1
|
Pinto P, Donzì D, Di Vincenzo S, Ferraro M, Lazzara V, Bruno MG, Moukri N, Patella B, Inguanta R, Pace E. Increased TSLP and oxidative stress reflect airway epithelium injury upon cigarette smoke exposure. Is there a role for carbocysteine? Toxicology 2025; 515:154160. [PMID: 40280536 DOI: 10.1016/j.tox.2025.154160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a chronic inflammatory degenerative disease. Disease exacerbations accelerate lung function deterioration. Airway epithelium has a central role in COPD pathophysiology. Airway epithelium releases alarmins including the thymic stromal lymphopoietin (TSLP) in response to exogenous stressors. Notch-1 in the nucleus acts as inhibitor of TSLP gene expression. Here, we investigated, in human bronchial epithelial cells, the effects of cigarette smoke extract (CSE) in TSLP production exploring the relationship with oxidative stress events and with Notch-1 signaling. In CSE exposed 16HBE, the effects of carbocysteine were assessed on: intracellular and extracellular oxidative stress; nuclear Notch-1 expression; TSLP gene expression. The TSLP levels in sera from non-smokers, smokers and exacerbated COPD patients (before and after therapy with carbocysteine) were also explored. CSE induced TSLP gene expression and oxidative stress and reduced nuclear expression of Notch-1 in 16HBE. The use of an electrochemical sensor allowed a reliable tool to assess oxidative stress. TSLP concentrations were higher in sera from smokers and exacerbated COPD than in sera from non-smokers. Carbocysteine was able to counteract the effects of CSE in oxidative stress and in TSLP gene expression in 16HBE and to reduce TSLP in exacerbated COPD. In conclusion, increased oxidative stress induced by smoke exposure in airway epithelium leads to increased TSLP production and carbocysteine in vitro and in vivo mitigates the induced TSLP production. Oxidative stress detection by electrochemical sensors can open new avenues for evaluating epithelial damage and for identifying patients eligible to alarmin targeted biologics.
Collapse
Affiliation(s)
- Paola Pinto
- PhD National Program in One Health Approaches To Infectious Diseases and Life Science Research, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia 27100, Italy; Istituto di Farmacologia Traslazionale (IFT) - Consiglio Nazionale delle Ricerche (CNR), Palermo 90146, Italy.
| | - Daniele Donzì
- Istituto di Farmacologia Traslazionale (IFT) - Consiglio Nazionale delle Ricerche (CNR), Palermo 90146, Italy.
| | - Serena Di Vincenzo
- Istituto di Farmacologia Traslazionale (IFT) - Consiglio Nazionale delle Ricerche (CNR), Palermo 90146, Italy.
| | - Maria Ferraro
- Istituto di Farmacologia Traslazionale (IFT) - Consiglio Nazionale delle Ricerche (CNR), Palermo 90146, Italy.
| | - Valentina Lazzara
- Dipartimento di Scienze Economiche, Aziendali e Statistiche - Università Degli Studi di Palermo, Palermo 90100, Italy.
| | | | - Nadia Moukri
- Dipartimento di Ingegneria, Università Degli Studi di Palermo, Palermo 90100, Italy.
| | - Bernardo Patella
- Dipartimento di Ingegneria, Università Degli Studi di Palermo, Palermo 90100, Italy.
| | - Rosalinda Inguanta
- Dipartimento di Ingegneria, Università Degli Studi di Palermo, Palermo 90100, Italy.
| | - Elisabetta Pace
- Istituto di Farmacologia Traslazionale (IFT) - Consiglio Nazionale delle Ricerche (CNR), Palermo 90146, Italy.
| |
Collapse
|
2
|
Li M, Wang Y, Li X, Xu J, Yan L, Tang S, Liu C, Shi M, Liu R, Zhao Y, Zhang Y, Yang L, Zhang Y, Wang G, Li Z, Guo Y, Feng Y, Liu P. Pharmacological targeting of the mitochondrial phosphatase PTPMT1 sensitizes hepatocellular carcinoma to ferroptosis. Cell Death Dis 2025; 16:257. [PMID: 40189563 PMCID: PMC11973169 DOI: 10.1038/s41419-025-07581-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 03/07/2025] [Accepted: 03/21/2025] [Indexed: 04/09/2025]
Abstract
Protein tyrosine phosphatase mitochondrial 1 (PTPMT1), is a member of the protein tyrosine phosphatase superfamily localized on the mitochondrial inner membrane, and regulates the biosynthesis of cardiolipin. Given the important position of PTPMT1 in mitochondrial function and metabolism, pharmacological targeting of PTPMT1 is considered a promising manner in disease treatments. In this study, we mainly investigated the role of PTPMT1 in hepatocellular carcinoma (HCC) ferroptosis, a new type of cell death accompanied by significant iron accumulation and lipid peroxidation. Herein, the pharmacological inhibition of PTPMT1 was induced by alexidine dihydrochloride (AD, a dibiguanide compound). Human HCC cell lines with PTPMT1 knockout and PTPMT1 overexpression were established using CRISPR/Cas9 and lentiviral transduction methods, respectively. The position of PTPMT1 in regulating HCC ferroptosis was evaluated in vitro and in vivo. Our results indicated that pharmacological inhibition of PTPMT1, facilitated by AD treatment, heightens the susceptibility of HCC to cystine deprivation-ferroptosis, and AD treatment promoted the conversion from ferritin-bound Fe3+ to free Fe2+, which contributed to the labile iron pool in cytoplasm. Meanwhile, pharmacological inhibition of PTPMT1 also induced the formation of both swollen mitochondria and donut mitochondria, and enhanced the metabolism process form succinate to fumarate in mitochondrial tricarboxylic acid (TCA) cycle, which increased the sensitivity of HCC cells to cystine deprivation-induced ferroptosis. In total, our work reveals the close association of PTPMT1 with cysteine deprivation-induced ferroptosis, providing a novel insight into chemotherapy strategies against human HCC.
Collapse
Affiliation(s)
- Miaomiao Li
- Department of Critical Care Medicine, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Yi Wang
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Xinyan Li
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiayi Xu
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liangwen Yan
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shenkang Tang
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Chenyue Liu
- Department of Medical Image, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengjiao Shi
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rongrong Liu
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yaping Zhao
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Zhang
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lan Yang
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yinggang Zhang
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Gang Wang
- Department of Critical Care Medicine, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, China
| | - Zongfang Li
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of General Surgery, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Guo
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Yetong Feng
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Pengfei Liu
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Key Laboratory of Environment and Genes Related To Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, China.
| |
Collapse
|
3
|
Marcella S, Braile M, Grimaldi AM, Soricelli A, Smaldone G. Exploring thymic stromal lymphopoietin in the breast cancer microenvironment: A preliminary study. Oncol Lett 2025; 29:182. [PMID: 40007626 PMCID: PMC11851057 DOI: 10.3892/ol.2025.14928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/01/2024] [Indexed: 02/27/2025] Open
Abstract
Cancer participates in the immune response by releasing several factors, such as cytokines and chemokines, which can alter the ability of the immune system to identify and eradicate cancer. Notably, the role of thymic stromal lymphopoietin (TSLP) in breast cancer (BC) is currently controversial and unclear. The present study characterized the role of TSLP in BC and its interaction with peripheral blood mononuclear cells, focusing on the CD14+CD16+ monocyte population via the secretome released by BC cells. The UALCAN and Gene Expression Profiling Interactive Analysis tools were employed to define TSLP expression in BC, and its levels in different BC subtype cell lines were validated using reverse transcription-quantitative PCR and ELISA. In addition, TIMER 2.0 was used to determine the abundance of immune cell infiltration in BC. Subsequently, the effects of BC conditioned medium (CM) and TSLP were investigated on CD14+CD16+ monocytes via flow cytometry. A Cellular Reactive Oxygen Species (ROS) Assay Kit, Fluo-4 AM assay and ATPlite assay were used to explore the effects of TSLP on monocyte cellular metabolism. The results showed that a reduction in TSLP expression was associated with an unfavorable prognosis in BC. Furthermore, a higher expression of TSLP in CM from a non-tumoral cell line increased the percentage of CD14+CD16+ monocytes. Finally, it was revealed that TSLP decreased intracellular ATP levels, while increasing intracellular calcium levels and producing ROS in THP-1 cells. Therefore, TSLP may be considered a novel biomarker in the BC microenvironment, where it could regulate cellular metabolism through the expansion of CD14+CD16+ monocytes.
