1
|
Tang ZQ, Ye YR, Shen Y. Molecular Mechanisms and Strategies for Inducing Neuronal Differentiation in Glioblastoma Cells. Cell Reprogram 2025; 27:24-32. [PMID: 39880036 DOI: 10.1089/cell.2024.0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Glioblastoma multiforme (GBM) is a highly invasive brain tumor, and traditional treatments combining surgery with radiochemotherapy have limited effects, with tumor recurrence being almost inevitable. Given the lack of proliferative capacity in neurons, inducing terminal differentiation of GBM cells or glioma stem cells (GSCs) into neuron-like cells has emerged as a promising strategy. This approach aims to suppress their proliferation and self-renewal capabilities through differentiation. This review summarizes the methods involved in recent research on the neuronal differentiation of GBM cells or GSCs, including the regulation of transcription factors, signaling pathways, miRNA, and the use of small molecule drugs, among various strategies. It also outlines the interconnections between the mechanisms studied, hoping to provide ideas for exploring new therapeutic avenues for GBM and the development of differentiation-inducing drugs for GBM.
Collapse
Affiliation(s)
- Zhao-Qi Tang
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, China
| | - Yan-Rong Ye
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Shen
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Pal P, Sharma M, Gupta SK, Potdar MB, Belgamwar AV. miRNA-124 loaded extracellular vesicles encapsulated within hydrogel matrices for combating chemotherapy-induced neurodegeneration. Biochem Biophys Res Commun 2024; 734:150778. [PMID: 39368371 DOI: 10.1016/j.bbrc.2024.150778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Chemotherapy-induced neurodegeneration represents a significant challenge in cancer survivorship, manifesting in cognitive impairments that severely affect patients' quality of life. Emerging neuroregenerative therapies offer promise in mitigating these adverse effects, with miRNA-124 playing a pivotal role due to its critical functions in neural differentiation, neurogenesis, and neuroprotection. This review article delves into the innovative approach of using miRNA-124-loaded extracellular vesicles (EVs) encapsulated within hydrogel matrices as a targeted strategy for combating chemotherapy-induced neurodegeneration. We explore the biological underpinnings of miR-124 in neuroregeneration, detailing its mechanisms of action and therapeutic potential. The article further examines the roles and advantages of EVs as natural delivery systems for miRNAs and the application of hydrogel matrices in creating a sustained release environment conducive to neural tissue regeneration. By integrating these advanced materials and biological agents, we highlight a synergistic therapeutic strategy that leverages the bioactive properties of miR-124, the targeting capabilities of EVs, and the supportive framework of hydrogels. Preclinical studies and potential pathways to clinical translation are discussed, alongside the challenges, ethical considerations, and future directions in the field. This comprehensive review underscores the transformative potential of miR-124-loaded EVs in hydrogel matrices, offering insights into their development as a novel and integrative approach for addressing the complexities of chemotherapy-induced neurodegeneration.
Collapse
Affiliation(s)
- Pankaj Pal
- IIMT College of Pharmacy, IIMT Group of Colleges, Greater Noida, Uttar Pradesh, India.
| | - Monika Sharma
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| | - Sukesh Kumar Gupta
- Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, USA; KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India
| | - Mrugendra B Potdar
- Department of Pharmaceutics, Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule, Maharashtra, India
| | - Aarti V Belgamwar
- Department of Pharmaceutics, Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule, Maharashtra, India
| |
Collapse
|
3
|
Son G, Na Y, Kim Y, Son JH, Clemenson GD, Schafer ST, Yoo JY, Parylak SL, Paquola A, Do H, Kim D, Ahn I, Ju M, Kang CS, Ju Y, Jung E, McDonald AH, Park Y, Kim G, Paik SB, Hur J, Kim J, Han YM, Lee SH, Gage FH, Kim JS, Han J. miR-124 coordinates metabolic regulators acting at early stages of human neurogenesis. Commun Biol 2024; 7:1393. [PMID: 39455851 PMCID: PMC11511827 DOI: 10.1038/s42003-024-07089-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic dysregulation of neurons is associated with diverse human brain disorders. Metabolic reprogramming occurs during neuronal differentiation, but it is not fully understood which molecules regulate metabolic changes at the early stages of neurogenesis. In this study, we report that miR-124 is a driver of metabolic change at the initiating stage of human neurogenesis. Proteome analysis has shown the oxidative phosphorylation pathway to be the most significantly altered among the differentially expressed proteins (DEPs) in the immature neurons after the knockdown of miR-124. In agreement with these proteomics results, miR-124-depleted neurons display mitochondrial dysfunctions, such as decreased mitochondrial membrane potential and cellular respiration. Moreover, morphological analyses of mitochondria in early differentiated neurons after miR-124 knockdown result in smaller and less mature shapes. Lastly, we show the potential of identified DEPs as novel metabolic regulators in early neuronal development by validating the effects of GSTK1 on cellular respiration. GSTK1, which is upregulated most significantly in miR-124 knockdown neurons, reduces the oxygen consumption rate of neural cells. Collectively, our data highlight the roles of miR-124 in coordinating metabolic maturation at the early stages of neurogenesis and provide insights into potential metabolic regulators associated with human brain disorders characterized by metabolic dysfunctions.
Collapse
Affiliation(s)
- Geurim Son
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Yongwoo Na
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Yongsung Kim
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ji-Hoon Son
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Gregory D Clemenson
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Simon T Schafer
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jong-Yeon Yoo
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - Sarah L Parylak
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Apua Paquola
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Hyunsu Do
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Dayeon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Insook Ahn
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Mingyu Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Chanhee S Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Younghee Ju
- Department of Biological Sciences, KAIST, Daejeon, Korea
- Sovargen.CO., LTD., Daejeon, Korea
| | - Eunji Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Aidan H McDonald
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Youngjin Park
- Department of Bio and Brain Engineering, KAIST, Daejeon, Korea
| | - Gilhyun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Korea
| | - Se-Bum Paik
- Department of Bio and Brain Engineering, KAIST, Daejeon, Korea
- Department of Brain and Cognitive Sciences, KAIST, Daejeon, Korea
| | - Junho Hur
- College of Medicine, Hanyang University, Seoul, Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Yong-Mahn Han
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Seung-Hee Lee
- Department of Biological Sciences, KAIST, Daejeon, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Korea
- Department of Brain and Cognitive Sciences, KAIST, Daejeon, Korea
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Jinju Han
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
- BioMedical Research Center, KAIST, Daejeon, Korea.
- KAIST Stem Cell Center, KAIST, Daejeon, Korea.
| |
Collapse
|
4
|
Muniz TDTP, Rossi MC, de Vasconcelos Machado VM, Alves ALG. Mesenchymal Stem Cells and Tissue Bioengineering Applications in Sheep as Ideal Model. Stem Cells Int 2024; 2024:5176251. [PMID: 39465229 PMCID: PMC11511598 DOI: 10.1155/2024/5176251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
The most common technologies in tissue engineering include growth factor therapies; metal implants, such as titanium; 3D bioprinting; nanoimprinting for ceramic/polymer scaffolds; and cell therapies, such as mesenchymal stem cells (MSCs). Cell therapy is a promising alternative to organ grafts and transplants in the treatment of numerous musculoskeletal diseases. MSCs have increasingly been used in generative medicine due to their specialized self-renewal, immunomodulation, multiplication, and differentiation properties. To further expand the potential of these cells in tissue repair, significant efforts are currently dedicated to the production of biomaterials with desirable short- and long-term biophysical properties that can aid the differentiation and expansion of MSCs. Biomaterials support MSC differentiation by modulating their characteristics, such as composition, mechanical properties, porosity, and topography. This review aimed to describe recent MSC approaches, including those associated with biomaterials, from experimental, clinical, and preclinical studies with sheep models.
Collapse
Affiliation(s)
- Talita D'Paula Tavares Pereira Muniz
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), 18.618-681, Botucatu, Sao Paulo, Brazil
| | - Mariana Correa Rossi
- Materials Engineering Department (DEMa), São Carlos Federal University (UFSCar), 13.565-905, São Carlos, Sao Paulo, Brazil
| | - Vânia Maria de Vasconcelos Machado
- Department of Veterinary Surgery and Animal Reproduction, Imaging Diagnostic Sector, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), 18.618-681, Botucatu, Sao Paulo, Brazil
| | - Ana Liz Garcia Alves
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), 18.618-681, Botucatu, Sao Paulo, Brazil
| |
Collapse
|
5
|
Khandia R, Gurjar P, Priyanka, Romashchenko V, Al-Hussain SA, Zaki MEA. Recent advances in stem cell therapy: efficacy, ethics, safety concerns, and future directions focusing on neurodegenerative disorders - a review. Int J Surg 2024; 110:6367-6381. [PMID: 39705668 DOI: 10.1097/js9.0000000000001609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/29/2024] [Indexed: 12/22/2024]
Abstract
Neurodegeneration refers to the gradual loss of neurons and extensive changes in glial cells like tau inclusions in astrocytes and oligodendrocytes, α-synuclein inclusions in oligodendrocytes and SOD1 aggregates in astrocytes along with deterioration in the motor, cognition, learning, and behavior. Common neurodegenerative disorders are Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), spinocerebellar ataxia (SCA), and supranuclear palsy. There is a lack of effective treatment for neurodegenerative diseases, and scientists are putting their efforts into developing therapies against them. Stem cell therapy has emerged as a hope for neurodegenerative disorders since it is not only the damaged neurons that might be replaced, but other neuromodulators and neuroprotectors are secreted. Stem cell terminal differentiation before implantation ensures the implantation of correct cells and molecular markers like carbonic anhydrase II, CNPase (2',3'-cyclic nucleotide 3'-phosphohydrolase), myelin basic protein (MBP), and myelin oligodendrocyte glycoprotein (MOG) elucidate the differentiation. Secretion of various growth factors like epidermal growth factor (EGF), keratinocyte growth factor (KGF), vascular endothelial growth factor-α (VEGF-α), transforming growth factor (TGF), and macrophage inflammatory protein (MIP) supports cell survival, cell proliferation, blood vessel formation, axon regeneration, and neuroglial functional connection formation at the site of degeneration. Adverse effects of stem cell therapy, like teratogenicity and differentiation in different cells other than the desired one under the influence of microenvironment, are a few key concerns. Post-transplantation improved synaptic plasticity, apoptosis inhibition, and reduction in tau-phosphorylation and amyloid beta (Aβ) production has been observed in Alzheimer's patients. A large number of experimental, preclinical, and clinical studies have been conducted, and encouraging results have been obtained. The present review exhaustively discusses various kinds of stem cells, their usage in treating neurodegenerative disorders, limitations and challenges, and ethical issues related to stem cell therapy.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh
| | - Pankaj Gurjar
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
| | - Priyanka
- Department of Veterinary Microbiology, College of Veterinary Science, Guru AngadDev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda, Punjab, India
| | | | - Sami A Al-Hussain
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Magdi E A Zaki
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Ma S, Wang L, Zhang J, Geng L, Yang J. The role of transcriptional and epigenetic modifications in astrogliogenesis. PeerJ 2024; 12:e18151. [PMID: 39314847 PMCID: PMC11418818 DOI: 10.7717/peerj.18151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
Astrocytes are widely distributed and play a critical role in the central nervous system (CNS) of the human brain. During the development of CNS, astrocytes provide essential nutritional and supportive functions for neural cells and are involved in their metabolism and pathological processes. Despite the numerous studies that have reported on the regulation of astrogliogenesis at the transcriptional and epigenetic levels, there is a paucity of literature that provides a comprehensive summary of the key factors influencing this process. In this review, we analyzed the impact of transcription factors (e.g., NFI, JAK/STAT, BMP, and Ngn2), DNA methylation, histone acetylation, and noncoding RNA on astrocyte behavior and the regulation of astrogliogenesis, hope it enhances our comprehension of the mechanisms underlying astrogliogenesis and offers a theoretical foundation for the treatment of patients with neurological diseases.
