1
|
Zheng G, Chen S, Ma W, Wang Q, Sun L, Zhang C, Chen G, Zhang S, Chen S. Spatial and Single-Cell Transcriptomics Unraveled Spatial Evolution of Papillary Thyroid Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404491. [PMID: 39540244 PMCID: PMC11727256 DOI: 10.1002/advs.202404491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/27/2024] [Indexed: 11/16/2024]
Abstract
Recurrence and metastasis are the major issues for papillary thyroid cancer (PTC). Current morphological and molecular classification systems are not satisfied for PTC diagnosis due to lacking variant-specific morphological criteria and high signal-to-noise in mutation-based diagnosis, respectively. Importantly, intratumor heterogeneity is largely lost in current molecular classification system, which can be resolved by single cell RNA sequencing (scRNA-seq). However, scRNA-seq loses spatial information and morphological features. Herein, scRNA-seq is integrated and spatially-resolved transcriptomics (SRT) to elaborate the mechanisms underlying the spatial heterogeneity, malignancy and metastasis of PTCs by associating transcriptome and local morphology. This results demonstrated that PTC cells evolved with multiple routes, driven by the enhanced aerobic metabolism and the suppressed mRNA translation and protein synthesis and the involvement of cell-cell interaction. Two curated malignant and metastatic footprints can discriminate PTC cells from normal thyrocytes. Ferroptosis resistance contributed to PTC evolution. This results will advance the knowledge of intratumor spatial heterogeneity and evolution of PTCs at spatial and single-cell levels, and propose better diagnostic strategy.
Collapse
Affiliation(s)
- Guangzhe Zheng
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117China
| | - Shaobo Chen
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100032China
| | - Wanqi Ma
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117China
| | - Quanshu Wang
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117China
- Biomedical Sciences College & Shandong Medicinal Biotechnology CentreShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117China
| | - Li Sun
- The First Affiliated Hospital of Shandong First Medical UniversityJinanShandong250014China
| | - Changwen Zhang
- Department of UrologyTianjin Institute of UrologyThe Second Hospital of Tianjin Medical UniversityTianjin300211China
| | - Ge Chen
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100032China
| | - Shuping Zhang
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117China
- Biomedical Sciences College & Shandong Medicinal Biotechnology CentreShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117China
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117China
| | - Shuguang Chen
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100032China
| |
Collapse
|
2
|
Xu X, Li R, Mo O, Liu K, Li J, Hao P. Cell-type deconvolution for bulk RNA-seq data using single-cell reference: a comparative analysis and recommendation guideline. Brief Bioinform 2024; 26:bbaf031. [PMID: 39899596 PMCID: PMC11789683 DOI: 10.1093/bib/bbaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/06/2024] [Accepted: 01/20/2025] [Indexed: 02/05/2025] Open
Abstract
The accurate estimation of cell type proportions in tissues is crucial for various downstream analyses. With the increasing availability of single-cell sequencing data, numerous deconvolution methods that use single-cell RNA sequencing data as a reference have been developed. However, a unified understanding of how these deconvolution approaches perform in practical applications is still lacking. To address this, we systematically assessed the accuracy and robustness of nine deconvolution methods that use single-cell RNA sequencing data as a reference, evaluating them on real bulk data with cell proportions verified through flow cytometry, as well as simulated bulk data generated from five single-cell RNA sequencing datasets. Our study highlights the importance of several factors-including reference dataset construction strategies, dataset size, cell type subdivision, and cell type inconsistency-on the accuracy and robustness of deconvolution results. We also propose a set of recommended guidelines for software users in diverse scenarios.
Collapse
Affiliation(s)
- Xintian Xu
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, 320 Yueyang Road, Xuhui District, Shanghai 200031, China
- University of Chinese Academy of Sciences, 1 Yanqihu East Road, Huairou District, Beijing 100039, China
| | - Rui Li
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, 320 Yueyang Road, Xuhui District, Shanghai 200031, China
- University of Chinese Academy of Sciences, 1 Yanqihu East Road, Huairou District, Beijing 100039, China
| | - Ouyang Mo
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, 320 Yueyang Road, Xuhui District, Shanghai 200031, China
- University of Chinese Academy of Sciences, 1 Yanqihu East Road, Huairou District, Beijing 100039, China
| | - Kai Liu
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, 320 Yueyang Road, Xuhui District, Shanghai 200031, China
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Xuhui District, Shanghai 200032, China
| | - Justin Li
- Department of Mathematics, University of Connecticut, 352 Mansfield Road, Storrs, CT 06269, USA
| | - Pei Hao
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, 320 Yueyang Road, Xuhui District, Shanghai 200031, China
- University of Chinese Academy of Sciences, 1 Yanqihu East Road, Huairou District, Beijing 100039, China
| |
Collapse
|
3
|
Su W, Ling Y, Yang X, Wu Y, Xing C. Tumor microenvironment remodeling after neoadjuvant chemoradiotherapy in local advanced rectal cancer revealed by single-cell RNA sequencing. J Transl Med 2024; 22:1037. [PMID: 39558398 PMCID: PMC11575152 DOI: 10.1186/s12967-024-05747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/08/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND The use of neoadjuvant chemoradiotherapy (neoCRT) followed by surgery has markedly enhanced the quality of survival in patients suffering from local advanced rectal cancer (LARC). Enhancing this treatment requires a deep understanding of its underlying mechanism. The heterogeneous nature of the tumor microenvironment (TME) significantly impacts therapeutic responses, presenting complex therapeutic challenges. METHODS In this comprehensive study, we explored the intricate cellular and molecular shifts within the TME of LARC after neoCRT administration. Using single-cell transcriptomic analysis, we meticulously examined 32,417 cells sourced from six samples, each representing different tumor regression grades (TRG: 0 versus 2). This detailed analysis enabled us to characterize the various cell subpopulations, encompassing epithelial cells, lymphocytes, myeloid cells, endothelial cells, and fibroblasts. Additionally, we identified their marker genes for deconvolution calculation in the READ cohort of the TCGA project. And we obtain their marker genes for deconvolution calculation in the READ cohort of the TCGA project. RESULTS Through cluster analysis and pathway comparisons of malignant tumor cells, we discerned that samples with poor tumor regression exhibit enhanced metabolic versatility and adaptability, enabling them to counteract the impacts of both radiotherapy and chemotherapy. Interestingly, within the TRG2 cohort, we observed a predominant immunosuppressive state in the TME, characterized by the activation of CD4 + regulatory T cells, maintained CD8 + T cell functionality, and a heightened M1 to M2 macrophage ratio. Moreover, the differing outcomes of neoCRT were reflected in the varying interaction dynamics between macrophages (M1 and M2) and CD4+/CD8 + T cells. Furthermore, our data reveal that neoCRT intricately modulates fibroblasts and endothelial cells, primarily through the extracellular matrix remodeling pathway, which orchestrates tumor angiogenesis. All changes were validated through immunofluorescence staining on intraoperative samples before and after treatment. To summarize, our investigation presents a comprehensive exploration of the cellular and molecular metamorphoses within the TME post-neoCRT. CONCLUSIONS By unveiling the sophisticated interaction between the multifaceted cells within the TME and their respective reactions to neoCRT, we establish a robust platform for ensuing future investigations. This study paves the way for novel therapeutic strategies that leverage these insights to bolster the efficacy of neoCRT in managing LARC.
Collapse
Affiliation(s)
- Wenzhao Su
- Department of Gastroenterology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, Sanxiang Road 1055, Suzhou, CN, 215000, China
| | - Yuhang Ling
- Huzhou Key Laboratory of Translational Medicine, First People's Hospital of Huzhou, Huzhou, Zhejiang Province, CN, 313000, China
| | - Xiaodong Yang
- Department of Gastroenterology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, Sanxiang Road 1055, Suzhou, CN, 215000, China
| | - Yong Wu
- Department of Gastroenterology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, Sanxiang Road 1055, Suzhou, CN, 215000, China.
| | - Chungen Xing
- Department of Gastroenterology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, Sanxiang Road 1055, Suzhou, CN, 215000, China.
| |
Collapse
|
4
|
Pereira Vasconcelos A, Santos E Silva JC, Simizo A, Peña Avila J, Nassar Reich Goldstein G, Prado de Oliveira PH, Mogollón García H, de Carvalho Fraga CA, Nakaya HI. Sex-Based Differences in Thyroid Plasma B Cell Infiltration: Implications for Autoimmune Disease Susceptibility. Endocrinology 2024; 165:bqae148. [PMID: 39487734 DOI: 10.1210/endocr/bqae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/15/2024] [Accepted: 10/31/2024] [Indexed: 11/04/2024]
Abstract
Thyroid autoimmune diseases, such as Hashimoto thyroiditis and Graves disease, are significantly more prevalent in women than in men, suggesting underlying biological differences in immune system function and regulation between sexes. Plasma B cells are crucial in autoimmunity due to their role in producing antibodies targeting self-antigens, but their presence in the thyroids of women without clinical autoimmune diseases remains largely unexplored. This study investigates the infiltration of plasma B cells in female thyroids specifically excluding those with any clinical signs of autoimmune diseases. Using bulk RNA-seq analysis, we identified significant sex differences in gene expression profiles, particularly in genes associated with plasma B cells. Single-cell RNA-seq and spatial transcriptomic analyses further revealed that the CXCL13-CXCR5 signaling axis plays a pivotal role in recruiting and organizing plasma B cells within the thyroid tissue. These findings suggest that the inherent presence of plasma B cells in the female thyroid, driven by CXCL13, may contribute to the higher risk of developing autoimmune thyroid diseases in women. Our study provides new insights into the immune landscape of the thyroid and underscores the importance of understanding sex-specific differences in immune cell distribution and function.
