1
|
Corona A, Simoncini S, Richini G, Gatti I, Santorsola C, Patroni A, Tomasini G, Capone A, Zendra E, Shuman M. Ig-M and Ig-A Enriched Ig-G Infusion as Adjuvant Therapy in the Critically ill Patients Experiencing SARS-CoV-2 Severe Infection. J Intensive Care Med 2025; 40:536-546. [PMID: 39648609 DOI: 10.1177/08850666241301689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Introduction: SARS-CoV-2 in patients who need Intensive Care (ICU) is associated with a mortality rate ranging from 10 to 40%-45%, with an increase in morbidity and mortality in presence of sepsis. Methods: We assumed that immunoglobulin (Ig) M and IgA enriched IgG (IGAM) therapy may support SARS COV-2 sepsis-related phase improving patient outcome. We conducted a retrospective case-control study on all the patients admitted to our ICU during the three pandemic waves between February 2020 and April 2021. Upon ICU admission, patients received anticoagulants with the standard supportive treatment (ST) ± IGAM therapy. After matching for the baseline characteristics and treatments, the patients receiving IGAM therapy too (group A), were compared with those undergoing ST (group B) only. Results: 85 patients were enrolled in group A, whereas 111 in group B. The mortality resulted lower in group A [37.6% versus 55.8%, OR: 0.7 (02-08), P = .01)]. A logistic regression analysis identified IGAM treatment as a survival predictor [OR: 0.35 (95%CI, 0.2-0.8)], whereas experiencing a super-infection [OR: 1.88 (95%CI, 1.5-4.9)] and a septic shock [OR: 1.92 (95%CI, 1.4-4.3)] as predictors of death. On day 7, the probability of dying was 3 times higher in patients treated with ST only. Variable life adjustment display (VLAD) was equal to 2.4 in group A, while - 2.2 group B (in terms of lives saved in relation with those expected, in according with Simplified Acute Physiology Score II (SAPS II) score. Conclusion: The treatment based on IGAM infusion seems to give an advantage chance of survival in SARS-CoV-2 severe infection. Further prospective studies are warranted.
Collapse
Affiliation(s)
- Alberto Corona
- ICU, Anaesthesia and Emergency Department, ASST Valcamonica, Esine & Edolo Hospitals, Breno (BS), Italy
| | - Sara Simoncini
- ICU, Anaesthesia and Emergency Department, ASST Valcamonica, Esine & Edolo Hospitals, Breno (BS), Italy
| | - Giuseppe Richini
- ICU, Anaesthesia and Emergency Department, ASST Valcamonica, Esine & Edolo Hospitals, Breno (BS), Italy
| | - Ivan Gatti
- ICU, Anaesthesia and Emergency Department, ASST Valcamonica, Esine & Edolo Hospitals, Breno (BS), Italy
| | - Clemente Santorsola
- ICU, Anaesthesia and Emergency Department, ASST Valcamonica, Esine & Edolo Hospitals, Breno (BS), Italy
| | - Andrea Patroni
- Medical Directorate, ASST Valcamonica, Esine & Edolo Hospitals, Breno (BS), Italy
| | - Giacomina Tomasini
- ICU, Anaesthesia and Emergency Department, ASST Valcamonica, Esine & Edolo Hospitals, Breno (BS), Italy
| | - Alice Capone
- ICU, Anaesthesia and Emergency Department, ASST Spedali Civili di Brescia, Brescia (BS), Italy
| | - Elena Zendra
- ICU, Anaesthesia and Emergency Department, ASST Spedali Civili di Brescia, Brescia (BS), Italy
| | - Myriam Shuman
- Department of Anaesthesiology, Pain Medicine and Perioperative Care, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Gao X, Cai S, Li X, Wu G. Sepsis-induced immunosuppression: mechanisms, biomarkers and immunotherapy. Front Immunol 2025; 16:1577105. [PMID: 40364841 PMCID: PMC12069044 DOI: 10.3389/fimmu.2025.1577105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
Sepsis, a life-threatening organ dysfunction resulting from a dysregulated host response to infection, initiates a complex immune response that varies over time, characterized by sustained excessive inflammation and immunosuppression. Sepsis-induced immunosuppression is now recognized as a major cause of septic death, and identifying effective strategies to counteract it poses a significant challenge. This immunosuppression results from the disruption of immune homeostasis, characterized by the abnormal death of immune effector cells, hyperproliferation of immune suppressor cells, release of anti-inflammatory cytokines, and expression of immune checkpoints. Preclinical studies targeting immunosuppression, particularly with immune checkpoint inhibitors, have shown promise in reversing immunocyte dysfunctions and establishing host resistance to pathogens. Here, our review highlights the mechanisms of sepsis-induced immunosuppression and current diagnostic biomarkers, as well as immune-enhancing strategies evaluated in septic patients and therapeutics under investigation.
Collapse
Affiliation(s)
- Xun Gao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Shijie Cai
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Xiao Li
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Chiscano-Camón L, Ruiz-Sanmartin A, Bajaña I, Bastidas J, Lopez-Martinez R, Franco-Jarava C, Gonzalez JJ, Larrosa N, Riera J, Nuvials-Casals X, Ruiz-Rodríguez JC, Ferrer R. Current perspectives in the management of sepsis and septic shock. Front Med (Lausanne) 2024; 11:1431791. [PMID: 39211340 PMCID: PMC11358069 DOI: 10.3389/fmed.2024.1431791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Within patients with sepsis, there exists significant heterogeneity, and while all patients should receive conventional therapy, there are subgroups of patients who may benefit from specific therapies, often referred to as rescue therapies. Therefore, the identification of these specific patient subgroups is crucial and lays the groundwork for the application of precision medicine based on the development of targeted interventions. Over the years, efforts have been made to categorize sepsis into different subtypes based on clinical characteristics, biomarkers, or underlying mechanisms. For example, sepsis can be stratified into different phenotypes based on the predominant dysregulated host response. These phenotypes can range from hyperinflammatory states to immunosuppressive states and even mixed phenotypes. Each phenotype may require different therapeutic approaches to improve patient outcomes. Rescue strategies for septic shock may encompass various interventions, such as immunomodulatory therapies, extracorporeal support (e.g., ECMO), or therapies targeted at specific molecular or cellular pathways involved in the pathophysiology of sepsis. In recent years, there has been growing interest in precision medicine approaches to sepsis and phenotype identification. Precision medicine aims to tailor treatments to each individual patient based on their unique characteristics and disease mechanisms.