Collapse
Affiliation(s)
- Shuangping Ma
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
| | - Lei Wang
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
| | - Junhe Zhang
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
| | - Lujing Geng
- College of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| | - Junzheng Yang
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
- Guangdong Nephrotic Drug Engineering Technology Research Center, The R&D Center of Drug for Renal Diseases, Consun Pharmaceutical Group, Guangzhou, China
| |
Collapse
|
7
|
Li Z, Su H, Lin G, Wang K, Huang Y, Wen Y, Luo D, Hou Y, Cao X, Weng J, Lin D, Wang L, Li X. Transplantation of MiR-28-5p-Modified BMSCs Promotes Functional Recovery After Spinal Cord Injury. Mol Neurobiol 2024; 61:2197-2214. [PMID: 37864767 DOI: 10.1007/s12035-023-03702-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
Traumatic spinal cord injury (TSCI) is a prevalent central nervous system condition that imposes a significant burden on both families and society, affecting more than 2 million people worldwide. Recently, there has been increasing interest in bone marrow mesenchymal stem cell (BMSC) transplantation as a promising treatment for spinal cord injury (SCI) due to their accessibility and low immunogenicity. However, the mere transplantation of BMSCs has limited capacity to directly participate in the repair of host spinal cord nerve function. MiR-28-5p, identified as a key differentially expressed miRNA in spinal cord ischemia-reperfusion injury, exhibits differential expression and regulation in various neurological diseases. Nevertheless, its involvement in this process and its specific regulatory mechanisms in SCI remain unclear. Therefore, this study aimed to investigate the potential mechanisms through which miR-28-5p promotes the neuronal differentiation of BMSCs both in vivo and in vitro. Our results indicate that miR-28-5p may directly target Notch1, thereby facilitating the neuronal differentiation of BMSCs in vitro. Furthermore, the transplantation of lentivirus-mediated miR-28-5p-overexpressed BMSCs into SCI rats effectively improved footprint tests and Basso, Beattie, and Bresnahan (BBB) scores, ameliorated histological morphology (hematoxylin-eosin [HE] and Nissl staining), promoted axonal regeneration (MAP2 and growth-associated protein 43 [GAP43]), and facilitated axonal remyelination (myelin basic protein [MBP]). These findings may suggest that miR-28-5p-modified BMSCs could serve as a therapeutic target to enhance the behavioral and neurological recovery of SCI rats.
Collapse
Affiliation(s)
- Zhen Li
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Haitao Su
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Guandai Lin
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Kai Wang
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Yongming Huang
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Yaqian Wen
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Dan Luo
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Yu Hou
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Xuewei Cao
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Jiaxian Weng
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Dingkun Lin
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Le Wang
- Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, 510080, Guangdong, China.
| | - Xing Li
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China.
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, Guangdong, China.
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.
| |
Collapse
|
8
|
Guo X, Jiang P, Pan M, Ding Y, Lin Y, Jiang T, Li R, Wang W, Dai Y, Wang S, Cao Y, Lin H, Yang M, Liu W, Tao J. Overexpression of miR-124 in astrocyte improves neurological deficits in rat with ischemic stroke via DLL4 modulation. Exp Neurol 2023; 370:114571. [PMID: 37848121 DOI: 10.1016/j.expneurol.2023.114571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/27/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Astrocytes have been demonstrated to undergo conversion into functional neurons, presenting a promising approach for stroke treatment. However, the development of small molecules capable of effectively inducing this cellular reprogramming remains a critical challenge. METHODS Initially, we introduced a glial cell marker gene, GFaABC1D, as the promoter within an adeno-associated virus vector overexpressing miR-124 into the motor cortex of an ischemia-reperfusion model in rats. Additionally, we administered NeuroD1 as a positive control. Lentiviral vectors overexpressing miR-124 were constructed and transfected into primary rat astrocytes. We assessed the cellular distribution of GFAP, DCX, and NeuN on days 7, 14, and 28, respectively. RESULTS In rats with ischemic stroke, miR-124-transduced glial cells exhibited positive staining for the immature neuron marker doublecortin (DCX) and the mature neuron marker NeuN after 4 weeks. In contrast, NeuroD1-overexpressing model rats only expressed NeuN, and the positive percentage was higher in co-transfection with miR-124 and NeuroD1. Overexpression of miR-124 effectively ameliorated neurological deficits and motor functional impairment in the model rats. In primary rat astrocytes transduced with miR-124, DCX was not observed after 7 days of transfection, but it appeared at 14 days, with the percentage further increasing to 44.6% at 28 days. Simultaneously, 15.1% of miR-124-transduced cells exhibited NeuN positivity, which was not detected at 7 and 14 days. In vitro, double fluorescence assays revealed that miR-124 targeted Dll4, and in vivo experiments confirmed that miR-124 inhibited the expression of Notch1 and DLL4. CONCLUSIONS The overexpression of miR-124 in astrocytes demonstrates significant potential for improving neurological deficits following ischemic stroke by inhibiting DLL4 expression, and it may facilitate astrocyte-to-neuronal transformation.
Collapse
Affiliation(s)
- Xiaoqin Guo
- Provincial and Ministerial Co-founded Collaborative Innovation Center of Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Pingli Jiang
- Provincial and Ministerial Co-founded Collaborative Innovation Center of Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Meihua Pan
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yanyi Ding
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yanting Lin
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Tao Jiang
- Fujian Key Laboratory of Cognitive Rehabilitation, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350001, China
| | - Rui Li
- Fujian Key Laboratory of Cognitive Rehabilitation, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350001, China
| | - Wenju Wang
- Fujian Key Laboratory of Cognitive Rehabilitation, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350001, China
| | - Yaling Dai
- Fujian Key Laboratory of Cognitive Rehabilitation, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350001, China
| | - Sinuo Wang
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yajun Cao
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Huawei Lin
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Minguang Yang
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Weilin Liu
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Jing Tao
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| |
Collapse
|
9
|
Li L, Li M. Astrocyte-derived extracellular vesicles inhibit the abnormal activation of immune function in neonatal mice with hypoxic-ischemic brain damage by carrying miR-124-3p. Neurol Res 2023; 45:1079-1090. [PMID: 37748110 DOI: 10.1080/01616412.2023.2257416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 06/09/2023] [Indexed: 09/27/2023]
Abstract
OBJECTIVE Hypoxic-ischemic brain damage (HIBD) is among the leading causes of neonatal death worldwide. miR-124-3p can be utilized as a potential diagnostic and prognostic biomarker for perinatal asphyxia and HI encephalopathy in newborns. This study investigated the protective effect and mechanism of miR-124-3p in astrocyte-derived extracellular vesicles (ADEVs) in HIBD. METHODS The neonatal mouse model of HIBD was established. Astrocytes were transfected with the miR-124-3p inhibitor, followed by isolation and identification of ADEVs (ADEVs + inhi miR). HIBD mice were injected with ADEVs or ADEVs + inhi miR through the lateral ventricle, and neurological function was evaluated based on the modified neurological severity score (mNSS). The infarct volume of mice and the morphological modifications of neurons were observed by TTC staining and hematoxylin-eosin staining. The contents of SOD, GSH-Px, CAT, and MDA in the hippocampus were measured. The neuronal apoptosis, the activation of MPO+ neutrophils, NK cells, and CD3+ cells in CA1 region of the hippocampus was determined by means of TUNEL staining and immunofluorescence. RESULTS ADEVs alleviated HIBD in neonatal mice. ADEVs could intrinsically protect mice from HIBD by reducing oxidative stress and apoptosis in hippocampal tissue. ADEVs inhibited the positive expression of MPO+ neutrophils, NK cells, and CD3+ cells in HIBD neonatal mice. ADEVs inhibited the hippocampal immune cells by delivering miR-124-3p in neonatal HIBD mice. CONCLUSION ADEVs can inhibit the abnormal activation of immune function in HIBD by delivering miR-124-3p, thereby eliciting a protective effect on brain damage in neonatal mice.