Collapse
|
4
|
Yue L, Qiao P, Li X, Xue K, Pang B, Bai Y, Song P, Qu H, Qiao H, Sun D, Wu X, Liu R, Wang G, Dang E. NLRX1 deficiency exacerbates skin inflammation in atopic dermatitis by disrupting mitophagy. Clin Immunol 2025; 272:110442. [PMID: 39884322 DOI: 10.1016/j.clim.2025.110442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/09/2025] [Accepted: 01/25/2025] [Indexed: 02/01/2025]
Abstract
NLRX1 is an important regulator of inflammatory signaling in innate immune cells. Recent studies indicate NLRX1 activation may be a novel mechanism for inflammatory diseases, however, it has not been explored in atopic dermatitis (AD). Our study aims to investigate the potential role of NLRX1 in the pathogenesis of AD. We observed a significant decrease in NLRX1 expression in AD skin lesions and MC903-indued AD dermatitis. NLRX1 deficiency exacerbated AD inflammation, characterized by increased skin thickness, exacerbated inflammatory infiltration, and compromised skin barrier function. Mechanistically, NLRX1 regulated TSLP expression through Parkin-PINK1-mediated mitophagy in keratinocytes. Furthermore, topical application of NLRX1 agonist alleviated AD progression, including reduced ear thickness, diminished redness, and improved skin barrier function. This study provides novel insights into the regulatory role of NLRX1 in skin inflammation in AD, highlighting the potential therapeutic implications of targeting NLRX1 and mitophagy in AD treatment.
Collapse
Affiliation(s)
- Lixin Yue
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Pei Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xia Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ke Xue
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Bingyu Pang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yaxing Bai
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Pu Song
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Huanhuan Qu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hongjiang Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Danni Sun
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xingan Wu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Rongrong Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
5
|
Aleksieva S, Lingegowda H, Sisnett DJ, McCallion A, Zutautas KB, Vo DHN, Childs T, Lessey B, Tayade C. Thymic stromal lymphopoietin contributes to endometriotic lesion proliferation and disease-associated inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:vkae021. [PMID: 40073108 PMCID: PMC11952880 DOI: 10.1093/jimmun/vkae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/12/2024] [Indexed: 03/14/2025]
Abstract
Endometriosis is a chronic disorder in which endometrial-like tissue presents outside the uterus. Patients with endometriosis have been shown to exhibit aberrant immune responses within the lesion microenvironment and in circulation which contribute to the development of endometriosis. Thymic stromal lymphopoietin (TSLP) is an alarmin involved in cell proliferation and the induction of T helper 2 (Th2) inflammation in various diseases, such as asthma, atopic dermatitis, and pancreatic and breast cancer. Recent studies have detected TSLP within endometriotic lesions and shown that its concentrations are elevated in the peritoneal fluid of patients compared with control subjects. However, its role in disease pathophysiology remains unclear. Here, we compared TSLP messenger RNA and protein expression between patient eutopic endometrium, endometriotic lesions, and control endometrial samples. We also assessed its effect on the proliferation and apoptosis of human endometriosis-representative cell lines, as well as on lesion development and inflammation in a mouse model of the disease. We demonstrated that TSLP expression was elevated in the stroma of patient endometriotic lesions compared with control endometrial samples. In cell lines, TSLP treatment reduced the apoptosis of endometrial stromal cells and promoted the proliferation of THP-1 cells. In mice induced with endometriosis, TSLP treatment induced a Th2 immune response within the lesion microenvironment, and led to TSLP receptor modulation in macrophages, dendritic cells, and CD4+ T cells. Furthermore, treatment increased murine endometriotic lesion proliferation. Overall, these results suggest that TSLP modulates the endometriotic lesion microenvironment and promotes a Th2 immune response that could support lesion development.
Collapse
Affiliation(s)
- Stanimira Aleksieva
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | | | - Danielle J Sisnett
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Alison McCallion
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Katherine B Zutautas
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Dan Hoang Nguyet Vo
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Timothy Childs
- Department of Pathology and Molecular Medicine, Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Bruce Lessey
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
6
|
Zhao H, Wang W, Yang Y, Feng C, Lin T, Gong L. Norepinephrine Attenuates Benzalkonium Chloride-Induced Dry Eye Disease by Regulating the PINK1/Parkin Mitophagy Pathway. Ocul Immunol Inflamm 2024:1-15. [PMID: 39731302 DOI: 10.1080/09273948.2024.2447816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND Increased reactive oxygen species (ROS) are involved in the pathological process of dry eye disease. Our previous results suggested that norepinephrine (NE) has a protective effect on dry eye. PURPOSE This study explored the potential therapeutic role and underlying mechanisms of NE in benzalkonium chloride (BAC)-induced dry eye disease. METHODS BAC-pretreated human corneal epithelial cells (HCEpiC) were cultured with various concentrations of NE. A BAC-induced dry eye mice model was established to explore the role of NE. Alterations in mice corneal tissues, ROS levels, mitochondrial function, and mitophagy levels were analyzed. RESULTS In vitro, our results revealed that BAC-exposed HCEpiC led to mitochondrial malfunction, which involved excessive ROS production, decreased mitochondrial membrane potential (MMP), and promoted mitochondrial fragmentation through increased DRP1 and fission protein 1 (Fis1) expression and reduced mitofusin 2 (Mfn2) expression. Moreover, topical BAC application induced excessive mitophagy. These effects were reversed by NE. Additionally, the increased expression of LC3B, SQSTM1/p62, PINK1, and Parkin, which control mitophagy, in BAC-exposed HCEpiC was suppressed by NE. In BAC-induced C57BL/6J mice, NE resulted in lower fluorescein staining scores, decreased TUNEL-positive cells, and decreased mitochondrial fragmentation. CONCLUSIONS In conclusion, our findings showed that NE therapy prevented HCEpiC following BAC application by regulating mitochondrial quality control, which is controlled by PINK1/Parkin-dependent mitophagy. Our research suggests a potential targeted treatment for dry eye disease.
