in China. To monitor the prevalence, genetic mutations, and pathogenicity of porcine epidemic diarrhea virus (PEDV), 172 samples were collected from eight cities in Sichuan Province from 2020 to 2022. RT-PCR analysis revealed that 25.0% (43/172) of samples were positive for PEDV. Phylogenetic analysis of 17 S gene sequences (encoding the spike protein) showed that G2c was the main genotype circulating in Sichuan. One strain, Leshan-s-2020 (G2a), was identified as a recombinant resulting from inter-lineage recombination between the KM609212/LYG/2015 (G2a) and MianYang-s-2020 (G2a) strains in the S2 domain. In addition, the G2c strain YB2201, which was highly virulent in 4-day-old piglets, was successfully isolated. The results of this study enrich our understanding of the epidemiology of PEDV, the genetic characteristics and pathogenicity of the PEDV strains circulating in China, and the role of recombination in their evolution. These findings may contribute to the development of antigen detection reagents and vaccines.
Collapse
Affiliation(s)
- Min Wang
- Liangshan Academy of Agricultural Sciences, Xichang, China
| | - Mingxiang Li
- College of Animal Science, Xichang University, Xichang, China.
- Key Laboratory of Animal Epidemic Disease Detection and Prevention in Panxi District, Sichuan, China.
| | - Guangwen Yan
- College of Animal Science, Xichang University, Xichang, China
- Key Laboratory of Animal Epidemic Disease Detection and Prevention in Panxi District, Sichuan, China
| | - Hao Li
- College of Animal Science, Xichang University, Xichang, China
| | - Jun Zhou
- Sichuan BoCe Testing Tech Co., Ltd., Chengdu, China
| | - Aiguo Yang
- Sichuan Center for Animal Disease Prevention and Control, Chengdu, China
| |
Collapse
|
2
|
Yuan C, Ma Y, Wang W, Wang Y, Shi X, Song Q. Salinomycin inhibits porcine epidemic diarrhea virus infection by targeting Wnt/β-catenin pathway. Int Immunopharmacol 2025; 155:114652. [PMID: 40215770 DOI: 10.1016/j.intimp.2025.114652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a re-emerging pathogen that causes severe economic losses in the pig industry. Commercial PEDV vaccines provide limited protection against PEDV virulent strains. Therefore, the development of novel vaccines and antiviral drugs is urgently required. In this study, we investigated the inhibitory effects of Salinomycin (SLM) against PEDV infection in vitro. First, the half-maximal cytotoxic concentration (CC50) and half-maximal inhibitory concentration (IC50) of SLM were measured by a cell counting kit 8 (CCK-8) and cytopathic effect (CPE). The results showed that the CC50 of SLM on Vero cells was 7.698 μmol·L-1, and the IC50 for PEDV was 0.998 μmol·L-1. SLM dose-dependently suppressed the PEDV-QY strain infection in vitro. In addition, SLM mainly acted on the internalization and replication stages of the PEDV-QY strain, and had no significant effect on viral inactivation, attachment, and release. Finally, SLM inhibited PEDV infection by suppressing PEDV-induced Wnt/β-catenin activation. Collectively, these results suggest that SLM exerts anti-PEDV effects in vitro and presents a potential as an anti-PEDV drug.
Collapse
Affiliation(s)
- Chen Yuan
- College of Veterinary Medicine, Hebei Agricultural University; Veterinary Biological Technology Innovation Center of Hebei Province, Baoding 071000, China
| | - Yajuan Ma
- College of Veterinary Medicine, Hebei Agricultural University; Veterinary Biological Technology Innovation Center of Hebei Province, Baoding 071000, China
| | - Wei Wang
- College of Veterinary Medicine, Hebei Agricultural University; Veterinary Biological Technology Innovation Center of Hebei Province, Baoding 071000, China
| | - Yawen Wang
- College of Veterinary Medicine, Hebei Agricultural University; Veterinary Biological Technology Innovation Center of Hebei Province, Baoding 071000, China
| | - Xiaojing Shi
- Handan City Rural Revitalization Promotion Center, Handan 056004, Hebei Province, China
| | - Qinye Song
- College of Veterinary Medicine, Hebei Agricultural University; Veterinary Biological Technology Innovation Center of Hebei Province, Baoding 071000, China.
