1
|
Zheng L, Chen X, He X, Wei H, Li X, Tan Y, Min J, Chen M, Zhang Y, Dong M, Yin Q, Xue M, Zhang L, Huo D, Jiang H, Li T, Li F, Wang X, Li X, Chen H. METTL4-Mediated Mitochondrial DNA N6-Methyldeoxyadenosine Promoting Macrophage Inflammation and Atherosclerosis. Circulation 2025; 151:946-965. [PMID: 39687989 PMCID: PMC11952693 DOI: 10.1161/circulationaha.124.069574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND Mitochondrial dysfunction is a key factor in the development of atherogenesis. METTL4 (methyltransferase-like protein 4) mediates N6- methyldeoxyadenosine (6mA) of mammalian mitochondrial DNA (mtDNA). However, the role of METTL4-mediated mitoepigenetic regulation in atherosclerosis is still unknown. This study aims to investigate the potential involvement of METTL4 in atherosclerosis, explore the underlying mechanism, and develop targeted strategies for treating atherosclerosis. METHODS Expression levels of mtDNA 6mA and METTL4 were determined in atherosclerotic lesions. We explored the mechanism of METTL4 involvement in atherosclerosis using Mettl4Mac-KO-Apoe-/- and Mettl4MUT-Apoe-/- mice and cell models, as well as bone marrow transplantation. Natural compound libraries were screened to identify potent METTL4 antagonists. In addition, bioinspired proteolysis targeting chimera technology targeting macrophages within plaques was used to increase the efficacy of the METTL4 antagonist. RESULTS The expression levels of mtDNA 6mA and METTL4 were significantly increased in plaque macrophages. Mettl4Mac-KO-Apoe-/- mice displayed suppressed mtDNA 6mA levels and atherosclerotic progression, which were reversed by METTL4 restoration through bone marrow transplantation (n=6). Mechanistically, elevated METTL4 expression reduces mitochondrial ATP6 (MT-ATP6) expression by suppressing its transcription, thereby impairing the activity of mitochondrial respiration chain complex V. This disruption leads to the accumulation of excess protons in the mitochondrial intermembrane space, causing mitochondrial dysfunction. Consequently, mtDNA is released into the cytoplasm, ultimately triggering inflammasome activation. All results were reversed by the mutation in the METTL4 methyltransferase active site. Mettl4MUT-Apoe-/- mice showed suppressed mtDNA 6mA levels and atherosclerotic progression and repaired mitochondrial function of macrophage, which were reversed by METTL4 restoration through bone marrow transplantation (n=6). Pemetrexed was identified as the first METTL4 antagonist to effectively alleviate atherosclerotic progression. Furthermore, we generated a proteolysis targeting chimera drug based on pemetrexed that specifically targeted METTL4 in macrophages within plaques, showing a promising therapeutic effect on atherosclerosis. CONCLUSIONS This study revealed a novel mechanism by which mtDNA 6mA orchestrated mitochondrial function-related gene expression in macrophages, thereby promoting atherosclerosis. Through various experimental techniques, such as gene manipulation, pharmacological inhibition, and proteolysis targeting chimera, this study demonstrated that mtDNA 6mA and its specific enzyme METTL4 hold potential as therapeutic targets for atherosclerosis.
Collapse
Affiliation(s)
- Longbin Zheng
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China (Longbin Zheng, X.C., X.H., Y.T., J.M., Xinyu Li, H.W., M.C., Y.Z., M.D., Q.Y., D.H., H.J., Xuesong Li, H.C.)
- Department of Anesthesiology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China (Longbin Zheng)
| | - Xiang Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China (Longbin Zheng, X.C., X.H., Y.T., J.M., Xinyu Li, H.W., M.C., Y.Z., M.D., Q.Y., D.H., H.J., Xuesong Li, H.C.)
| | - Xian He
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China (Longbin Zheng, X.C., X.H., Y.T., J.M., Xinyu Li, H.W., M.C., Y.Z., M.D., Q.Y., D.H., H.J., Xuesong Li, H.C.)
| | - Huiyuan Wei
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China (Longbin Zheng, X.C., X.H., Y.T., J.M., Xinyu Li, H.W., M.C., Y.Z., M.D., Q.Y., D.H., H.J., Xuesong Li, H.C.)
| | - Xinyu Li
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China (Longbin Zheng, X.C., X.H., Y.T., J.M., Xinyu Li, H.W., M.C., Y.Z., M.D., Q.Y., D.H., H.J., Xuesong Li, H.C.)
| | - Yongkang Tan
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China (Longbin Zheng, X.C., X.H., Y.T., J.M., Xinyu Li, H.W., M.C., Y.Z., M.D., Q.Y., D.H., H.J., Xuesong Li, H.C.)
| | - Jiao Min
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China (Longbin Zheng, X.C., X.H., Y.T., J.M., Xinyu Li, H.W., M.C., Y.Z., M.D., Q.Y., D.H., H.J., Xuesong Li, H.C.)
| | - Minghong Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China (Longbin Zheng, X.C., X.H., Y.T., J.M., Xinyu Li, H.W., M.C., Y.Z., M.D., Q.Y., D.H., H.J., Xuesong Li, H.C.)
| | - Yunjia Zhang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China (Longbin Zheng, X.C., X.H., Y.T., J.M., Xinyu Li, H.W., M.C., Y.Z., M.D., Q.Y., D.H., H.J., Xuesong Li, H.C.)
| | - Mengdie Dong
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China (Longbin Zheng, X.C., X.H., Y.T., J.M., Xinyu Li, H.W., M.C., Y.Z., M.D., Q.Y., D.H., H.J., Xuesong Li, H.C.)
| | - Quanwen Yin
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China (Longbin Zheng, X.C., X.H., Y.T., J.M., Xinyu Li, H.W., M.C., Y.Z., M.D., Q.Y., D.H., H.J., Xuesong Li, H.C.)
| | - Mengdie Xue
- Department of Pharmacochemistry, School of Pharmacy, Nanjing Medical University, Nanjing, China (M.X., Lulu Zhang, T.L., F.L.)