Collapse
Affiliation(s)
- Liangchen Li
- Department of Pediatrics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Miaochen Li
- Department of Pediatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
10
|
Kaya Y, Korulu S, Tunoglu ENY, Yildiz A. A potential posttranscriptional regulator for p60-katanin: miR-124-3p. Cytoskeleton (Hoboken) 2023; 80:437-447. [PMID: 37439368 DOI: 10.1002/cm.21769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/02/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023]
Abstract
Katanin is a microtubule severing protein belonging to the ATPase family and consists of two subunits; p60-katanin synthesized by the KATNA1 gene and p80-katanin synthesized by the KATNB1 gene. Microtubule severing is one of the mechanisms that allow the reorganization of microtubules depending on cellular needs. While this reorganization of microtubules is associated with mitosis in dividing cells, it primarily takes part in the formation of structures such as axons and dendrites in nondividing mature neurons. Therefore, it is extremely important in neuronal branching. p60 and p80 katanin subunits coexist in the cell. While p60-katanin is responsible for cutting microtubules with its ATPase function, p80-katanin is responsible for the regulation of p60-katanin and its localization in the centrosome. Although katanin has vital functions in the cell, there are no known posttranscriptional regulators of it. MicroRNAs (miRNAs) are a group of small noncoding ribonucleotides that have been found to have important roles in regulating gene expression posttranscriptionally. Despite being important in gene regulation, so far no microRNA has been experimentally associated with katanin regulation. In this study, the effects of miR-124-3p, which we detected as a result of bioinformatics analysis to have the potential to bind to the p60 katanin mRNA, were investigated. For this aim, in this study, SH-SY5Y neuroblastoma cells were transfected with pre-miR-124-3p mimics and pre-mir miRNA precursor as a negative control, and the effect of this transfection on p60-katanin expression was measured at both RNA and protein levels by quantitative real-time PCR (qRT-PCR) and western blotting, respectively. The results of this study showed for the first time that miR-124-3p, which was predicted to bind p60-katanin mRNA by bioinformatic analysis, may regulate the expression of the KATNA1 gene. The data obtained within the scope of this study will make important contributions in order to better understand the regulation of the expression of p60-katanin which as well will have an incontrovertible impact on the understanding of the importance of cytoskeletal reorganization in both mitotic and postmitotic cells.
Collapse
Affiliation(s)
- Yesim Kaya
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Sirin Korulu
- Institute of Natural and Health Sciences, Tallinn University, Tallinn, Estonia
| | | | - Aysegul Yildiz
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| |
Collapse
|
11
|
Dong X, Wang H, Zhan L, Li Q, Li Y, Wu G, Wei H, Li Y. miR-153-3p suppresses the differentiation and proliferation of neural stem cells via targeting GPR55. Aging (Albany NY) 2023; 15:8518-8527. [PMID: 37642951 PMCID: PMC10497013 DOI: 10.18632/aging.204002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/29/2021] [Indexed: 08/31/2023]
Abstract
Alzheimer's disease is the most frequent neurodegenerative disease and is characterized by progressive cognitive impairment and decline. NSCs (neural stem cells) serve as beneficial and promising adjuncts to treat Alzheimer's disease. This study aimed to determine the role of miR-153-3p expression in NSC differentiation and proliferation. We illustrated that miR-153-3p was decreased and GPR55 was upregulated during NSC differentiation. IL-1β can induce miR-153-3p expression. Luciferase reporter analysis noted that elevated expression of miR-153-3p significantly inhibited the luciferase value of the WT reporter plasmid but did not change the luciferase value of the mut reporter plasmid. Ectopic miR-153-3p expression suppressed GPR55 expression in NSCs and identified GPR55 as a direct target gene of miR-153-3p. Ectopic expression of miR-153-3p inhibited NSC growth and differentiation into astrocytes and neurons. Elevated expression of miR-153-3p induced the release of proinflammatory cytokines, such as TNF-α, IL-1β and IL-6, in NSCs. Furthermore, miR-153-3p inhibited NSC differentiation and proliferation by targeting GPR55 expression. These data suggested that miR-153-3p may act as a clinical target for the therapeutics of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaolin Dong
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Hui Wang
- Department of Gastroenterology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Liping Zhan
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Qingyun Li
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Yang Li
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Gang Wu
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Huan Wei
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Yanping Li
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| |
Collapse
|
12
|
Wang Y, Hong Y, Mao S, Pan J, Cui Y, Lu J, Wen T, Wang X, Luo Y. Downregulation of miR-124-3p suppresses the development of the deep retinal blood vessels by enhancing the Stat1/Ripk1 pathway in mouse retinal microglia. Exp Eye Res 2023; 233:109551. [PMID: 37356537 DOI: 10.1016/j.exer.2023.109551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
The study aimed to investigate the role of microRNA (miR)-124-3p in retinal angiogenesis in a mouse model. An intravitreal injection of miR-124-3p antagomir was used to knockdown the expression of miR-124-3p in the mouse retina at postnatal day (P)3. Immunofluorescent staining of both retinal frozen sections and whole retina were used to observe retinal vascular development in the P6, P9 and P12 mice, as well as the changes in retinal ganglion cells, astrocytes, Müller cells and microglia. Whole retinal RNA extracted from P9 mice was used for transcriptome sequencing. Following gene set enrichment analysis, the enriched genes caused by miR-124-3p inhibition were analyzed by immunofluorescent staining and western blot. Results indicated that deep vascular development was significantly inhibited by the activation of M1 phenotype microglia. Moreover, there were no notable effects on superficial retinal vascular development, the retinal ganglion cells, astrocytes, and Müller cells. The expression of the Stat1/Irf9/Eif2ak2/Ripk1 axis in the miR-124-3p knockdown group was significantly increased. The microglia penetrated deep into the retina and the activation of Ripk1(+) microglia significantly increased, which was accompanied by an increased level of apoptosis to inhibit the deep vascular sprout. Downregulation of miR-124-3p during the early retinal development can suppress the development of the deep retinal blood vessels by enhancing the expression level of the Stat1/Irf9/Eif2ak2/Ripk1 axis and inducing the cell apoptosis of the activation of Ripk1(+) microglia.
Collapse
Affiliation(s)
- Yishen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yiwen Hong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Shudi Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Jianying Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yamei Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Jing Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Tao Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xiao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yan Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
13
|
Molecular Mechanisms Involved in the Regulation of Neurodevelopment by miR-124. Mol Neurobiol 2023; 60:3569-3583. [PMID: 36840845 DOI: 10.1007/s12035-023-03271-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/04/2023] [Indexed: 02/26/2023]
Abstract
miR-124 is a miRNA predominantly expressed in the nervous system and accounts for more than a quarter of the total miRNAs in the brain. It regulates neurogenesis, neuronal differentiation, neuronal maturation, and synapse formation and is the most important miRNA in the brain. Furthermore, emerging evidence has suggested miR-124 may be associated with the pathogenesis of various neurodevelopmental and neuropsychiatric disorders. Here, we provide an overview of the role of miR-124 in neurodevelopment and the underling mechanisms, and finally, we prospect the significance of miR-124 research to the field of neuroscience.
Collapse
|
14
|
Shen B, Gao H, Zhang D, Yu H, Chen J, Huang S, Gu P, Zhong Y. miR-124-3p regulates the proliferation and differentiation of retinal progenitor cells through SEPT10. Cell Tissue Res 2023:10.1007/s00441-023-03750-0. [PMID: 36802303 DOI: 10.1007/s00441-023-03750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 01/26/2023] [Indexed: 02/23/2023]
Abstract
Retinal degenerative diseases such as glaucoma, retinitis pigmentosa, and age-related macular degeneration pose serious threats to human visual health due to lack of effective therapeutic approaches. In recent years, the transplantation of retinal progenitor cells (RPCs) has shown increasing promise in the treatment of these diseases; however, the application of RPC transplantation is limited by both their poor proliferation and their differentiation capabilities. Previous studies have shown that microRNAs (miRNA) act as essential mediators in the fate determination of stem/progenitor cells. In this study, we hypothesized that miR-124-3p plays a regulatory role in the fate of RPC determination by targeting Septin10 (SEPT10) in vitro. We observed that the overexpression of miR124-3p downregulates SEPT10 expression in RPCs, leading to reduced RPC proliferation and increased differentiation, specifically towards both neurons and ganglion cells. Conversely, antisense knockdown of miR-124-3p was shown to boost SEPT10 expression, enhance RPC proliferation, and attenuate differentiation. Moreover, overexpression of SEPT10 rescued miR-124-3p-caused proliferation deficiency while weakening the enhancement of miR-124-3p-induced-RPC differentiation. Results from this study show that miR-124-3p regulates RPC proliferation and differentiation by targeting SEPT10. Furthermore, our findings enable a more comprehensive understanding into the mechanisms of proliferation and differentiation of RPC fate determination. Ultimately, this study may be useful for helping researchers and clinicians to develop more promising and effective approaches to optimize the use of RPCs in treating retinal degeneration diseases.
Collapse
Affiliation(s)
- Bingqiao Shen
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Huiqin Gao
- Department of Ophthalmology, Ninth People's Hospital Affiliated Medical School, Shanghai Jiaotong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Dandan Zhang
- Department of Ophthalmology, Ninth People's Hospital Affiliated Medical School, Shanghai Jiaotong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Huan Yu
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Junjue Chen
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Shouyue Huang
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Ping Gu
- Department of Ophthalmology, Ninth People's Hospital Affiliated Medical School, Shanghai Jiaotong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
15
|
Qian J, Shen CL, Fang C, Sun J. Oscillating field stimulation promotes neurogenesis of neural stem cells through miR-124/Tal1 axis to repair spinal cord injury in rats. Neural Regen Res 2023; 18:895-900. [DOI: 10.4103/1673-5374.353505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
16
|
Muñoz JJAM, Dariolli R, da Silva CM, Neri EA, Valadão IC, Turaça LT, Lima VM, de Carvalho MLP, Velho MR, Sobie EA, Krieger JE. Time-regulated transcripts with the potential to modulate human pluripotent stem cell-derived cardiomyocyte differentiation. Stem Cell Res Ther 2022; 13:437. [PMID: 36056380 PMCID: PMC9438174 DOI: 10.1186/s13287-022-03138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are a promising disease model, even though hiPSC-CMs cultured for extended periods display an undifferentiated transcriptional landscape. MiRNA–target gene interactions contribute to fine-tuning the genetic program governing cardiac maturation and may uncover critical pathways to be targeted. Methods We analyzed a hiPSC-CM public dataset to identify time-regulated miRNA–target gene interactions based on three logical steps of filtering. We validated this process in silico using 14 human and mouse public datasets, and further confirmed the findings by sampling seven time points over a 30-day protocol with a hiPSC-CM clone developed in our laboratory. We then added miRNA mimics from the top eight miRNAs candidates in three cell clones in two different moments of cardiac specification and maturation to assess their impact on differentiation characteristics including proliferation, sarcomere structure, contractility, and calcium handling.