| |
Collapse
|
3
|
Zhang D, Xie Y, Liao Q, Jiao Z, Liang R, Zhang J, Zhang Y, Tan Y, Wang H, Zhang W, Xiao S, Peng G, Shi Y. Development of a safe and broad-spectrum attenuated PEDV vaccine candidate by S2 subunit replacement. J Virol 2024; 98:e0042924. [PMID: 39404450 PMCID: PMC11575183 DOI: 10.1128/jvi.00429-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/09/2024] [Indexed: 11/20/2024] Open
Abstract
Porcine epidemic diarrhea (PED) has caused serious economic losses to the swine livestock industry. Due to the rapid variation in the PEDV) genome, especially the spike (S) protein, the cross-protection ability of antibodies between different vaccine strains is weakened. Hence, the rapid development of safe, broad-spectrum and highly effective attenuated PEDV vaccine still needs further research. Here, we found that the replacement of the S2 subunit had little effect on S protein immunogenicity. Moreover, the chimeric virus (YN-S2DR13), the S protein of the YN strain was replaced by the DR13 S2 subunit, which lost its trypsin tropism and increased its propagation ability (approximately 1 titer) in Vero cells. Then, the pathogenesis of YN-S2DR13 was evaluated in neonatal piglets. Importantly, quantitative real-time PCR, histopathology, and immunohistochemistry confirmed that the virulence of YN-S2DR13 was significantly reduced compared with that of YN. Immunization with YN-S2DR13 induced neutralizing antibodies against both YN and DR13 in weaned piglets. In vitro passaging data also showed that YN-S2DR13 had good genetic stability. Collectively, these results suggest that YN-S2DR13 has significant advantages as a novel vaccine candidate, including a capacity for viral propagation to high titers with no trypsin requirement and the potential to provide protection against both PEDV G1 and G2 strains infections. Our results also suggests that S2 subunit replacement using reverse genetics can be a rapid strategy for the rational design of live attenuated vaccines for PEDV. IMPORTANCE Emerging highly virulent porcine epidemic diarrhea virus (PEDV) G2 strains has caused substantial economic losses worldwide. Vaccination with a live attenuated vaccine is a promising method to prevent and control PED because it can induce a strong immune response (including T- and B-cell immunity). Previous studies have demonstrated that the S2 subunit of the PEDV spike (S) protein is the determinant of PEDV trypsin independence. Here, we evaluated the pathogenicity, tissue tropism, and immunogenicity of the chimeric virus (YN-S2DR13) via animal experiments. We demonstrated that YN-S2DR13 strain, as a trypsin independent strain, increased intracellular proliferation capacity, significantly reduced virulence, and induced broad-spectrum neutralization protection against PEDV G1 and G2 strains. In vitro passaging data also validated the stability of YN-S2DR13. Our results showed that generating a chimeric PEDV strain that is trypsin-independent by replacing the S2 subunit is a promising approach for designing a live attenuated vaccine for PEDV in the future.
Collapse
Affiliation(s)
- Ding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yunfei Xie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qi Liao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhe Jiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Rui Liang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jintao Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yu Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yubei Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huanbin Wang
- Department of Animal Nutrition and Feed Science College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wanpo Zhang
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuejun Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
4
|
Wu F, Xu T, Lai SY, Ai YR, Zhou YC, Ge LP, Sun J, Liu ZH, Zeng X, Lang LQ, Xu ZW, Zhu L. Prevalence and genetic evolution analysis of porcine epidemic diarrhea virus and porcine circovirus type 2 in Sichuan Province, China, from 2023 to 2024. Front Vet Sci 2024; 11:1475347. [PMID: 39539315 PMCID: PMC11558041 DOI: 10.3389/fvets.2024.1475347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Porcine circovirus type 2 (PCV2) and Porcine epidemic diarrhea virus (PEDV) are highly prevalent in Sichuan, significantly affecting the swine industry's development. PCV2, known for its immunosuppressive effects, can compromise pigs' immune systems, while PEDV typically causes diarrhea in piglets, leading to high mortality rates. Despite their impact, recent studies on the epidemiology and genetic diversity of PCV2 and PEDV within Sichuan Province remain limited. Methods This study examines clinical samples from 352 diarrheal piglets across 63 pig farms in 17 regions of Sichuan Province, revealing positivity rates of 42.33% (149/352) for PCV2 and 50.28% (177/352) for PEDV, with a co-infection rate of 27.56% (97/352). Notably, the highest positivity rates were observed in Ziyang for PCV2 at 61.90% (13/21), and in Meishan for PEDV at 73.81% (31/42), both regions also reported the highest co-infection rates of 47.62%. Results and discussion Seasonal analysis indicated that PEDV infections peaked during winter, whereas PCV2 showed no significant seasonal trends. Phylogenetic analysis identified 14 PCV2 strains, categorizing 2 as PCV2b (14.29%), 10 as PCV2d (71.43%), and 2 as PCV2e (14.29%). Among the 16 PEDV strains, 2 were classified as G1a (12.5%) and 14 as G2a (87.5%), with PCV2d and PEDV G2a identified as the predominant strains in the region. The study also highlights a high mutation rate at the antigenic sites of both viruses, potentially affecting vaccine efficacy. These findings underscore the need for ongoing surveillance and vaccine development tailored to the prevalent strains to improve control measures within the province.