| | - Lulu Zhang
- Department of Pharmacochemistry, School of Pharmacy, Nanjing Medical University, Nanjing, China (M.X., Lulu Zhang, T.L., F.L.)
| | - Da Huo
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China (Longbin Zheng, X.C., X.H., Y.T., J.M., Xinyu Li, H.W., M.C., Y.Z., M.D., Q.Y., D.H., H.J., Xuesong Li, H.C.)
| | - Hong Jiang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China (Longbin Zheng, X.C., X.H., Y.T., J.M., Xinyu Li, H.W., M.C., Y.Z., M.D., Q.Y., D.H., H.J., Xuesong Li, H.C.)
| | - Tingyou Li
- Department of Pharmacochemistry, School of Pharmacy, Nanjing Medical University, Nanjing, China (M.X., Lulu Zhang, T.L., F.L.)
| | - Fei Li
- Department of Pharmacochemistry, School of Pharmacy, Nanjing Medical University, Nanjing, China (M.X., Lulu Zhang, T.L., F.L.)
| | - Xin Wang
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom (X.W.)
| | - Xuesong Li
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China (Longbin Zheng, X.C., X.H., Y.T., J.M., Xinyu Li, H.W., M.C., Y.Z., M.D., Q.Y., D.H., H.J., Xuesong Li, H.C.)
| | - Hongshan Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China (Longbin Zheng, X.C., X.H., Y.T., J.M., Xinyu Li, H.W., M.C., Y.Z., M.D., Q.Y., D.H., H.J., Xuesong Li, H.C.)
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China (H.C.)
| |
Collapse
|
2
|
Zhang J, Yan H, Wang Y, Yue X, Wang M, Liu L, Qiao P, Zhu Y, Li Z. Emerging insights into pulmonary hypertension: the potential role of mitochondrial dysfunction and redox homeostasis. Mol Cell Biochem 2025; 480:1407-1429. [PMID: 39254871 DOI: 10.1007/s11010-024-05096-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
Pulmonary hypertension (PH) is heterogeneous diseases that can lead to death due to progressive right heart failure. Emerging evidence suggests that, in addition to its role in ATP production, changes in mitochondrial play a central role in their pathogenesis, regulating integrated metabolic and signal transduction pathways. This review focuses on the basic principles of mitochondrial redox status in pulmonary vascular and right ventricular disorders, a series of dysfunctional processes including mitochondrial quality control (mitochondrial biogenesis, mitophagy, mitochondrial dynamics, mitochondrial unfolded protein response) and mitochondrial redox homeostasis. In addition, we will summarize how mitochondrial renewal and dynamic changes provide innovative insights for studying and evaluating PH. This will provide us with a clearer understanding of the initial signal transmission of mitochondria in PH, which would further improve our understanding of the pathogenesis of PH.
Collapse
Affiliation(s)
- Junming Zhang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Huimin Yan
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Yan Wang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Xian Yue
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Meng Wang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Limin Liu
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Pengfei Qiao
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Yixuan Zhu
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Zhichao Li
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China.
| |
Collapse
|
3
|
Yi S, Qu T, Wu H, Xu C, Xu J, Yu F, Ye L. Knockdown of PLOD2 inhibits pulmonary artery smooth muscle cell glycolysis under chronic intermittent hypoxia via PI3K/AKT signal. Exp Cell Res 2025; 446:114453. [PMID: 39961468 DOI: 10.1016/j.yexcr.2025.114453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/22/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
OBJECTIVE This study aimed to investigate the role and potential mechanism of procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) in chronic intermittent hypoxia (CIH)-induced mice and pulmonary arterial smooth muscle cells (PASMCs). METHODS CIH mouse model was pre-injected with AAV-shPLOD2 by tail vein, and the pathological changes of lung was evaluated using hematoxylin-eosin (H&E) and α-SMA immunostaining. Enriched KEGG pathway analyses of PLOD2 targeted genes were performed using GSE11341 and GSE131425 datasets. Next, primary PASMCs were exposed to CIH environment, and then measured its proliferation, migration and glycolysis by CCK8, EdU assay, wound healing assay, Transwell and western blotting. RESULTS PLOD2 expression was increased in the lungs of CIH-induced mice and in PASMCs under CIH conditions. Moreover, glycolysis and PI3K/AKT pathway were regulated by PLOD2. Silencing of PLOD2 significantly inhibited the increase of RV/(LV + S) and RVSP, alleviated pathological changes of lung in CIH-induced mice and restrained the proliferation, migration, glycolysis and activation of PI3K/AKT in CIH-induced PASMCs. The inhibitory effects of PLOD2 silencing on PASMC proliferation and migration were accelerated by 2-DG (an inhibitor of glycolysis) and were reversed by lactate (the end product of glycolysis). In addition, the inhibitory effects of PLOD2 silencing on PASMC proliferation, migration and glycolysis were accelerated by PI3K/AKT inhibitor LY294002 and were reversed by the agonist 740Y-P. CONCLUSIONS Silencing of PLOD2 inhibits PI3K/AKT signaling to limit PASMC glycolysis which allows PASMC proliferation and migration in CIH-induced pulmonary arterial hypertension (PAH).
Collapse
MESH Headings
- Animals
- Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/genetics
- Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Glycolysis/genetics
- Pulmonary Artery/pathology
- Pulmonary Artery/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphatidylinositol 3-Kinases/genetics
- Mice
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Cell Proliferation/genetics
- Signal Transduction/genetics
- Hypoxia/genetics
- Hypoxia/metabolism
- Cell Movement/genetics
- Male
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Disease Models, Animal
- Gene Knockdown Techniques
Collapse
Affiliation(s)
- Shenwen Yi
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Tiange Qu
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Heling Wu
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Chenyu Xu
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Jun Xu
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Fei Yu
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Liang Ye
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China.