Collapse
Affiliation(s)
- Luis Chiscano-Camón
- Intensive Care Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Departament de Medicina, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Adolf Ruiz-Sanmartin
- Intensive Care Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ivan Bajaña
- Intensive Care Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Juliana Bastidas
- Intensive Care Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Rocio Lopez-Martinez
- Immunology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Clara Franco-Jarava
- Immunology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Juan José Gonzalez
- Microbiology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Nieves Larrosa
- Microbiology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Jordi Riera
- Intensive Care Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Xavier Nuvials-Casals
- Intensive Care Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Juan Carlos Ruiz-Rodríguez
- Intensive Care Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Departament de Medicina, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Ricard Ferrer
- Intensive Care Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Departament de Medicina, Universitat Autonoma de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Agafina A, Aguiar VC, Rossovskaya M, Fartoukh MS, Hajjar LA, Thiéry G, Timsit JF, Gordeev I, Protsenko D, Carbone J, Pellegrini R, Stadnik CMB, Avdeev S, Ferrer M, Heinz CC, Häder T, Langohr P, Bobenhausen I, Schüttrumpf J, Staus A, Ruehle M, Weissmüller S, Wartenburg-Demand A, Torres A. Efficacy and safety of trimodulin in patients with severe COVID-19: results from a randomised, placebo-controlled, double-blind, multicentre, phase II trial (ESsCOVID). Eur J Med Res 2024; 29:418. [PMID: 39138518 PMCID: PMC11321023 DOI: 10.1186/s40001-024-02008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Trimodulin (human polyvalent immunoglobulin [Ig] M ~ 23%, IgA ~ 21%, IgG ~ 56% preparation) has previously been associated with a lower mortality rate in a subpopulation of patients with severe community-acquired pneumonia on invasive mechanical ventilation (IMV) and with clear signs of inflammation. The hypothesis for the ESsCOVID trial was that trimodulin may prevent inflammation-driven progression of severe coronavirus disease 2019 (COVID-19) to critical disease or even death. METHODS Adults with severe COVID-19 were randomised to receive intravenous infusions of trimodulin or placebo for 5 consecutive days in addition to standard of care. The primary efficacy endpoint was a composite of clinical deterioration (Days 6-29) and 28-day all-cause mortality (Days 1-29). RESULTS One-hundred-and-sixty-six patients received trimodulin (n = 84) or placebo (n = 82). Thirty-three patients died, nine during the treatment phase. Overall, 84.9% and 76.5% of patients completed treatment and follow-up, respectively. The primary efficacy endpoint was reported in 33.3% of patients on trimodulin and 34.1% of patients on placebo (P = 0.912). No differences were observed in the proportion of patients recovered on Day 29, days of invasive mechanical ventilation, or intensive care unit-free days. Rates of treatment-emergent adverse events were comparable. A post hoc analysis was conducted in patients with early systemic inflammation by excluding those with high CRP (> 150 mg/L) and/or D-dimer (≥ 3 mg/L) and/or low platelet counts (< 130 × 109/L) at baseline. Forty-seven patients in the trimodulin group and 49 in the placebo group met these criteria. A difference of 15.5 percentage points in clinical deterioration and mortality was observed in favour of trimodulin (95% confidence interval: -4.46, 34.78; P = 0.096). CONCLUSION Although there was no difference in the primary outcome in the overall population, observations in a subgroup of patients with early systemic inflammation suggest that trimodulin may have potential in this setting that warrants further investigation. ESSCOVID WAS REGISTERED PROSPECTIVELY AT CLINICALTRIALS.GOV ON OCTOBER 6, 2020.: NCT04576728.
Collapse
Affiliation(s)
| | | | | | - Muriel Sarah Fartoukh
- Assistance Publique-Hôpitaux de Paris, Service de Médecine Intensive Réanimation, Hôpital Tenon, and DMU APPROCHES, Sorbonne Université, Paris, France
| | - Ludhmila Abrahao Hajjar
- Instituto Do Coração InCor, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Jean-François Timsit
- Medical and Infectious Diseases ICU (M12) APHP, Hôpital Bichat-Claude Bernard, Paris, France
| | | | | | - Javier Carbone
- Hospital General Universitario Gregorio Marañon, Madrid, Spain
| | | | | | - Sergey Avdeev
- First Moscow State Medical University, Moscow, Russia
| | - Miquel Ferrer
- Hospital Clinic of Barcelona, IDIBAPS, CibeRes (CB06/06/0028) University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | - Antoni Torres
- Respiratory and Intensive Care Unit, Hospital Clinic of Barcelona, IDIBAPS, CibeRes (CB06/06/0028), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
5
|
Najdaghi S, Narimani Davani D, Hashemian M, Ebrahimi N. Cerebellitis following COVID-19 infection: A case-based systematic review and pooled analysis. Heliyon 2024; 10:e34497. [PMID: 39113976 PMCID: PMC11305223 DOI: 10.1016/j.heliyon.2024.e34497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Background The COVID-19 pandemic has been linked to neurological complications, including Cerebellitis. This study aims to investigate the clinical features, and consequences of Cerebellitis following COVID-19 infection, informing medical management strategies. Methods A systematic search was conducted through PubMed, Web of Science, Embase, ProQuest, and Cochrane databases from January 2018 to September 12, 2023, on cases post-COVID-19. Demographics, clinical characteristics, and diagnostic techniques were analyzed using descriptive statistics. Chi-Square tests assessed associations between diagnoses and treatments, with visualizations including heatmaps and scatter plots. Results After the final Screening, the analysis of 18 cases revealed Cerebellitis post-COVID-19 spanned 9 countries, predominantly from the USA (27.8 %), with a mean patient age of 40.1 years (±24.6). Males comprised 94.4 % of cases. Common underlying conditions included hypertension (22.2 %) and diabetes (11.1 %). Neurological symptoms presented on average 15.15 ± 12.7 days post-COVID-19 infection. A moderate negative correlation (r = -0.358) was observed between age and symptom onset. Blood and CSF biomarkers showed weak correlations with symptom onset intervals. Treatment efficacy varied, with most cases achieving symptom-free outcomes. The Chi-Square test for diagnosis-treatment associations yielded a p-value of 0.089, and for follow-up outcomes, a p-value of 0.283, indicating no significant statistical associations. Conclusion This systematic review highlights increased reports of Cerebellitis in males in their fourth decade of life, with the highest comorbidities being vascular diseases. Marker assessments show a decrease in CSF protein in half of patients, along with complete recovery following combination treatment with antivirals and steroids in acute Cerebellitis.
Collapse
Affiliation(s)
- Soroush Najdaghi
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Delaram Narimani Davani
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadreza Hashemian
- Department of Medical Librarianship and Information Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Narges Ebrahimi
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Immunology Department, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Braunsteiner J, Siedler S, Jarczak D, Kluge S, Nierhaus A. Septic shock due to Capnocytophaga canimorsus treated with IgM-enriched immunoglobulin as adjuvant therapy in an immunocompetent woman. JOURNAL OF INTENSIVE MEDICINE 2024; 4:265-268. [PMID: 38681795 PMCID: PMC11043631 DOI: 10.1016/j.jointm.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 05/01/2024]
Affiliation(s)
- Josephine Braunsteiner
- Department of Intensive Care Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Siedler
- Department of Intensive Care Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Dominik Jarczak
- Department of Intensive Care Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Axel Nierhaus
- Department of Intensive Care Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Pei F, Gu B, Miao SM, Guan XD, Wu JF. Clinical practice of sepsis-induced immunosuppression: Current immunotherapy and future options. Chin J Traumatol 2024; 27:63-70. [PMID: 38040590 DOI: 10.1016/j.cjtee.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 12/03/2023] Open
Abstract
Sepsis is a potentially fatal condition characterized by the failure of one or more organs due to a disordered host response to infection. The development of sepsis is closely linked to immune dysfunction. As a result, immunotherapy has gained traction as a promising approach to sepsis treatment, as it holds the potential to reverse immunosuppression and restore immune balance, thereby improving the prognosis of septic patients. However, due to the highly heterogeneous nature of sepsis, it is crucial to carefully select the appropriate patient population for immunotherapy. This review summarizes the current and evolved treatments for sepsis-induced immunosuppression to enhance clinicians' understanding and practical application of immunotherapy in the management of sepsis.