Collapse
Affiliation(s)
- Fang Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Si-Yuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan-Ru Ai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuan-Cheng Zhou
- Key Laboratory of Animal Breeding and Genetics, Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Livestock and Poultry Biological Products, Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Liang-Peng Ge
- National Center of Technology Innovation for Pigs, Chongqing Academy of Animal Sciences, Chongqing, China
| | - Jing Sun
- National Center of Technology Innovation for Pigs, Chongqing Academy of Animal Sciences, Chongqing, China
| | - Zuo-Hua Liu
- National Center of Technology Innovation for Pigs, Chongqing Academy of Animal Sciences, Chongqing, China
| | - Xiu Zeng
- National Center of Technology Innovation for Pigs, Chongqing Academy of Animal Sciences, Chongqing, China
| | - Li-Qiao Lang
- National Center of Technology Innovation for Pigs, Chongqing Academy of Animal Sciences, Chongqing, China
| | - Zhi-Wen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine Sichuan, Key Laboratory of Animal Epidemic Disease and Human Health, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine Sichuan, Key Laboratory of Animal Epidemic Disease and Human Health, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Yang D, Wang X, Yang X, Qi S, Zhao F, Guo D, Li C, Zhu Q, Xing X, Cao Y, Sun D. Construction and immune effect evaluation of the S protein heptad repeat-based nanoparticle vaccine against porcine epidemic diarrhea virus. Virology 2024; 596:110113. [PMID: 38801794 DOI: 10.1016/j.virol.2024.110113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV), a highly virulent enteropathogenic coronavirus, is a significant threat to the pig industry. High frequency mutations in the PEDV genome have limited the effectiveness of current vaccines in providing immune protection. Developing efficient vaccines that can quickly adapt to mutant strains is a challenging but crucial task. In this study, we chose the pivotal protein heptad repeat (HR) responsible for coronavirus entry into host cells, as the vaccine antigen. HR-Fer nanoparticles prepared using ferritin were evaluated them as PEDV vaccine candidates. Nanoparticle vaccines elicited stronger neutralizing antibody responses in mice compared to monomer vaccines. Additionally, HR protein delivered via nanoparticles increased antigen uptake by antigen-presenting cells in vitro by 2.75-fold. The collective results suggest that HR can be used as antigens for vaccines, and the HR vaccine based on ferritin nanoparticles significantly enhances immunogenicity.
Collapse
Affiliation(s)
- Dan Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Xinglin Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Xu Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Shanshan Qi
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Feiyu Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Chunqiu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Qinghe Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Xiaoxu Xing
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Yang Cao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China.