Collapse
Affiliation(s)
- Han Zhao
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Wushuang Wang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Yun Yang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Changming Feng
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Tong Lin
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Lan Gong
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
7
|
Choudhary I, Lamichhane R, Singamsetty D, Vo T, Brombacher F, Patial S, Saini Y. Cell-Specific Contribution of IL-4 Receptor α Signaling Shapes the Overall Manifestation of Allergic Airway Disease. Am J Respir Cell Mol Biol 2024; 71:702-717. [PMID: 39254378 PMCID: PMC11622633 DOI: 10.1165/rcmb.2024-0208oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/10/2024] [Indexed: 09/11/2024] Open
Abstract
IL-4 and IL-13 play a critical role in allergic asthma pathogenesis via their common receptor IL-4Rα. However, the cell-specific role of IL-4Rα in mixed allergen (MA)-induced allergic asthma has remained unclear. Therefore, we aimed to identify the cell-specific contribution of IL-4Rα signaling in the manifestation of various pathological outcomes in mice with allergic airway disease. We compared MA-induced pathological outcomes between hematopoietic progenitor cell (HPC)- or non-HPC-specific IL-4Rα-deficient chimera, myeloid cell-specific IL-4Rα-deficient (LysMcre+/+IL-4Rαfl/fl), and airway epithelial cell-specific IL-4Rα-deficient (CCSP-Cre+/IL-4Rαfl/fl) mice. Chimeric mice with systemic IL-4Rα sufficiency displayed hallmark features of allergic asthma, including eosinophilic and lymphocytic infiltration, type 2 (T-helper type 2) cytokine/chemokine production, IgE production, and lung pathology. These features were markedly reduced in chimeric mice with systemic IL-4Rα deficiency. Non-HPC-specific IL-4Rα-deficient mice displayed typical inflammatory features of allergic asthma but with markedly reduced mucous cell metaplasia (MCM). Deletion of IL-4Rα signaling on airway epithelial cells, a subpopulation within the non-HPC lineage, resulted in almost complete absence of MCM. In contrast, all features of allergic asthma except for MCM and mucin production were mitigated in HPC-specific IL-4Rα-deficient chimeric mice. Deleting IL-4Rα signaling in myeloid cells, a subpopulation within the HPC lineage, significantly alleviated MA-induced allergic airway inflammatory responses, but, similar to the HPC-specific IL-4Rα-deficient chimeric mice, these mice showed significant MCM and mucin production. Our findings demonstrate that the differential allergen responsiveness seen in mice with HPC-specific and non-HPC-specific IL-4Rα deficiency is predominantly driven by the absence of IL-4Rα in myeloid cells and airway epithelial cells, respectively. Our findings also highlight distinct and mutually exclusive roles of IL-4Rα signaling in mediating pathological outcomes within the myeloid and airway epithelial cell compartments.
Collapse
Affiliation(s)
- Ishita Choudhary
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Richa Lamichhane
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Dhruthi Singamsetty
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Thao Vo
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology and Division of Immunology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Science, University of Cape Town, Cape Town, South Africa; and
| | - Sonika Patial
- National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina
| | - Yogesh Saini
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
8
|
Kotrba J, Müller I, Pausder A, Hoffmann A, Camp B, Boehme JD, Müller AJ, Schreiber J, Bruder D, Kahlfuss S, Dudeck A, Stegemann-Koniszewski S. Innate players in Th2 and non-Th2 asthma: emerging roles for the epithelial cell, mast cell, and monocyte/macrophage network. Am J Physiol Cell Physiol 2024; 327:C1373-C1383. [PMID: 39401422 DOI: 10.1152/ajpcell.00488.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 11/12/2024]
Abstract
Asthma is one of the most common chronic respiratory diseases and is characterized by airway inflammation, increased mucus production, and structural changes in the airways. Recently, there is increasing evidence that the disease is much more heterogeneous than expected, with several distinct asthma endotypes. Based on the specificity of T cells as the best-known driving force in airway inflammation, bronchial asthma is categorized into T helper cell 2 (Th2) and non-Th2 asthma. The most studied effector cells in Th2 asthma include T cells and eosinophils. In contrast to Th2 asthma, much less is known about the pathophysiology of non-Th2 asthma, which is often associated with treatment resistance. Besides T cells, the interaction of myeloid cells such as monocytes/macrophages and mast cells with the airway epithelium significantly contributes to the pathogenesis of asthma. However, the underlying molecular regulation and particularly the specific relevance of this cellular network in certain asthma endotypes remain to be understood. In this review, we summarize recent findings on the regulation of and complex interplay between epithelial cells and the "nonclassical" innate effector cells mast cells and monocytes/macrophages in Th2 and non-Th2 asthma with the ultimate goal of providing the rationale for future research into targeted therapy regimens.
Collapse
Affiliation(s)
- Johanna Kotrba
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Ilka Müller
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg/Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Alexander Pausder
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Aaron Hoffmann
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Belinda Camp
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg/Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Julia D Boehme
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andreas J Müller
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Jens Schreiber
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg/Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dunja Bruder
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sascha Kahlfuss
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Anne Dudeck
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Sabine Stegemann-Koniszewski
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg/Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
9
|
Dutta D, Pajaniradje S, Nair AS, Chandramohan S, Bhat SA, Manikandan E, Rajagopalan R. An in-vitro study of active targeting & anti-cancer effect of folic acid conjugated chitosan encapsulated indole curcumin analogue nanoparticles. Int J Biol Macromol 2024; 282:136990. [PMID: 39505180 DOI: 10.1016/j.ijbiomac.2024.136990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/18/2024] [Accepted: 10/26/2024] [Indexed: 11/08/2024]
Abstract
Natural compounds like Curcumin with anti-cancer, anti-inflammatory and anti-bacterial properties are good target for drug development but its poor aqueous solubility, bioavailability, and low retention properties makes it a poor drug candidate in clinical settings. Here in this study, we have used an indole curcumin analogue (ICA) that has better bioavailability and enhanced permeability and retention (EPR) effect than curcumin. To make an active targeting drug we have designed folic acid conjugated chitosan-based nanoparticles encapsulating Indole curcumin analogue (CS-FA-ICA-np). The physical characteristics of CS-FA-ICA-np were evaluated by DLS, SEM, FTIR, XPS, XRD and TGA. Anti-cancer activity was analyzed using MTT, Fluorescence staining, Flow cytometry, comet assay, DNA fragmentation assay, wound healing, gelatin zymography, chick chorioallantoic membrane (CAM) assay and hemolysis assay. The size of CS-FA-ICA-nps were found to be 111 nm, and spherical in shape as observed in SEM. In-vitro assays show that CS-FA-ICA np has IC50 of 90 μg/mL in MDA-MB-231, increases ROS concentration, arrests cell cycle in G2-M phase, reduces matrix metalloproteinase-9 (MMP-9) activity and initiates apoptosis in cancer cells. Our results indicate that encapsulation of ICA increases its anti-cancer effect, drug stability, enhanced drug delivery to cancer microenvironment.
Collapse
Affiliation(s)
- Dipranil Dutta
- Department of Biochemistry and Molecular Biology, School of Life Science, Pondicherry University, Puducherry 605014, India
| | - Sankar Pajaniradje
- Department of Biochemistry and Molecular Biology, School of Life Science, Pondicherry University, Puducherry 605014, India
| | - Anjali Suresh Nair
- Department of Biochemistry and Molecular Biology, School of Life Science, Pondicherry University, Puducherry 605014, India
| | - Sathyapriya Chandramohan
- Department of Biochemistry and Molecular Biology, School of Life Science, Pondicherry University, Puducherry 605014, India
| | - Suhail Ahmad Bhat
- Department of Biochemistry and Molecular Biology, School of Life Science, Pondicherry University, Puducherry 605014, India
| | - E Manikandan
- Centre for Nano Sciences and Technology, Madanjeet School of Green Energy Technologies, Pondicherry University, Puducherry 605014, India
| | - Rukkumani Rajagopalan
- Department of Biochemistry and Molecular Biology, School of Life Science, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
10
|
Li S, Feng S, Chen Y, Sun B, Zhang N, Zhao Y, Han J, Liu Z, He YQ, Wang Q. Ciclopirox platinum(IV) conjugates suppress tumors by promoting mitophagy and provoking immune responses. J Inorg Biochem 2024; 260:112696. [PMID: 39142055 DOI: 10.1016/j.jinorgbio.2024.112696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/11/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Mitophagy is an important target for antitumor drugs development. A series of ciclopirox (CPX) platinum(IV) hybrids targeting PTEN induced putative kinase 1 (PINK1)/Parkin mediated mitophagy were designed and prepared as antitumor agents. The dual CPX platinum(IV) complex with cisplatin core was screened out as a candidate, which displayed promising antitumor activities both in vitro and in vivo. Mechanistically, it caused serious DNA damage in tumor cells. Then, remarkable mitochondrial damage was induced accompanied by the mitochondrial membrane depolarization and reactive oxygen species generation, which further promoted apoptosis through the Bcl-2/Bax/Caspase3 pathway. Furthermore, mitophagy was ignited via the PINK1/Parkin/P62/LC3 axis, and exhibited positive influence on promoting the apoptosis of tumor cells. The antitumor immunity was boosted by the block of immune check point programmed cell death ligand-1 (PD-L1), which further increased the density of T cells in tumors. Subsequently, the metastasis of tumor cells was inhibited by inhibiting angiogenesis in tumors.