Collapse
Affiliation(s)
- Fei Pei
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Clinical Research Center for Critical Care Medicine, Guangzhou, 510080, China
| | - Bin Gu
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Clinical Research Center for Critical Care Medicine, Guangzhou, 510080, China
| | - Shu-Min Miao
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Clinical Research Center for Critical Care Medicine, Guangzhou, 510080, China
| | - Xiang-Dong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Clinical Research Center for Critical Care Medicine, Guangzhou, 510080, China
| | - Jian-Feng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Clinical Research Center for Critical Care Medicine, Guangzhou, 510080, China.
| |
Collapse
|
8
|
Davies K, McLaren J. Destabilisation of T cell-dependent humoral immunity in sepsis. Clin Sci (Lond) 2024; 138:65-85. [PMID: 38197178 PMCID: PMC10781648 DOI: 10.1042/cs20230517] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024]
Abstract
Sepsis is a heterogeneous condition defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. For some, sepsis presents as a predominantly suppressive disorder, whilst others experience a pro-inflammatory condition which can culminate in a 'cytokine storm'. Frequently, patients experience signs of concurrent hyper-inflammation and immunosuppression, underpinning the difficulty in directing effective treatment. Although intensive care unit mortality rates have improved in recent years, one-third of discharged patients die within the following year. Half of post-sepsis deaths are due to exacerbation of pre-existing conditions, whilst half are due to complications arising from a deteriorated immune system. It has been suggested that the intense and dysregulated response to infection may induce irreversible metabolic reprogramming in immune cells. As a critical arm of immune protection in vertebrates, alterations to the adaptive immune system can have devastating repercussions. Indeed, a marked depletion of lymphocytes is observed in sepsis, correlating with increased rates of mortality. Such sepsis-induced lymphopenia has profound consequences on how T cells respond to infection but equally on the humoral immune response that is both elicited by B cells and supported by distinct CD4+ T follicular helper (TFH) cell subsets. The immunosuppressive state is further exacerbated by functional impairments to the remaining lymphocyte population, including the presence of cells expressing dysfunctional or exhausted phenotypes. This review will specifically focus on how sepsis destabilises the adaptive immune system, with a closer examination on how B cells and CD4+ TFH cells are affected by sepsis and the corresponding impact on humoral immunity.
Collapse
Affiliation(s)
- Kate Davies
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, U.K
| | - James E. McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, U.K
| |
Collapse
|
9
|
Tascini C, Cotrufo M, Sozio E, Fanin M, Dellai F, Zanus Forte A, Cesselli D, DE Stefanis P, Ripoli A, Sbrana F, Giuliano S, Fabris M, Girardis M, Curcio F, Bassi F. Potential role of IgM-enriched immunoglobulin as adjuvant treatment in severe SARS-CoV-2 infection. Minerva Anestesiol 2023; 89:884-894. [PMID: 37822148 DOI: 10.23736/s0375-9393.23.17244-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
BACKGROUND Severe COVID-19 patients are characterized by a dysregulated host response to an infection, with uncontrolled pro- and anti- inflammatory pathway activation. Consistent proportion of patients require admission in intensive care units and are at risk of progression to severe forms of disease. These patients are generally admitted during later stages of the disease, when effective antiviral and monoclonal antibody are not indicated. We aimed to assess the potential role of IgM-enriched intra venous immunoglobulins (IGAM) preparations in this setting. METHODS This retrospective, observational case-controlled study was conducted at a single-center University Hospital of Udine in the Friuli Venezia Giulia Region of Italy. Patients referring to the center between March 2020 and April 2021 was included. During the study period, patient who received Pentaglobin® IGAM treatment (N.=56), administered as compassionate use, was compared with a control group (N.=169) to assess, by propensity score analysis, clinical outcome. RESULTS Untreated controls required, respect to patient treated with IGAM therapy, longer time to hospitalization with no significant differences in death and orotracheal intubation requirement. Significant differences in the two cohort were in: SOFA was higher in treated, while D-dimer and P/F ratio was better in the treatment cohort. Multivariate logistic regression analysis performed on the "matched sample," obtained by a weighting propensity score approach, identify, as significant protective factor for death outcome, the Pentaglobin® treatment (0.820 [0.698-0.963], P=0.016) and low C-reactive protein (1.001 [1.000-1.002], P=0.031) value while the delay of onset hospitalization is associate with a worst outcome (0.983 [0.967-0.999], P=0.041). CONCLUSIONS The present study offers a significant insight concerning the use of IgM-enriched immunoglobulin preparations in patients with SARS-CoV-2 severe infection and also could identifying the specific immunological and biochemical profile of the patient who can more benefit from this therapeutic option.
Collapse
Affiliation(s)
- Carlo Tascini
- Infectious Diseases Clinic, Azienda Sanitaria Universitaria del Friuli Centrale (ASUFC), Udine, Italy -
- Department of Medical Area (DAME), University of Udine, Udine, Italy -
| | - Marco Cotrufo
- Infectious Diseases Clinic, Azienda Sanitaria Universitaria del Friuli Centrale (ASUFC), Udine, Italy
| | - Emanuela Sozio
- Infectious Diseases Clinic, Azienda Sanitaria Universitaria del Friuli Centrale (ASUFC), Udine, Italy
| | - Matteo Fanin
- Infectious Diseases Clinic, Azienda Sanitaria Universitaria del Friuli Centrale (ASUFC), Udine, Italy
| | - Fabiana Dellai
- Infectious Diseases Clinic, Azienda Sanitaria Universitaria del Friuli Centrale (ASUFC), Udine, Italy
| | - Agnese Zanus Forte
- Infectious Diseases Clinic, Azienda Sanitaria Universitaria del Friuli Centrale (ASUFC), Udine, Italy
| | - Daniela Cesselli
- Institute of Clinical Pathology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Paola DE Stefanis
- Section of Anesthesia and Resuscitation2, Azienda Sanitaria Universitaria del Friuli Centrale (ASUFC), Udine, Italy
| | - Andrea Ripoli
- Department of Bioengineering, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Francesco Sbrana
- Lipoapheresis Unit, Reference Center for Diagnosis and Treatment of Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Simone Giuliano
- Infectious Diseases Clinic, Azienda Sanitaria Universitaria del Friuli Centrale (ASUFC), Udine, Italy
| | - Martina Fabris
- Institute of Clinical Pathology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Massimo Girardis
- Department of Anesthesia and Intensive Care, University Hospital of Modena, Modena, Italy
| | - Francesco Curcio
- Institute of Clinical Pathology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Flavio Bassi
- Section of Anesthesia and Resuscitation2, Azienda Sanitaria Universitaria del Friuli Centrale (ASUFC), Udine, Italy
| |
Collapse
|
10
|
Duellberg C, Hannappel A, Kistner S, Maneg O. Biochemical Characterization of a New 10% IVIG Preparation [IgG Next Generation (BT595)/Yimmugo ®] Obtained from a Manufacturing Process Preserving IgA/IgM Potential of Human Plasma. Drugs R D 2023; 23:245-255. [PMID: 37466834 PMCID: PMC10439088 DOI: 10.1007/s40268-023-00430-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Human plasma is used for the generation of several life-saving drugs and contains valuable antibodies from the immunoglobulin classes IgG, IgM and IgA. Purified intravenous IgG solutions (IVIGs) form the majority of plasma-derived medicine to treat patients with various forms of immunodeficiencies. In conventional IVIG manufacturing processes, immunoglobulin classes IgM and IgA are often discarded as contaminants, but these antibody classes have been proven to be effective for the treatment of acute bacterial infections. Considering the increase in demand for human plasma-derived products and the ethical value of the raw material, a more resource-saving usage of human plasma is needed. Intensive research over the last decades showed that adverse reactions to IVIGs depend on the presence of thrombogenic factors, partially unfolded proteins, non-specific activation of the complement system, and blood group specific antibodies. Therefore, new IVIG preparations with reduced risks of adverse reactions are desirable. METHOD A new manufacturing process that yields two biologics was established and quality attributes of the new IVIG solution (Yimmugo®) obtained from this process are presented. RESULTS Here, we provide a biochemical characterization of Yimmugo®, a new 10% IVIG preparation. It is derived from human blood plasma by a combined manufacturing process, where IgM and IgA are retained for the production of a new biologic (trimodulin, currently under investigation in phase III clinical trials). Several improvements have been implemented in the manufacturing of Yimmugo® to reduce the risk of adverse reactions. Gentle and efficient mixing by vibration (called "vibromixing") during a process step where proteins are at risk to aggregate was implemented to potentially minimize protein damage. In addition, a dedicated process step for the removal of the complement system activator properdin was implemented, which resulted in very low anticomplementary activity levels. The absence of measurable thrombogenic activity in combination with a very high degree of functional monomeric antibodies predict excellent efficacy and tolerability. CONCLUSION Yimmugo® constitutes a new high quality IVIG preparation derived from a novel manufacturing process that takes advantage of the full therapeutic immunoglobulin potential of human plasma.