Collapse
Affiliation(s)
- Amanda Pereira Vasconcelos
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508, Brazil
| | - Juan Carlo Santos E Silva
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508, Brazil
| | - Adriana Simizo
- Hospital Israelita Albert Einstein, São Paulo 05620, Brazil
| | - Jonathan Peña Avila
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508, Brazil
| | - Gabriel Nassar Reich Goldstein
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508, Brazil
| | | | - Henry Mogollón García
- Department of Genetic, Evolution, Microbiology and Immunology, Biology Institute, Campinas State University, Campinas, São Paulo 13083, Brazil
| | | | - Helder I Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508, Brazil
- Hospital Israelita Albert Einstein, São Paulo 05620, Brazil
| |
Collapse
|
5
|
Ma H, Li G, Huo D, Su Y, Jin Q, Lu Y, Sun Y, Zhang D, Chen X. Impact of Hashimoto's thyroiditis on the tumor microenvironment in papillary thyroid cancer: insights from single-cell analysis. Front Endocrinol (Lausanne) 2024; 15:1339473. [PMID: 39351536 PMCID: PMC11439672 DOI: 10.3389/fendo.2024.1339473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/05/2024] [Indexed: 10/04/2024] Open
Abstract
This study investigates the impact of Hashimoto's thyroiditis (HT), an autoimmune disorder, on the papillary thyroid cancer (PTC) microenvironment using a dataset of 140,456 cells from 11 patients. By comparing PTC cases with and without HT, we identify HT-specific cell populations (HASCs) and their role in creating a TSH-suppressive environment via mTE3, nTE0, and nTE2 thyroid cells. These cells facilitate intricate immune-stromal communication through the MIF-(CD74+CXCR4) axis, emphasizing immune regulation in the TSH context. In the realm of personalized medicine, our HASC-focused analysis within the TCGA-THCA dataset validates the utility of HASC profiling for guiding tailored therapies. Moreover, we introduce a novel, objective method to determine K-means clustering coefficients in copy number variation inference from bulk RNA-seq data, mitigating the arbitrariness in conventional coefficient selection. Collectively, our research presents a detailed single-cell atlas illustrating HT-PTC interactions, deepening our understanding of HT's modulatory effects on PTC microenvironments. It contributes to our understanding of autoimmunity-carcinogenesis dynamics and charts a course for discovering new therapeutic targets in PTC, advancing cancer genomics and immunotherapy research.
Collapse
Affiliation(s)
- Hongzhe Ma
- Department of Pharmacogenomics, College of Bioinformatics and Science Technology, Harbin Medical University, Harbin, China
| | - Guoqi Li
- Department of Pharmacogenomics, College of Bioinformatics and Science Technology, Harbin Medical University, Harbin, China
| | - Diwei Huo
- Department of Urology Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yangguang Su
- Department of Pharmacogenomics, College of Bioinformatics and Science Technology, Harbin Medical University, Harbin, China
| | - Qing Jin
- Department of Pharmacogenomics, College of Bioinformatics and Science Technology, Harbin Medical University, Harbin, China
| | - Yangxu Lu
- Department of Pharmacogenomics, College of Bioinformatics and Science Technology, Harbin Medical University, Harbin, China
| | - Yanyan Sun
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Denan Zhang
- Department of Pharmacogenomics, College of Bioinformatics and Science Technology, Harbin Medical University, Harbin, China
| | - Xiujie Chen
- Department of Pharmacogenomics, College of Bioinformatics and Science Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Hou L, Zhang S, Yu W, Yang X, Shen M, Hao X, Ren X, Sun Q. Single-cell transcriptomics reveals tumor-infiltrating B cell function after neoadjuvant pembrolizumab and chemotherapy in non-small cell lung cancer. J Leukoc Biol 2024; 116:555-564. [PMID: 37931147 DOI: 10.1093/jleuko/qiad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most pervasive lung cancer subtype. Recent studies have shown that immune checkpoint inhibitors achieved favorable clinical benefits in resectable NSCLC; however, the associated mechanism remains unclear. The role of T cells in antitumor immunity has received considerable attention, while the antitumor effects of tumor-infiltrating B cells (TIBs) in NSCLC remain poorly understood. Here, we conducted a single-cell RNA sequencing analysis of immune cells isolated from 12 patients with stage IIIA NSCLC to investigate B cell subtypes and their functions following neoadjuvant chemoimmunotherapy. We confirmed the simultaneous existence of the 4 B cell subtypes. Among them, memory B cells were found to be associated with a positive therapeutic effect to neoadjuvant chemoimmunotherapy. Furthermore, we found that G protein-coupled receptor 183 was most prevalent in memory B cells and associated with a positive therapeutic response. Multiplex immunofluorescence and flow cytometry experiments in an additional cohort of 22 treatment-naïve and 30 stage IIIA/IIIB NSCLC patients treated with neoadjuvant chemoimmunotherapy verified these findings. Overall, our analysis revealed the functions of TIBs and their potential effect on clinical treatment in NSCLC.
Collapse
Affiliation(s)
- Lingjie Hou
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
| | - Siyuan Zhang
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
| | - Wenwen Yu
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
| | - Xuena Yang
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
| | - Meng Shen
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
| | - Xishan Hao
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Haihe Laboratory of Cell Ecosystem, No. 10 Yuexin Road, Binhai District, Tianjin 300450, China
| | - Xiubao Ren
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Haihe Laboratory of Cell Ecosystem, No. 10 Yuexin Road, Binhai District, Tianjin 300450, China
| | - Qian Sun
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, No. 45 Binshui Road, Hexi District, Tianjin 300060, China
- Haihe Laboratory of Cell Ecosystem, No. 10 Yuexin Road, Binhai District, Tianjin 300450, China
| |
Collapse
|
7
|
Chen R, Gao W, Liang L, Yu H, Song W. Stem cell index-based RiskScore model for predicting prognosis in thyroid cancer and experimental verification. Heliyon 2024; 10:e31970. [PMID: 38868069 PMCID: PMC11167363 DOI: 10.1016/j.heliyon.2024.e31970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024] Open
Abstract
Objective An mRNA expression-based stemness index (mRNAsi) has been developed to characterize cancer stemness. However, the predictive value of mRNAsi-based signature in therapeutic resistance and immunotherapy in thyroid cancer (THCA) remains unclarified. This study evaluated and validated the role of mRNAsi in drug sensitivity, its relationship between mRNAsi and THCA clinical features and immunity based on bioinformatics. Methods Based on transcriptome data of THCA patients from the Tumor Genome Atlas Project (TCGA) database, and expression data of multifunctional stem cell samples from the Progenitor Cell Biology Consortium (PCBC) databases, mRNAsi was calculated by the " one class logistic regression (OCLR)" method, Molecular subtypes of TCGA-THCA samples were identified with mRNAsi-related genes using ConsensusClusterPlus method. The gene mutation, clinical characteristics, immune characteristics, TIDE and drug sensitivity were compared among molecular subtypes. A prognostic model was designed with Lasso cox method. Modulation of malignant phenotype of THCA cell lines by model characterization genes is validated by CCK-8, flow cytometry. DNA methylation disorder in promoter region was analyzed between risk groups. The model was validated for survival in the internal Test dataset, while TCGA pan-cancer and immunotherapy datasets were further employed to validate the performance of this model. Results We obtained a total of 78 stem cell samples, each containing the expression profile of 8087 mRNA genes. Based on mRNAsi, THCA was divided into 3 subtypes. Subtype C2 had the poorest prognosis and highest immune score, while subtype C3 had the best prognosis, lowest mRANsi and highest TIDE score. Patients in subtype C2 showed higher sensitivity to Cisplatin, Erlotinib, Paclitaxel, and Lapatinib. The prognostic signature was generated using 5 mRNAsi-related genes, which could predict prognosis for THCA. qRT-PCR results showed that the expression of 5 genes were various in Hth7 and KTC-1 cells, and inhibition CELSR3 expression increased percentage of apoptosis in Hth7 and KTC-1 cells. mRNAsi related DNA methylation sites were mainly enriched in tumor related pathways. Good performance of this model was validated in Test dataset, pan-cancer and immunotherapy datasets. Conclusion This study identified three subtypes for classification and developed a prognostic model with mRNAsi-related genes, which provided great potential for prognosis and immunotherapy prediction.