Collapse
Affiliation(s)
- Suying Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Shuaiqi Feng
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Yan Chen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China; Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Bin Sun
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Yanna Zhao
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China; Liaocheng High-Tech Biotechnology Co., Ltd, Liaocheng 252059, PR China
| | - Zhifang Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Yan-Qin He
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China.
| |
Collapse
|
11
|
Zhu W, Qiong D, Changzhi X, Meiyu J, Hui L. Macrophage polarization regulation shed lights on immunotherapy for CaOx kidney stone disease. Biomed Pharmacother 2024; 179:117336. [PMID: 39180792 DOI: 10.1016/j.biopha.2024.117336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
Kidney stone disease (KSD) is a major public health concern associated with high morbidity and recurrence, places a significant burden on the health care system worldwide. Calcium oxalate (CaOx) alone or a mixture of CaOx and calcium phosphate stones accounting for more than 80 % of cases. However, beyond surgical removal, the prevention and reduction of recurrence of CaOx kidney stones have always been a challenge. Given that macrophages are traditional innate immune cells that play critical roles in the clearance of pathogens and the maintenance of tissue homeostasis, which have gained more and more interests in nephrolithiasis. Several studies recently clearly demonstrated that M2-macrophage could reduce the renal calcium oxalate (CaOx) crystal acumination, and provide premise insights and therapeutic options for KSD by modulating the macrophage phenotypes. However, the mechanism of macrophage-polarization regulation and that effects on kidney stone prevention and treatments are far from clear. Here, we comprehensively reviewed the literatures related to cytokines, epigenetic modifications and metabolic reprograming of macrophage in CaOx kidney stone disease, aimed to provide better understandings on macrophage polarization regulation as well as its potential clinical applications in CaOx kidney stone disease treatments and prevention.
Collapse
Affiliation(s)
- Wang Zhu
- Department of Urology, The People's Hospital of Longhua, Shenzhen 518109, Guangdong, China.
| | - Deng Qiong
- Department of Urology, The People's Hospital of Longhua, Shenzhen 518109, Guangdong, China
| | - Xu Changzhi
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jin Meiyu
- Department of Urology, The People's Hospital of Longhua, Shenzhen 518109, Guangdong, China
| | - Liang Hui
- Department of Urology, The People's Hospital of Longhua, Shenzhen 518109, Guangdong, China.
| |
Collapse
|
12
|
Zhang K, Fang X, Zhang Y, Zhang Y, Chao M. Transcriptional activation of PINK1 by MyoD1 mediates mitochondrial homeostasis to induce renal calcification in pediatric nephrolithiasis. Cell Death Discov 2024; 10:397. [PMID: 39242558 PMCID: PMC11379875 DOI: 10.1038/s41420-024-02117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 09/09/2024] Open
Abstract
This study aims to uncover the molecular mechanisms underlying pediatric kidney stone formation induced by renal calcium deposition by utilizing high-throughput sequencing data to reveal the regulation of PINK1 by MyoD1. We performed transcriptome sequencing on peripheral blood samples from healthy children and children with kidney stones to obtain differentially expressed genes (DEGs). Genes related to mitochondrial oxidative stress were obtained from the Genecards website and intersected with DEGs to obtain candidate target genes. Additionally, we conducted protein-protein interaction (PPI) analysis using the STRING database to identify core genes involved in pediatric kidney stone disease (KSD) and predicted their transcription factors using the hTFtarget database. We assessed the impact of MyoD1 on the activity of the PINK1 promoter using dual-luciferase reporter assays and investigated the enrichment of MyoD1 on the PINK1 promoter through chromatin immunoprecipitation (ChIP) experiments. To validate our hypothesis, we selected HK-2 cells and established an in vitro kidney stone model induced by calcium oxalate monohydrate (COM). We evaluated the expression levels of various genes, cell viability, volume of adherent crystals in each group, as well as mitochondrial oxidative stress in cells by measuring mitochondrial membrane potential (Δψm), superoxide dismutase (SOD) activity, reactive oxygen species (ROS), and malondialdehyde (MDA) content. Mitochondrial autophagy was assessed using mtDNA fluorescence staining and Western blot analysis of PINK1-related proteins. Apoptosis-related proteins were evaluated using Western blot analysis, and cell apoptosis was measured using flow cytometry. Furthermore, we developed a rat model of KSD and assessed the expression levels of various genes, as well as the pathologic changes in rat renal tissues using H&E and von Kossa staining, transmission electron microscopy (TEM), and the expression of creatinine, blood urea nitrogen, neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule-1 (KIM-1) to evaluate the mitochondrial oxidative stress in vivo (through measurement of Δψm, SOD activity, ROS, and MDA content). Mitochondrial autophagy was evaluated by Western blot analysis of PINK1-associated proteins. Apoptosis-related proteins were detected using Western blot analysis, and cellular apoptosis was examined using cell flow cytometry and TUNEL staining. Bioinformatics analysis revealed that the PINK1 gene is upregulated and vital in pediatric kidney stone patients. Our in vitro and in vivo experiments demonstrated that silencing PINK1 could inhibit kidney stone formation by suppressing mitochondrial oxidative stress both in vitro and in vivo. We identified MyoD1 as an upstream transcription factor of PINK1 that contributes to the occurrence of pediatric kidney stones through the activation of PINK1. Our in vivo and in vitro experiments collectively confirmed that silencing MyoD1 could inhibit mitochondrial oxidative stress, mitochondrial autophagy, and cellular apoptosis in a rat model of kidney stones by downregulating PINK1 expression, consequently suppressing the formation of kidney stones. In this study, we discovered that MyoD1 may promote kidney stone formation and development in pediatric patients by transcriptionally activating PINK1 to induce mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Kaiping Zhang
- Department of Urology, Anhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch), Hefei, 230000, PR China
| | - Xiang Fang
- Department of Urology, Anhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch), Hefei, 230000, PR China
| | - Ye Zhang
- Department of Urology, Anhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch), Hefei, 230000, PR China
| | - Yin Zhang
- Department of Urology, Anhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch), Hefei, 230000, PR China
| | - Min Chao
- Department of Urology, Anhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch), Hefei, 230000, PR China.
| |
Collapse
|
13
|
Yan S, Yang B, Qin H, Du C, Liu H, Jin T. Exploring the therapeutic potential of monoclonal antibodies targeting TSLP and IgE in asthma management. Inflamm Res 2024; 73:1425-1434. [PMID: 38907743 DOI: 10.1007/s00011-024-01908-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND In recent years, there has been a growing interest in the utilization of biologic therapies for the management of asthma. Both TSLP and IgE are important immune molecules in the development of asthma, and they are involved in the occurrence and regulation of inflammatory response. METHODS A comprehensive search of PubMed and Web of Science was conducted to gather information on anti-TSLP antibody and anti-IgE antibody. RESULTS This investigation elucidates the distinct mechanistic roles of Thymic Stromal Lymphopoietin (TSLP) and Immunoglobulin E (IgE) in the pathogenesis of asthma, with a particular emphasis on delineating the therapeutic mechanisms and pharmacological properties of monoclonal antibodies targeting IgE and TSLP. Through a meticulous examination of clinical trials involving paradigmatic agents such as omalizumab and tezepelumab, we offer valuable insights into the potential treatment modalities for diseases with shared immunopathogenic pathways involving IgE and TSLP. CONCLUSION The overarching objective of this comprehensive study is to delve into the latest advancements in asthma therapeutics and to provide guidance for future investigations in this domain.