Collapse
Affiliation(s)
| | | | | | - Oliver Maneg
- Biotest AG, Landsteinerstr.5, Dreieich, Germany.
| |
Collapse
|
11
|
Dinleyici EC, Frey G, Kola E, Wippermann U, Bauhofer A, Staus A, Griffiths P, Azharry M, Rohsiswatmo R. Clinical efficacy of IgM-enriched immunoglobulin as adjunctive therapy in neonatal and pediatric sepsis: a systematic review and meta-analysis. Front Pediatr 2023; 11:1239014. [PMID: 37635792 PMCID: PMC10451087 DOI: 10.3389/fped.2023.1239014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Background Sepsis is a major cause of mortality and morbidity globally, with around one-quarter of all sepsis-related deaths occurring in children under the age of 5. We conducted a meta-analysis and systematic review of the literature to evaluate the clinical effectiveness of an IgM-enriched immunoglobulin preparation in pediatrics patients and neonates with sepsis. Methods Systematic searches of PubMed, the Cochrane Library and Embase databases were performed in November 2022, with no date limitations, to identify studies in which IgM-enriched immunoglobulin was used as adjunctive therapy in neonatal and pediatric patients with sepsis. Results In total, 15 studies fulfilled the eligibility criteria, 13 neonatal studies and 2 pediatric studies. Pooled estimates from all studies indicated that mortality rates were significantly lower in patients who received treatment with the IgM-enriched immunoglobulin compared with controls (OR 0.41; 95% CI 0.32-0.55). Further analyses in neonatal studies, alone, showed a significant benefit with longer treatment durations (>3 days) vs. the recommended treatment duration (3 days) (OR 0.32; 95% CI 0.22-0.47) vs. (OR 0.61; 95% CI 0.41-0.92). Treatment with IgM-enriched immunoglobulin was associated with a lower mortality risk compared with controls in prospective studies vs. retrospective analyses (OR 0.37; 95% CI 0.27-0.51) vs. (OR 0.73; 95% CI 0.41-1.30). Conclusions This systematic review suggests that adjunctive treatment with IgM-enriched immunoglobulin may reduce the risk of mortality in neonatal and pediatric populations. However, large randomized controlled trials are required to further substantiate and evaluate these findings.
Collapse
Affiliation(s)
- Ener Cagri Dinleyici
- Department of Pediatrics, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir, Türkiye
| | - Georg Frey
- Klinik für Neonatologie, Darmstädter Kinderkliniken Prinzessin Margaret, Perinatalzentrum Südhessen, Darmstadt, Germany
| | - Ermira Kola
- Pediatric Intensive Care Unit, University Hospital Center “Mother Teresa”, Tirana, Albania
| | | | - Artur Bauhofer
- Corporate Medical Affairs, Biotest AG, Dreieich, Germany
| | - Alexander Staus
- Corporate Clinical Research & Development, Biotest AG, Dreieich, Germany
| | - Peter Griffiths
- Medical and Scientific Affairs, Biotest UK, Birmingham, United Kingdom
| | - Muhamad Azharry
- Department of Child Health, Neonatology Division, Dr. Cipto Mangunkusumo National Central General Hospital, Jakarta, Indonesia
| | - Rinawati Rohsiswatmo
- Department of Child Health, Neonatology Division, Dr. Cipto Mangunkusumo National Central General Hospital, Jakarta, Indonesia
| |
Collapse
|
12
|
Giovannico L, Ramirez AD, Parigino D, Fischetti G, Losito C, Lenoci S, Fiore G, Civita A, Bavaro DF, Saracino A, Grasso S, Bottio T, Milano AD. Heart transplant in a Sars-CoV-2 positive recipient: Management protocol of the world's first case. Clin Transplant 2023; 37:e15045. [PMID: 37306944 DOI: 10.1111/ctr.15045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/11/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
The advent of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in China at the end of 2019 has developed into a global outbreak, and COVID- 19 is an ongoing major public health issue. During the pandemic, transplant programs had to devise strategies to deal with the possibility of COVID-19-positive donors and recipients. We describe the case of a heart transplant recipient who tested positive with the SARS- CoV2 swab upon admission to our Unit of Cardiac Surgery when a suitable donor became available. Given his clinical status of end-stage heart failure and the absence of imaging and clinical signs suggestive of COVID-19, and his having been vaccinated with three doses, we decided to proceed with the transplant.
Collapse
Affiliation(s)
- Lorenzo Giovannico
- Cardiac Surgery Unit, University of Bari Medical School, Piazza Giulio Cesare 11, Bari, Italy
| | | | - Domenico Parigino
- Cardiac Surgery Unit, University of Bari Medical School, Piazza Giulio Cesare 11, Bari, Italy
| | - Giuseppe Fischetti
- Cardiac Surgery Unit, University of Bari Medical School, Piazza Giulio Cesare 11, Bari, Italy
| | - Concetta Losito
- Cardiac Surgery Unit, University of Bari Medical School, Piazza Giulio Cesare 11, Bari, Italy
| | - Sergio Lenoci
- Intensive Care Unit Dipartimento di Medicina di Precisione e Rigenerativa e Area Jonica - (DiMePRe-J), University of Bari Medical School, Piazza Giulio Cesare 11, Bari, Italy
| | - Giuseppe Fiore
- Intensive Care Unit Dipartimento di Medicina di Precisione e Rigenerativa e Area Jonica - (DiMePRe-J), University of Bari Medical School, Piazza Giulio Cesare 11, Bari, Italy
| | - Antonio Civita
- Intensive Care Unit Dipartimento di Medicina di Precisione e Rigenerativa e Area Jonica - (DiMePRe-J), University of Bari Medical School, Piazza Giulio Cesare 11, Bari, Italy
| | - Davide F Bavaro
- Clinic of Infectious Diseases, University of Bari Medical School, Piazza Giulio Cesare 11, Bari, Italy
| | - Annalisa Saracino
- Clinic of Infectious Diseases, University of Bari Medical School, Piazza Giulio Cesare 11, Bari, Italy
| | - Salvatore Grasso
- Intensive Care Unit Dipartimento di Medicina di Precisione e Rigenerativa e Area Jonica - (DiMePRe-J), University of Bari Medical School, Piazza Giulio Cesare 11, Bari, Italy
| | - Tomaso Bottio
- Cardiac Surgery Unit, University of Bari Medical School, Piazza Giulio Cesare 11, Bari, Italy
| | - Aldo Domenico Milano
- Cardiac Surgery Unit, University of Bari Medical School, Piazza Giulio Cesare 11, Bari, Italy
| |
Collapse
|
13
|
Berlot G, Zanchi S, Moro E, Tomasini A, Bixio M. The Role of the Intravenous IgA and IgM-Enriched Immunoglobulin Preparation in the Treatment of Sepsis and Septic Shock. J Clin Med 2023; 12:4645. [PMID: 37510760 PMCID: PMC10380743 DOI: 10.3390/jcm12144645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Polyclonal Intravenous Immunoglobulins (IvIg) are often administered to critically ill patients more as an act of faith than on the basis of relevant clinical studies. This particularly applies to the treatment of sepsis and septic shock because the current guidelines recommend against their use despite many investigations that have demonstrated their beneficial effects in different subsets of patients. The biology, mechanisms of action, and clinical experience related to the administration of IvIg are reviewed, which aim to give a more in-depth understanding of their properties in order to clarify their possible indications in sepsis and septic shock patients.