| |
Collapse
|
4
|
Fang W, Wang E, Liu P, Gao X, Hou X, Hu G, Li G, Cheng J, Jiang C, Yan L, Wu C, Xu Z, Liu P. The relativity analysis of hypoxia inducible factor-1α in pulmonary arterial hypertension (ascites syndrome) in broilers: a review. Avian Pathol 2024; 53:441-450. [PMID: 38887084 DOI: 10.1080/03079457.2024.2358882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/21/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024]
Abstract
Ascites syndrome (AS) in broiler chickens, also known as pulmonary arterial hypertension (PAH), is a significant disease in the poultry industry. It is a nutritional metabolic disease that is closely associated with hypoxia-inducible factors and rapid growth. The rise in pulmonary artery pressure is a crucial characteristic of AS and is instrumental in its development. Hypoxia-inducible factor 1α (HIF-1α) is an active subunit of a key transcription factor in the oxygen-sensing pathway. HIF-1α plays a vital role in oxygen homeostasis and the development of pulmonary hypertension. Studying the effects of HIF-1α on pulmonary hypertension in humans or mammals, as well as ascites in broilers, can help us understand the pathogenesis of AS. Therefore, this review aims to (1) summarize the mechanism of HIF-1α in the development of pulmonary hypertension, (2) provide theoretical significance in explaining the mechanism of HIF-1α in the development of pulmonary arterial hypertension (ascites syndrome) in broilers, and (3) establish the correlation between HIF-1α and pulmonary arterial hypertension (ascites syndrome) in broilers. HIGHLIGHTSExplains the hypoxic mechanism of HIF-1α.Linking HIF-1α to pulmonary hypertension in broilers.Explains the role of microRNAs in pulmonary arterial hypertension in broilers.
Collapse
Affiliation(s)
- Weile Fang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Enqi Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Pei Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Xiaolu Hou
- Guangxi Vocational University of Agriculture, Nanning, People's Republic of China
| | - Guoliang Hu
- Guangxi Vocational University of Agriculture, Nanning, People's Republic of China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Juan Cheng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Chenxi Jiang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Linjie Yan
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Cong Wu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Zheng Xu
- Department of Mathematics and Statistics, Wright State University, Dayton, OH, USA
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| |
Collapse
|
5
|
Chen C, Qin S, Song X, Wen J, Huang W, Sheng Z, Li X, Cao Y. PI3K p85α/HIF-1α accelerates the development of pulmonary arterial hypertension by regulating fatty acid uptake and mitophagy. Mol Med 2024; 30:208. [PMID: 39528930 PMCID: PMC11552344 DOI: 10.1186/s10020-024-00975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is characterized by lipid accumulation and mitochondrial dysfunction. This study was designed to investigate the effects of hypoxia-inducible factor-1α (HIF-1α) on fatty acid uptake and mitophagy in PAH. METHODS Peripheral blood samples were obtained from PAH patients. Human pulmonary arterial smooth muscle cells and rat cardiac myoblasts H9c2 were subjected to hypoxia treatment. Male Sprague-Dawley rats were treated with monocrotaline (MCT). Right ventricular systolic pressure (RVSP), right ventricular hypertrophy index (RVHI), pulmonary artery remodeling, and lipid accumulation were measured. Cell proliferation and ROS accumulation were assessed. Mitochondrial damage and autophagosome formation were observed. Co-immunoprecipitation was performed to verify the interaction between HIF-1α and CD36/PI3K p85α. RESULTS HIF-1α, CD36, Parkin, and PINK1 were upregulated in PAH samples. HIF-1α knockdown or PI3K p85α knockdown restricted the expression of HIF-1α, PI3K p85α, Parkin, PINK1, and CD36, inhibited hPASMC proliferation, promoted H9c2 cell proliferation, reduced ROS accumulation, and suppressed mitophagy. CD36 knockdown showed opposite effects to HIF-1α knockdown, which were reversed by palmitic acid. The HIF-1α activator dimethyloxalylglycine reversed the inhibitory effect of Parkin knockdown on mitophagy. In MCT-induced rats, the HIF-1α antagonist 2-methoxyestradiol (2ME) reduced RVSP, RVHI, pulmonary artery remodeling, lipid accumulation, and mitophagy. Recombinant CD36 abolished the therapeutic effect of 2ME but inhibited mitophagy. Activation of Parkin/PINK1 by salidroside (Sal) promoted mitophagy to ameliorate the pathological features of PAH-like rats, and 2ME further enhanced the therapeutic outcome of Sal. CONCLUSION PI3K p85α/HIF-1α induced CD36-mediated fatty acid uptake and Parkin/PINK1-dependent mitophagy to accelerate the progression of experimental PAH.
Collapse
Affiliation(s)
- Chenyang Chen
- Cardiovascular Department, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| | - Sirun Qin
- Cardiovascular Department, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Xiaohua Song
- Department of Pediatrics, The 921, Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Changsha, 410011, China
| | - Juan Wen
- Cardiovascular Department, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Wei Huang
- Cardiovascular Department, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Zhe Sheng
- Cardiovascular Department, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Xiaogang Li
- Cardiovascular Department, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Yu Cao
- Cardiovascular Department, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| |
Collapse
|
6
|
Lu X, Wang Y, Geng N, Zou Z, Feng X, Wang Y, Xu Z, Zhang N, Pu J. Dysregulated Mitochondrial Calcium Causes Spiral Artery Remodeling Failure in Preeclampsia. Hypertension 2024; 81:2368-2382. [PMID: 39291377 DOI: 10.1161/hypertensionaha.124.23046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Calcium deficiency in women is strongly linked to an increased risk of developing preeclampsia. Mitochondrial calcium ([Ca2+]m) homeostasis is essential to regulate vascular smooth muscle cell (VSMC) function. However, the role of [Ca2+]m in preeclampsia development remains largely unknown. METHODS To investigate this, human spiral arteries obtained from normotensive and preeclamptic women were collected for vascular function, RNA sequencing, and VSMC studies. N(ω)-nitro-L-arginine methyl ester-induced preeclampsia animal experiments were established to investigate the effects of intervening in [Ca2+]m to improve the outcome for preeclamptic mothers or their infants. RESULTS Our initial findings revealed compromised vessel function in spiral arteries derived from patients with preeclampsia, as evidenced by diminished vasoconstriction and vasodilation responses to angiotensin II and sodium nitroprusside, respectively. Moreover, the spiral artery VSMCs from patients with preeclampsia exhibited phenotypic transformation and proliferation associated with the disrupted regulatory mechanisms of [Ca2+]m uptake. Subsequent in vitro experiments employing gain- and loss-of-function approaches demonstrated that the mitochondrial Na+/Ca2+ exchanger played a role in promoting phenotypic switching and impaired mitochondrial functions in VSMCs. Furthermore, mtNCLX (mitochondrial Na+/Ca2+ exchanger) inhibitor CGP37157 significantly improved VSMC phenotypic changes and restored mitochondrial function in both patients with preeclampsia-derived VSMCs and the preeclampsia rat model. CONCLUSIONS This study provides comprehensive evidence supporting the disrupted regulatory mechanisms of [Ca2+]m uptake in VSMCs of spiral arteries of patients with preeclampsia and further elucidates its correlation with VSMC phenotypic switching and defective spiral artery remodeling. The findings suggest that targeting mtNCLX holds promise as a novel therapeutic approach for managing preeclampsia.