Collapse
Affiliation(s)
- Ruoran Chen
- Department of Endocrinology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Wei Gao
- Department of Endocrinology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Linlang Liang
- Department of Endocrinology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Hao Yu
- Department of Endocrinology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Wei Song
- Department of Endocrinology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| |
Collapse
|
8
|
Luo S, Lai F, Liang R, Li B, He Y, Chen W, Zhang J, Li X, Xu T, Hou Y, Liu Y, Long J, Yang Z, Chen X. Clinical prediction models for cervical lymph node metastasis of papillary thyroid carcinoma. Endocrine 2024; 84:646-655. [PMID: 38175390 DOI: 10.1007/s12020-023-03632-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE Accurate preoperative diagnosis of lymph node metastasis (LNM) in papillary thyroid carcinoma (PTC) remains an unsolved problem. This study aimed to construct a nomogram and scoring system for predicting LNM based on the clinical characteristics of patients with PTC. METHODS 1400 patients with PTC who underwent thyroidectomy and lymph node dissection at the First Affiliated Hospital of Sun Yat-sen University were retrospectively enrolled and randomly divided into training and internal testing sets. Furthermore, 692 patients with PTC from three other medical centers were collected as external testing sets. Least absolute shrinkage and selection operator (LASSO) was used to screen the predictors, and a nomogram was constructed. In addition, a scoring system was constructed using 10-fold cross-validation. The performances of the two models were verified among datasets and compared with preoperative ultrasound (US). RESULTS Six independent predictors were included in the multivariate logistic model: age, sex, US diagnosis of LNM, tumor diameter, location, and thyroid peroxidase antibody level. The areas under the receiver operating characteristic curve (AUROC) (95% confidence interval) of this nomogram in the training, internal testing, and three external testing sets were 0.816 (0.791-0.840), 0.782 (0.727-0.837), 0.759 (0.699-0.819), 0.749 (0.667-0.831), and 0.777 (0.726-0.828), respectively. The AUROC of the scoring system were 0.810 (0.785-0.835), 0.772 (0.718-0.826), 0.736 (0.675-0.798), 0.717 (0.635-0.799) and 0.756 (0.704-0.808), respectively. The prediction performances were both significantly superior to those of preoperative US (P < 0.001). CONCLUSION The nomogram and scoring system performed well in different datasets and significantly improved the preoperative prediction of LNM than US alone.
Collapse
Affiliation(s)
- Shuli Luo
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fenghua Lai
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruiming Liang
- Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bin Li
- Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yufei He
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenke Chen
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiayuan Zhang
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuyang Li
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tianyi Xu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yingtong Hou
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yihao Liu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianyan Long
- Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Zheng Yang
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| | - Xinwen Chen
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
9
|
Yan K, Liu Q, Huang R, Jiang Y, Bian Z, Li S, Li L, Shen F, Tsuneyama K, Zhang Q, Lian Z, Guan H, Xu B. Spatial transcriptomics reveals prognosis-associated cellular heterogeneity in the papillary thyroid carcinoma microenvironment. Clin Transl Med 2024; 14:e1594. [PMID: 38426403 PMCID: PMC10905537 DOI: 10.1002/ctm2.1594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is the most common malignant endocrine tumour, and its incidence and prevalence are increasing considerably. Cellular heterogeneity in the tumour microenvironment is important for PTC prognosis. Spatial transcriptomics is a powerful technique for cellular heterogeneity study. METHODS In conjunction with a clinical pathologist identification method, spatial transcriptomics was employed to characterise the spatial location and RNA profiles of PTC-associated cells within the tissue sections. The spatial RNA-clinical signature genes for each cell type were extracted and applied to outlining the distribution regions of specific cells on the entire section. The cellular heterogeneity of each cell type was further revealed by ContourPlot analysis, monocle analysis, trajectory analysis, ligand-receptor analysis and Gene Ontology enrichment analysis. RESULTS The spatial distribution region of tumour cells, typical and atypical follicular cells (FCs and AFCs) and immune cells were accurately and comprehensively identified in all five PTC tissue sections. AFCs were identified as a transitional state between FCs and tumour cells, exhibiting a higher resemblance to the latter. Three tumour foci were shared among all patients out of the 13 observed. Notably, tumour foci No. 2 displayed elevated expression levels of genes associated with lower relapse-free survival in PTC patients. We discovered key ligand-receptor interactions, including LAMB3-ITGA2, FN1-ITGA3 and FN1-SDC4, involved in the transition of PTC cells from FCs to AFCs and eventually to tumour cells. High expression of these patterns correlated with reduced relapse-free survival. In the tumour immune microenvironment, reduced interaction between myeloid-derived TGFB1 and TGFBR1 in tumour focus No. 2 contributed to tumourigenesis and increased heterogeneity. The spatial RNA-clinical analysis method developed here revealed prognosis-associated cellular heterogeneity in the PTC microenvironment. CONCLUSIONS The occurrence of tumour foci No. 2 and three enhanced ligand-receptor interactions in the AFC area/tumour foci reduced the relapse-free survival of PTC patients, potentially leading to improved prognostic strategies and targeted therapies for PTC patients.
Collapse
Affiliation(s)
- Kai Yan
- Guangdong Cardiovascular InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Qing‐Zhi Liu
- Chronic Disease LaboratoryInstitutes for Life SciencesSouth China University of TechnologyGuangzhouChina
| | - Rong‐Rong Huang
- Guangdong Cardiovascular InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Yi‐Hua Jiang
- Guangdong Cardiovascular InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and ApplicationGuangzhouChina
| | - Zhen‐Hua Bian
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhou International CampusGuangzhouChina
| | - Si‐Jin Li
- Department of Thyroid SurgeryGuangzhou First People's HospitalSouth China University of TechnologyGuangzhouChina
| | - Liang Li
- Medical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Fei Shen
- Department of Thyroid SurgeryGuangzhou First People's HospitalSouth China University of TechnologyGuangzhouChina
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory MedicineInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Qing‐Ling Zhang
- Department of PathologyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Zhe‐Xiong Lian
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Haixia Guan
- Department of EndocrinologyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Bo Xu
- Department of Thyroid SurgeryGuangzhou First People's HospitalSouth China University of TechnologyGuangzhouChina
| |
Collapse
|
10
|
Hurst ZA, Liyanarachchi S, Brock P, He H, Nabhan F, Veloski C, Toland AE, Ringel MD, Jhiang SM. Presumed Pathogenic Germ Line and Somatic Variants in African American Thyroid Cancer. Thyroid 2024; 34:378-387. [PMID: 38062767 PMCID: PMC10951570 DOI: 10.1089/thy.2023.0487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background: African American (AA) thyroid cancer patients have worse prognoses than European Americans (EA), which has been attributed to both health care disparities and possible genetic differences. We investigated the impact of both germ line and somatic variants on clinical outcome in a cohort of AA nonmedullary thyroid cancer (NMTC) patients who had received therapeutic intervention from cancer centers. Methods: Whole-exome sequencing was performed on DNA from available blood/normal tissues (N = 37) and paired tumor samples (N = 32) collected from 37 and 29 AA NMTC patients, respectively. Variants with Combined Annotation Depletion Dependent (CADD) score of ≥20 and VarSome Clinical classification of likely pathogenic or pathogenic were classified as presumed pathogenic germ line or somatic variants (PPGVs/PPSVs). PPGVs/PPSVs in cancer-related genes and PPGVs in cardiovascular risk genes were further investigated, and PPGVs/PPSVs associated with African (AFR) ancestry were identified. Results: Among 17 PPGVs identified in 16 cancer predisposition or known cancer-related genes, only WRN was previously known to associate with NMTC predisposition. Among PPSVs, BRAFV600E was most the prevalent and detected in 12 of the 29 (41%) tumors. Examining PPGVs/PPSVs among three patients who died from NMTC, one patient who died from papillary thyroid carcinoma/anaplastic thyroid carcinoma (PTC/ATC) led us to speculate that the PPGV ERCC4R799W may have increased the risk of PPSV TP53R273H acquisition. Among PPGVs identified in 18 cardiovascular risk genes, PPGVs in SC5NA, GYG1, CBS, CFTR, and SI are known to have causal and pathogenic implications in cardiovascular disease. Conclusion: In this cohort, most AA-NMTC patients exhibit favorable outcomes after therapeutic intervention given at cancer centers, suggesting that health care disparity is the major contributor for worse prognoses among AA-NMTC patients. Nevertheless, the clinical impact of PPGVs that might facilitate the acquisition of TP53 tumor mutations, and/or PPGVs that predispose individuals to adverse cardiovascular events, which could be exacerbated by therapy-induced cardiotoxicity, needs to be further explored. Integrated analysis of PPGV/PPSV profiles among NMTC patients with different stages of disease may help to identify NMTC patients who require close monitoring or proactive intervention.