Results We uncovered 324 interactions among 29 differentially expressed genes and 51 miRNAs from 20,543 transcripts through 120 days of hiPSC-CM differentiation and selected 16 genes and 25 miRNAs based on the inverse pattern of expression (Pearson R-values < − 0.5) and consistency in different datasets. We validated 16 inverse interactions among eight genes and 12 miRNAs (Person R-values < − 0.5) during hiPSC-CMs differentiation and used miRNAs mimics to verify proliferation, structural and functional features related to maturation. We also demonstrated that miR-124 affects Ca2+ handling altering features associated with hiPSC-CMs maturation.
Conclusion We uncovered time-regulated transcripts influencing pathways affecting cardiac differentiation/maturation axis and showed that the top-scoring miRNAs indeed affect primarily structural features highlighting their role in the hiPSC-CM maturation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03138-x.
Collapse
Affiliation(s)
- Juan J A M Muñoz
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil.,Universidad Señor de Sipán, Chiclayo, Perú
| | - Rafael Dariolli
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil.,Department of Pharmacological Sciences, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Caio Mateus da Silva
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Elida A Neri
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Iuri C Valadão
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Lauro Thiago Turaça
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Vanessa M Lima
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Mariana Lombardi Peres de Carvalho
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Mariliza R Velho
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Eric A Sobie
- Department of Pharmacological Sciences, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jose E Krieger
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil.
| |
Collapse
|
17
|
Eshkoor SA, Ghodsian N, Akhtari-Zavare M. MicroRNAs influence and longevity. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00316-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
MiRNAs play critical roles in the regulation of cellular function, life span, and the aging process. They can affect longevity positively and negatively through different aging pathways.
Main text
MiRNAs are a group of short non-coding RNAs that regulate gene expressions at post-transcriptional levels. The different types of alterations in miRNAs biogenesis, mRNA expressions, and activities of miRNA-protein complexes can affect the regulation of normal post-transcriptional gene process, which may lead to aging, age-related diseases, and an earlier death. It seems that the influence of deregulation of miRNAs on senescence and age-related diseases occurring by targeting aging molecular pathways can be used for diagnosis and prognosis of them. Therefore, the expression and function of miRNAs should be studied more accurately with new applicable and validated experimental tools. However, the current review wishes to highlight simply a connection among miRNAs, senescence and some age-related diseases.
Conclusion
Despite several research indicating the key roles of miRNAs in aging and longevity, further investigations are still needed to elucidate the essential roles of miRNAs in controlling mRNA regulation, cell proliferation, death and/or protection during stress and health problems. Besides, more research on miRNAs will help to identify new targets for alternative strategies regarding effectively screen, treat, and prevent diseases as well as make slow the aging process.
Collapse
|
18
|
Fan L, Liu C, Chen X, Zheng L, Zou Y, Wen H, Guan P, Lu F, Luo Y, Tan G, Yu P, Chen D, Deng C, Sun Y, Zhou L, Ning C. Exosomes-Loaded Electroconductive Hydrogel Synergistically Promotes Tissue Repair after Spinal Cord Injury via Immunoregulation and Enhancement of Myelinated Axon Growth. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105586. [PMID: 35253394 PMCID: PMC9069372 DOI: 10.1002/advs.202105586] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/30/2022] [Indexed: 05/19/2023]
Abstract
Electroconductive hydrogels are very attractive candidates for accelerated spinal cord injury (SCI) repair because they match the electrical and mechanical properties of neural tissue. However, electroconductive hydrogel implantation can potentially aggravate inflammation, and hinder its repair efficacy. Bone marrow stem cell-derived exosomes (BMSC-exosomes) have shown immunomodulatory and tissue regeneration effects, therefore, neural tissue-like electroconductive hydrogels loaded with BMSC-exosomes are developed for the synergistic treatment of SCI. These exosomes-loaded electroconductive hydrogels modulate microglial M2 polarization via the NF-κB pathway, and synergistically enhance neuronal and oligodendrocyte differentiation of neural stem cells (NSCs) while inhibiting astrocyte differentiation, and also increase axon outgrowth via the PTEN/PI3K/AKT/mTOR pathway. Furthermore, exosomes combined electroconductive hydrogels significantly decrease the number of CD68-positive microglia, enhance local NSCs recruitment, and promote neuronal and axonal regeneration, resulting in significant functional recovery at the early stage in an SCI mouse model. Hence, the findings of this study demonstrate that the combination of electroconductive hydrogels and BMSC-exosomes is a promising therapeutic strategy for SCI repair.
Collapse
Affiliation(s)
- Lei Fan
- School of Materials Science and Engineering and National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyNo. 381, Wushan Road, Tianhe DistrictGuangzhou510641China
| | - Can Liu
- Department of Orthopedic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Xiuxing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Medical OncologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityNo. 107, Yanjiang West Road, Yuexiu District, GuangzhouGuangzhou510120China
| | - Lei Zheng
- Laboratory Medicine CenterNanfang HospitalSouthern Medical UniversityNo. 1838, Guangzhou Avenue North, Baiyun DistrictGuangzhouGuangdong510515China
| | - Yan Zou
- Department of Radiologythe Third Affiliated Hospital of Sun Yat‐sen UniversityNo. 600, Tianhe Road, Tianhe DistrictGuangzhou510630China
| | - Huiquan Wen
- Department of Radiologythe Third Affiliated Hospital of Sun Yat‐sen UniversityNo. 600, Tianhe Road, Tianhe DistrictGuangzhou510630China
| | - Pengfei Guan
- Department of Pediatric OrthopedicCenter for Orthopedic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityNo.183, Zhongshan Avenue WestGuangzhou510515China
| | - Fang Lu
- School of Preclinical MedicineBeijing University of Chinese MedicineNo.11, North Third Ring East Road, Chaoyang DistrictBeijing100029China
| | - Yian Luo
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyNo.100, Waihuan West Road, Panyu DistrictGuangzhou510006China
| | - Guoxin Tan
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyNo.100, Waihuan West Road, Panyu DistrictGuangzhou510006China
| | - Peng Yu
- School of Materials Science and Engineering and National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyNo. 381, Wushan Road, Tianhe DistrictGuangzhou510641China
| | - Dafu Chen
- Laboratory of Bone Tissue EngineeringBeijing Research Institute of Orthopaedics and TraumatologyBeijing JiShuiTan HospitalNo.31, Xinjiekou East Street, Xicheng DistrictBeijing100035China
| | - Chunlin Deng
- School of Materials Science and Engineering and National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyNo. 381, Wushan Road, Tianhe DistrictGuangzhou510641China
| | - Yongjian Sun
- Department of Pediatric OrthopedicCenter for Orthopedic SurgeryThe Third Affiliated Hospital of Southern Medical UniversityNo.183, Zhongshan Avenue WestGuangzhou510515China
| | - Lei Zhou
- Guangzhou Key Laboratory of Spine Disease Prevention and TreatmentDepartment of Spine SurgeryThe Third Affiliated HospitalGuangzhou Medical UniversityNo. 63, Duobao Road, Liwan DistrictGuangzhou510150China
| | - Chengyun Ning
- School of Materials Science and Engineering and National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyNo. 381, Wushan Road, Tianhe DistrictGuangzhou510641China
| |
Collapse
|
19
|
Randhawa V, Kumar M. An integrated network analysis approach to identify potential key genes, transcription factors, and microRNAs regulating human hematopoietic stem cell aging. Mol Omics 2021; 17:967-984. [PMID: 34605522 DOI: 10.1039/d1mo00199j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hematopoietic stem cells (HSCs) undergo functional deterioration with increasing age that causes loss of their self-renewal and regenerative potential. Despite various efforts, significant success in identifying molecular regulators of HSC aging has not been achieved, one prime reason being the non-availability of appropriate human HSC samples. To demonstrate the scope of integrating and re-analyzing the HSC transcriptomics data available, we used existing tools and databases to structure a sequential data analysis pipeline to predict potential candidate genes, transcription factors, and microRNAs simultaneously. This sequential approach comprises (i) collecting matched young and aged mice HSC sample datasets, (ii) identifying differentially expressed genes, (iii) identifying human homologs of differentially expressed genes, (iv) inferring gene co-expression network modules, and (v) inferring the microRNA-transcription factor-gene regulatory network. Systems-level analyses of HSC interaction networks provided various insights based on which several candidates were predicted. For example, 16 HSC aging-related candidate genes were predicted (e.g., CD38, BRCA1, AGTR1, GSTM1, etc.) from GCN analysis. Following this, the shortest path distance-based analyses of the regulatory network predicted several novel candidate miRNAs and TFs. Among these, miR-124-3p was a common regulator in candidate gene modules, while TFs MYC and SP1 were identified to regulate various candidate genes. Based on the regulatory interactions among candidate genes, TFs, and miRNAs, a potential regulation model of biological processes in each of the candidate modules was predicted, which provided systems-level insights into the molecular complexity of each module to regulate HSC aging.