Collapse
Affiliation(s)
- Xiyuan Lu
- Department of Cardiology (X.L., Yifan Wang, N.G., Z.Z.), Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yifan Wang
- Department of Cardiology (X.L., Yifan Wang, N.G., Z.Z.), Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Na Geng
- Department of Cardiology (X.L., Yifan Wang, N.G., Z.Z.), Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Zhiguo Zou
- Department of Cardiology (X.L., Yifan Wang, N.G., Z.Z.), Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Xueqing Feng
- Department of Obstetrics Affiliated Hospital of Jining Medical University, China (X.F.)
| | - Yuehong Wang
- State Key Laboratory of Systems Medicine for Cancer (Yuehong Wang), School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, China
| | - Zhice Xu
- Wuxi Maternity and Child Health Care Hospital, China (Z.X.)
| | - Ning Zhang
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecologic Oncology (N.Z.), Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital State Key Laboratory of Systems Medicine for Cancer (J.P.), School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, China
| |
Collapse
|
7
|
Wan JJ, Yi J, Wang FY, Li X, Zhang C, Song L, Dai AG. Role of mitophagy in pulmonary hypertension: Targeting the mechanism and pharmacological intervention. Mitochondrion 2024; 78:101928. [PMID: 38992857 DOI: 10.1016/j.mito.2024.101928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/29/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Mitophagy, a crucial pathway in eukaryotic cells, selectively eliminates dysfunctional mitochondria, thereby maintaining cellular homeostasis via mitochondrial quality control. Pulmonary hypertension (PH) refers to a pathological condition where pulmonary arterial pressure is abnormally elevated due to various reasons, and the underlying pathogenesis remains elusive. This article examines the molecular mechanisms underlying mitophagy, emphasizing its role in PH and the progress in elucidating related molecular signaling pathways. Additionally, it highlights current drug regulatory pathways, aiming to provide novel insights into the prevention and treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Jia-Jing Wan
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha 410208, Hunan, China
| | - Jian Yi
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan, China
| | - Fei-Ying Wang
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha 410208, Hunan, China
| | - Xia Li
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha 410208, Hunan, China
| | - Chao Zhang
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha 410208, Hunan, China
| | - Lan Song
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha 410208, Hunan, China
| | - Ai-Guo Dai
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha 410208, Hunan, China; Department of Respiratory Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan, China.
| |
Collapse
|
8
|
Hu X, Wang S, Zhao H, Wei Y, Duan R, Jiang R, Wu W, Zhao Q, Gong S, Wang L, Liu J, Yuan P. CircPMS1 promotes proliferation of pulmonary artery smooth muscle cells, pulmonary microvascular endothelial cells, and pericytes under hypoxia. Animal Model Exp Med 2024; 7:310-323. [PMID: 37317637 PMCID: PMC11228088 DOI: 10.1002/ame2.12332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/07/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been recognized as significant regulators of pulmonary hypertension (PH); however, the differential expression and function of circRNAs in different vascular cells under hypoxia remain unknown. Here, we identified co-differentially expressed circRNAs and determined their putative roles in the proliferation of pulmonary artery smooth muscle cells (PASMCs), pulmonary microvascular endothelial cells (PMECs), and pericytes (PCs) under hypoxia. METHODS Whole transcriptome sequencing was performed to analyze the differential expression of circRNAs in three different vascular cell types. Bioinformatic analysis was used to predict their putative biological function. Quantitative real-time polymerase chain reaction, Cell Counting Kit-8, and EdU Cell Proliferation assays were carried out to determine the role of circular postmeiotic segregation 1 (circPMS1) as well as its potential sponge mechanism in PASMCs, PMECs, and PCs. RESULTS PASMCs, PMECs, and PCs exhibited 16, 99, and 31 differentially expressed circRNAs under hypoxia, respectively. CircPMS1 was upregulated in PASMCs, PMECs, and PCs under hypoxia and enhanced the proliferation of vascular cells. CircPMS1 may upregulate DEP domain containing 1 (DEPDC1) and RNA polymerase II subunit D expression by targeting microRNA-432-5p (miR-432-5p) in PASMCs, upregulate MAX interactor 1 (MXI1) expression by targeting miR-433-3p in PMECs, and upregulate zinc finger AN1-type containing 5 (ZFAND5) expression by targeting miR-3613-5p in PCs. CONCLUSIONS Our results suggest that circPMS1 promotes cell proliferation through the miR-432-5p/DEPDC1 or miR-432-5p/POL2D axis in PASMCs, through the miR-433-3p/MXI1 axis in PMECs, and through the miR-3613-5p/ZFAND5 axis in PCs, which provides putative targets for the early diagnosis and treatment of PH.