Collapse
Affiliation(s)
- Zachary A. Hurst
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Sandya Liyanarachchi
- Department of Molecular Medicine and Therapeutics, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Pamela Brock
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Huiling He
- Department of Molecular Medicine and Therapeutics, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Fadi Nabhan
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Colleen Veloski
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Amanda E. Toland
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Matthew D. Ringel
- Department of Molecular Medicine and Therapeutics, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Sissy M. Jhiang
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
11
|
Chen H, Zhu L, Zhuang Y, Ye X, Chen F, Zeng J. Prediction Model of Cervical Lymph Node Metastasis in Papillary Thyroid Carcinoma. Cancer Control 2024; 31:10732748241295347. [PMID: 39425895 PMCID: PMC11497514 DOI: 10.1177/10732748241295347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/23/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND The objective of this study is to develop a predictive model for the assessment of cervical lymph node metastasis risk in papillary thyroid carcinoma (PTC). METHODS A retrospective study was conducted on 212 patients with PTC who underwent initial surgical treatment from August 2022 to April 2023 in 2 hospitals. Data were randomly split into 7:3 training-validation sets. Logistic regression was used for feature selection and predictive model creation. Model performance was assessed using receiver operating characteristic (ROC) and calibration curves. Clinical utility was determined using decision curves. RESULTS Among the 212 patients with PTC, 104 cases (49.1%) exhibited cervical lymph node metastasis, while 108 cases (50.9%) did not. Multivariate logistic regression analysis revealed that age (OR = 0.95), FT3 (OR = 0.41), tumor maximum diameter ≥0.9 cm (OR = 1.85), intratumoral microcalcifications (OR = 1.84), and suspicious lymph node on ultrasound (OR = 2.96) were independent risk factors for lymph node metastasis in PTC patients (P < 0.05). The constructed model for predicting the risk of cervical lymph node metastasis demonstrated a training set ROC curve area under the curve (AUC) of 0.742 (95% CI: 0.664 - 0.821), with a cut-off value of 0.615, specificity of 87.8%, and sensitivity of 51.4%. The validation set exhibited an AUC of 0.648 (95% CI: 0.501 - 0.788), with a cut-off value of 0.644, specificity of 91.2%, and sensitivity of 43.3%. Including the BRAF V600 E mutation did not improve the model's diagnostic performance significantly. Decision curve analysis indicated clinical feasibility of the model. CONCLUSION The predictive model developed in this study effectively predicts lymph node metastasis risk in PTC patients by incorporating ultrasound features, demographic characteristics, and serum parameters. However, including the BRAF V600 E mutation does not significantly improve the model's diagnostic performance.
Collapse
Affiliation(s)
- Huiting Chen
- Department of Ultrasound Imaging, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Ultrasound Imaging, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Li Zhu
- Department of Ultrasound Imaging, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Ultrasound Imaging, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yong Zhuang
- Department of Ultrasound Imaging, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Ultrasound Imaging, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaojian Ye
- Department of Ultrasound Imaging, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Ultrasound Imaging, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Fang Chen
- Department of Ultrasound Imaging, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Ultrasound Imaging, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jinshu Zeng
- Department of Ultrasound Imaging, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Ultrasound Imaging, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
12
|
Chen W, Yu X, Li H, Yuan S, Fu Y, Hu H, Liu F, Zhang Y, Zhong S. Single-cell RNA-seq reveals MIF-(CD74 + CXCR4) dependent inhibition of macrophages in metastatic papillary thyroid carcinoma. Oral Oncol 2024; 148:106654. [PMID: 38061122 DOI: 10.1016/j.oraloncology.2023.106654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND The mechanism promoting papillary thyroid carcinoma (PTC) metastasis remains unclear. We aimed to investigate the potential metastatic mechanisms at a single-cell resolution. METHODS We performed single-cell RNA-seq (scRNA-seq) profiling of thyroid tumour (TT), adjacent normal thyroid (NT) and lymph node metastasized tumour (LN) from a young female with PTC. Validation of our results was conducted in 31 tumours with metastasis and 30 without metastasis. RESULTS ScRNA-seq analysis generated data on 38,215 genes and 0.14 billion transcripts from 28,839 cells, classified into 18 clusters, each annotated to represent 10 cell types. PTC cells were found to originate from epithelial cells. Epithelial cells and macrophages emerged as the strongest signal emitters and receivers, respectively. After reclustering epithelial cells and macrophages, our analysis, incorporating gene set variation analysis (GSVA), SCENIC analysis, and pseudotime trajectory analysis, indicated that subcluster 0 of epithelial cells (EP_0) showed a more malignant phenotype, and subclusters 3 and 4 of macrophages (M_3 and M_4) demonstrated heightened activity. Further analysis suggested that EP_0 may suppress the activity of M_3 and M_4 via MIF - (CD74 + CXCR4) in the MIF pathway. After analysing the expression of the 4 genes in the MIF pathway in both the TCGA cohort and our cohort (n = 61), CD74 was identified as significantly overexpressed in PTC tumours particularly those with lymph node metastasis. CONCLUSION Our study revealed that PTC may facilitate lymph node metastasis by inhibiting macrophages via MIF signalling. It is suggested that malignant PTC cells may suppress the immune activity of macrophages by consistently releasing signals to them via MIF-(CD74 + CXCR4).
Collapse
Affiliation(s)
- Wei Chen
- Department of Head & Neck Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| | - Xinnian Yu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| | - Huixin Li
- Department of Gynaecology, The Affiliated Obstetrics and Gynaecology Hospital of Nanjing Medical University & Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.
| | - Shenglong Yuan
- Department of Gynaecology, The Affiliated Obstetrics and Gynaecology Hospital of Nanjing Medical University & Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.
| | - Yuqi Fu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| | - Huanhuan Hu
- Department of Gynaecology, The Affiliated Obstetrics and Gynaecology Hospital of Nanjing Medical University & Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.
| | - Fangzhou Liu
- Department of Head & Neck Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| | - Yuan Zhang
- Department of Head & Neck Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| | - Shanliang Zhong
- Center of Clinical Laboratory Science, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| |
Collapse
|
13
|
Tan JK, Awuah WA, Roy S, Ferreira T, Ahluwalia A, Guggilapu S, Javed M, Asyura MMAZ, Adebusoye FT, Ramamoorthy K, Paoletti E, Abdul-Rahman T, Prykhodko O, Ovechkin D. Exploring the advances of single-cell RNA sequencing in thyroid cancer: a narrative review. Med Oncol 2023; 41:27. [PMID: 38129369 PMCID: PMC10739406 DOI: 10.1007/s12032-023-02260-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Thyroid cancer, a prevalent form of endocrine malignancy, has witnessed a substantial increase in occurrence in recent decades. To gain a comprehensive understanding of thyroid cancer at the single-cell level, this narrative review evaluates the applications of single-cell RNA sequencing (scRNA-seq) in thyroid cancer research. ScRNA-seq has revolutionised the identification and characterisation of distinct cell subpopulations, cell-to-cell communications, and receptor interactions, revealing unprecedented heterogeneity and shedding light on novel biomarkers for therapeutic discovery. These findings aid in the construction of predictive models on disease prognosis and therapeutic efficacy. Altogether, scRNA-seq has deepened our understanding of the tumour microenvironment immunologic insights, informing future studies in the development of effective personalised treatment for patients. Challenges and limitations of scRNA-seq, such as technical biases, financial barriers, and ethical concerns, are discussed. Advancements in computational methods, the advent of artificial intelligence (AI), machine learning (ML), and deep learning (DL), and the importance of single-cell data sharing and collaborative efforts are highlighted. Future directions of scRNA-seq in thyroid cancer research include investigating intra-tumoral heterogeneity, integrating with other omics technologies, exploring the non-coding RNA landscape, and studying rare subtypes. Overall, scRNA-seq has transformed thyroid cancer research and holds immense potential for advancing personalised therapies and improving patient outcomes. Efforts to make this technology more accessible and cost-effective will be crucial to ensuring its widespread utilisation in healthcare.