Collapse
Affiliation(s)
- Vinay Randhawa
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific & Industrial Research, Chandigarh-160036, India.
| | - Manoj Kumar
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific & Industrial Research, Chandigarh-160036, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
20
|
Garcia G, Pinto S, Cunha M, Fernandes A, Koistinaho J, Brites D. Neuronal Dynamics and miRNA Signaling Differ between SH-SY5Y APPSwe and PSEN1 Mutant iPSC-Derived AD Models upon Modulation with miR-124 Mimic and Inhibitor. Cells 2021; 10:cells10092424. [PMID: 34572073 PMCID: PMC8465877 DOI: 10.3390/cells10092424] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 12/31/2022] Open
Abstract
Neuronal miRNA dysregulation may have a role in the pathophysiology of Alzheimer's disease (AD). miRNA(miR)-124 is largely abundant and a critical player in many neuronal functions. However, the lack of models reliably recapitulating AD pathophysiology hampers our understanding of miR-124's role in the disease. Using the classical human SH-SY5Y-APP695 Swedish neuroblastoma cells (SH-SWE) and the PSEN1 mutant iPSC-derived neurons (iNEU-PSEN), we observed a sustained upregulation of miR-124/miR-125b/miR-21, but only miR-124 was consistently shuttled into their exosomes. The miR-124 mimic reduced APP gene expression in both AD models. While miR-124 mimic in SH-SWE neurons led to neurite outgrowth, mitochondria activation and small Aβ oligomer reduction, in iNEU-PSEN cells it diminished Tau phosphorylation, whereas miR-124 inhibitor decreased dendritic spine density. In exosomes, cellular transfection with the mimic predominantly downregulated miR-125b/miR-21/miR-146a/miR-155. The miR-124 inhibitor upregulated miR-146a in the two experimental cell models, while it led to distinct miRNA signatures in cells and exosomes. In sum, though miR-124 function may be dependent on the neuronal AD model, data indicate that keeping miR-124 level strictly controlled is crucial for proper neuronal function. Moreover, the iNEU-PSEN cellular model stands out as a useful tool for AD mechanistic studies and perhaps for the development of personalized therapeutic strategies.
Collapse
Affiliation(s)
- Gonçalo Garcia
- Neuroinflammation, Signaling and Neuroregeneration Laboratory, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (G.G.); (S.P.); (M.C.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Sara Pinto
- Neuroinflammation, Signaling and Neuroregeneration Laboratory, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (G.G.); (S.P.); (M.C.)
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Mar Cunha
- Neuroinflammation, Signaling and Neuroregeneration Laboratory, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (G.G.); (S.P.); (M.C.)
| | - Adelaide Fernandes
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; or
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014 Helsinki, Finland
| | - Dora Brites
- Neuroinflammation, Signaling and Neuroregeneration Laboratory, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (G.G.); (S.P.); (M.C.)
- Correspondence: ; Tel.: +351-217946450
| |
Collapse
|
21
|
Mahboudi S, Parivar K, Mazaheri Z, Irani SH. Mir-106b Cluster Regulates Primordial Germ Cells Differentiation from Human Mesenchymal Stem Cells. CELL JOURNAL 2021; 23:294-302. [PMID: 34308572 PMCID: PMC8286458 DOI: 10.22074/cellj.2021.6836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 02/16/2020] [Indexed: 11/20/2022]
Abstract
Objective Numerous evidence indicates that microRNAs (miRNAs) are critical regulators in the spermatogenesis
process. The aim of this study was to investigate Mir-106b cluster regulates primordial germ cells (PGCs) differentiation
from human mesenchymal stem cells (MSCs).
Materials and Methods In this experimental study, samples containing male adipose (n: 9 samples- age: 25-40 years)
were obtained from cosmetic surgeries performed for the liposuction in Imam Khomeini Hospital. The differentiation
of MSCs into PGCs was accomplished by transfection of a lentivector expressing miR-106b. The transfection of miR-
106b was also confirmed by the detection of a clear green fluorescent protein (GFP) signal in MSCs. MSCs were
treated with bone morphogenic factor 4 (BMP4) protein, as a putative inducer of PGCs differentiation, to induce the
differentiation of MSCs into PGCs (positive control). After 4 days of transfection, the expression of miR-106b, STELLA,
and FRAGILIS genes was evaluated by real-time polymerase chain reaction (PCR). Also, the levels of thymocyte
differentiation antigen 1 (Thy1) protein was assessed by the western blot analysis. The cell surface expression of CD90
was also determined by immunocytochemistry method. The cytotoxicity of miR-106b was examined in MSCs after 24,
48, and 72 hours using the MTT assay. Results MSCs treated with BMP4 or transfected by miR-106b were successfully differentiated into PGCs. The results
of this study also showed that the expression of miR-106b was significantly increased after 48 hours from transfection.
Also, we showed STELLA, FARGILIS, as well as the protein expression of Thy1, was significantly higher in MSCs
transfected by lentivector expressing miR-106b in comparison with MSCs treated with BMP4 (P≤0.05). MTT assay
showed miR-106b was no toxic during 72 hours in 1 µg/ml dose, that this amount could elevated germ cells marker
significantly higher than other experimental groups (P≤0.05).
Conclusion According to this findings, it appears that miR-106b plays an essential role in the differentiation of MSCs
into PGCs.
Collapse
Affiliation(s)
- Sadaf Mahboudi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Zohreh Mazaheri
- Basic Medical Sciences Research Center, Histogenotech Company, Tehran, Iran
| | - S Hiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
22
|
MicroRNA124 and microRNA21-5p regulate migration, proliferation and differentiation of rat bone marrow mesenchymal stem cells. Biosci Rep 2021; 40:226597. [PMID: 33026076 PMCID: PMC7584812 DOI: 10.1042/bsr20193531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 08/29/2020] [Accepted: 10/02/2020] [Indexed: 12/28/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells that can be a useful source of cells for the treatment of many diseases, including neurologic diseases. The curative effect of MSCs relies mostly on cell’s capacity of migration, proliferation and differentiation. MicroRNAs (miRNAs) are small non-coding RNAs that play important roles on regulating various cell behaviors. Here, we report that miRNA-124 (miR124) and miRNA-21-5p (miR21-5p) display different regulatory roles on migration, proliferation and neuron differentiation of MSCs. MiR124 was shown greatly promoting MSCs migration and neuronal differentiation. MiR21-5p could significantly enhance the proliferation and neuronal differentiation ability of MSCs. MiR124 and miR21-5p synergistically promote differentiation of MSCs into neurons. Collectively, miR124 and miR21-5p can functionally regulate cell migration, proliferation and neuronal differentiation of MSCs. Therefore, miR124 and miR21-5p may be promising tools to improve transplantation efficiency for neural injury.
Collapse
|
23
|
Wang C, Zhang Y, Jiang Z, Bai H, Du Z. miR-100 alleviates the inflammatory damage and apoptosis of H 2O 2-induced human umbilical vein endothelial cells via inactivation of Notch signaling by targeting MMP9. Vascular 2021; 30:151-161. [PMID: 33530884 DOI: 10.1177/1708538121989854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Thromboangiitis obliterans is a nonatherosclerotic segmental inflammatory disease, and miR-100 plays an anti-inflammatory role in chronic inflammation. Therefore, we hypothesized that miR-100 might alleviate the inflammatory damage and apoptosis of H2O2-induced ECV304 cells and aimed to investigate the relationship between miR-100 and thromboangiitis obliterans and the related molecular mechanism. METHODS Cell counting kit-8 was used to detect cell viability, and the expression of inflammatory factors and oxidative stress was measured by ELISA. TUNEL assay was used to detect the apoptosis of human umbilical vein endothelial cells after induction by H2O2. Furthermore, the interaction between miR-100 and matrix metalloproteinase-9 was verified by dual-luciferase assay. Quantitative reverse transcription polymerase chain reaction and western blot were used to detect the expression of the adhesion factors, apoptosis-related proteins and Notch pathway-related protein. RESULTS The results revealed that miR-100 was decreased in H2O2-induced human umbilical vein endothelial cells. Overexpression of miR-100 attenuated inflammatory response and cell apoptosis in H2O2-induced human umbilical vein endothelial cells. The overexpression of miR-100 inhibited matrix metalloproteinase-9 expression in H2O2-induced human umbilical vein endothelial cells. miR-100 inhibited H2O2-induced human umbilical vein endothelial cell inflammation, oxidative stress, and cell apoptosis via inactivation of Notch signaling by targeting matrix metalloproteinase. CONCLUSIONS Our study demonstrated that miR-100 reduced the inflammatory damage and apoptosis of H2O2-induced human umbilical vein endothelial cells via inactivation of Notch signaling by targeting matrix metalloproteinase. These findings suggested that miR-100 might be a novel therapeutic target for the prevention of thromboangiitis obliterans.
Collapse
Affiliation(s)
- Chen Wang
- Department of Peripheral Vascular Intervention, Gansu Provincial Hospital of TCM, Lanzhou, China
| | - Yanqin Zhang
- Department of Rehabilitation Medicine, Gansu Provincial Hospital of TCM, Lanzhou, China
| | - Zhenxing Jiang
- Department of Repair & Reconstruction Orthopaedics, Gansu Provincial Hospital of TCM, Lanzhou, China
| | - Huiling Bai
- Department of Peripheral Vascular Intervention, Gansu Provincial Hospital of TCM, Lanzhou, China
| | - Zizhong Du
- Department of Peripheral Vascular Intervention, Gansu Provincial Hospital of TCM, Lanzhou, China
| |
Collapse
|
24
|
Grieco GE, Brusco N, Licata G, Fignani D, Formichi C, Nigi L, Sebastiani G, Dotta F. The Landscape of microRNAs in βCell: Between Phenotype Maintenance and Protection. Int J Mol Sci 2021; 22:ijms22020803. [PMID: 33466949 PMCID: PMC7830142 DOI: 10.3390/ijms22020803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetes mellitus is a group of heterogeneous metabolic disorders characterized by chronic hyperglycaemia mainly due to pancreatic β cell death and/or dysfunction, caused by several types of stress such as glucotoxicity, lipotoxicity and inflammation. Different patho-physiological mechanisms driving β cell response to these stresses are tightly regulated by microRNAs (miRNAs), a class of negative regulators of gene expression, involved in pathogenic mechanisms occurring in diabetes and in its complications. In this review, we aim to shed light on the most important miRNAs regulating the maintenance and the robustness of β cell identity, as well as on those miRNAs involved in the pathogenesis of the two main forms of diabetes mellitus, i.e., type 1 and type 2 diabetes. Additionally, we acknowledge that the understanding of miRNAs-regulated molecular mechanisms is fundamental in order to develop specific and effective strategies based on miRNAs as therapeutic targets, employing innovative molecules.