Collapse
Affiliation(s)
- Giorgio Berlot
- Azienda Sanitaria Universitaria Giuliano Isontina, Department of Anesthesia and Intensive Care, 34148 Trieste, Italy
- UCO Anestesia Rianimazione e Terapia Antalgica, Azienda Sanitaria Universitaria Giuliano Isontina, Strada di Fiume 447, 34149 Trieste, Italy
| | - Silvia Zanchi
- Azienda Sanitaria Universitaria Giuliano Isontina, Department of Anesthesia and Intensive Care, 34148 Trieste, Italy
| | - Edoardo Moro
- Azienda Sanitaria Universitaria Giuliano Isontina, Department of Anesthesia and Intensive Care, 34148 Trieste, Italy
| | - Ariella Tomasini
- Azienda Sanitaria Universitaria Giuliano Isontina, Department of Anesthesia and Intensive Care, 34148 Trieste, Italy
| | - Mattia Bixio
- Ospedale Policlinico San Martino, Department of Anesthesia and Intensive Care, 16132 Genova, Italy
| |
Collapse
|
14
|
Levêque M, Cassir N, Mathias F, Fevre C, Daviet F, Bermudez J, Brioude G, Peyron F, Reynaud-Gaubert M, Coiffard B. Refractory Pseudomonas aeruginosa Bronchopulmonary Infection After Lung Transplantation for Common Variable Immunodeficiency Despite Maximal Treatment Including IgM/IgA-Enriched Immunoglobulins and Bacteriophage Therapy. Infect Drug Resist 2023; 16:4265-4271. [PMID: 37409241 PMCID: PMC10319284 DOI: 10.2147/idr.s413900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023] Open
Abstract
Recipients transplanted for bronchiectasis in the context of a primary immune deficiency, such as common variable immunodeficiency, are at a high risk of severe infection in post-transplantation leading to poorer long-term outcomes than other transplant indications. In this report, we present a fatal case due to chronic Pseudomonas aeruginosa bronchopulmonary infection in a lung transplant recipient with common variable immunodeficiency despite successful eradication of an extensively drug-resistant (XDR) strain with IgM/IgA-enriched immunoglobulins and bacteriophage therapy. The fatal evolution despite a drastic adaptation of the immunosuppressive regimen and the maximal antibiotic therapy strategy raises the question of the contraindication of lung transplantation in such a context of primary immunodeficiency.
Collapse
Affiliation(s)
- Manon Levêque
- Department of Respiratory Medicine and Lung Transplantation, APHM, Aix Marseille University, Hôpital Nord, Marseille, France
| | - Nadim Cassir
- Department of Infectious Disease, APHM, IHU Méditerranée Infection, Aix-Marseille University, Marseille, France
| | - Fanny Mathias
- Department of Pharmacy, APHM, Aix Marseille University, Hôpital Nord, Marseille, France
| | - Cindy Fevre
- Research and Development, Pherecydes Pharma, Romainville, France
| | - Florence Daviet
- Intensive Care Medicine, APHM, Aix Marseille University, Hôpital Nord, Marseille, France
| | - Julien Bermudez
- Department of Respiratory Medicine and Lung Transplantation, APHM, Aix Marseille University, Hôpital Nord, Marseille, France
| | - Geoffrey Brioude
- Department of Thoracic Surgery and Lung Transplantation, APHM, Aix Marseille University, Hôpital Nord, Marseille, France
| | - Florence Peyron
- Department of Pharmacy, APHM, Aix Marseille University, Hôpital Nord, Marseille, France
| | - Martine Reynaud-Gaubert
- Department of Respiratory Medicine and Lung Transplantation, APHM, Aix Marseille University, Hôpital Nord, Marseille, France
| | - Benjamin Coiffard
- Department of Respiratory Medicine and Lung Transplantation, APHM, Aix Marseille University, Hôpital Nord, Marseille, France
| |
Collapse
|
15
|
Bohländer F. A new hope? Possibilities of therapeutic IgA antibodies in the treatment of inflammatory lung diseases. Front Immunol 2023; 14:1127339. [PMID: 37051237 PMCID: PMC10083398 DOI: 10.3389/fimmu.2023.1127339] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Inflammatory lung diseases represent a persistent burden for patients and the global healthcare system. The combination of high morbidity, (partially) high mortality and limited innovations in the last decades, have resulted in a great demand for new therapeutics. Are therapeutic IgA antibodies possibly a new hope in the treatment of inflammatory lung diseases? Current research increasingly unravels the elementary functions of IgA as protector against infections and as modulator of overwhelming inflammation. With a focus on IgA, this review describes the pathological alterations in mucosal immunity and how they contribute to chronic inflammation in the most common inflammatory lung diseases. The current knowledge of IgA functions in the circulation, and particularly in the respiratory mucosa, are summarized. The interplay between neutrophils and IgA seems to be key in control of inflammation. In addition, the hurdles and benefits of therapeutic IgA antibodies, as well as the currently known clinically used IgA preparations are described. The data highlighted here, together with upcoming research strategies aiming at circumventing the current pitfalls in IgA research may pave the way for this promising antibody class in the application of inflammatory lung diseases.