Collapse
Affiliation(s)
- Xiaoyi Hu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shang Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, China
| | - Yaqin Wei
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai, China
| | - Ruowang Duan
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rong Jiang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenhui Wu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qinhua Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Sugang Gong
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lan Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jinming Liu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Liu N, Pang B, Kang L, Li D, Jiang X, Zhou CM. TUFM in health and disease: exploring its multifaceted roles. Front Immunol 2024; 15:1424385. [PMID: 38868764 PMCID: PMC11167084 DOI: 10.3389/fimmu.2024.1424385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
The nuclear-encoded mitochondrial protein Tu translation elongation factor, mitochondrial (TUFM) is well-known for its role in mitochondrial protein translation. Originally discovered in yeast, TUFM demonstrates significant evolutionary conservation from prokaryotes to eukaryotes. Dysregulation of TUFM has been associated with mitochondrial disorders. Although early hypothesis suggests that TUFM is localized within mitochondria, recent studies identify its presence in the cytoplasm, with this subcellular distribution being linked to distinct functions of TUFM. Significantly, in addition to its established function in mitochondrial protein quality control, recent research indicates a broader involvement of TUFM in the regulation of programmed cell death processes (e.g., autophagy, apoptosis, necroptosis, and pyroptosis) and its diverse roles in viral infection, cancer, and other disease conditions. This review seeks to offer a current summary of TUFM's biological functions and its complex regulatory mechanisms in human health and disease. Insight into these intricate pathways controlled by TUFM may lead to the potential development of targeted therapies for a range of human diseases.
Collapse
Affiliation(s)
- Ning Liu
- The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bo Pang
- The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Longfei Kang
- The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dongyun Li
- The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xia Jiang
- The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chuan-min Zhou
- The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
10
|
Zhou R, Li R, Ding Q, Zhang Y, Yang H, Han Y, Liu C, Liu J, Wang S. OPN silencing reduces hypoxic pulmonary hypertension via PI3K-AKT-induced protective autophagy. Sci Rep 2024; 14:8670. [PMID: 38622371 PMCID: PMC11018812 DOI: 10.1038/s41598-024-59367-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
Hypoxic pulmonary hypertension (HPH) is a pulmonary vascular disease primarily characterized by progressive pulmonary vascular remodeling in a hypoxic environment, posing a significant clinical challenge. Leveraging data from the Gene Expression Omnibus (GEO) and human autophagy-specific databases, osteopontin (OPN) emerged as a differentially expressed gene, upregulated in cardiovascular diseases such as pulmonary arterial hypertension (PAH). Despite this association, the precise mechanism by which OPN regulates autophagy in HPH remains unclear, prompting the focus of this study. Through biosignature analysis, we observed significant alterations in the PI3K-AKT signaling pathway in PAH-associated autophagy. Subsequently, we utilized an animal model of OPNfl/fl-TAGLN-Cre mice and PASMCs with OPN shRNA to validate these findings. Our results revealed right ventricular hypertrophy and elevated mean pulmonary arterial pressure (mPAP) in hypoxic pulmonary hypertension model mice. Notably, these effects were attenuated in conditionally deleted OPN-knockout mice or OPN-silenced hypoxic PASMCs. Furthermore, hypoxic PASMCs with OPN shRNA exhibited increased autophagy compared to those in hypoxia alone. Consistent findings from in vivo and in vitro experiments indicated that OPN inhibition during hypoxia reduced PI3K expression while increasing LC3B and Beclin1 expression. Similarly, PASMCs exposed to hypoxia and PI3K inhibitors had higher expression levels of LC3B and Beclin1 and suppressed AKT expression. Based on these findings, our study suggests that OPNfl/fl-TAGLN-Cre effectively alleviates HPH, potentially through OPN-mediated inhibition of autophagy, thereby promoting PASMCs proliferation via the PI3K-AKT signaling pathway. Consequently, OPN emerges as a novel therapeutic target for HPH.
Collapse
Affiliation(s)
- Rui Zhou
- Qinghai University Medical Department, Xining, 810016, China
| | - Ran Li
- Zhengzhou Medical and Health Vocational College, Zhengzhou, 452385, China
| | - Qi Ding
- Pathology Department of Tianjin Huanghe Hospital, Tianjin, 300110, China
| | - Yuwei Zhang
- Department of Public Health, School of Medical, Qinghai University, Xining, 810016, China
| | - Hui Yang
- Qinghai University Medical Department, Xining, 810016, China
| | - Ying Han
- Qinghai University Medical Department, Xining, 810016, China
| | - Chuanchuan Liu
- Key Laboratory of Hydatid Disease, Qinghai University, Xining, 810001, China
| | - Jie Liu
- Qinghai University Medical Department, Xining, 810016, China
| | - Shenglan Wang
- Qinghai University Medical Department, Xining, 810016, China.
| |
Collapse
|
11
|
Wang L, Wang B, Zhang X, Yang Z, Zhang X, Gong H, Song Y, Zhang K, Sun M. TDCPP and TiO 2 NPs aggregates synergistically induce SH-SY5Y cell neurotoxicity by excessive mitochondrial fission and mitophagy inhibition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123740. [PMID: 38462198 DOI: 10.1016/j.envpol.2024.123740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Tris (1,3-dichloro-2-propyl) phosphate (TDCPP), a halogen-containing phosphorus flame retardant, is widely used and has been shown to possess health risks to humans. The sustained release of artificial nanomaterials into the environment increases the toxicological risks of their coexisting pollutants. Nanomaterials may seriously change the environmental behavior and fate of pollutants. In this study, we investigated this combined toxicity and the potential mechanisms of toxicity of TDCPP and titanium dioxide nanoparticles (TiO2 NPs) aggregates on human neuroblastoma SH-SY5Y cells. TDCPP and TiO2 NPs aggregates were exposed in various concentration combinations, revealing that TDCPP (25 μg/mL) reduced cell viability, while synergistic exposure to TiO2 NPs aggregates exacerbated cytotoxicity. This combined exposure also disrupted mitochondrial function, leading to dysregulation in the expression of mitochondrial fission proteins (DRP1 and FIS1) and fusion proteins (OPA1 and MFN1). Consequently, excessive mitochondrial fission occurred, facilitating the translocation of cytochrome C from mitochondria to activate apoptotic signaling pathways. Furthermore, exposure of the combination of TDCPP and TiO2 NPs aggregates activated upstream mitochondrial autophagy but disrupted downstream Parkin recruitment to damaged mitochondria, preventing autophagosome-lysosome fusion and thereby disrupting mitochondrial autophagy. Altogether, our findings suggest that TDCPP and TiO2 NPs aggregates may stimulate apoptosis in neuronal SH-SY5Y cells by inducing mitochondrial hyperfission and inhibiting mitochondrial autophagy.