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China.
| |
Collapse
|
6
|
Chen J, Tian L, Liu Y, Sun Y, Li Z, Cai X, Meng Q, Qiao J. Molecular characterization and phylogenetic analysis of porcine epidemic diarrhea virus in Xinjiang, China, from 2020 to 2022. Arch Virol 2024; 169:96. [PMID: 38619633 DOI: 10.1007/s00705-024-06029-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/18/2024] [Indexed: 04/16/2024]
Abstract
In recent years, the pig industry in Xinjiang, China, has been severely impacted by outbreaks of porcine epidemic diarrhea (PED), despite vaccination efforts. In this study, we investigated the genetic characteristics of currently prevalent porcine epidemic diarrhea virus (PEDV) strains in the region. We collected 548 samples from animals with suspected PED on large-scale pig farms in Xinjiang. Of these, 258 tested positive for PEDV by RT-PCR, yielding an overall positivity rate of 47.08%. S1 gene sequencing and phylogenetic analysis were conducted on 23 randomly selected RT-PCR-positive samples. Three endemic strains of PEDV (PEDV/CH/XU/2020, PEDV/CH/XK/2020, and PEDV/CH/XA/2020) were isolated, and their complete genome sequences were analyzed for evidence of genetic recombination. Sequence comparison of the S gene indicated significant variations in the S1 gene of the Xinjiang strains compared to the vaccine strains CV777, AJ1102, and LWL, with 90.2%-98.5% nucleotide sequence identity. Notably, both the N-terminal and C-terminal domains of the S protein showed significant variation. Genetic evolutionary analysis identified the GIIa subtype as the dominant genotype among the epidemic strains in Xinjiang. Recombination analysis revealed inter-subtype recombination events in the PEDV/CH/XK/2020 and XJ1904-34 strains. These findings highlight the extensive genetic variation in the predominant GIIa genotype of PEDV in Xinjiang, which does not match the genotype of the currently used vaccine strains. These data may guide further efforts toward the development of effective vaccines for the control of PED.
Collapse
Affiliation(s)
- Jinlong Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Lulu Tian
- Xinjiang Agricultural Vocational and Technical College, Changji, 831100, Xinjiang, China
| | - Yucheng Liu
- Institute of Animal Science and Veterinary Research, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, Xinjiang, China
| | - Yaoqiang Sun
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Zhiyuan Li
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Xuepeng Cai
- State Key Lab of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China
| | - Qingling Meng
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China.
| | - Jun Qiao
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, Xinjiang, China.
| |
Collapse
|
7
|
Guo Y, Sui L, Kong D, Liu D, Gao Y, Jiang Y, Cui W, Li J, Li Y, Wang L. Porcine epidemic diarrhea virus strain CH/HLJ/18 isolated in China: characterization and phylogenetic analysis. Virol J 2024; 21:28. [PMID: 38268010 PMCID: PMC10807084 DOI: 10.1186/s12985-023-02233-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/06/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Porcine epidemic diarrhea (PED) is an infectious disease of the digestive tract caused by the porcine epidemic diarrhea virus (PEDV), characterized by vomiting, severe diarrhea, and high mortality rates in piglets. In recent years, the distribution of this disease in China has remarkably increased, and its pathogenicity has also increased. PEDV has been identified as the main cause of viral diarrhea in piglets. This study aimed to understand the genetic evolution and diversity of PEDV to provide a theoretical basis for the development of new vaccines and the prevention and treatment of PED. METHODS A PEDV strain was isolated from the small intestine of a diarrheal piglet using Vero cells. The virus was identified using reverse transcription-polymerase chain reaction (RT-PCR), indirect immunofluorescence assay (IFA), and transmission electron microscopy. The whole genome sequence was sequenced, phylogenetic analysis was conducted using MEGA (version 7.0), and recombination analysis was performed using RDP4 and SimPlot. The S protein amino acid sequence was aligned using Cluster X (version 2.0), and the S protein was modeled using SWISS-MODEL to compare differences in structure and antigenicity. Finally, the piglets were inoculated with PEDV to evaluate its pathogenicity in newborn piglets. RESULT PEDV strain CH/HLJ/18 was isolated. CH/HLJ/18 shared 89.4-99.2% homology with 52 reference strains of PEDV belonging to the GII-a subgroup. It was a recombinant strain of PEDV BJ-2011-1 and PEDV CH_hubei_2016 with a breakpoint located in ORF1b. Unique amino acid deletions and mutations were observed in the CH/HLJ/18 S protein. The piglets then developed severe watery diarrhea and died within 7 d of inoculation with CH/HLJ/18, suggesting that CH/HLJ/18 was highly pathogenic to newborn piglets. CONCLUSION A highly pathogenic recombinant PEDV GII-a strain, CH/HLJ/18, was identified in China, with unique deletion and mutation of amino acids in the S protein that may lead to changes in protein structure and antigenicity. These results will be crucial for understanding the prevalence and variation of PEDV and for preventing and controlling PED.