Collapse
Affiliation(s)
- Giuseppina Emanuela Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (D.F.); (C.F.); (L.N.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Noemi Brusco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (D.F.); (C.F.); (L.N.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Giada Licata
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (D.F.); (C.F.); (L.N.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Daniela Fignani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (D.F.); (C.F.); (L.N.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Caterina Formichi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (D.F.); (C.F.); (L.N.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (D.F.); (C.F.); (L.N.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (D.F.); (C.F.); (L.N.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (D.F.); (C.F.); (L.N.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
- Tuscany Centre for Precision Medicine (CReMeP), 53100 Siena, Italy
- Correspondence: ; Tel.: +39-0577-231283
| |
Collapse
|
25
|
Li Z, Song Y, He T, Wen R, Li Y, Chen T, Huang S, Wang Y, Tang Y, Shen F, Tian HL, Yang GY, Zhang Z. M2 microglial small extracellular vesicles reduce glial scar formation via the miR-124/STAT3 pathway after ischemic stroke in mice. Am J Cancer Res 2021; 11:1232-1248. [PMID: 33391532 PMCID: PMC7738903 DOI: 10.7150/thno.48761] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/01/2020] [Indexed: 12/23/2022] Open
Abstract
Rationale: Glial scars present a major obstacle for neuronal regeneration after stroke. Thus, approaches to promote their degradation and inhibit their formation are beneficial for stroke recovery. The interaction of microglia and astrocytes is known to be involved in glial scar formation after stroke; however, how microglia affect glial scar formation remains unclear. Methods: Mice were treated daily with M2 microglial small extracellular vesicles through tail intravenous injections from day 1 to day 7 after middle cerebral artery occlusion. Glial scar, infarct volume, neurological score were detected after ischemia. microRNA and related protein were examined in peri-infarct areas of the brain following ischemia. Results: M2 microglial small extracellular vesicles reduced glial scar formation and promoted recovery after stroke and were enriched in miR-124. Furthermore, M2 microglial small extracellular vesicle treatment decreased the expression of the astrocyte proliferation gene signal transducer and activator of transcription 3, one of the targets of miR-124, and glial fibrillary acidic protein and inhibited astrocyte proliferation both in vitro and in vivo. It also decreased Notch 1 expression and increased Sox2 expression in astrocytes, which suggested that astrocytes had transformed into neuronal progenitor cells. Finally, miR-124 knockdown in M2 microglial small extracellular vesicles blocked their effects on glial scars and stroke recovery. Conclusions: Our results showed, for the first time, that microglia regulate glial scar formation via small extracellular vesicles, indicating that M2 microglial small extracellular vesicles could represent a new therapeutic approach for stroke.
Collapse
|
26
|
Zhong D, Lyu X, Fu X, Xie P, Liu M, He F, Huang G. Upregulation of miR-124-3p by Liver X Receptor Inhibits the Growth of Hepatocellular Carcinoma Cells Via Suppressing Cyclin D1 and CDK6. Technol Cancer Res Treat 2020; 19:1533033820967473. [PMID: 33073697 PMCID: PMC7592319 DOI: 10.1177/1533033820967473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
MiR-124-3p has been identified as a novel tumor suppressor and a potential therapeutic target in hepatocellular carcinoma (HCC) through regulating its target genes. However, the upstream regulatory mechanisms of mir-124-3p in HCC has not been fully understood. The transcription factor liver X receptor (LXR) plays a critical role in suppressing the proliferation of HCC cells, but it is unclear whether LXR is involved in the regulation of mir-124-3p. In the present study, we demonstrated that the expression of mir-124-3p was positively correlated with that of LXR in HCC, and the cell growth of HCC was significantly inhibited by LXR agonists. Moreover, activation of LXR with the agonists up-regulated the expression of mir-124-3p, and in turn down-regulated cyclin D1 and cyclin-dependent kinase 6 (CDK6) expression, which are the target genes of mir-124-3p. Mechanistically, miR-124-3p mediates LXR induced inhibition of HCC cell growth and down-regulation of cyclin D1 and CDK6 expression. In vivo experiments also confirmed that LXR induced miR-124-3p expression inhibited the growth of HCC xenograft tumors, as well as cyclin D1 and CDK6 expression. Our findings revealed that miR-124-3p is a novel target gene of LXR, and regulation of the miR-124-3p-cyclin D1/CDK6 pathway by LXR plays a crucial role in the proliferation of HCC cells. LXR-miR-124-3p-cyclin D1/CDK6 pathway may be a novel potential therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Dan Zhong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, 12525Army Medical University (Third Military Medical University), Chongqing, China
| | - Xilin Lyu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, 12525Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaohong Fu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, 12525Army Medical University (Third Military Medical University), Chongqing, China
| | - Peng Xie
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, 12525Army Medical University (Third Military Medical University), Chongqing, China
| | - Menggang Liu
- Department of Hepatobiliary Surgery, Daping Hospital (Army Medical Center), 12525Army Medical University (Third Military Medical University), Chongqing, China
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, 12525Army Medical University (Third Military Medical University), Chongqing, China
| | - Gang Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, 12525Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
27
|
Sodium Tanshinone IIA Silate Exerts Microcirculation Protective Effects against Spinal Cord Injury In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3949575. [PMID: 33101588 PMCID: PMC7568160 DOI: 10.1155/2020/3949575] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/10/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
Spinal cord microcirculation involves functioning endothelial cells at the blood spinal cord barrier (BSCB) and maintains normal functioning of spinal cord neurons, axons, and glial cells. Protection of both the function and integrity of endothelial cells as well as the prevention of BSCB disruption may be a strong strategy for the treatment of spinal cord injury (SCI) cases. Sodium Tanshinone IIA silate (STS) is used for the treatment of coronary heart disease and improves microcirculation. Whether STS exhibits protective effects for SCI microcirculation is not yet clear. The purpose of this study is to investigate the protective effects of STS on oxygen-glucose deprivation- (OGD-) induced injury of spinal cord endothelial cells (SCMECs) in vitro and to explore effects on BSCB and neurovascular protection in vivo. SCMECs were treated with various concentrations of STS (1 μM, 3 μM, and 10 μM) for 24 h with or without OGD-induction. Cell viability, tube formation, migration, and expression of Notch signaling pathway components were evaluated. Histopathological evaluation (H&E), Nissl staining, BSCB permeability, and the expression levels of von Willebrand Factor (vWF), CD31, NeuN, and Notch signaling pathway components were analyzed. STS was found to improve SCMEC functions and reduce inflammatory mediators after OGD. STS also relieved histopathological damage, increased zonula occludens-1 (ZO-1), inhibited BSCB permeability, rescued microvessels, protected motor neuromas, and improved functional recovery in a SCI model. Moreover, we uncovered that the Notch signaling pathway plays an important role during these processes. These results indicated that STS protects microcirculation in SCI, which may be used as a therapeutic strategy for SCI in the future.
Collapse
|
28
|
Deng Z, Wei Y, Yao Y, Gao S, Wang X. Let-7f promotes the differentiation of neural stem cells in rats. Am J Transl Res 2020; 12:5752-5761. [PMID: 33042454 PMCID: PMC7540113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Hypoxic-ischemic brain damage (HIBD) is the major recognized perinatal cause of neurological morbidity in full-term new borns. Neural stem cells (NSCs) have been extensively studied because of their clinical applications in treating neuro degenerative diseases and brain injuries, including HIBD, while microRNAs (miRNAs) are deemed critical regulators of the proliferation and differentiation of NSCs. However, the role of let-7f in NSC differentiation remains unknown. Our study aims to investigate the role of let-7f in the differentiation of NSCs and brain development in rats and hence to explore the therapeutic potential of let-7f in the treatment of HIBD. The quantitative real-time polymerase chain reaction (qRT-PCR) was applied to assess the expressions of let-7f, and western blot was performed to detect GFAP, Tuj1 and Nestin in rat brains at postnatal day 1, 8 and 14 (n=12 per time point). The NSCs isolated from the brains of rat fetuses at gestational day 15 were transduced with lenti virus expressing let-7f or let-7f inhibitor so as to observe altered expressions of let-7f, GFAP, Tuj1 and Nestin. A gradually-increasing expression of let-7f was detected by qRT-PCR in rat brain tissues during postnatal brain development. Increased levels of GFAP and Tuj1, while a decreased level of Nestin, were detected by western blot in let-7f-overexpressing NSCs. In contrast, the cells expressing the let-7f inhibitor exhibited lower levels of GFAP and Tuj1, while a higher level of Nestin, compared with control cells. Therefore, let-7f is involved in brain development and promotes the differentiation of NSCs in rats.
Collapse
Affiliation(s)
- Zhenhan Deng
- Department of Pediatrics, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- Department of Sports Medicine, Department of Sports Medicine, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science CenterShenzhen 518035, Guangdong, China
| | - Yujia Wei
- Department of Pediatrics, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- Department of Pediatrics, The First Affiliated Hospital of South China UniversityHengyang 421001, Hunan, China
| | - Yue Yao
- Department of Pediatrics, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Shanshan Gao
- Department of Cardiology, University of Colorado Anschutz Medical CampusAurora 800045, CO, USA
| | - Xia Wang
- Department of Pediatrics, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| |
Collapse
|
29
|
Emerging role of microRNAs in ischemic stroke with comorbidities. Exp Neurol 2020; 331:113382. [DOI: 10.1016/j.expneurol.2020.113382] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/07/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023]
|
30
|
Rahmani A, Naderi M, Barati G, Arefian E, Jedari B, Nadri S. The potency of hsa-miR-9-1 overexpression in photoreceptor differentiation of conjunctiva mesenchymal stem cells on a 3D nanofibrous scaffold. Biochem Biophys Res Commun 2020; 529:526-532. [PMID: 32736669 DOI: 10.1016/j.bbrc.2020.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/03/2020] [Indexed: 12/31/2022]
Abstract
MiRNAs are small non-coding RNAs that are ordinarily involved in modulating mRNAs and stem cell differentiation. 3D nanofibrous scaffolds have an important role in the differentiation of stem cells due to their similarity to the extracellular matrix (ECM). In the present study, we tried to introduce a new approach to guiding the differentiation of conjunctiva mesenchymal stem cells (CJMSCs) into photoreceptor-like cells by hsa-miR-9-1 delivery on both 2D and 3D substrates. First, the CJMSCs were transduced by a lentiviral vector carrying miR-9 (pCDH + hsa-miR-9-1) and then cell transduction efficacy verified by using fluorescent microscopy, flow cytometry, and qPCR analyses. Silk Fibroin-poly-L-lactic acid (SF-PLLA) scaffold was fabricated by the electrospinning technique while the scaffold characteristics including morphology, chemical properties, and biocompatibility were evaluated by SEM, FTIR, and MTT assays, respectively. Then, the miR-9-CJMSCs were seeded on both TCPS and the scaffold; photoreceptor gene and protein expressions were evaluated by RT-qPCR and immunostaining after 14 and 21 days of transduction. More than 80% of CJMSCs were transduced and miR-9 expression was significantly higher in miR-9-CJMSCs compared with empty vector (EV)-CJMSCs. SEM and FTIR confirmed the fabrication of the SF/PLLA hybrid structure. RT-qPCR and immunostaining analyses showed that the specific photoreceptor genes and proteins were expressed in miR-9 transduced CJMSCs. Mir-9 induced CJMSCs into photoreceptor-like cells in a time-dependent manneron on both TCPS and nanofibrous scaffold.We have proved that hsa-miR-9-1 has the potency to guide the photoreceptor differentiation of mesenchymal stem cells and promote retinal regeneration.