Collapse
Affiliation(s)
- Fabian Bohländer
- Department of Translational Research, Biotest AG, Dreieich, Germany
| |
Collapse
|
16
|
Rahmel T, Kraft F, Haberl H, Achtzehn U, Brandenburger T, Neb H, Jarczak D, Dietrich M, Magunia H, Zimmer F, Basten J, Landgraf C, Koch T, Zacharowski K, Weigand MA, Rosenberger P, Ullrich R, Meybohm P, Nierhaus A, Kindgen-Milles D, Timmesfeld N, Adamzik M. Intravenous IgM-enriched immunoglobulins in critical COVID-19: a multicentre propensity-weighted cohort study. Crit Care 2022; 26:204. [PMID: 35799196 PMCID: PMC9260992 DOI: 10.1186/s13054-022-04059-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022] Open
Abstract
Background A profound inflammation-mediated lung injury with long-term acute respiratory distress and high mortality is one of the major complications of critical COVID-19. Immunoglobulin M (IgM)-enriched immunoglobulins seem especially capable of mitigating the inflicted inflammatory harm. However, the efficacy of intravenous IgM-enriched preparations in critically ill patients with COVID-19 is largely unclear. Methods In this retrospective multicentric cohort study, 316 patients with laboratory-confirmed critical COVID-19 were treated in ten German and Austrian ICUs between May 2020 and April 2021. The primary outcome was 30-day mortality. Analysis was performed by Cox regression models. Covariate adjustment was performed by propensity score weighting using machine learning-based SuperLearner to overcome the selection bias due to missing randomization. In addition, a subgroup analysis focusing on different treatment regimens and patient characteristics was performed. Results Of the 316 ICU patients, 146 received IgM-enriched immunoglobulins and 170 cases did not, which served as controls. There was no survival difference between the two groups in terms of mortality at 30 days in the overall cohort (HRadj: 0.83; 95% CI: 0.55 to 1.25; p = 0.374). An improved 30-day survival in patients without mechanical ventilation at the time of the immunoglobulin treatment did not reach statistical significance (HRadj: 0.23; 95% CI: 0.05 to 1.08; p = 0.063). Also, no statistically significant difference was observed in the subgroup when a daily dose of ≥ 15 g and a duration of ≥ 3 days of IgM-enriched immunoglobulins were applied (HRadj: 0.65; 95% CI: 0.41 to 1.03; p = 0.068). Conclusions Although we cannot prove a statistically reliable effect of intravenous IgM-enriched immunoglobulins, the confidence intervals may suggest a clinically relevant effect in certain subgroups. Here, an early administration (i.e. in critically ill but not yet mechanically ventilated COVID-19 patients) and a dose of ≥ 15 g for at least 3 days may confer beneficial effects without concerning safety issues. However, these findings need to be validated in upcoming randomized clinical trials. Trial registrationDRKS00025794, German Clinical Trials Register, https://www.drks.de. Registered 6 July 2021. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-022-04059-0.
Collapse
|
17
|
Lehman KD. Evidence-based updates to the 2021 Surviving Sepsis Campaign guidelines: Part 1: Background, pathophysiology, and emerging treatments. Nurse Pract 2022; 47:24-30. [PMID: 36287733 DOI: 10.1097/01.npr.0000884868.44595.f6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
ABSTRACT Sepsis identification and treatment has changed significantly over the last few decades. Despite this, sepsis is still associated with significant morbidity and mortality. This first of a two-part series reviews the history of modern sepsis and presents new research in pathophysiology, treatment, and postsepsis care.
Collapse
Affiliation(s)
- Karen D Lehman
- Karen D. Lehman is a hospitalist NP and PRN ED NP at NMC Health in Newton, Kan., an ED NP with Docs Who Care based in Olathe, Kan., and a hospice NP with Harry Hynes Memorial Hospice in Wichita, Kan
| |
Collapse
|
18
|
Langi Sasongko P, van Kraaij M, So‐Osman C. Using a scenario approach to assess for the current and future demand of immunoglobulins: An interview and literature study from The Netherlands. Transfus Med 2022; 32:410-421. [PMID: 35751376 PMCID: PMC9795925 DOI: 10.1111/tme.12889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/02/2022] [Accepted: 05/13/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVES To explore the current and future demand of immunoglobulins globally and specifically for the Netherlands by assessing: (I) which specialties contribute to current demand, (II) new areas of medical need, (III) which transformational factors may impact demand and to what effect, by using a scenario approach. BACKGROUND As immunoglobulin demand continues to increase globally, there is concern of increasing shortages and questions of whether and how future demand will continue based on medical need. METHODS/MATERIALS In line with scenario principles, a scoping review of Pubmed, Web of Science, Embase and Cochrane and grey literature was conducted. Semi-structured interviews with subject matter experts were held. The results of the review and interviews were analysed for major themes. RESULTS The scoping review resulted in 97 articles, 74 regarding clinical uses, and 23 regarding organisational and other themes. Fifteen clinical and non-clinical experts were interviewed. I) Neurology, immunology, and haematology were specialties that contribute most to current demand. II) Regarding potential new areas of medical need, the literature review resulted in more indications than the interviews, for example, post-renal transplants. III) Four groups of key transformational factors were found: factors that could increase immunoglobulin demand (e.g., EMA revisions), decrease demand (e.g., replacement products, Dutch Transfer Act 2021), factors that remain to be seen how it impacts demand (e.g., further evidence), and miscellaneous factors (e.g., supply-related). CONCLUSION Having identified the specialties and relevant transformational factors that affect immunoglobulin demand, more research is needed on what clinical or organisational strategies would be effective in controlling demand in general for the Netherlands and abroad. Other blood establishments may also use a scenario approach to increase preparedness for future (un)expected developments.
Collapse
Affiliation(s)
- Praiseldy Langi Sasongko
- Department of Donor Medicine ResearchUnits Transfusion Technology Assessment and Donor Studies, Sanquin ResearchAmsterdamThe Netherlands,Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Cynthia So‐Osman
- Department of Unit Transfusion MedicineSanquin Blood BankAmsterdamThe Netherlands,Department of HaematologyErasmus Medical CenterRotterdamThe Netherlands
| |
Collapse
|
19
|
Immohr MB, Böttger C, Aubin H, Westenfeld R, Oehler D, Bruno RR, Dalyanoglu H, Tudorache I, Akhyari P, Lichtenberg A, Boeken U. IgM-enriched immunoglobulin as adjuvant therapy for heart transplant after infection of left ventricular assist devices. ESC Heart Fail 2022; 9:3630-3635. [PMID: 35854478 DOI: 10.1002/ehf2.14074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/07/2022] [Accepted: 06/27/2022] [Indexed: 11/07/2022] Open
Abstract
Patients undergoing heart transplantation (HTx) with active infection of left ventricular assist devices (LVAD) are at high risk for postoperative infections. Between 2021 and 2022, five (P1-P5) of a total of n = 44 patients underwent HTx in our department while suffering from LVAD infection. Postoperatively, patients received adjuvant IgM-enriched human intravenous immunoglobulin (IGM-IVIG), consisting of 76% IgG, 12% IgM, and 12% IgA as a novel approach to prevent infective complications. While in P1, P2, and P4, LVAD driveline infection was known before HTx; in P3 and P5, abscess of device pocket was found incidentally during HTx. After a single dose of IGM-IVIG, all patients showed adequate rise in serum immunoglobulins. In the postoperative course, no patient developed infective complications. All patients were successfully discharged and in good condition at the last follow-up. Therefore, IGM-IVIG seems to be an effective adjuvant treatment for patients undergoing HTx with LVAD infections.
Collapse
Affiliation(s)
- Moritz Benjamin Immohr
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Charlotte Böttger
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hug Aubin
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ralf Westenfeld
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Oehler
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Raphael Romano Bruno
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hannan Dalyanoglu
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Igor Tudorache
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Payam Akhyari
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Artur Lichtenberg
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Udo Boeken
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
20
|
Wu M, Huang Z, Huang W, Lin M, Liu W, Liu K, Li C. microRNA-124-3p attenuates myocardial injury in sepsis via modulating SP1/HDAC4/HIF-1α axis. Cell Death Dis 2022; 8:40. [PMID: 35091534 PMCID: PMC8799658 DOI: 10.1038/s41420-021-00763-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
Sepsis-induced cardiac dysfunction can lead to death in sepsis. In this case, we targeted to explore in detail the relative mechanism of microRNA (miR)-124-3p in sepsis-induced myocardial injury via the specific protein 1/histone deacetylase 4/hypoxia-inducing factor 1α (SP1/HDAC4/HIF-1α) axis. Septic rats were modeled by cecal ligation puncture while in vitro septic cardiomyocyte H9C2 were induced by lipopolysaccharide (LPS). miR-124-3p/SP1/HDAC4/HIF-1α expression levels in myocardial tissues of septic rats and LPS-treated H9C2 cells were measured. miR-124-3p overexpression and SP1 silencing assays were implemented on LPS-treated H9C2 cells to explore theirs actions in inflammation, oxidative stress and cell apoptosis. The interactions of miR-124-3p, SP1, and HDAC4 were testified. miR-124-3p was lowly expressed while SP1, HDAC4, and HIF-1α were highly expressed in sepsis. Upregulation of miR-124-3p ameliorated inflammation, oxidative stress, and apoptosis of LPS-treated H9C2 cells. Silencing SP1 improved LPS-induced damage to cardiomyocytes. miR-124-3p targeted SP1 and HDAC4 interacted with SP1. SP1 overexpression antagonized miR-124-3p upregulation-induced improvements in LPS-induced cardiomyocyte damage. This study illustrates that miR-124-3p improves myocardial injury in septic rats through targeted regulation of SP1 to mediate HDAC4/HIF-1α.