Collapse
Affiliation(s)
- Yuyao Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Ling Sui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Deming Kong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Dan Liu
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Yueyi Gao
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China.
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, China.
| |
Collapse
|
8
|
Bai J, Du C, Lu Y, Wang R, Su X, Yu K, Qin Q, Chen Y, Wei Z, Huang W, Ouyang K. Phylogenetic and Spatiotemporal Analyses of Porcine Epidemic Diarrhea Virus in Guangxi, China during 2017–2022. Animals (Basel) 2023; 13:ani13071215. [PMID: 37048471 PMCID: PMC10093014 DOI: 10.3390/ani13071215] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
Since 2010, porcine epidemic diarrhea virus (PEDV) has swept across China and spread throughout the country, causing huge economic losses. In this study, 673 diarrhea samples from 143 pig farms in Guangxi during 2017–2022 were collected and detected for PEDV. Ninety-eight strains were selected for S1 gene analyses and these strains were classified into four subgroups (G1b, G2a, G2b and G2c), accounting for 1.02 (1/98), 75.51 (74/98), 16.33 (16/98) and 7.14% (7/98) of the total, respectively. Importantly, an increased number of strains in the G2c subgroup was found from 2019 onwards. Bayesian analysis revealed that Guigang may have been the epicenter of PEDVs in Guangxi. In addition, Guigang was identified as the primary hub from which PEDVs spread via two routes, namely Guigang–Wuzhou and Guigang–Laibin. Moreover, several coinfections of novel PEDV variants bearing large deletions in the partial S1 protein and PEDVs possessing an intact partial S1 protein were found in pigs. Further recombination analyses indicated that two of the strains, 18-GXNN-6 and 19-GXBH-2, originated from intra-genogroup recombination. Together, our data revealed a new profile of PEDV in Guangxi, China, which enhances our understanding of the distribution, genetic characteristics and evolutionary profile of the circulating PEDV strains in China.
Collapse
Affiliation(s)
- Jiaguo Bai
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Chen Du
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Ying Lu
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Ruomu Wang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Xueli Su
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Kechen Yu
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Qiuying Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530005, China
- Key Laboratory of Prevention and Control for Animal Disease, Guangxi University, Nanning 530005, China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530005, China
- Key Laboratory of Prevention and Control for Animal Disease, Guangxi University, Nanning 530005, China
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530005, China
- Key Laboratory of Prevention and Control for Animal Disease, Guangxi University, Nanning 530005, China
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530005, China
- Key Laboratory of Prevention and Control for Animal Disease, Guangxi University, Nanning 530005, China
- Correspondence:
| |
Collapse
|
9
|
Yang X, Li L, Su X, Li J, Liao J, Yang J, Xiao Z, Wen P, Wang H. Development of an Indirect Enzyme-Linked Immunosorbent Assay Based on the Yeast-Expressed CO-26K-Equivalent Epitope-Containing Antigen for Detection of Serum Antibodies against Porcine Epidemic Diarrhea Virus. Viruses 2023; 15:v15040882. [PMID: 37112862 PMCID: PMC10144300 DOI: 10.3390/v15040882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
Porcine epidemic diarrhea (PED) is a severe contagious intestinal disease caused by the porcine epidemic diarrhea virus (PEDV), which leads to high mortality in piglets. In this study, by analyzing a total of 53 full-length spike genes and COE domain regions of PEDVs, the conserved COE fragment of the spike protein from the dominant strain SC1402 was chosen as the target protein and expressed successfully in Pichia pastoris (P. pastoris). Furthermore, an indirect enzyme-linked immunosorbent assay (iELISA) based on the recombinant COE protein was developed for the detection of anti-PEDV antibodies in pig sera. The results showed that under the optimized conditions, the cut-off value of COE-based indirect ELISA (COE-iELISA) was determined to be 0.12. Taking the serum neutralization test as standard, the relative sensitivity of the COE-iELISA was 94.4% and specificity 92.6%. Meanwhile, no cross-reactivity to other porcine pathogens was noted with this assay. The intra-assay and inter-assay coefficients of variation were less than 7%. Moreover, 164 vaccinated serum samples test showed that overall agreement between COE-iELISA and the actual diagnosis result was up to 99.4%. More importantly, the developed iELISA exhibited a 95.08% agreement rate with the commercial ELISA kit (Kappa value = 0.88), which suggested that the expressed COE protein was an effective antigen in serologic tests and the established COE-iELISA is reliable for monitoring PEDV infection in pigs or vaccine effectiveness.