Collapse
Affiliation(s)
| | | | - Sakshi Roy
- School of Medicine, Queen's University Belfast, Belfast, UK
| | - Tomas Ferreira
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Saibaba Guggilapu
- Faculty of Medicine, Bangalore Medical College and Research Institute, Bengaluru, India
| | - Mahnoor Javed
- School of Medicine, The University of Nottingham, Nottingham, NG7 2UH, UK
| | | | | | | | - Emma Paoletti
- Faculty of Medicine, University of Manchester, Manchester, M13 9WJ, UK
| | | | - Olha Prykhodko
- Faculty of Medicine, Sumy State University, Sumy, Ukraine
| | - Denys Ovechkin
- Faculty of Medicine, Sumy State University, Sumy, Ukraine
| |
Collapse
|
14
|
Yan RG, He Z, Wang FC, Li S, Shang QB, Yang QE. Transcription factor E4F1 dictates spermatogonial stem cell fate decisions by regulating mitochondrial functions and cell cycle progression. Cell Biosci 2023; 13:177. [PMID: 37749649 PMCID: PMC10521505 DOI: 10.1186/s13578-023-01134-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Spermatogonial stem cells (SSCs) provide a foundation for robust and continual spermatogenesis in mammals. SSCs self-renew to maintain a functional stem cell pool and differentiate to supply committed progenitors. Metabolism acts as a crucial determinant of stem cell fates; however, factors linking metabolic programs to SSC development and maintenance are poorly understood. RESULTS We analyzed the chromatin accessibility of undifferentiated spermatogonia at the single-cell level and identified 37 positive TF regulators that may have potential roles in dictating SSC fates. The transcription factor E4F1 is expressed in spermatogonia, and its conditional deletion in mouse germ cells results in progressive loss of the entire undifferentiated spermatogonial pool. Single-cell RNA-seq analysis of control and E4f1-deficient spermatogonia revealed that E4F1 acts as a key regulator of mitochondrial function. E4F1 binds to promotors of genes that encode components of the mitochondrial respiratory chain, including Ndufs5, Cox7a2, Cox6c, and Dnajc19. Loss of E4f1 function caused abnormal mitochondrial morphology and defects in fatty acid metabolism; as a result, undifferentiated spermatogonia were gradually lost due to cell cycle arrest and elevated apoptosis. Deletion of p53 in E4f1-deficient germ cells only temporarily prevented spermatogonial loss but did not rescue the defects in SSC maintenance. CONCLUSIONS Emerging evidence indicates that metabolic signals dictate stem cell fate decisions. In this study, we identified a list of transcription regulators that have potential roles in the fate transitions of undifferentiated spermatogonia in mice. Functional experiments demonstrated that the E4F1-mediated transcription program is a crucial regulator of metabolism and SSC fate decisions in mammals.
Collapse
Affiliation(s)
- Rong-Ge Yan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen He
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei-Chen Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qin-Bang Shang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, China
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, China.
| |
Collapse
|
15
|
Álvarez-Sierra D, Rodríguez-Grande J, Gómez-Brey A, Bello I, Caubet E, González Ó, Zafón C, Iglesias C, Moreno P, Ruiz N, Marín-Sánchez A, Colobran R, Pujol-Borrell R. Single cell transcriptomic analysis of Graves' disease thyroid glands reveals the broad immunoregulatory potential of thyroid follicular and stromal cells and implies a major re-interpretation of the role of aberrant HLA class II expression in autoimmunity. J Autoimmun 2023; 139:103072. [PMID: 37336012 DOI: 10.1016/j.jaut.2023.103072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
The study of the immune response in thyroid autoimmunity has been mostly focused on the autoantibodies and lymphocytes, but there are indications that intrinsic features of thyroid tissue cells may play a role in disrupting tolerance that needs further investigation. The overexpression of HLA and adhesion molecules by thyroid follicular cells (TFC) and our recent demonstration that PD-L1 is also moderately expressed by TFCs in autoimmune thyroid indicates that TFCs they may activate but also inhibit the autoimmune response. Intriguingly, we have recently found that in vitro cultured TFCs are able to suppress the proliferation of autologous lymphocyte T in a contact-dependent manner which is independent of the PD-1/PD-L1 signaling pathway. To get a more comprehensive picture of TFC activating and inhibitory molecules/pathways driving the autoimmune response in the thyroid glands, preparations of TFCs and stromal cells from five Graves' disease (GD) and four control thyroid glands were compared by scRNA-seq. The results confirmed the previously described interferon type I and type II signatures in GD TFCs and showed unequivocally that they express the full array of genes that intervene in the processing and presentation of endogenous and exogeneous antigens. GD TFCs lack however expression of costimulatory molecules CD80 and CD86 required for priming T cells. A moderate overexpression of CD40 by TFCs was confirmed. GD Fibroblasts showed widespread upregulation of cytokine genes. The results from this first single transcriptomic profiling of TFC and thyroid stromal cells provides a more granular view of the events occurring in GD. The new data point at an important contribution of stromal cells and prompt a major re-interpretation of the role of MHC over-expression by TFC, from deleterious to protective. Most importantly this re-interpretation could also apply to other tissues, like pancreatic beta cells, where MHC over-expression has been detected in diabetic pancreas.
Collapse
Affiliation(s)
- Daniel Álvarez-Sierra
- Translational Immunology Research Group, Vall D'Hebron Institute of Research (VHIR), Campus Vall D'Hebron, Barcelona, Passeig Vall D'Hebron 119-129, 08035, Spain; Immunology Division, Hospital Universitari Vall D'Hebron (HUVH), Barcelona, Passeig Vall D'Hebron 119-129, 08035, Spain.
| | - Jorge Rodríguez-Grande
- Microbiology Division, Hospital Universitario Marqués de Valdecilla - IDIVAL, Passeig Vall D'Hebron 119-129, 08035, Spain
| | - Aroa Gómez-Brey
- Transplant Coordination Department, Hospital Universitari Vall D'Hebron (HUVH), Campus Vall D'Hebron. Barcelona, Passeig Vall D'Hebron 119-129, 08035, Spain
| | - Irene Bello
- Thoracic Surgery and Lung Transplantation Department, Hospital Universitari Vall D'Hebron (HUVH), Barcelona, Campus Vall D'Hebron, Passeig Vall D'Hebron 119-129, 08035, Spain
| | - Enric Caubet
- Department of General Surgery, Endocrine Surgery Division, Hospital Universitari Vall D'Hebron (HUVH), Campus Vall D'Hebron, Barcelona, Passeig Vall D'Hebron 119-129, 08035, Spain
| | - Óscar González
- Department of General Surgery, Endocrine Surgery Division, Hospital Universitari Vall D'Hebron (HUVH), Campus Vall D'Hebron, Barcelona, Passeig Vall D'Hebron 119-129, 08035, Spain
| | - Carles Zafón
- Department of Endocrinology and Nutrition, Hospital Universitari Vall D'Hebron (HUVH), Campus Vall D'Hebron, Barcelona, Passeig Vall D'Hebron 119-129, 08035, Spain
| | - Carmela Iglesias
- Department of Histopathology, Hospital Universitari Vall D'Hebron (HUVH), Campus Vall D'Hebron Barcelona, Passeig Vall D'Hebron 119-129, 08035, Spain
| | - Pablo Moreno
- Department of General Surgery, Endocrine Surgery Division, Hospital Universitari de Bellvitge (HUB), Barcelona, Passeig Vall D'Hebron 119-129, 08035, Spain
| | - Núria Ruiz
- Department of Histopathology, Hospital Universitari de Bellvitge (HUB), Barcelona, Passeig Vall D'Hebron 119-129, 08035, Spain
| | - Ana Marín-Sánchez
- Translational Immunology Research Group, Vall D'Hebron Institute of Research (VHIR), Campus Vall D'Hebron, Barcelona, Passeig Vall D'Hebron 119-129, 08035, Spain; Immunology Division, Hospital Universitari Vall D'Hebron (HUVH), Barcelona, Passeig Vall D'Hebron 119-129, 08035, Spain
| | - Roger Colobran
- Translational Immunology Research Group, Vall D'Hebron Institute of Research (VHIR), Campus Vall D'Hebron, Barcelona, Passeig Vall D'Hebron 119-129, 08035, Spain; Immunology Division, Hospital Universitari Vall D'Hebron (HUVH), Barcelona, Passeig Vall D'Hebron 119-129, 08035, Spain
| | - Ricardo Pujol-Borrell
- Translational Immunology Research Group, Vall D'Hebron Institute of Research (VHIR), Campus Vall D'Hebron, Barcelona, Passeig Vall D'Hebron 119-129, 08035, Spain; Immunology Division, Hospital Universitari Vall D'Hebron (HUVH), Barcelona, Passeig Vall D'Hebron 119-129, 08035, Spain; Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Campus Vall D'Hebron, Barcelona, Hospital Universitari Vall D'Hebron and the Other Institutions in the Campus Vall D'Hebron Is, Passeig Vall D'Hebron 119-129, 08035, Spain; Vall d'Hebron Institute of Oncology (VHIO), Centre Cellex, C/ Natzaret, 115-117, 08035 Barcelona, Spain
| |
Collapse
|
16
|
Wu J, Li Y, Huang Y, Liu L, Zhang H, Nagy C, Tan X, Cheng K, Liu Y, Pu J, Wang H, Wu Q, Perry SW, Turecki G, Wong ML, Licinio J, Zheng P, Xie P. Integrating spatial and single-nucleus transcriptomic data elucidates microglial-specific responses in female cynomolgus macaques with depressive-like behaviors. Nat Neurosci 2023; 26:1352-1364. [PMID: 37443281 DOI: 10.1038/s41593-023-01379-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/12/2023] [Indexed: 07/15/2023]
Abstract
Major depressive disorder represents a serious public health challenge worldwide; however, the underlying cellular and molecular mechanisms are mostly unknown. Here, we profile the dorsolateral prefrontal cortex of female cynomolgus macaques with social stress-associated depressive-like behaviors using single-nucleus RNA-sequencing and spatial transcriptomics. We find gene expression changes associated with depressive-like behaviors mostly in microglia, and we report a pro-inflammatory microglia subpopulation enriched in the depressive-like condition. Single-nucleus RNA-sequencing data result in the identification of six enriched gene modules associated with depressive-like behaviors, and these modules are further resolved by spatial transcriptomics. Gene modules associated with huddle and sit alone behaviors are expressed in neurons and oligodendrocytes of the superficial cortical layer, while gene modules associated with locomotion and amicable behaviors are enriched in microglia and astrocytes in mid-to-deep cortical layers. The depressive-like behavior associated microglia subpopulation is enriched in deep cortical layers. In summary, our findings show cell-type and cortical layer-specific gene expression changes and identify one microglia subpopulation associated with depressive-like behaviors in female non-human primates.