Collapse
Affiliation(s)
- Ali Rahmani
- Department of Medical Nanotechnology, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahmood Naderi
- Cell-Based Therapies Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghasem Barati
- Department of Medical Biotechnology, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Iran
| | - Behrouz Jedari
- Department of Medical Biotechnology, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samad Nadri
- Department of Medical Nanotechnology, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
31
|
Lin J, Jo SB, Kim TH, Kim HW, Chew SY. RNA interference in glial cells for nerve injury treatment. J Tissue Eng 2020; 11:2041731420939224. [PMID: 32670539 PMCID: PMC7338726 DOI: 10.1177/2041731420939224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/13/2020] [Indexed: 12/12/2022] Open
Abstract
Drivers of RNA interference are potent for manipulating gene and protein levels, which enable the restoration of dysregulated mRNA expression that is commonly associated with injuries and diseases. This review summarizes the potential of targeting neuroglial cells, using RNA interference, to treat nerve injuries sustained in the central nervous system. In addition, the various methods of delivering these RNA interference effectors will be discussed.
Collapse
Affiliation(s)
- Junquan Lin
- School of Chemical and Biomedical
Engineering, Nanyang Technological University, Singapore
| | - Seung Bin Jo
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
| | - Tae-Hyun Kim
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science
& BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook
University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science
& BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook
University, Cheonan, Republic of Korea
- UCL Eastman-Korea Dental Medicine
Innovation Centre, Dankook University, Cheonan, Republic of Korea
| | - Sing Yian Chew
- School of Chemical and Biomedical
Engineering, Nanyang Technological University, Singapore
- Lee Kong Chian School of Medicine,
Nanyang Technological University, Singapore
| |
Collapse
|
32
|
Huang YL, Zeng NX, Chen J, Niu J, Luo WL, Liu P, Yan C, Wu LL. Dynamic changes of behaviors, dentate gyrus neurogenesis and hippocampal miR-124 expression in rats with depression induced by chronic unpredictable mild stress. Neural Regen Res 2020; 15:1150-1159. [PMID: 31823896 PMCID: PMC7034282 DOI: 10.4103/1673-5374.270414] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The depression-like behavior phenotype, neurogenesis in the dentate gyrus and miR-124 expression in the hippocampus are the focus of current research on the pathogenesis of depression and antidepressant therapy. The present study aimed to clarify the dynamic changes of depression-like behavior, dentate gyrus neurogenesis and hippocampal miR-124 expression during depression induced by chronic stress to reveal pathological features at different stages of depression and to further provide insight into depression treatment. Chronic unpredictable mild stress depression models were established by exposing Sprague-Dawley rats to various mild stressors, including white noise, thermal swimming, stroboscopic illumination, soiled cages, pairing with three other stressed animals, cold swimming, tail pinch, restraint and water and food deprivation. Chronic unpredictable mild stress model rats underwent dynamic observation from 1 to 8 weeks and were compared with a control group (normal feeding without any stressors). To observe changes in the depression-like behavior phenotype during chronic unpredictable mild stress-induced depression, a sucrose preference test was used to evaluate the degree of anhedonia. An open-field test was used to evaluate locomotor activity and anxiety status. Compared with the control group, chronic unpredictable mild stress rats lost weight but did not have a depression-like behavioral phenotype at 1–4 weeks. Chronic unpredictable mild stress rats presented decreased sucrose preference and locomotor activity at 5–8 weeks. In addition, chronic unpredictable mild stress rats did not have significant anxiety-like behavior during 1–8 weeks of modeling. To observe neurogenesis dysfunctions and changes in neuronal number in the dentate gyrus during chronic unpredictable mild stress-induced depression, markers (DCX and DCX/BrdU) of neural proliferation and differentiation and the neuronal marker NeuN were assessed by immunofluorescence. Compared with the control group, neurogenesis and the neuronal number in the dentate gyrus did not change from 2 to 6 weeks; however, neural proliferation and differentiation in the dentate gyrus decreased, and the number of neurons decreased until the eighth week in the chronic unpredictable mild stress group. Real-time quantitative reverse transcription polymerase chain reaction assays and fluorescence in situ hybridization were used to measure the expression of hippocampal miR-124 during chronic unpredictable mild stress-induced depression. The results showed that the expression of hippocampal miR-124 was unchanged during the first 4 weeks but increased from 5 to 6 weeks and decreased from 7 to 8 weeks compared with the control group. These findings indicate that during chronic unpredictable mild stress-induced depression, the behavioral phenotype, miR-124 expression in the hippocampus, neurogenesis in the dentate gyrus and neuronal numbers showed dynamic changes, which suggested that various pathological changes occur at different stages of depression. All experimental procedures and protocols were approved by the Experimental Animal Ethics Committee of Guangzhou University of Chinese Medicine of China in March 2015.
Collapse
Affiliation(s)
- Yun-Ling Huang
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Ning-Xi Zeng
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Jie Chen
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Jie Niu
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Wu-Long Luo
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Ping Liu
- Department of Pharmacology, PLA General Hospital, Beijing, China
| | - Can Yan
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Li-Li Wu
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| |
Collapse
|
33
|
You Q, Gong Q, Han YQ, Pi R, Du YJ, Dong SZ. Role of miR-124 in the regulation of retinoic acid-induced Neuro-2A cell differentiation. Neural Regen Res 2020; 15:1133-1139. [PMID: 31823894 PMCID: PMC7034285 DOI: 10.4103/1673-5374.270417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Retinoic acid can cause many types of cells, including mouse neuroblastoma Neuro-2A cells, to differentiate into neurons. However, it is still unknown whether microRNAs (miRNAs) play a role in this neuronal differentiation. To address this issue, real-time polymerase chain reaction assays were used to detect the expression of several differentiation-related miRNAs during the differentiation of retinoic acid-treated Neuro-2A cells. The results revealed that miR-124 and miR-9 were upregulated, while miR-125b was downregulated in retinoic acid-treated Neuro-2A cells. To identify the miRNA that may play a key role, miR-124 expression was regulated by transfection of miRNA mimics or inhibitors. Morphological analysis results showed that inhibition of miR-124 expression reversed the effects of retinoic acid on neurite outgrowth. Moreover, miR-124 overexpression alone caused Neuro-2A cells to differentiate into neurons, and its inhibitor could block this effect. These results suggest that miR-124 plays an important role in retinoic acid-induced differentiation of Neuro-2A cells.
Collapse
Affiliation(s)
- Qun You
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Qiang Gong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yu-Qiao Han
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Rou Pi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yi-Jie Du
- Department of Integrative Medicine, Huashan Hospital; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Su-Zhen Dong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| |
Collapse
|
34
|
Wang D, Tang X, Liang Q, Zeng X, Yang J, Xu J. microRNA‐599 promotes apoptosis and represses proliferation and epithelial‐mesenchymal transition of papillary thyroid carcinoma cells via downregulation of Hey2‐depentent Notch signaling pathway. J Cell Physiol 2019; 235:2492-2505. [PMID: 31565805 DOI: 10.1002/jcp.29154] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Duo‐Ping Wang
- Department of Head and Neck Surgery Affiliated Tumor Hospital of Guangxi Medical University Nanning China
| | - Xiao‐Zhun Tang
- Department of Head and Neck Surgery Affiliated Tumor Hospital of Guangxi Medical University Nanning China
| | - Quan‐Kun Liang
- Department of Head and Neck Surgery Affiliated Tumor Hospital of Guangxi Medical University Nanning China
| | - Xian‐Jie Zeng
- Department of Head and Neck Surgery Affiliated Tumor Hospital of Guangxi Medical University Nanning China
| | - Jian‐Bo Yang
- Department of Head and Neck Surgery Affiliated Tumor Hospital of Guangxi Medical University Nanning China
| | - Jian Xu
- Department of Head and Neck Surgery Affiliated Tumor Hospital of Guangxi Medical University Nanning China
| |
Collapse
|
35
|
Jia X, Wang X, Guo X, Ji J, Lou G, Zhao J, Zhou W, Guo M, Zhang M, Li C, Tai S, Yu S. MicroRNA-124: An emerging therapeutic target in cancer. Cancer Med 2019; 8:5638-5650. [PMID: 31389160 PMCID: PMC6745873 DOI: 10.1002/cam4.2489] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 01/10/2023] Open
Abstract
MicroRNAs (miRNAs) are noncoding single-stranded RNAs, approximately 20-24 nucleotides in length, known as powerful posttranscriptional regulators. miRNAs play important regulatory roles in cellular processes by changing messenger RNA expression and are widely involved in human diseases, including tumors. It has been reported in the literature that miRNAs have a precise role in cell proliferation, programmed cell death, differentiation, and expression of coding genes. MicroRNA-124 (miR-124) has reduced exparession in various human neoplasms and is believed to be related to the occurrence, development, and prognosis of malignant tumors. In our review, we focus on the specific molecular functions of miR-124 and the downstream gene targets in major cancers, which provide preclinical evidence for the treatment of human cancer. Although some obstacles exist, miR-124 is still attracting intensive research focus as a promising and effective anticancer weapon.