Collapse
Affiliation(s)
- Shuang Yan
- Sichuan University of Arts and Science, DaZhou, 635000, China.
- Key Laboratory of Exploitation and Study of Distinctive Plants in Education Department of Sichuan Province, Sichuan Institute of Arts and Science, DaZhou, 635000, China.
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, ZiGong, 643000, China.
| | - Bowen Yang
- Unit for Drug and Instrument Supervision and Inspection of Wuxi Joint Logistic Support Center, Nanjing, 210000, China
| | - Haichuan Qin
- Sichuan University of Arts and Science, DaZhou, 635000, China
| | - Chengzhen Du
- Sichuan University of Arts and Science, DaZhou, 635000, China
| | - Hua Liu
- Sichuan University of Arts and Science, DaZhou, 635000, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, P.R. China.
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, 230027, China.
- Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
14
|
Deepak K, Roy PK, Das CK, Mukherjee B, Mandal M. Mitophagy at the crossroads of cancer development: Exploring the role of mitophagy in tumor progression and therapy resistance. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119752. [PMID: 38776987 DOI: 10.1016/j.bbamcr.2024.119752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/27/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Preserving a functional mitochondrial network is crucial for cellular well-being, considering the pivotal role of mitochondria in ensuring cellular survival, especially under stressful conditions. Mitophagy, the selective removal of damaged mitochondria through autophagy, plays a pivotal role in preserving cellular homeostasis by preventing the production of harmful reactive oxygen species from dysfunctional mitochondria. While the involvement of mitophagy in neurodegenerative diseases has been thoroughly investigated, it is becoming increasingly evident that mitophagy plays a significant role in cancer biology. Perturbations in mitophagy pathways lead to suboptimal mitochondrial quality control, catalyzing various aspects of carcinogenesis, including establishing metabolic plasticity, stemness, metabolic reconfiguration of cancer-associated fibroblasts, and immunomodulation. While mitophagy performs a delicate balancing act at the intersection of cell survival and cell death, mounting evidence indicates that, particularly in the context of stress responses induced by cancer therapy, it predominantly promotes cell survival. Here, we showcase an overview of the current understanding of the role of mitophagy in cancer biology and its potential as a target for cancer therapy. Gaining a more comprehensive insight into the interaction between cancer therapy and mitophagy has the potential to reveal novel targets and pathways, paving the way for enhanced treatment strategies for therapy-resistant tumors in the near future.
Collapse
Affiliation(s)
- K Deepak
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Pritam Kumar Roy
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Chandan Kanta Das
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Budhaditya Mukherjee
- Infectious Disease and Immunology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Mahitosh Mandal
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
15
|
Peng HX, Chai F, Chen KH, Huang YX, Wei GJ, Yuan H, Pang YF, Luo SH, Wang CF, Chen WC. Reactive Oxygen Species-Mediated Mitophagy and Cell Apoptosis are Involved in the Toxicity of Aluminum Chloride Exposure in GC-2spd. Biol Trace Elem Res 2024; 202:2616-2629. [PMID: 37715092 DOI: 10.1007/s12011-023-03848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023]
Abstract
Aluminum chloride is an inorganic polymeric coagulant commonly found in daily life and various materials. Although male reproductive toxicity has been associated with AlCl3 exposure, the underlying mechanism remains unclear. This study aimed to examine the impact of AlCl3 exposure on mitophagy and mitochondrial apoptosis in testicular tissue and mouse spermatocytes. Reactive oxygen species (ROS) and ATP levels were measured in GC-2spd after AlCl3 exposure using a multifunctional enzyme labeler. The changes in mitochondrial membrane potential (MMP) and TUNEL were observed through confocal laser microscopy, and the expression of proteins associated with mitophagy and apoptosis was analyzed using Western blot. Our results demonstrated that AlCl3 exposure disrupted mitophagy and increased apoptosis-related protein expression in testicular tissues. In the in vitro experiments, AlCl3 exposure induced ROS production, suppressed cell viability and ATP production, and caused a decrease in MMP, leading to mitophagy and cell apoptosis in GC-2spd cells. Intervention with N-acetylcysteine (NAC) reduced ROS production and partially restored mitochondrial function, thereby reversing the resulting mitophagy and cell apoptosis. Our findings provide evidence that ROS-mediated mitophagy and cell apoptosis play a crucial role in the toxicity of AlCl3 exposure in GC-2spd. These results contribute to the understanding of male reproductive toxicity caused by AlCl3 exposure and offer a foundation for future research in this area.
Collapse
Affiliation(s)
- Hui- Xin Peng
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Graduate School of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Fu Chai
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Graduate School of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Ke-Heng Chen
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Graduate School of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Yan-Xin Huang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Graduate School of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Guang-Ji Wei
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Graduate School of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Huixiong Yuan
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Graduate School of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Yan-Fang Pang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Graduate School of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Shi-Hua Luo
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
- Graduate School of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| | - Chun-Fang Wang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
- Graduate School of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| | - Wen-Cheng Chen
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
- Graduate School of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| |
Collapse
|
16
|
Wang FX, Jin LW. Research on the Mechanism and Application of Acupuncture Therapy for Asthma: A Review. J Asthma Allergy 2024; 17:495-516. [PMID: 38828396 PMCID: PMC11144428 DOI: 10.2147/jaa.s462262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024] Open
Abstract
Asthma is a high-risk disease based on airway hyperresponsiveness (AHR). In this review, we found that there are many studies on clinical therapy for asthma that focus on the efficacy of acupuncture therapy and its mechanisms, including the functional connectivity of different brain regions, with the aid of functional magnetic resonance imaging (fMRI), immune responses/cell recognition (innate lymphoid cells and balance of Th1/Th2 and Treg/Th17), intracellular mechanism (autophagy, endoplasmic reticulum stress, and epigenetic alteration), and ligand-receptor/chemical signaling pathway (neurotransmitter, hormone, and small molecules). In this review, we summarized the clinical and experimental evidence for the mechanisms of acupuncture therapy in asthma to offer insights into drug discovery and clinical therapy. Given the paucity of clinical studies on the mechanisms of acupuncture in the treatment of asthma, this review notably included studies based on animal models to investigate the mechanisms of acupuncture in the treatment of asthma.
Collapse
Affiliation(s)
- Fei-xuan Wang
- Department of Clinical Medical College, Qilu Medical College, Zibo, Shandong, People’s Republic of China
| | - Lu-wei Jin
- Department of Acupuncture and Tuina, Wenzhou Hospital of Traditional Chinese Medicine, Wenzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
17
|
Liu BH, Xu CZ, Liu Y, Lu ZL, Fu TL, Li GR, Deng Y, Luo GQ, Ding S, Li N, Geng Q. Mitochondrial quality control in human health and disease. Mil Med Res 2024; 11:32. [PMID: 38812059 PMCID: PMC11134732 DOI: 10.1186/s40779-024-00536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Mitochondria, the most crucial energy-generating organelles in eukaryotic cells, play a pivotal role in regulating energy metabolism. However, their significance extends beyond this, as they are also indispensable in vital life processes such as cell proliferation, differentiation, immune responses, and redox balance. In response to various physiological signals or external stimuli, a sophisticated mitochondrial quality control (MQC) mechanism has evolved, encompassing key processes like mitochondrial biogenesis, mitochondrial dynamics, and mitophagy, which have garnered increasing attention from researchers to unveil their specific molecular mechanisms. In this review, we present a comprehensive summary of the primary mechanisms and functions of key regulators involved in major components of MQC. Furthermore, the critical physiological functions regulated by MQC and its diverse roles in the progression of various systemic diseases have been described in detail. We also discuss agonists or antagonists targeting MQC, aiming to explore potential therapeutic and research prospects by enhancing MQC to stabilize mitochondrial function.