Collapse
|
21
|
Ruiz-Rodriguez JC, Plata-Menchaca EP, Chiscano-Camón L, Ruiz-Sanmartin A, Pérez-Carrasco M, Palmada C, Ribas V, Martínez-Gallo M, Hernández-González M, Gonzalez-Lopez JJ, Larrosa N, Ferrer R. Precision medicine in sepsis and septic shock: From omics to clinical tools. World J Crit Care Med 2022; 11:1-21. [PMID: 35433311 PMCID: PMC8788206 DOI: 10.5492/wjccm.v11.i1.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/23/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a heterogeneous disease with variable clinical course and several clinical phenotypes. As it is associated with an increased risk of death, patients with this condition are candidates for receipt of a very well-structured and protocolized treatment. All patients should receive the fundamental pillars of sepsis management, which are infection control, initial resuscitation, and multiorgan support. However, specific subgroups of patients may benefit from a personalized approach with interventions targeted towards specific pathophysiological mechanisms. Herein, we will review the framework for identifying subpopulations of patients with sepsis, septic shock, and multiorgan dysfunction who may benefit from specific therapies. Some of these approaches are still in the early stages of research, while others are already in routine use in clinical practice, but together will help in the effective generation and safe implementation of precision medicine in sepsis.
Collapse
Affiliation(s)
- Juan Carlos Ruiz-Rodriguez
- Intensive Care Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Erika P Plata-Menchaca
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Department of Intensive Care, Hospital Clínic de Barcelona, Barcelona 08036, Spain
| | - Luis Chiscano-Camón
- Intensive Care Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Adolfo Ruiz-Sanmartin
- Intensive Care Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Marcos Pérez-Carrasco
- Intensive Care Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Clara Palmada
- Intensive Care Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Vicent Ribas
- Data Analytics in Medicine, Digital Health Unit, Eurecat, Centre Tecnològic de Catalunya, Barcelona 08005, Spain
| | - Mónica Martínez-Gallo
- Immunology Division, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Diagnostic Immunology Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Manuel Hernández-González
- Immunology Division, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Diagnostic Immunology Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Juan J Gonzalez-Lopez
- Department of Clinical Microbiology, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Department of Microbiology and Genetics, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Nieves Larrosa
- Department of Clinical Microbiology, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Department of Microbiology and Genetics, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Ricard Ferrer
- Intensive Care Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Shock, Organ Dysfunction and Resuscitation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
22
|
Krtinić D, Stojanović M. Clinical and laboratory parameter analysis in patients with common Variable Immunodeficiency. MEDICINSKI PODMLADAK 2022. [DOI: 10.5937/mp73-38819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Introduction: Common Variable Immunodeficiency (CVID) is the most prevalent primary immunodeficiency in adult population. The diagnosis is based on low concentration of at least 2 immunoglobulin classes, mostly IgG, with low IgA and/or IgM. Beside recurrent infections, patients with CVID usually suffer from different respiratory, gastrointestinal, autoimmune and malignant diseases. Leading therapeutic approach to managing CVID is regular intravenous (IVIG) and subcutaneous (SCIG) immunoglobulin replacement therapy. Aim: The aim of the study was to analyze clinical and laboratory parameters in patients with CVID. Material and methods: The present study included 24 patients with CVID who were treated at Clinic of Allergy and Immunology, University Clinical Center of Serbia from 2012 to 2022. Demographic data, clinical and laboratory parameters were obtained from the patients' medical records. The concentrations of IgG, IgM and IgA were measured by nephelometry. Statistical analysis was performed using descriptive methods, Student t test for independent samples and Fisher exact test. Results: Respiratory manifestations were found in 70.8% of patients, gastrointestinal in 45.8%, autoimmune in 29.2% and malignancies in 20.8%. The presence of autoimmune diseases was the most common within the patients aged between 20 to 30 years, and it was statistically significantly higher comparing to other age groups (p = 0.014). Serum IgG concentration of 7.6 ± 2.7 g/l was measured. Statistically significantly higher IgG concentrations were observed in patients receiving SCIG (10.2 ± 1.6), compared to those receiving IVIG (6.7 ± 2.4) (t = -3.3, p = 0.003). Premedication was required in 44.4% of patients receiving IVIG. Conclusion: The most common complication of CVID are chronic lung diseases. Autoimmune diseases are the most frequently diagnosed in patients between the ages of 20 and 30. The use of SCIG is identified as better form of immunoglobulin replacement therapy. Total immunoglobulin serum concentration measuring in patients with recurrent infections and autoimmune diseases can contribute to timely diagnosis.
Collapse
|
23
|
Abram N, Baretta V, Mercolini F, De Bortoli M, Chinello M, Balter R, Bonetti E, Zaccaron A, Vitale V, Caddeo G, Mauro M, Battisti L, Tridello G, Cesaro S. Outcome and Risk Factors of Febrile Episodes Treated with Broad Spectrum Antibiotics and Polyclonal IgM–Enriched Immunoglobulin in Pediatric Oncology Hematology Patients: A Retrospective Study. J PEDIAT INF DIS-GER 2021. [DOI: 10.1055/s-0041-1741122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
Objective Preparations with high-titer immunoglobulin-M (HT-IgM) have been used to treat neonatal and adult sepsis as adjuvant to antibiotics. Limited data are available of this use in pediatric oncohematological patients. We retrospectively assessed the characteristics and outcome of febrile episodes treated with broad-spectrum antibiotics and HT-IgM.
Methods This study included febrile episodes diagnosed after chemotherapy or hematopoietic stem cell transplantation (HSCT) treated with antibiotics and HT-IgM. Study period was from January 2011 to March 2019.
Results Seventy febrile episodes in 63 patients were eligible. In 40% of episodes (n = 28), blood cultures identified a causative organism: Gram-negative (n = 15), Gram-positive (n = 8), polybacterial (n = 4), fungi (n = 1). Twenty-six percent of Gram-negatives were extend spectrum β-lactamase (ESBL)-producers. In 44% of episodes, a deep-organ localization was present, mostly pulmonary. Severe or profound neutropenia, hypotension, and hypoxemia were present in 89, 26, and 21% of episodes, respectively; 20% of episodes required intensive care and 20% of episodes required the use of inotropes. Overall, 90-day mortality was 13% and infection-attributable mortality resulted 8.6%. More than half of the patients received HT-IgM within 24 hours from fever onset. HT-IgM-related allergic reactions occurred in three episodes. Risk factors for 90-day mortality were as follows: hypotension and hypoxemia at fever presentation, admission to intensive care unit (ICU), use of inotropes, presence of deep-organ infection, and escalation of antibiotic therapy within 5 days.