Collapse
|
10
|
Li M, Zhang Y, Fang Y, Xiao S, Fang P, Fang L. Construction and immunogenicity of a trypsin-independent porcine epidemic diarrhea virus variant. Front Immunol 2023; 14:1165606. [PMID: 37033982 PMCID: PMC10080105 DOI: 10.3389/fimmu.2023.1165606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a re-emerging enteropathogenic coronavirus that causes high mortality in neonatal piglets. The addition of trypsin plays a crucial role in the propagation of PEDV, but also increases the complexity of vaccine production and increases its cost. Previous studies have suggested that the S2' site and Y976/977 of the PEDV spike (S) protein might be the determinants of PEDV trypsin independence. In this study, to achieve a recombinant trypsin-independent PEDV strain, we used trypsin-dependent genotype 2 (G2) PEDV variant AJ1102 to generate three recombinant PEDVs with mutations in S (S2' site R894G and/or Y976H). The three recombinant PEDVs were still trypsin dependent, suggesting that the S2' site R894 and Y976 of AJ1102 S are not key sites for PEDV trypsin dependence. Therefore, we used AJ1102 and the classical trypsin-independent genotype 1 (G1) PEDV strain JS2008 to generate a recombinant PEDV carrying a chimeric S protein, and successfully obtained trypsin-independent PEDV strain rAJ1102-S2'JS2008, in which the S2 (amino acids 894-1386) domain was replaced with the corresponding JS2008 sequence. Importantly, immunization with rAJ1102-S2'JS2008 induced neutralizing antibodies against both AJ1102 and JS2008. Collectively, these results suggest that rAJ1102-S2'JS2008 is a novel vaccine candidate with significant advantages, including no trypsin requirement for viral propagation to high titers and the potential provision of protection for pigs against G1 and G2 PEDV infections.
Collapse
Affiliation(s)
- Mingxiang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yiye Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuxin Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- *Correspondence: Puxian Fang, ; Liurong Fang,
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- *Correspondence: Puxian Fang, ; Liurong Fang,
| |
Collapse
|
11
|
Molecular analysis reveals a distinct subgenogroup of porcine epidemic diarrhea virus in northern Vietnam in 2018-2019. Arch Virol 2022; 167:2337-2346. [PMID: 36036306 PMCID: PMC9421642 DOI: 10.1007/s00705-022-05580-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022]
Abstract
The spike protein (S) of porcine epidemic diarrhea virus (PEDV), in particular, the C-terminal domain of the S1 subunit (S1-CTD), which contains the conserved CO26K-equivalent (COE) region (aa 499–638), which is recognized by neutralizing antibodies, exhibits a high degree of genetic and antigenic diversity. We analyzed 61 PEDV S1-CTD sequences (630 nt), including 26 from samples collected from seven provinces in northern Vietnam from 2018 to 2019 and 35 other sequences, representing the G1a and 1b, G2a and 2b, and recombinant (G1c) genotypes and vaccines. The majority (73.1%) of the strains (19/26) belonged to subgroup G2b. In a phylogenetic analysis, seven strains were clustered into an independent, distinct subgenogroup named dsG with strong nodal support (98%), separate from both G1a and G1b as well as G2a, 2b, and G1c. Sequence analysis revealed distinct changes (513T>S, 520G>D, 527V>(L/M), 591L>F, 669A>(S/P), and 691V>I) in the COE and S1D regions that were only identified in these Vietnamese strains. This cluster is a new antigenic variant subgroup, and further studies are required to investigate the antigenicity of these variants. The results of this study demonstrated the continuous evolution in the S1 region of Vietnamese PEDV strains, which emphasizes the need for frequent updates of vaccines for effective protection.