Collapse
Affiliation(s)
- Jing Wu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| | - Yifan Li
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| | - Yu Huang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| | - Lanxiang Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Hanping Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Xunmin Tan
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| | - Ke Cheng
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| | - Qingyuan Wu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Seth W Perry
- Department of Psychiatry, College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Ma-Li Wong
- Department of Psychiatry, College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Julio Licinio
- Department of Psychiatry, College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Jinfeng Laboratory, Chongqing, China.
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Jinfeng Laboratory, Chongqing, China.
| |
Collapse
|
17
|
Zhang X, Peng W, Fan J, Luo R, Liu S, Du W, Luo C, Zheng J, Pan X, Ge H. Regulatory role of Chitinase 3-like 1 gene in papillary thyroid carcinoma proved by integration analyses of single-cell sequencing with cohort and experimental validations. Cancer Cell Int 2023; 23:145. [PMID: 37480002 PMCID: PMC10362555 DOI: 10.1186/s12935-023-02987-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) is one of the most common thyroid carcinomas. The gross extrathyroidal extension and extensive metastases of PTC lead to high rates of recurrence and poor clinical outcomes. However, the mechanisms underlying PTC development are poorly understood. In this study, using single-cell RNA sequencing, the transcriptome profiles of two PTC patients were addressed, including PTC1 with low malignancy and good prognosis and PTC2 with high malignancy and poor prognosis. We found that epithelial subcluster Epi02 was the most associated with the malignant development of PTC cells, with which the fold change of Chitinase 3-like 1 (CHI3L1) is on the top of the differentially expressed genes between PTC1 and PTC2 (P < 0.001). However CHI3L1 is rarely investigated in PTC as far. We then studied its role in PTC with a series of experiments. Firstly, qRT-PCR analysis of 14 PTC patients showed that the expression of CHI3L1 was positively correlated with malignancy. In addition, overexpression or silencing of CHI3L1 in TPC-1 cells, a PTC cell line, cultured in vitro showed that the proliferation, invasion, and metastasis of the cells were promoted or alleviated by CHI3L1. Further, immunohistochemistry analysis of 110 PTC cases revealed a significant relationship between CHI3L1 protein expression and PTC progression, especially the T (P < 0.001), N (P < 0.001), M stages (P = 0.007) and gross ETE (P < 0.001). Together, our results prove that CHI3L1 is a positive regulator of malignant development of PTC, and it promotes proliferation, invasion, and metastasis of PTC cells. Our study improves understanding of the molecular mechanisms underlying the progression of PTC and provides new insights for the clinical diagnosis and treatment of PTC.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Department of Head Neck and Thyroid Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450008, Zhengzhou, China
| | - Wanwan Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, 510515, Guangzhou, China
| | - Jie Fan
- Department of Head Neck and Thyroid Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450008, Zhengzhou, China
| | - Ruihua Luo
- Department of Head Neck and Thyroid Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450008, Zhengzhou, China
| | - Shanting Liu
- Department of Head Neck and Thyroid Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450008, Zhengzhou, China
| | - Wei Du
- Department of Head Neck and Thyroid Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450008, Zhengzhou, China
| | - Chaochao Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, 510515, Guangzhou, China
| | - Jiawen Zheng
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450008, Zhengzhou, China
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, 510515, Guangzhou, China.
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, 510515, Guangzhou, China.
| | - Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450008, Zhengzhou, China.
| |
Collapse
|
18
|
Zeng Q, Mousa M, Nadukkandy AS, Franssens L, Alnaqbi H, Alshamsi FY, Safar HA, Carmeliet P. Understanding tumour endothelial cell heterogeneity and function from single-cell omics. Nat Rev Cancer 2023:10.1038/s41568-023-00591-5. [PMID: 37349410 DOI: 10.1038/s41568-023-00591-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2023] [Indexed: 06/24/2023]
Abstract
Anti-angiogenic therapies (AATs) are used to treat different types of cancers. However, their success is limited owing to insufficient efficacy and resistance. Recently, single-cell omics studies of tumour endothelial cells (TECs) have provided new mechanistic insight. Here, we overview the heterogeneity of human TECs of all tumour types studied to date, at the single-cell level. Notably, most human tumour types contain varying numbers but only a small population of angiogenic TECs, the presumed targets of AATs, possibly contributing to the limited efficacy of and resistance to AATs. In general, TECs are heterogeneous within and across all tumour types, but comparing TEC phenotypes across tumours is currently challenging, owing to the lack of a uniform nomenclature for endothelial cells and consistent single-cell analysis protocols, urgently raising the need for a more consistent approach. Nonetheless, across most tumour types, universal TEC markers (ACKR1, PLVAP and IGFBP3) can be identified. Besides angiogenesis, biological processes such as immunomodulation and extracellular matrix organization are among the most commonly predicted enriched signatures of TECs across different tumour types. Although angiogenesis and extracellular matrix targets have been considered for AAT (without the hoped success), the immunomodulatory properties of TECs have not been fully considered as a novel anticancer therapeutic approach. Therefore, we also discuss progress, limitations, solutions and novel targets for AAT development.
Collapse
Affiliation(s)
- Qun Zeng
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Center for Cancer Biology, VIB, Leuven, Belgium
| | - Mira Mousa
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Aisha Shigna Nadukkandy
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lies Franssens
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Center for Cancer Biology, VIB, Leuven, Belgium
| | - Halima Alnaqbi
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Fatima Yousif Alshamsi
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Habiba Al Safar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE.
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE.
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Center for Cancer Biology, VIB, Leuven, Belgium.
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE.
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
19
|
Costagliola S, Singh SP. Emerging technologies in thyroid biology: Pushing the frontiers of thyroid research. Mol Cell Endocrinol 2023; 566-567:111912. [PMID: 36894128 DOI: 10.1016/j.mce.2023.111912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Sabine Costagliola
- IRIBHM, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium.
| | - Sumeet Pal Singh
- IRIBHM, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium.
| |
Collapse
|
20
|
Choi Y, Li R, Quon G. siVAE: interpretable deep generative models for single-cell transcriptomes. Genome Biol 2023; 24:29. [PMID: 36803416 PMCID: PMC9940350 DOI: 10.1186/s13059-023-02850-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 01/06/2023] [Indexed: 02/22/2023] Open
Abstract
Neural networks such as variational autoencoders (VAE) perform dimensionality reduction for the visualization and analysis of genomic data, but are limited in their interpretability: it is unknown which data features are represented by each embedding dimension. We present siVAE, a VAE that is interpretable by design, thereby enhancing downstream analysis tasks. Through interpretation, siVAE also identifies gene modules and hubs without explicit gene network inference. We use siVAE to identify gene modules whose connectivity is associated with diverse phenotypes such as iPSC neuronal differentiation efficiency and dementia, showcasing the wide applicability of interpretable generative models for genomic data analysis.
Collapse
Affiliation(s)
- Yongin Choi
- Graduate Group in Biomedical Engineering, University of California, Davis, Davis, CA, USA
- Genome Center, University of California, Davis, Davis, CA, USA
| | - Ruoxin Li
- Genome Center, University of California, Davis, Davis, CA, USA
- Graduate Group in Biostatistics, University of California, Davis, Davis, CA, USA
| | - Gerald Quon
- Graduate Group in Biomedical Engineering, University of California, Davis, Davis, CA, USA.
- Genome Center, University of California, Davis, Davis, CA, USA.