Collapse
Affiliation(s)
- Ling Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Binquan Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoyan Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ziyi Yang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xing Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hongyang Gong
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yuanyuan Song
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ke Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mingkuan Sun
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
12
|
Tang L, Zhou X, Guo A, Han L, Pan S. Blockade of ZFX Alleviates Hypoxia-Induced Pulmonary Vascular Remodeling by Regulating the YAP Signaling. Cardiovasc Toxicol 2024; 24:158-170. [PMID: 38310188 DOI: 10.1007/s12012-023-09822-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/19/2023] [Indexed: 02/05/2024]
Abstract
High expression of the zinc finger X-chromosomal protein (ZFX) correlates with proliferation, aggressiveness, and development in many types of cancers. In the current report, we investigated the efficacy of ZFX in mouse pulmonary artery smooth muscle cells (PASMCs) proliferation during pulmonary arterial hypertension (PAH). PASMCs were cultured in hypoxic conditions. Real-time PCR and western blotting were conducted to detect the expression of ZFX. Cell proliferation, apoptosis, migration, and invasion were, respectively, measured by CCK-8, flow cytometry, wound scratchy, and transwell assays. Glycolytic ability was validated by the extracellular acidification rate and oxygen consumption rate. Transcriptome sequencing technology was used to explore the genes affected by ZFX knockdown. Luciferase and chromatin immunoprecipitation assays were utilized to verify the possible binding site of ZFX and YAP1. Mice were subjected to hypoxia for 21 days to induce PAH. The right ventricular systolic pressure (RVSP) was measured and ratio of RV/LV + S was calculated. The results show that ZFX was increased in hypoxia-induced PASMCs and mice. ZFX knockdown inhibited the proliferation, migration, and invasion of PASMC. Using RNA sequencing, we identify glycolysis and YAP as a key signaling of ZFX. ZFX knockdown inhibited Glycolytic ability. ZFX strengthened the transcription activity of YAP1, thereby regulating the YAP signaling. YAP1 overexpression reversed the effect of ZFX knockdown on hypoxia-treated PASMCs. In conclusion, ZFX knockdown protected mice from hypoxia-induced PAH injury. ZFX knockdown dramatically reduced RVSP and RV/(LV + S) in hypoxia-treated mice.
Collapse
Affiliation(s)
- Ling Tang
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, People's Republic of China
- Department of Pediatrics, Central Hosptial Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Xiao Zhou
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, People's Republic of China
- Department of Pediatrics, Central Hosptial Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Aili Guo
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, People's Republic of China
- Department of Pediatrics, Central Hosptial Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Lizhang Han
- Department of Neurosurgery, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan, 250012, Shandong, People's Republic of China.
| | - Silin Pan
- Heart Center, Qingdao Women and Children's Hospital, Shandong University, No.217 West Liaoyang Road, Qingdao, 266034, Shandong, People's Republic of China.
| |
Collapse
|
13
|
Tian Y, Shi H, Zhang D, Wang C, Zhao F, Li L, Xu Z, Jiang J, Li J. Nebulized inhalation of LPAE-HDAC10 inhibits acetylation-mediated ROS/NF-κB pathway for silicosis treatment. J Control Release 2023; 364:618-631. [PMID: 37848136 DOI: 10.1016/j.jconrel.2023.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
Silicosis is a serious silica-induced respiratory disease for which there is currently no effective treatment. Irreversible pulmonary fibrosis caused by persistent inflammation is the main feature of silicosis. As an underlying mechanism, acetylation regulated by histone deacetylases (HDACs) are believed to be closely associated with persistent inflammation and pulmonary fibrosis. However, details of the mechanisms associated with the regulation of acetylated modification in silicosis have yet to be sufficiently established. Furthermore, studies on the efficient delivery of DNA to lung tissues by nebulized inhalation for the treatment of silicosis are limited. In this study, we established a mouse model of silicosis successfully. Differentially expressed genes (DEGs) between the lung tissues of silicosis and control mice were identified based on transcriptomic analysis, and HDAC10 was the only DEG among the HDACs. Acetylomic and combined acetylomic/proteomic analysis were performed and found that the differentially expressed acetylated proteins have diverse biological functions, among which 12 proteins were identified as the main targets of HDAC10. Subsequently, HDAC10 expression levels were confirmed to increase following nebulized inhalation of linear poly(β-amino ester) (LPAE)-HDAC10 nanocomplexes. The levels of oxidative stress, the phosphorylation of IKKβ, IκBα and p65, as well as inflammation were inhibited by HDAC10. Pulmonary fibrosis, and lung function in silicosis showed significant improvements in response to the upregulation of HDAC10. Similar results were obtained for the silica-treated macrophages in vitro. In conclusion, HDAC10 was identified as the main mediator of acetylation in silicosis. Nebulized inhalation of LPAE-HDAC10 nanocomplexes was confirmed to be a promising treatment option for silicosis. The ROS/NF-κB pathway was identified as an essential signaling pathway through which HDAC10 attenuates oxidative stress, inflammation, and pulmonary fibrosis in silicosis. This study provides a new theoretical basis for the treatment of silicosis.
Collapse
Affiliation(s)
- Yunze Tian
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China
| | - Hongyang Shi
- Department of Respiratory Medicine, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China
| | - Danjie Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China
| | - Chenfei Wang
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Feng Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China
| | - Liang Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China
| | - Zhengshui Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China
| | - Jiantao Jiang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China
| | - Jianzhong Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China.
| |
Collapse
|
14
|
Ren H, Dai R, Nik Nabil WN, Xi Z, Wang F, Xu H. Unveiling the dual role of autophagy in vascular remodelling and its related diseases. Biomed Pharmacother 2023; 168:115643. [PMID: 37839111 DOI: 10.1016/j.biopha.2023.115643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023] Open
Abstract
Vascular remodelling is an adaptive response to physiological and pathological stimuli that leads to structural and functional changes in the vascular intima, media, and adventitia. Pathological vascular remodelling is a hallmark feature of numerous vascular diseases, including atherosclerosis, hypertension, abdominal aortic aneurysm, pulmonary hypertension and preeclampsia. Autophagy is critical in maintaining cellular homeostasis, and its dysregulation has been implicated in the pathogenesis of various diseases, including vascular diseases. However, despite emerging evidence, the role of autophagy and its dual effects on vascular remodelling has garnered limited attention. Autophagy can exert protective and detrimental effects on the vascular intima, media and adventitia, thereby substantially influencing the course of vascular remodelling and its related vascular diseases. Currently, there has not been a review that thoroughly describes the regulation of autophagy in vascular remodelling and its impact on related diseases. Therefore, this review aimed to bridge this gap by focusing on the regulatory roles of autophagy in diseases related to vascular remodelling. This review also summarizes recent advancements in therapeutic agents targeting autophagy to regulate vascular remodelling. Additionally, this review offers an overview of recent breakthroughs in therapeutic agents targeting autophagy to regulate vascular remodelling. A deeper understanding of how autophagy orchestrates vascular remodelling can drive the development of targeted therapies for vascular diseases.