Collapse
|
12
|
Shamsi TN, Yin J, James ME, James MN. Porcine Epidemic Diarrhea: Causative Agent, Epidemiology, Clinical
Characteristics, and Treatment Strategy Targeting Main Protease. Protein Pept Lett 2022; 29:392-407. [DOI: 10.2174/0929866529666220316145149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/22/2021] [Accepted: 11/28/2021] [Indexed: 11/22/2022]
Abstract
Aims:
This aimed to study the causative agent, epidemiology, clinical characteristics, and
treatment strategy targeting the main protease in porcine epidemic diarrhea.
Background:
Porcine epidemic diarrhea (PED) is a contagious intestinal viral infection causing
severe diarrhea, vomiting, and dehydration in pigs. High rates of mortalities and severe morbidities,
approaching 100%, are reported in piglets infected with PEDV. In recent years, PED has been
observed to influence the swine-farming nations in Europe, Asia, the USA, South Korea, and
Canada. The PED virus (PEDV) transmission takes place through a faecal-oral route.
Objective:
The objective is to review the characteristics of PEDV and its role in the disease. In
addition, we aim to outline some possible methods to combat PED infection, including targeting the
main protease of coronavirus and their future perspectives.
Method:
This study is a review of literature on the PED virus.
Results:
Apart from symptomatic treatment and supportive care, there is no available specific
treatment for PEDV. Appropriate disinfectants and cleaning are pivotal for the control of PEDV. To
date, apart from anti-PEDV inhibitors, there are no specific drugs available commercially to treat
the disease. Therefore, 3C-like protease (3CLpro) in PEDV that has highly conserved structure and
catalytic mechanism serves as an alluring drug as it plays a vital role during viral polyprotein
processing at the time of infection.
Conclusion:
A well synchronized and collective effort of scientists, swine veterinarians, pork
industry experts, and associated authorities is essential for the accomplishment of proper execution
of these required measures.
Collapse
Affiliation(s)
- Tooba N. Shamsi
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7,
Canada
| | - Jiang Yin
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7,
Canada
| | - Michelle E. James
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7,
Canada
| | - Michael N.G. James
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7,
Canada
| |
Collapse
|
13
|
Nguyen Thi TH, Chen CC, Chung WB, Chaung HC, Huang YL, Cheng LT, Ke GM. Antibody Evaluation and Mutations of Antigenic Epitopes in the Spike Protein of the Porcine Epidemic Diarrhea Virus from Pig Farms with Repeated Intentional Exposure (Feedback). Viruses 2022; 14:551. [PMID: 35336958 PMCID: PMC8954129 DOI: 10.3390/v14030551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
The feedback strategy, or controlled exposure of pig herd to the porcine epidemic diarrhea virus (PEDV), significantly decreased losses during a severe outbreak in late 2013 in Taiwan. However, some pig farms still suffered from recurrent outbreaks. To evaluate the association between antibody titers and clinical manifestations, sera and colostra were analyzed from one pig farm that employed the feedback strategy. Furthermore, spike (S) gene full sequences from six positive samples of two farms with and without using feedback were compared to investigate the evolution of PEDV variants circulating in pig herds. The results in this study showed that high PEDV antibody titers do not correlate with the high rate of protection from PEDV infection. In addition, repeated feedback generated the emergence of PEDV variants with unique substitutions of N537S and Y561H in the COE domain and S769F in the SS6 epitopes. These mutations indicated the pathogenetic evolution of PEDV strains existing in the cycle of the feedback method. A very strict biosecurity practice to block the routes of pathogen transfer should be followed to achieve successful control of PEDV infections in pig herds.
Collapse
Affiliation(s)
- Thu Hien Nguyen Thi
- International Degree Program of Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, No.1, Shuefu Road, Neipu, Pingtung 91201, Taiwan;
| | - Chi-Chih Chen
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan; (C.-C.C.); (W.-B.C.); (H.-C.C.); (Y.-L.H.)
| | - Wen-Bin Chung
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan; (C.-C.C.); (W.-B.C.); (H.-C.C.); (Y.-L.H.)
| | - Hso-Chi Chaung
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan; (C.-C.C.); (W.-B.C.); (H.-C.C.); (Y.-L.H.)
| | - Yen-Li Huang
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan; (C.-C.C.); (W.-B.C.); (H.-C.C.); (Y.-L.H.)
| | - Li-Ting Cheng
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan
| | - Guan-Ming Ke
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan; (C.-C.C.); (W.-B.C.); (H.-C.C.); (Y.-L.H.)
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan
| |
Collapse
|