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
21
|
Pani F, Caria P, Yasuda Y, Makoto M, Mariotti S, Leenhardt L, Roshanmehr S, Caturegli P, Buffet C. The Immune Landscape of Papillary Thyroid Cancer in the Context of Autoimmune Thyroiditis. Cancers (Basel) 2022; 14:cancers14174287. [PMID: 36077831 PMCID: PMC9454449 DOI: 10.3390/cancers14174287] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary The association between papillary thyroid cancer and Hashimoto’s thyroiditis went through a long-standing human debate recently elucidated by the establishment of a novel mouse model. Papillary thyroid carcinoma is an excellent model for studying the tumor immune microenvironment because it is naturally accompanied by immune cells, making it a good candidate for the treatment with immune checkpoint inhibitors. Abstract Papillary thyroid cancer (PTC) often co-occurs with Hashimoto’s thyroiditis, an association that has long been reported in clinical studies, remaining controversial. Experimental evidence has recently shown that pre-existing thyroiditis has a beneficial effect on PTC growth and progression by a distinctive expansion of effector memory CD8 T cells. Although the link between inflammation and PTC might involve different components of the immune system, a deep characterization of them which includes T cells, B cells and tertiary lymphoid structures, Mye-loid cells, Neutrophils, NK cells and dendritic cells will be desirable. The present review article considers the role of the adaptive and innate immune response surrounding PTC in the context of Hashimoto’s thyroiditis. This review will focus on the current knowledge by in vivo and in vitro studies specifically performed on animals’ models; thyroid cancer cells and human samples including (i) the dual role of tumor-infiltrating lymphocytes; (ii) the emerging role of B cells and tertiary lymphoid structures; (iii) the role of myeloid cells, dendritic cells, and natural killer cells; (iv) the current knowledge of the molecular biomarkers implicated in the complex link between thyroiditis and PTC and the potential implication of cancer immunotherapy in PTC patients in the context of thyroiditis.
Collapse
Affiliation(s)
- Fabiana Pani
- Service des Pathologies Thyroïdiennes et Tumeurs Endocrines, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, 75013 Paris, France
- Correspondence: or
| | - Paola Caria
- Department of Biomedical Sciences, Biochemistry, Biology and Genetics Unit, University of Cagliari, Cittadella Universitaria di Monserrato, SP 8, Km 0.700, Monserrato, 09042 Cagliari, Italy
| | - Yoshinori Yasuda
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Miyara Makoto
- Inserm, Centre d’Immunologie et des Maladies Infectieuses-Paris (CIMI-PARIS), AP-HP Hôpital Pitié-Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Stefano Mariotti
- Department of Medical Sciences and Public Health, Endocrinology Unit, University of Cagliari, Monserrato, 09042 Cagliari, Italy
| | - Laurence Leenhardt
- Service des Pathologies Thyroïdiennes et Tumeurs Endocrines, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, 75013 Paris, France
| | - Solmaz Roshanmehr
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Patrizio Caturegli
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Camille Buffet
- Service des Pathologies Thyroïdiennes et Tumeurs Endocrines, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, 75013 Paris, France
| |
Collapse
|
22
|
Cao ZX, Weng X, Huang JS, Long X. Receptor–ligand pair typing and prognostic risk model for papillary thyroid carcinoma based on single-cell sequencing. Front Immunol 2022; 13:902550. [PMID: 35935973 PMCID: PMC9354623 DOI: 10.3389/fimmu.2022.902550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/27/2022] [Indexed: 12/03/2022] Open
Abstract
The papillary thyroid carcinoma (PTC) microenvironment consists of various cancer and surrounding cells, and the communication between them is mainly performed through ligand–receptor (LR) interactions. Single-cell RNA sequencing (scRNA-seq) has been performed to investigate the role of intercellular communication networks in tumor progression. In addition, scRNA-seq can accurately identify the characteristics of immune cell subsets, which is of great significance for predicting the efficacy of immunotherapy. In this study, the cell–cell communication network was analyzed through LR pairs, and a new PTC molecular phenotype was developed based on LR pairs. Furthermore, a risk model was established to predict patient response to PD-1 blockade immunotherapy. The scRNA-seq dataset was obtained from GSE184362, and the bulk tumor RNA-seq dataset was obtained from The Cancer Genome Atlas. CellPhoneDB was used for cellular communication analysis. LR pair correlations were calculated and used to identify molecular subtypes, and the least absolute shrinkage and selection operator (Lasso) Cox regression was used to develop a risk model based on LR pairs. The IMvigor210 and GSE78220 cohorts were used as external validations for the LR.score to predict responses to PD-L1 blockade therapy. A total of 149 LR pairs with significant expression and prognostic correlation were included, and three PTC molecular subtypes were obtained from those with significant prognostic differences. Then, five LR pairs were selected to construct the risk scoring model, a reliable and independent prognostic factor in the training set, test set, and whole dataset. Furthermore, two external validation sets confirmed the predictive efficacy of the LR.score for response to PD-1 blockade therapy.
Collapse
Affiliation(s)
- Zhe Xu Cao
- Department of Thyroid Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xin Weng
- Hunan Sixth Engineering Company Construction Hospital, Changsha, China
| | - Jiang Sheng Huang
- Department of Thyroid Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xia Long
- Hospital Office, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xia Long,
| |
Collapse
|
23
|
Wang T, Shi J, Li L, Zhou X, Zhang H, Zhang X, Wang Y, Liu L, Sheng L. Single-Cell Transcriptome Analysis Reveals Inter-Tumor Heterogeneity in Bilateral Papillary Thyroid Carcinoma. Front Immunol 2022; 13:840811. [PMID: 35515000 PMCID: PMC9065345 DOI: 10.3389/fimmu.2022.840811] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/23/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The tumor microenvironment (TME) plays a pivotal role in cancer progression in papillary thyroid carcinoma (PTC), yet the composition and the phenotype of cells within the TME in bilateral PTC are poorly understood. METHODS We performed unbiased transcriptome-wide single-cell RNA sequencing (scRNA-seq) analysis on 29,561 cells from 3 pairs of bilateral PTC and 1 non-tumor thyroid sample. The results of the analysis were validated by a large-scale bulk transcriptomic dataset deposited in The Cancer Genome Atlas (TCGA) database. RESULTS Our integrative analysis of thyroid follicular cells revealed 42 signaling pathways enriched in malignant follicular cells, including cytokine-cytokine receptor interaction, PI3K/Akt signaling pathway, mitogen-activated protein kinase (MAPK) signaling pathway, and tumor necrosis factor (TNF) signaling pathway. A 6-gene signature (CXCL3, CXCL1, IL1A, CCL5, TNFRSF12A, and IL18) in the cytokine-cytokine receptor interaction pathway was constructed to predict the prognosis of patients with PTC, with high risk scores being associated with decreased overall survival [hazard ratio (HR) = 3.863, 95% CI = 2.233-6.682, p < 0.001]. Gene set variation analysis (GSVA) indicated that the pathways enriched in bilateral PTC were significantly different, indicating great heterogeneity in bilateral PTC, even with the same BRAF V600E mutation. Comprehensive analysis of T cells revealed that the proportion of CD8+ tissue-resident memory T cells expressing IFNG decreased in tumor samples with advanced N stage. Within the myeloid compartment, the ratio of suppressive M2-like to pro-inflammatory M1-like macrophages increased with advanced disease stage, which was confirmed in the bulk dataset using transcriptomic profiles. In addition, we also identified numerous biologically critical interactions among myeloid cells, T cells, and follicular cells, which were related to T-cell recruitment, M2-like macrophage polarization, malignant follicular cell progression, and T-cell inhibitory signaling. CONCLUSION Our integrative analyses revealed great inter-tumor heterogeneity within the TME in bilateral PTC, which will offer assistance for precise diagnosis and treatment.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Thyroid Surgery, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, China
| | - Jinyuan Shi
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
- Department of Thyroid Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Luchuan Li
- Department of Thyroid Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoming Zhou
- Department of Scientific Research, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hui Zhang
- Department of Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaofang Zhang
- Department of Pathology, Basic Medical College of Shandong University, Jinan, China
| | - Yong Wang
- Department of Thyroid Surgery, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, China
| | - Lian Liu
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Sheng
- Department of Thyroid Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
24
|
Tarabichi M, Demetter P, Craciun L, Maenhaut C, Detours V. Thyroid cancer under the scope of emerging technologies. Mol Cell Endocrinol 2022; 541:111491. [PMID: 34740746 DOI: 10.1016/j.mce.2021.111491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 01/03/2023]
Abstract
The vast majority of thyroid cancers originate from follicular cells. We outline outstanding issues at each step along the path of cancer patient care, from prevention to post-treatment follow-up and highlight how emerging technologies will help address them in the coming years. Three directions will dominate the coming technological landscape. Genomics will reveal tumoral evolutionary history and shed light on how these cancers arise from the normal epithelium and the genomics alteration driving their progression. Transcriptomics will gain cellular and spatial resolution providing a full account of intra-tumor heterogeneity and opening a window on the microenvironment supporting thyroid tumor growth. Artificial intelligence will set morphological analysis on an objective quantitative ground laying the foundations of a systematic thyroid tumor classification system. It will also integrate into unified representations the molecular and morphological perspectives on thyroid cancer.