Collapse
Affiliation(s)
- Xinqi Jia
- Department of Hepatopancreatobiliary SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Xu Wang
- Department of NeurologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Xiaorong Guo
- Department of PathologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Jingjing Ji
- Department of PathologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Ge Lou
- Department of PathologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Junjie Zhao
- Department of Hepatopancreatobiliary SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Wenjia Zhou
- Department of Hepatopancreatobiliary SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Mian Guo
- Department of Neurosurgerythe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Maomao Zhang
- Key Laboratory of Myocardial IschemiaDepartment of Cardiologythe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Chao Li
- Department of Orthopedicsthe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Sheng Tai
- Department of Hepatopancreatobiliary SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Shan Yu
- Department of PathologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
36
|
Venkatesh K, Kumari A, Sen D. MicroRNA signature changes during induction of neural stem cells from human mesenchymal stem cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 17:94-105. [DOI: 10.1016/j.nano.2019.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 01/12/2023]
|
37
|
Wei ZJ, Fan BY, Liu Y, Ding H, Tang HS, Pan DY, Shi JX, Zheng PY, Shi HY, Wu H, Li A, Feng SQ. MicroRNA changes of bone marrow-derived mesenchymal stem cells differentiated into neuronal-like cells by Schwann cell-conditioned medium. Neural Regen Res 2019; 14:1462-1469. [PMID: 30964074 PMCID: PMC6524508 DOI: 10.4103/1673-5374.253532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells differentiate into neurons under the induction of Schwann cells. However, key microRNAs and related pathways for differentiation remain unclear. This study screened and identified differentially expressed microRNAs in bone marrow-derived mesenchymal stem cells induced by Schwann cell-conditioned medium, and explored targets and related pathways involved in their differentiation into neuronal-like cells. Primary bone marrow-derived mesenchymal stem cells were isolated from femoral and tibial bones, while primary Schwann cells were isolated from bilateral saphenous nerves. Bone marrow-derived mesenchymal stem cells were cultured in unconditioned (control group) and Schwann cell-conditioned medium (bone marrow-derived mesenchymal stem cell + Schwann cell group). Neuronal differentiation of bone marrow-derived mesenchymal stem cells induced by Schwann cell-conditioned medium was observed by time-lapse imaging. Upon induction, the morphology of bone marrow-derived mesenchymal stem cells changed into a neural shape with neurites. Results of quantitative reverse transcription-polymerase chain reaction revealed that nestin mRNA expression was upregulated from 1 to 3 days and downregulated from 3 to 7 days in the bone marrow-derived mesenchymal stem cell + Schwann cell group. Compared with the control group, microtubule-associated protein 2 mRNA expression gradually increased from 1 to 7 days in the bone marrow-derived mesenchymal stem cell + Schwann cell group. After 7 days of induction, microRNA analysis identified 83 significantly differentially expressed microRNAs between the two groups. Gene Ontology analysis indicated enrichment of microRNA target genes for neuronal projection development, regulation of axonogenesis, and positive regulation of cell proliferation. Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated that Hippo, Wnt, transforming growth factor-beta, and Hedgehog signaling pathways were potentially associated with neural differentiation of bone marrow-derived mesenchymal stem cells. This study, which carried out successful microRNA analysis of neuronal-like cells differentiated from bone marrow-derived mesenchymal stem cells by Schwann cell induction, revealed key microRNAs and pathways involved in neural differentiation of bone marrow-derived mesenchymal stem cells. All protocols were approved by the Animal Ethics Committee of Institute of Radiation Medicine, Chinese Academy of Medical Sciences on March 12, 2017 (approval number: DWLI-20170311).
Collapse
Affiliation(s)
- Zhi-Jian Wei
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bao-You Fan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Han Ding
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao-Shuai Tang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Da-Yu Pan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jia-Xiao Shi
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng-Yuan Zheng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong-Yu Shi
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Heng Wu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ang Li
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China
| | - Shi-Qing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
38
|
Hu C, Dong ZL. MicroRNA-212 promotes the recovery function and vascular regeneration of endothelial progenitor cells in mice with ischemic stroke through inactivation of the notch signaling pathway via downregulating MMP9 expression. J Cell Physiol 2018; 234:7090-7103. [PMID: 30552827 DOI: 10.1002/jcp.27463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/29/2018] [Indexed: 12/24/2022]
Abstract
Ischemic stroke is a refractory disease caused by cerebral ischemic injury, which results in brain dysfunction. This study intends to investigate the effects of microRNA-212 (miR-212) on the recovery function and vascular regeneration of endothelial progenitor cells (EPCs) by inactivation of the Notch signaling pathway by binding to matrix metallopeptidase 9 (MMP9) in mice with ischemic stroke. According to the results of database retrieval systems and data analysis, MMP9 was predicted as a gene related to ischemic stroke and miR-212 is a potential regulating mRNA of MMP9. All 72 healthy adult C57BL6 mice were selected for middle cerebral artery occlusion (MCAO) establishment. Cerebral infarction was observed under triphenyltetrazolium chloride staining. A series of inhibitors, activators, and siRNAs were introduced to the verified regulatory functions for miR-212 governing MMP9 in ischemic stroke. Cell proliferation was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and tube-forming ability by tubule formation test. Reverse transcription quantitative polymerase chain reaction and Western blot analysis were used to detect the expressions of miR-212, MMP9, Hes-1, and Notch-1. The corresponding results demonstrated that the area of cerebral infarction and the number of neuronal necrosis increased in the MCAO group in contrast to the sham group. Meanwhile, upregulation of miR-212 or downregulation of MMP9 decreases the expressions of MMP9, Hes-1 Notch-1, increases cell proliferation and tube-forming ability and improves the pathological conditions of EPCs. Our study suggests that miR-212 promotes recovery function and vascular regeneration of EPCs through negative regulation of the Notch signaling pathway via downregulating expression of MMP9, thus provides a clinical theoretical basis for ischemic stroke therapy.
Collapse
Affiliation(s)
- Chen Hu
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, China
| | - Zhi-Ling Dong
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
39
|
Liu Q, Lü L, Sun H, Zhang J, Ma W, Zhang T. [Effect of serum on the differentiation of neural stem cells]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:223-227. [PMID: 29806416 DOI: 10.7507/1002-1892.201710113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Objective To investigate the effect of serum on the differentiation of neural stem cells. Methods The neural stem cells were isolated from the embryonic hippocampus tissues of Sprague Dawley rats at 14 day of pregnancy. After culturing and passaging, the 3rd generation cells were identified by immunocytochemical staining. Then, the cells were divided into 3 groups according to the concentrations of fetal bovine serum (FBS) used in the differentiation cell culture medium: 5% (group A), 1% (group B), 0 (group C), respectively. The other components of the culture media in 3 groups were the same. Cell viability was determined by using the Live/Dead cell staining at 8 days; the expressions of glial cell marker [glial fibrillary acidic protein (GFAP)] and neuronal marker (β-Ⅲ Tubulin) were determined and analyzed by immunocytochemical staining and real-time fluorescent PCR at 4 and 8 days of culture. Results Based on cell morphology and immunocytochemical staining, neural stem cells were identified. Cells were growing well with no death in all groups. With decreasing FBS concentration, the expression of GFAP was significantly decreased on both protein and mRNA level, whereas the expression of β-Ⅲ Tubulin was evidently increased. The staining of each group at 8 days was more obvious than that at 4 days. There were significant differences in mRNA expressions of GFAP and β-Ⅲ Tubulin at 4 and 8 days between groups ( P<0.05). Conclusion Serum can promote the differentiation of neural stem cells into glial cells. At the same time, it inhibits the differentiation of neural stem cells into neurons, the lower the serum concentration, the smaller the effect.
Collapse
Affiliation(s)
- Qingxi Liu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P.R.China;Tianjin Weikai Bioeng Ltd., Tianjin, 300457, P.R.China
| | - Lihui Lü
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P.R.China
| | - He Sun
- Tianjin Weikai Bioeng Ltd., Tianjin, 300457, P.R.China
| | - Jinhua Zhang
- Tianjin Weikai Bioeng Ltd., Tianjin, 300457, P.R.China
| | - Wenjian Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P.R.China;College of Biotechnology, Qilu Institute of Technology, Jinan Shandong, 250200,
| | - Tongcun Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457,
| |
Collapse
|
40
|
Microcystin-LR-Triggered Neuronal Toxicity in Whitefish Does Not Involve MiR124-3p. Neurotox Res 2018; 35:29-40. [PMID: 29882005 PMCID: PMC6313356 DOI: 10.1007/s12640-018-9920-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 02/07/2023]
Abstract
Microcystin-LR (MC-LR) is a potent hepatotoxin that has also been pointed out of causing neurotoxicity, but the exact mechanisms of action still remain ambiguous and need to be elucidated. Data from studies on mammals show that pathology of astrocyte cells points to perturbations of microRNA signaling. Glial fibrillary acidic protein (GFAP), a neuronal cell/astrocyte-specific protein, and a microRNA-124-3p (MiR124-3p) are among putative triggers and regulators of neuronal cell/astrocyte reactivity. In the present study on whitefish (Coregonus lavaretus), we found that gfap mRNA contains a putative target site for MIR124-3p, to potentially affect its expression changes. qPCR expression study of gfap:MiR124-3p pair in the midbrain of juvenile whitefish, during 28 days of exposure to a repeated subacute dose of MC-LR (100 μg kg−1 body mass), showed marginally significant up-regulation of gfap only on the 7th day of exposure period which suggests neuronal toxicity. During the whole exposure period, neither midbrain nor blood plasma levels of MiR124-3p were changed. Furthermore, double luciferase gene reporter assay confirmed the lack of MiR124-3p involvement in mediating control over gfap mRNA expression. These data show that, although MC-LR may trigger neuronal toxicity in whitefish, this does not involve MiR124-3p in response to the treatment.
Collapse
|
41
|
Jiao S, Liu Y, Yao Y, Teng J. miR-124 promotes proliferation and neural differentiation of neural stem cells through targeting DACT1 and activating Wnt/β-catenin pathways. Mol Cell Biochem 2018; 449:305-314. [DOI: 10.1007/s11010-018-3367-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 05/17/2018] [Indexed: 11/28/2022]
|