Collapse
Affiliation(s)
- Bo-Hao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen-Zhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zi-Long Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting-Lv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Rui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Deng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Qing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
18
|
Feng Z, Gu L, Lin J, Wang Q, Yu B, Yao X, Feng Z, Zhao G, Li C. Formononetin protects against Aspergillus fumigatus Keratitis: Targeting inflammation and fungal load. Int Immunopharmacol 2024; 132:112046. [PMID: 38593508 DOI: 10.1016/j.intimp.2024.112046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/29/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
PURPOSE To investigate the potential treatment of formononetin (FMN) on Aspergillus fumigatus (A. fumigatus) keratitis with anti-inflammatory and antifungal activity. METHODS The effects of FMN on mice with A. fumigatus keratitis were evaluated through keratitis clinical scores, hematoxylin-eosin (HE) staining, and plate counts. The expression of pro-inflammatory factors was measured using RT-PCR, ELISA, or Western blot. The distribution of macrophages and neutrophils was explored by immunofluorescence staining. The antifungal properties of FMN were assessed through minimum inhibitory concentration (MIC), propidium iodide (PI) staining, fungal spore adhesion, and biofilm formation assay. RESULTS In A. fumigatus keratitis mice, FMN decreased the keratitis clinical scores, macrophages and neutrophils migration, and the expression of TNF-α, IL-6, and IL-1β. In A. fumigatus-stimulated human corneal epithelial cells (HCECs), FMN reduced the expression of IL-6, TNF-α, IL-1β, and NLRP3. FMN also decreased the expression of thymic stromal lymphopoietin (TSLP) and thymic stromal lymphopoietin receptor (TSLPR). Moreover, FMN reduced the levels of reactive oxygen species (ROS) induced by A. fumigatus in HCECs. Furthermore, FMN inhibited A. fumigatus growth, prevented spore adhesion and disrupted fungal biofilm formation in vitro. In vivo, FMN treatment reduced the fungal load in mice cornea at 3 days post infection (p.i.). CONCLUSION FMN demonstrated anti-inflammatory and antifungal properties, and exhibited a protective effect on mouse A. fumigatus keratitis.
Collapse
Affiliation(s)
- Zhuhui Feng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Lingwen Gu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Bing Yu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiaofeng Yao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Zheng Feng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
19
|
Potaczek DP, Bazan-Socha S, Wypasek E, Wygrecka M, Garn H. Recent Developments in the Role of Histone Acetylation in Asthma. Int Arch Allergy Immunol 2024; 185:641-651. [PMID: 38522416 DOI: 10.1159/000536460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/22/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Epigenetic modifications are known to mediate both beneficial and unfavorable effects of environmental exposures on the development and clinical course of asthma. On the molecular level, epigenetic mechanisms participate in multiple aspects of the emerging and ongoing asthma pathology. SUMMARY Studies performed in the last several years expand our knowledge on the role of histone acetylation, a classical epigenetic mark, in the regulation of (patho)physiological processes of diverse cells playing a central role in asthma, including those belonging to the immune system (e.g., CD4+ T cells, macrophages) and lung structure (e.g., airway epithelial cells, pulmonary fibroblasts). Those studies demonstrate a number of specific histone acetylation-associated mechanisms and pathways underlying pathological processes characteristic for asthma, as well as report their modification modalities. KEY MESSAGES Dietary modulation of histone acetylation levels in the immune system might protect against the development of asthma and other allergies. Interfering with the enzymes controlling the histone acetylation status of structural lung and (local) immune cells might provide future therapeutic options for asthmatics. Despite some methodological obstacles, analysis of the histone acetylation levels might improve asthma diagnostics.
Collapse
Affiliation(s)
- Daniel P Potaczek
- Translational Inflammation Research Division and Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Marburg, Germany
- Center for Infection and Genomics of the Lung (CIGL), Member of the Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Bioscientia MVZ Labor Mittelhessen GmbH, Giessen, Germany
| | - Stanisława Bazan-Socha
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Ewa Wypasek
- Krakow Center for Medical Research and Technology, John Paul II Hospital, Krakow, Poland
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| | - Małgorzata Wygrecka
- Center for Infection and Genomics of the Lung (CIGL), Member of the Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Institute of Lung Health, Member of the German Center for Lung Research (DZL), Giessen, Germany
- CSL Behring Innovation GmbH, Marburg, Germany
| | - Holger Garn
- Translational Inflammation Research Division and Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), Marburg, Germany
| |
Collapse
|
20
|
Zhu W, Liu L, Wu J, Gao R, Fu L, Yang X, Zou Y, Zhang S, Luo D. SMYD3 activates the TCA cycle to promote M1-M2 conversion in macrophages. Int Immunopharmacol 2024; 127:111329. [PMID: 38091832 DOI: 10.1016/j.intimp.2023.111329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND SMYD3 refers to a histone lysine methyltransferase from the SMYD family, which acts as a gene transcriptional regulator chiefly through catalysis of the histone subunit 3 at lysine 4 trimethylation (H3K4me3). Great progress has been made that epigenetic modification plays a pivotal role in regulating macrophage polarization. However, the effects of the histone lysine methyltransferase SMYD3 on macrophage polarization and phenotypic switching are unclear. RESULTS We found that LPS/IFN-γ-stimulated macrophages gradually transformed from M1 to M2 in the late stage, and SMYD3 played a key role in this process. As demonstrated by RNA-seq assessment, SMYD3 prominently activated a metabolic pathway known as TCA cycle inside macrophages during M1-M2 conversion. Besides, by modifying H3K4me3 histone, the target genes regulated by SMYD3 were identified via the ChIP-seq assessment, including citrate synthase (CS), succinate dehydrogenase complex subunit C (SDHC) and pyruvate carboxylase (PC). SMYD3 activated the transcriptional activities of the metabolic enzymes CS, SDHC and PC through H3K4me3 by causing the aggregation of citrate, an intramacrophage metabolite, and the depletion of succinate. And additionally, it facilitated the generation of ROS, as well as the expressions of genes associated with mitochondrial respiratory chain complexes. This increased ROS production ultimately induced mitophagy, triggering the M1 to M2 phenotype switch in the macrophages. CONCLUSIONS Our study provides a detailed intrinsic mechanism in the macrophage phenotypic transition process, in short, SMYD3 promotes the M1-M2 conversion of macrophages by activating the TCA cycle through the simultaneous regulation of the transcriptional activities of the metabolic enzymes CS, SDHC and PC.
Collapse
Affiliation(s)
- Wenqiang Zhu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Lina Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Jinjing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Renzhuo Gao
- Queen Marry College, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Liying Fu
- Queen Marry College, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Xiaohong Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Yang Zou
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| | - Shuhua Zhang
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China.
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
21
|
Palma FR, Gantner BN, Sakiyama MJ, Kayzuka C, Shukla S, Lacchini R, Cunniff B, Bonini MG. ROS production by mitochondria: function or dysfunction? Oncogene 2024; 43:295-303. [PMID: 38081963 DOI: 10.1038/s41388-023-02907-z] [Citation(s) in RCA: 116] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/01/2023] [Accepted: 11/21/2023] [Indexed: 01/31/2024]
Abstract
In eukaryotic cells, ATP generation is generally viewed as the primary function of mitochondria under normoxic conditions. Reactive oxygen species (ROS), in contrast, are regarded as the by-products of respiration, and are widely associated with dysfunction and disease. Important signaling functions have been demonstrated for mitochondrial ROS in recent years. Still, their chemical reactivity and capacity to elicit oxidative damage have reinforced the idea that ROS are the products of dysfunctional mitochondria that accumulate during disease. Several studies support a different model, however, by showing that: (1) limited oxygen availability results in mitochondria prioritizing ROS production over ATP, (2) ROS is an essential adaptive mitochondrial signal triggered by various important stressors, and (3) while mitochondria-independent ATP production can be easily engaged by most cells, there is no known replacement for ROS-driven redox signaling. Based on these observations and other evidence reviewed here, we highlight the role of ROS production as a major mitochondrial function involved in cellular adaptation and stress resistance. As such, we propose a rekindled view of ROS production as a primary mitochondrial function as essential to life as ATP production itself.