Collapse
Affiliation(s)
- Maxime Tarabichi
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium.
| | - Pieter Demetter
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Ligia Craciun
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Carine Maenhaut
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium.
| | - Vincent Detours
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
25
|
Pan J, Ye F, Yu C, Zhu Q, Li J, Zhang Y, Tian H, Yao Y, Zhu M, Shen Y, Zhu F, Wang Y, Zhou X, Guo G, Wu Y. Papillary Thyroid Carcinoma Landscape and Its Immunological Link With Hashimoto Thyroiditis at Single-Cell Resolution. Front Cell Dev Biol 2021; 9:758339. [PMID: 34805166 PMCID: PMC8602800 DOI: 10.3389/fcell.2021.758339] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment heterogeneity of papillary thyroid cancer (PTC) is poorly characterized. The relationship between PTC and Hashimoto thyroiditis (HT) is also in doubt. Here, we used single-cell RNA sequencing to map the transcriptome landscape of PTC from eight PTC patients, of which three were concurrent with HT. Predicted copy number variation in epithelial cells and mesenchymal cells revealed the distinct molecular signatures of carcinoma cells. Carcinoma cells demonstrated intertumoral heterogeneity based on BRAF V600E mutation or lymph node metastasis, and some altered genes were identified to be correlated with disease-free survival in The Cancer Genome Atlas datasets. In addition, transcription factor regulons of follicular epithelial cells unveil the different transcription activation state in PTC patients with or without concurrent HT. The immune cells in tumors exhibited distinct transcriptional states, and the presence of tumor-infiltrating B lymphocytes was predominantly linked to concurrent HT origin. Trajectory analysis of B cells and plasma cells suggested their migration potential from HT adjacent tissues to tumor tissues. Furthermore, we revealed diverse ligand–receptor pairs between non-immune cells, infiltrating myeloid cells, and lymphocytes. Our results provided a single-cell landscape of human PTC. These data would deepen the understanding of PTC, as well as the immunological link between PTC and HT.
Collapse
Affiliation(s)
- Jun Pan
- Department of Thyroid Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fang Ye
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengxuan Yu
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qinsheng Zhu
- Department of Thyroid Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiaqi Li
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaohui Zhang
- Department of Thyroid Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hedi Tian
- Department of Thyroid Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunjin Yao
- Department of Thyroid Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Minjie Zhu
- Surgical Department, Hangzhou Third Hospital, Hangzhou, China
| | - Yibin Shen
- Department of Thyroid Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Zhu
- Department of Thyroid Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yingying Wang
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinhui Zhou
- Department of Gynecology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guoji Guo
- Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Tissue Engineering and Regenerative Medicine, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Stem Cell Institute, Zhejiang University, Hangzhou, China
| | - Yijun Wu
- Department of Thyroid Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Pu W, Shi X, Yu P, Zhang M, Liu Z, Tan L, Han P, Wang Y, Ji D, Gan H, Wei W, Lu Z, Qu N, Hu J, Hu X, Luo Z, Li H, Ji Q, Wang J, Zhang X, Wang YL. Single-cell transcriptomic analysis of the tumor ecosystems underlying initiation and progression of papillary thyroid carcinoma. Nat Commun 2021; 12:6058. [PMID: 34663816 PMCID: PMC8523550 DOI: 10.1038/s41467-021-26343-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/30/2021] [Indexed: 01/08/2023] Open
Abstract
The tumor ecosystem of papillary thyroid carcinoma (PTC) is poorly characterized. Using single-cell RNA sequencing, we profile transcriptomes of 158,577 cells from 11 patients’ paratumors, localized/advanced tumors, initially-treated/recurrent lymph nodes and radioactive iodine (RAI)-refractory distant metastases, covering comprehensive clinical courses of PTC. Our data identifies a “cancer-primed” premalignant thyrocyte population with normal morphology but altered transcriptomes. Along the developmental trajectory, we also discover three phenotypes of malignant thyrocytes (follicular-like, partial-epithelial-mesenchymal-transition-like, dedifferentiation-like), whose composition shapes bulk molecular subtypes, tumor characteristics and RAI responses. Furthermore, we uncover a distinct BRAF-like-B subtype with predominant dedifferentiation-like thyrocytes, enriched cancer-associated fibroblasts, worse prognosis and promising prospect of immunotherapy. Moreover, potential vascular-immune crosstalk in PTC provides theoretical basis for combined anti-angiogenic and immunotherapy. Together, our findings provide insight into the PTC ecosystem that suggests potential prognostic and therapeutic implications. The characterisation of the papillary thyroid carcinoma (PTC) tumour microenvironment remains crucial. Here, the authors perform single-cell RNA sequencing in 11 patients and identify potential opportunities for the use of immunotherapy and its combination with anti-angiogenic therapy in PTC.
Collapse
Affiliation(s)
- Weilin Pu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiao Shi
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Pengcheng Yu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Meiying Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhiyan Liu
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Licheng Tan
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Peizhen Han
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Dongmei Ji
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Phase I Clinical Trial Center, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Hualei Gan
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Wenjun Wei
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhongwu Lu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ning Qu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jiaqian Hu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaohua Hu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zaili Luo
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Huajun Li
- Department of Clinical Research & Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, 201210, China
| | - Qinghai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Xiaoming Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yu-Long Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
27
|
Kim J, Kim SY, Ma SX, Kim SM, Shin SJ, Lee YS, Chang H, Chang HS, Park CS, Lim SB. PPARγ Targets-Derived Diagnostic and Prognostic Index for Papillary Thyroid Cancer. Cancers (Basel) 2021; 13:cancers13205110. [PMID: 34680260 PMCID: PMC8533916 DOI: 10.3390/cancers13205110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Through targeted next-generation sequencing of thyroid cancer-related genes in monozygotic twins with papillary thyroid cancer (PTC), we identified common variants of the gene encoding peroxisome proliferator activated receptor gamma (PPARG). Notably, the expression levels of PPARγ target genes were frequently deregulated in PTC compared to benign tissues and were closely associated with disease-specific survival (DSS) outcomes in a TCGA-PTC cohort. Machine learning-powered personalized scoring index comprising 10 PPARγ targets, termed as PPARGi, achieved a near-perfect accuracy in distinguishing cancers from benign tissues, and further identified a small subpopulation of patients at high-risk across different profiling platforms. Abstract In most cases, papillary thyroid cancer (PTC) is highly curable and associated with an excellent prognosis. Yet, there are several clinicopathological features that lead to a poor prognosis, underscoring the need for a better genomic strategy to refine prognostication and patient management. We hypothesized that PPARγ targets could be potential markers for better diagnosis and prognosis due to the variants found in PPARG in three pairs of monozygotic twins with PTC. Here, we developed a 10-gene personalized prognostic index, designated PPARGi, based on gene expression of 10 PPARγ targets. Through scRNA-seq data analysis of PTC tissues derived from patients, we found that PPARGi genes were predominantly expressed in macrophages and epithelial cells. Machine learning algorithms showed a near-perfect performance of PPARGi in deciding the presence of the disease and in selecting a small subset of patients with poor disease-specific survival in TCGA-THCA and newly developed merged microarray data (MMD) consisting exclusively of thyroid cancers and normal tissues.
Collapse
Affiliation(s)
- Jaehyung Kim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Korea;
| | - Soo Young Kim
- Department of Surgery, Ajou University School of Medicine, Suwon 16499, Korea;
| | - Shi-Xun Ma
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Seok-Mo Kim
- Thyroid Cancer Center, Department of Surgery, Institute of Refractory Thyroid Cancer, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.S.L.); (H.C.); (H.-S.C.)
- Correspondence: (S.-M.K.); (S.B.L.); Tel.: +82-2-2019-3370 (S.-M.K.); +82-31-219-5056 (S.B.L.)
| | - Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Yong Sang Lee
- Thyroid Cancer Center, Department of Surgery, Institute of Refractory Thyroid Cancer, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.S.L.); (H.C.); (H.-S.C.)
| | - Hojin Chang
- Thyroid Cancer Center, Department of Surgery, Institute of Refractory Thyroid Cancer, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.S.L.); (H.C.); (H.-S.C.)
| | - Hang-Seok Chang
- Thyroid Cancer Center, Department of Surgery, Institute of Refractory Thyroid Cancer, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.S.L.); (H.C.); (H.-S.C.)
| | - Cheong Soo Park
- CHA Ilsan Medical Center, Department of Surgery, Goyang-si 10414, Korea;
| | - Su Bin Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Korea;
- Correspondence: (S.-M.K.); (S.B.L.); Tel.: +82-2-2019-3370 (S.-M.K.); +82-31-219-5056 (S.B.L.)
| |
Collapse
|