Collapse
Affiliation(s)
- Hangui Ren
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Wan Najbah Nik Nabil
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China; Pharmaceutical Services Program, Ministry of Health, Selangor 46200, Malaysia
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Feng Wang
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China.
| |
Collapse
|
15
|
Geng Y, Hu Y, Zhang F, Tuo Y, Ge R, Bai Z. Mitochondria in hypoxic pulmonary hypertension, roles and the potential targets. Front Physiol 2023; 14:1239643. [PMID: 37645564 PMCID: PMC10461481 DOI: 10.3389/fphys.2023.1239643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023] Open
Abstract
Mitochondria are the centrol hub for cellular energy metabolisms. They regulate fuel metabolism by oxygen levels, participate in physiological signaling pathways, and act as oxygen sensors. Once oxygen deprived, the fuel utilizations can be switched from mitochondrial oxidative phosphorylation to glycolysis for ATP production. Notably, mitochondria can also adapt to hypoxia by making various functional and phenotypes changes to meet the demanding of oxygen levels. Hypoxic pulmonary hypertension is a life-threatening disease, but its exact pathgenesis mechanism is still unclear and there is no effective treatment available until now. Ample of evidence indicated that mitochondria play key factor in the development of hypoxic pulmonary hypertension. By hypoxia-inducible factors, multiple cells sense and transmit hypoxia signals, which then control the expression of various metabolic genes. This activation of hypoxia-inducible factors considered associations with crosstalk between hypoxia and altered mitochondrial metabolism, which plays an important role in the development of hypoxic pulmonary hypertension. Here, we review the molecular mechanisms of how hypoxia affects mitochondrial function, including mitochondrial biosynthesis, reactive oxygen homeostasis, and mitochondrial dynamics, to explore the potential of improving mitochondrial function as a strategy for treating hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Yumei Geng
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People’s Hospital, Xining, China
| | - Yu Hu
- Department of Pharmacy, Qinghai Provincial Traffic Hospital, Xining, China
| | - Fang Zhang
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People’s Hospital, Xining, China
| | - Yajun Tuo
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People’s Hospital, Xining, China
| | - Rili Ge
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Zhenzhong Bai
- Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Research Center for High Altitude Medicine, Qinghai University, Xining, China
| |
Collapse
|
16
|
Liu M, He H, Fan F, Qiu L, Zheng F, Guan Y, Yang G, Chen L. Maresin-1 protects against pulmonary arterial hypertension by improving mitochondrial homeostasis through ALXR/HSP90α axis. J Mol Cell Cardiol 2023; 181:15-30. [PMID: 37244057 DOI: 10.1016/j.yjmcc.2023.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
AIMS Pulmonary arterial hypertension (PAH) is a progressive and lethal disease characterized by continuous proliferation of pulmonary arterial smooth muscle cell (PASMCs) and increased pulmonary vascular remodeling. Maresin-1 (MaR1) is a member of pro-resolving lipid mediators and exhibits protective effects on various inflammation-related diseases. Here we aimed to study the role of MaR1 in the development and progression of PAH and to explore the underlying mechanisms. METHODS AND RESULTS We evaluated the effect of MaR1 treatment on PAH in both monocrotaline (MCT)-induced rat and hypoxia+SU5416 (HySu)-induced mouse models of pulmonary hypertension (PH). Plasma samples were collected from patients with PAH and rodent PH models to examine MaR1 production. Specific shRNA adenovirus or inhibitors were used to block the function of MaR1 receptors. The data showed that MaR1 significantly prevented the development and blunted the progression of PH in rodents. Blockade of the function of MaR1 receptor ALXR, but not LGR6 or RORα, with BOC-2, abolished the protective effect of MaR1 against PAH development and reduced its therapeutic potential. Mechanistically, we demonstrated that the MaR1/ALXR axis suppressed hypoxia-induced PASMCs proliferation and alleviated pulmonary vascular remodeling by inhibiting mitochondrial accumulation of heat shock protein 90α (HSP90α) and restoring mitophagy. CONCLUSION MaR1 protects against PAH by improving mitochondrial homeostasis through ALXR/HSP90α axis and represents a promising target for PAH prevention and treatment.