Collapse
Affiliation(s)
- Flavio R Palma
- Department of Medicine, Division of Hematology Oncology, Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center of Chicago, Northwestern University, Chicago, IL, USA
| | - Benjamin N Gantner
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marcelo J Sakiyama
- Department of Medicine, Division of Hematology Oncology, Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center of Chicago, Northwestern University, Chicago, IL, USA
| | - Cezar Kayzuka
- Department of Pharmacology, Ribeirao Preto College of Nursing, University of Sao Paulo, Sao Paulo, Brazil
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Sao Paulo, Brazil
| | - Brian Cunniff
- Department of Pathology and Laboratory Medicine, Larner School of Medicine, University of Vermont, Burlington, VT, USA
| | - Marcelo G Bonini
- Department of Medicine, Division of Hematology Oncology, Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center of Chicago, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
22
|
Tan B, Zheng X, Xie X, Chen Y, Li Y, He W. MMP11 and MMP14 contribute to the interaction between castration-resistant prostate cancer and adipocytes. Am J Cancer Res 2023; 13:5934-5949. [PMID: 38187060 PMCID: PMC10767328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/10/2023] [Indexed: 01/09/2024] Open
Abstract
Previous studies have demonstrated that adipocytes promote prostate cancer (PCa) cell progression, which facilitates the development of PCa into castration-resistant prostate cancer (CRPC); however, the underlying mechanisms are still not fully understood. Matrix metalloproteinases (MMPs) are a group of proteases responsible for the degradation of extracellular matrix (ECM) and the activation of latent factors. In our study, we detected that MMP11 expression was increased in PCa patients and that a high level of MMP11 was correlated with poor prognosis. Furthermore, siRNA knockdown of MMP11 in CRPC cells not only blocked the delipidation and dedifferentiation of mature adipocytes but also reduced the lipid uptake and utilization of CRPC cells in a cell co-culture model. The number of mitophagosomes and the expression level of Parkin were increased in MMP11-silenced CRPC cells. Moreover, we found that simultaneous downregulation of MMP14 and MMP11 expression may benefit patient survival. Indeed, MMP11/14 knockdown in CRPC cells significantly decreased lipid metabolism and cell invasion, at least partly through the mTOR/HIF1α/MMP2 signaling pathway. Importantly, MMP11/14 knockdown dramatically delayed tumor growth in a xenograft mouse model. Consistently, the decreased lipid metabolism, Ki67 and MMP2 expression, as well as the increased Parkin level were also confirmed in in vivo experiments, further demonstrating the mechanisms responsible for the tumor-promoting effects of MMP11/14. Collectively, our study elucidated the role of MMP11 and MMP14 in the bidirectional crosstalk between adipocytes and CRPC cells and provided the rationale of targeting MMP11/14 for the treatment of CRPC patients.
Collapse
Affiliation(s)
- Bing Tan
- Department of Urology, University-Town Hospital of Chongqing Medical UniversityShapingba District, Chongqing 401331, China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical UniversityShapingba District, Chongqing 401331, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical UniversityYuzhong District, Chongqing 400016, China
| | - Xiaoyu Zheng
- School of Clinical Medicine, Chongqing Medical and Pharmaceutical CollegeShapingba District, Chongqing 401331, China
| | - Xiaoqin Xie
- Department of Clinical Laboratory, Chongqing Blood CenterJiulongpo District, Chongqing 400015, China
| | - Yirong Chen
- Department of Urology, University-Town Hospital of Chongqing Medical UniversityShapingba District, Chongqing 401331, China
| | - Yuehua Li
- Department of Urology, University-Town Hospital of Chongqing Medical UniversityShapingba District, Chongqing 401331, China
| | - Weiyang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical UniversityYuzhong District, Chongqing 400016, China
| |
Collapse
|
23
|
Mokra D, Mokry J, Barosova R, Hanusrichterova J. Advances in the Use of N-Acetylcysteine in Chronic Respiratory Diseases. Antioxidants (Basel) 2023; 12:1713. [PMID: 37760016 PMCID: PMC10526097 DOI: 10.3390/antiox12091713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
N-acetylcysteine (NAC) is widely used because of its mucolytic effects, taking part in the therapeutic protocols of cystic fibrosis. NAC is also administered as an antidote in acetaminophen (paracetamol) overdosing. Thanks to its wide antioxidative and anti-inflammatory effects, NAC may also be of benefit in other chronic inflammatory and fibrotizing respiratory diseases, such as chronic obstructive pulmonary disease, bronchial asthma, idiopathic lung fibrosis, or lung silicosis. In addition, NAC exerts low toxicity and rare adverse effects even in combination with other treatments, and it is cheap and easily accessible. This article brings a review of information on the mechanisms of inflammation and oxidative stress in selected chronic respiratory diseases and discusses the use of NAC in these disorders.
Collapse
Affiliation(s)
- Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia; (R.B.); (J.H.)
| | - Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia;
| | - Romana Barosova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia; (R.B.); (J.H.)
| | - Juliana Hanusrichterova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia; (R.B.); (J.H.)
| |
Collapse
|
24
|
Alka K, Kumar J, Kowluru RA. Impaired mitochondrial dynamics and removal of the damaged mitochondria in diabetic retinopathy. Front Endocrinol (Lausanne) 2023; 14:1160155. [PMID: 37415667 PMCID: PMC10320727 DOI: 10.3389/fendo.2023.1160155] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/01/2023] [Indexed: 07/08/2023] Open
Abstract
Introduction Mitochondrial dynamic plays a major role in their quality control, and the damaged mitochondrial components are removed by autophagy. In diabetic retinopathy, mitochondrial fusion enzyme, mitofusin 2 (Mfn2), is downregulated and mitochondrial dynamic is disturbed resulting in depolarized and dysfunctional mitochondria. Our aim was to investigate the mechanism of inhibition of Mfn2, and its role in the removal of the damaged mitochondria, in diabetic retinopathy. Methods Using human retinal endothelial cells, effect of high glucose (20mM) on the GTPase activity of Mfn2 and its acetylation were determined. Role of Mfn2 in the removal of the damaged mitochondria was confirmed by regulating its acetylation, or by Mfn2 overexpression, on autophagosomes- autolysosomes formation and the mitophagy flux. Results High glucose inhibited GTPase activity and increased acetylation of Mfn2. Inhibition of acetylation, or Mfn2 overexpression, attenuated decrease in GTPase activity and mitochondrial fragmentation, and increased the removal of the damaged mitochondria. Similar phenomenon was observed in diabetic mice; overexpression of sirtuin 1 (a deacetylase) ameliorated diabetes-induced inhibition of retinal Mfn2 and facilitated the removal of the damaged mitochondria. Conclusions Acetylation of Mfn2 has dual roles in mitochondrial homeostasis in diabetic retinopathy, it inhibits GTPase activity of Mfn2 and increases mitochondrial fragmentation, and also impairs removal of the damaged mitochondria. Thus, protecting Mfn2 activity should maintain mitochondrial homeostasis and inhibit the development/progression of diabetic retinopathy.