Collapse
Affiliation(s)
- Min Liu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Huixiang He
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Fenling Fan
- Division of Pulmonary Vascular Disease, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Lejia Qiu
- Health Science Center, East China Normal University, Shanghai 200241, China
| | - Feng Zheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Guangrui Yang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Lihong Chen
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; Health Science Center, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
17
|
Yang R, Zhang S, Duan C, Guo Y, Shan X, Zhang X, Yue S, Zhang Y, Liu Y. Effect of prolactin on cytotoxicity and oxidative stress in ovine ovarian granulosa cells. PeerJ 2023; 11:e15629. [PMID: 37456891 PMCID: PMC10340108 DOI: 10.7717/peerj.15629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023] Open
Abstract
Background Prolactin (PRL) has been reported to be associated with oxidative stress, which is an important contributor leading to cell apoptosis. However, little is known about the mechanisms underlying the effects of PRL on cytotoxicity and oxidative stress in ovine ovarian granulosa cells (GCs). Methods Ovine ovarian GCs were treated with 0, 4, 20, 100 and 500 ng/mL of PRL. Then, the cytotoxicity, cell viability, malondialdehyde (MDA), reactive oxygen species (ROS), superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) of GCs were detected. Additionally, 500 ng/mL PRL was chosen as the high PRL concentration (HPC) due to its high cytotoxicity and oxidative stress. Proteomic and metabonomic were performed to examine the overall difference in proteins and metabolic pathways between C (control: 0 ng/mL PRL) and P groups (500 ng/mL PRL). Results The results indicated that GCs treated with 4 ng/mL PRL significantly decreased (P < 0.05) the cytotoxicity, ROS and MDA, increased (P < 0.05) the cell viability, SOD and T-AOC, and the GCs treated with 500 ng/mL PRL showed the opposite trend (P < 0.05). Supplementation with 500 ng/mL PRL significantly increased the proteins of MT-ND1, MAPK12, UBA52 and BCL2L1, which were enriched in ROS and mitophagy pathways. Pathway enrichment analysis showed that the pentose phosphate pathway was significantly enriched in the P group. Conclusion A low concentration of PRL inhibited cytotoxicity and oxidative stress. HPC induced oxidative stress in ovine ovarian GCs via the pentose phosphate pathway by modulating the associated proteins MT-ND1 in ROS pathway and UBA52, MAPK12 and BCL2L1 in mitophagy pathway, resulting in cytotoxicity.
Collapse
Affiliation(s)
| | - Shuo Zhang
- China Agricultural University, Beijing, China
| | | | - Yunxia Guo
- Hebei Agricultural University, Baoding, China
| | - Xinyu Shan
- Hebei Agricultural University, Baoding, China
| | | | - Sicong Yue
- Hebei Agricultural University, Baoding, China
| | | | - Yueqin Liu
- Hebei Agricultural University, Baoding, China
| |
Collapse
|
18
|
Zhang W, Liu B, Wang Y, Zhang H, He L, Wang P, Dong M. Mitochondrial dysfunction in pulmonary arterial hypertension. Front Physiol 2022; 13:1079989. [PMID: 36589421 PMCID: PMC9795033 DOI: 10.3389/fphys.2022.1079989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/29/2022] [Indexed: 01/03/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by the increased pulmonary vascular resistance due to pulmonary vasoconstriction and vascular remodeling. PAH has high disability, high mortality and poor prognosis, which is becoming a more common global health issue. There is currently no drug that can permanently cure PAH patients. The pathogenesis of PAH is still not fully elucidated. However, the role of metabolic theory in the pathogenesis of PAH is becoming clearer, especially mitochondrial metabolism. With the deepening of mitochondrial researches in recent years, more and more studies have shown that the occurrence and development of PAH are closely related to mitochondrial dysfunction, including the tricarboxylic acid cycle, redox homeostasis, enhanced glycolysis, and increased reactive oxygen species production, calcium dysregulation, mitophagy, etc. This review will further elucidate the relationship between mitochondrial metabolism and pulmonary vasoconstriction and pulmonary vascular remodeling. It might be possible to explore more comprehensive and specific treatment strategies for PAH by understanding these mitochondrial metabolic mechanisms.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Oncology, Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital (The Second Clinical Medical College Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Bo Liu
- Department of Cardiovascular, Geratric Diseases Institute of Chengdu, Chengdu Fifth People’s Hospital (The Second Clinical Medical College Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Yazhou Wang
- Department of Cardiothoracic, Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital (The Second Clinical Medical College Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Hengli Zhang
- Department of Oncology, Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital (The Second Clinical Medical College Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Lang He
- Department of Oncology, Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital (The Second Clinical Medical College Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Pan Wang
- Department of Critical Care Medicine, The Traditional Chinese Medicine Hospital of Wenjiang District, Chengdu, China
| | - Mingqing Dong
- Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| |
Collapse
|
19
|
Xu W, Zhao D, Huang X, Zhang M, Yin M, Liu L, Wu H, Weng Z, Xu C. The prognostic value and clinical significance of mitophagy-related genes in hepatocellular carcinoma. Front Genet 2022; 13:917584. [PMID: 35991574 PMCID: PMC9388833 DOI: 10.3389/fgene.2022.917584] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/30/2022] [Indexed: 12/21/2022] Open
Abstract
Background: Mitophagy has been found to play a significant part in the cancer process in a growing number of studies in recent years. However, there is still a lack of study on mitophagy-related genes' (MRGs) prognostic potential and clinical significance in hepatocellular carcinoma (HCC). Methods: We employed bioinformatics and statistical knowledge to examine the transcriptome data of HCC patients in the TCGA and GEO databases, with the goal of constructing a multigene predictive model. Then, we separated the patients into high- and low-risk groups based on the score. The model's dependability was determined using principal components analysis (PCA), survival analysis, independent prognostic analysis, and receiver operating characteristic (ROC) analysis. Following that, we examined the clinical correlations, pharmacological treatment sensitivity, immune checkpoint expression, and immunological correlations between patients in high and low risk groups. Finally, we evaluated the variations in gene expression between high- and low-risk groups and further analyzed the network core genes using protein-protein interaction network analysis. Results: Prognostic models were built using eight genes (OPTN, ATG12, CSNK2A2, MFN1, PGAM5, SQSTM1, TOMM22, TOMM5). During validation, the prognostic model demonstrated high reliability, indicating that it could accurately predict the prognosis of HCC patients. Additionally, we discovered that typical HCC treatment medicines had varying impacts on patients classified as high or low risk, and that individuals classified as high risk are more likely to fail immunotherapy. Additionally, the high-risk group expressed more immunological checkpoints. The immunological status of patients in different risk categories varies as well, and patients with a high-risk score have a diminished ability to fight cancer. Finally, PPI analysis identified ten related genes with potential for research. Conclusion: Our prognostic model had good and reliable predictive ability, as well as clinical diagnosis and treatment guiding significance. Eight prognostic MRGs and ten network core genes merited further investigation.
Collapse
Affiliation(s)
- Wei Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dongxu Zhao
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaowei Huang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Man Zhang
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Minyue Yin
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lu Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongyu Wu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhen Weng
- Cyrus Tang Hematology Center and Ministry of Education Engineering Center of Hematological Disease, and the Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Chunfang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|