Collapse
Affiliation(s)
| | | | - Renu A. Kowluru
- Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
25
|
Kowluru RA, Alka K. Mitochondrial Quality Control and Metabolic Memory Phenomenon Associated with Continued Progression of Diabetic Retinopathy. Int J Mol Sci 2023; 24:ijms24098076. [PMID: 37175784 PMCID: PMC10179288 DOI: 10.3390/ijms24098076] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Diabetic retinopathy continues to progress even when hyperglycemia is terminated, suggesting a 'metabolic memory' phenomenon. Mitochondrial dysfunction is closely associated with the development of diabetic retinopathy, and mitochondria remain dysfunctional. Quality control of mitochondria requires a fine balance between mitochondrial fission-fusion, removal of the damaged mitochondria (mitophagy) and formation of new mitochondria (biogenesis). In diabetes, while mitochondrial fusion protein (Mfn2) is decreased, fission protein (Drp1) is increased, resulting in fragmented mitochondria. Re-institution of normal glycemia fails to reverse mitochondrial fragmentation, and dysfunctional mitochondria continue to accumulate. Our aim was to investigate the direct effect of regulation of the mitochondrial fusion process during normal glycemia that follows a high glucose insult on mitochondrial quality control in the 'metabolic memory' phenomenon. Human retinal endothelial cells, incubated in 20 mM glucose for four days, followed by 5 mM glucose for four additional days, with or without the Mfn2 activator leflunomide, were analyzed for mitochondrial fission (live cell imaging), mitophagy (flow cytometry and immunofluorescence microscopy), and mitochondrial mass (mitochondrial copy numbers and MitoTracker labeling). Mitochondrial health was determined by quantifying mitochondrial reactive oxygen species (ROS), respiration rate (Seahorse XF96) and mitochondrial DNA (mtDNA) damage. Addition of leflunomide during normal glucose exposure that followed high glucose prevented mitochondrial fission, facilitated mitophagy and increased mitochondrial mass. Glucose-induced decrease in mitochondrial respiration and increase in ROS and mtDNA damage were also prevented. Thus, direct regulation of mitochondrial dynamics can help maintain mitochondrial quality control and interfere with the metabolic memory phenomenon, preventing further progression of diabetic retinopathy.
Collapse
Affiliation(s)
- Renu A Kowluru
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Kumari Alka
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
26
|
Theofani E, Tsitsopoulou A, Morianos I, Semitekolou M. Severe Asthmatic Responses: The Impact of TSLP. Int J Mol Sci 2023; 24:7581. [PMID: 37108740 PMCID: PMC10142872 DOI: 10.3390/ijms24087581] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Asthma is a chronic inflammatory disease that affects the lower respiratory system and includes several categories of patients with varying features or phenotypes. Patients with severe asthma (SA) represent a group of asthmatics that are poorly responsive to medium-to-high doses of inhaled corticosteroids and additional controllers, thus leading in some cases to life-threatening disease exacerbations. To elaborate on SA heterogeneity, the concept of asthma endotypes has been developed, with the latter being characterized as T2-high or low, depending on the type of inflammation implicated in disease pathogenesis. As SA patients exhibit curtailed responses to standard-of-care treatment, biologic therapies are prescribed as adjunctive treatments. To date, several biologics that target specific downstream effector molecules involved in disease pathophysiology have displayed superior efficacy only in patients with T2-high, eosinophilic inflammation, suggesting that upstream mediators of the inflammatory cascade could constitute an attractive therapeutic approach for difficult-to-treat asthma. One such appealing therapeutic target is thymic stromal lymphopoietin (TSLP), an epithelial-derived cytokine with critical functions in allergic diseases, including asthma. Numerous studies in both humans and mice have provided major insights pertinent to the role of TSLP in the initiation and propagation of asthmatic responses. Undoubtedly, the magnitude of TSLP in asthma pathogenesis is highlighted by the fact that the FDA recently approved tezepelumab (Tezspire), a human monoclonal antibody that targets TSLP, for SA treatment. Nevertheless, further research focusing on the biology and mode of function of TSLP in SA will considerably advance disease management.
Collapse
Affiliation(s)
- Efthymia Theofani
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Aikaterini Tsitsopoulou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Ioannis Morianos
- Host Defense and Fungal Pathogenesis Lab, School of Medicine, University of Crete, 71110 Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71300 Heraklion, Greece
| | - Maria Semitekolou
- Laboratory of Immune Regulation and Tolerance, School of Medicine, University of Crete, 71110 Heraklion, Greece
| |
Collapse
|
27
|
Wang L, Yuan X, Li Z, Zhi F. The Role of Macrophage Autophagy in Asthma: A Novel Therapeutic Strategy. Mediators Inflamm 2023; 2023:7529685. [PMID: 37181813 PMCID: PMC10175021 DOI: 10.1155/2023/7529685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/05/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023] Open
Abstract
Asthma is a chronic respiratory disease frequently associated with airway inflammation and remodeling. The development of asthma involves various inflammatory phenotypes that impact therapeutic effects, and macrophages are master innate immune cells in the airway that exert diverse functions including phagocytosis, antigen presentation, and pathogen clearance, playing an important role in the pathogeneses of asthma. Recent studies have indicated that autophagy of macrophages affects polarization of phenotype and regulation of inflammation, which implies that regulating autophagy of macrophages may be a potential strategy for the treatment of asthma. Thus, this review summarizes the signaling pathways and effects of macrophage autophagy in asthma, which will provide a tactic for the development of novel targets for the treatment of this disease.
Collapse
Affiliation(s)
- Lijie Wang
- Department of Respiratory Medicine, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xingxing Yuan
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150006, China
| | - Zhuying Li
- Department of Respiratory Medicine, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Fumin Zhi
- Department of Medical, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
28
|
Zhu W, Wang C, Xue L, Liu L, Yang X, Liu Z, Zhang S, Luo D. The SMYD3-MTHFD1L-formate metabolic regulatory axis mediates mitophagy to inhibit M1 polarization in macrophages. Int Immunopharmacol 2022; 113:109352. [DOI: 10.1016/j.intimp.2022.109352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
|
29
|
Hung CH, Hsu HY, Chiou HYC, Tsai ML, You HL, Lin YC, Liao WT, Lin YC. Arsenic Induces M2 Macrophage Polarization and Shifts M1/M2 Cytokine Production via Mitophagy. Int J Mol Sci 2022; 23:ijms232213879. [PMID: 36430358 PMCID: PMC9693596 DOI: 10.3390/ijms232213879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Arsenic is an environmental factor associated with epithelial-mesenchymal transition (EMT). Since macrophages play a crucial role in regulating EMT, we studied the effects of arsenic on macrophage polarization. We first determined the arsenic concentrations to be used by cell viability assays in conjunction with previous studies. In our results, arsenic treatment increased the alternatively activated (M2) macrophage markers, including arginase 1 (ARG-1) gene expression, chemokine (C-C motif) ligand 16 (CCL16), transforming growth factor-β1 (TGF-β1), and the cluster of differentiation 206 (CD206) surface marker. Arsenic-treated macrophages promoted A549 lung epithelial cell invasion and migration in a cell co-culture model and a 3D gel cell co-culture model, confirming that arsenic treatment promoted EMT in lung epithelial cells. We confirmed that arsenic induced autophagy/mitophagy by microtubule-associated protein 1 light-chain 3-II (LC3 II) and phosphor-Parkin (p-Parkin) protein markers. The autophagy inhibitor chloroquine (CQ) recovered the expression of the inducible nitric oxide synthase (iNOS) gene in arsenic-treated M1 macrophages, which represents a confirmation that arsenic indeed induced the repolarization of classically activated (M1) macrophage to M2 macrophages through the autophagy/mitophagy pathway. Next, we verified that arsenic increased M2 cell markers in mouse blood and lungs. This study suggests that mitophagy is involved in the arsenic-induced M1 macrophage switch to an M2-like phenotype.
Collapse
Affiliation(s)
- Chih-Hsing Hung
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 812, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hua-Yu Hsu
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsin-Ying Clair Chiou
- Teaching and Research Center, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 812, Taiwan
| | - Mei-Lan Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Huey-Ling You
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Yu-Chih Lin
- Division of General Internal Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Humanities and Education, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wei-Ting Liao
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Medical University, Kaohsiung 807, Taiwan
- Correspondence: (W.-T.L.); (Y.-C.L.)
| | - Yi-Ching Lin
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Medical University, Kaohsiung 807, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Laboratory Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (W.-T.L.); (Y.-C.L.)
| |
Collapse
|