Conclusion The combination of broad-spectrum antibiotics and HT-IgM was feasible, tolerated, and promising, being associated with a limited infectious mortality. Further prospective controlled studies are needed to assess the efficacy of this combination over a standard antibiotic approach.
Collapse
Affiliation(s)
- Nicoletta Abram
- Department of Mother and Child, Division of Pediatric Hematology Oncology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Valentina Baretta
- Department of Mother and Child, Division of Pediatric Hematology Oncology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Federico Mercolini
- Division of Pediatric Hematology Oncology, Hospital of Bolzano, Bolzano, Italy
| | - Massimiliano De Bortoli
- Department of Mother and Child, Division of Pediatric Hematology Oncology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Matteo Chinello
- Department of Mother and Child, Division of Pediatric Hematology Oncology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Rita Balter
- Department of Mother and Child, Division of Pediatric Hematology Oncology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Elisa Bonetti
- Department of Mother and Child, Division of Pediatric Hematology Oncology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Ada Zaccaron
- Department of Mother and Child, Division of Pediatric Hematology Oncology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Virginia Vitale
- Department of Mother and Child, Division of Pediatric Hematology Oncology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Giulia Caddeo
- Department of Mother and Child, Division of Pediatric Hematology Oncology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Margherita Mauro
- Department of Mother and Child, Division of Pediatric Hematology Oncology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Laura Battisti
- Division of Pediatric Hematology Oncology, Hospital of Bolzano, Bolzano, Italy
| | - Gloria Tridello
- Department of Mother and Child, Division of Pediatric Hematology Oncology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Simone Cesaro
- Department of Mother and Child, Division of Pediatric Hematology Oncology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| |
Collapse
|
24
|
Bohländer F, Weißmüller S, Riehl D, Gutscher M, Schüttrumpf J, Faust S. The Functional Role of IgA in the IgM/IgA-Enriched Immunoglobulin Preparation Trimodulin. Biomedicines 2021; 9:1828. [PMID: 34944644 PMCID: PMC8698729 DOI: 10.3390/biomedicines9121828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
In comparison to human immunoglobulin (Ig) G, antibodies of IgA class are not well investigated. In line with this, the functional role of the IgA component in IgM/IgA-enriched immunoglobulin preparations is also largely unknown. In recent years, powerful anti-pathogenic and immunomodulatory properties of human serum IgA especially on neutrophil function were unraveled. Therefore, the aim of our work is to investigate functional aspects of the trimodulin IgA component, a new plasma-derived polyvalent immunoglobulin preparation containing ~56% IgG, ~23% IgM and ~21% IgA. The functional role of IgA was investigated by analyzing the interaction of IgA with FcαRI, comparing trimodulin with standard intravenous IgG (IVIG) preparation and investigating Fc receptor (FcR)-dependent functions by excluding IgM-mediated effects. Trimodulin demonstrated potent immunomodulatory, as well as anti-pathogenic effects in our neutrophil model (neutrophil-like HL-60 cells). The IgA component of trimodulin was shown to induce a strong FcαRI-dependent inhibitory immunoreceptor tyrosine-based activation motif (ITAMi) signaling, counteract lipopolysaccharide-induced inflammation and mediate phagocytosis of Staphylococcus aureus. The fine-tuned balance between immunomodulatory and anti-pathogenic effects of trimodulin were shown to be dose-dependent. Summarized, our data demonstrate the functional role of IgA in trimodulin, highlighting the importance of this immunoglobulin class in immunoglobulin therapy.
Collapse
Affiliation(s)
- Fabian Bohländer
- Department of Analytical Development and Validation, Biotest AG, Landsteinerstraße 5, 63303 Dreieich, Germany; (F.B.); (D.R.); (M.G.)
| | - Sabrina Weißmüller
- Department of Translational Research, Biotest AG, Landsteinerstraße 5, 63303 Dreieich, Germany;
| | - Dennis Riehl
- Department of Analytical Development and Validation, Biotest AG, Landsteinerstraße 5, 63303 Dreieich, Germany; (F.B.); (D.R.); (M.G.)
| | - Marcus Gutscher
- Department of Analytical Development and Validation, Biotest AG, Landsteinerstraße 5, 63303 Dreieich, Germany; (F.B.); (D.R.); (M.G.)
| | - Jörg Schüttrumpf
- Corporate R&D, Biotest AG, Landsteinerstraße 5, 63303 Dreieich, Germany;
| | - Stefanie Faust
- Department of Analytical Development and Validation, Biotest AG, Landsteinerstraße 5, 63303 Dreieich, Germany; (F.B.); (D.R.); (M.G.)
| |
Collapse
|
25
|
Tabarsi P, Hashemian SMR, Bauhofer A, Savadkoohi AA, Ghadimi S, Haseli S, Dastan F. IgM-enriched immunoglobulin in COVID-19: Case series of 15 severely ill SARS-CoV-2-infected patients. Int Immunopharmacol 2021; 99:107998. [PMID: 34315117 PMCID: PMC8299233 DOI: 10.1016/j.intimp.2021.107998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/15/2022]
Abstract
The healthcare system in Iran, like most around the world, is managing thousands of patients hospitalised with COVID-19. In Iran, in-hospital mortality is in the region of 25%, rising to 50-60% in patients admitted to intensive care. Hyperinflammation, characterised by cytokine storm, appears to be a hallmark of severe COVID-19 and to date only the anti-inflammatory drug dexamethasone has been shown to reduce mortality in those hospitalised with the disease. There is a sound scientific rationale behind the use of IgM-enriched immunoglobulin in the management of patients with severe COVID-19. It has been used successfully in the management of hyperinflammation in patients with sepsis and has led to improved radiographic scores in patients with severe cases of severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Recently the successful treatment of a patient with COVID-19 with IgM-enriched immunoglobulin was reported. Here we report the outcome of a further 15 patients hospitalised with COVID-19 treated with IgM-enriched immunoglobulin. Improvements in computed tomography (CT) score were observed in nine patients, indicating that further clinical studies into the use of IgM-enriched immunoglobulin in the treatment of severe COVID-19 are warranted.
Collapse
Affiliation(s)
- Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Artur Bauhofer
- Corporate Medical Affairs, Biotest AG, Landsteinerstr. 5, 63303 Dreieich, Germany
| | - Ali Amir Savadkoohi
- Anesthesia and Critical Care Department, Chairman of Iranian Critical Care Society, Mehrad Hospital, Tehran, Iran
| | - Somayeh Ghadimi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Haseli
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Dastan
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Scarpati G, Baldassarre D, Tripepi G, Boffardi M, Piazza O. Effect of Intravenous IgM-Enriched Immunoglobulins on Presepsin and Other Sepsis Biomarkers. Front Pharmacol 2021; 12:717349. [PMID: 34566642 PMCID: PMC8455986 DOI: 10.3389/fphar.2021.717349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/25/2021] [Indexed: 11/19/2022] Open
Abstract
Patients in septic shock with low IgG and IgM serum concentrations have higher mortality rates compared to those with normal immunoglobulin levels and, therefore, there is a rational explanation to administer intravenous IgM-enriched immunoglobulins to septic patients in ICU. Aim of this study is to evaluate the effectiveness of intravenous IgM-enriched immunoglobulins in decreasing several sepsis biomarker concentrations. 26 sepsis patients were enrolled in this observational cohort study and Nitric Oxide, Endocan, Pentraxin and presepsin serum levels were measured during their first 3 days of ICU stay. The use of intravenous IgM-enriched immunoglobulins did not influence the temporal evolution of SOFA, Nitric Oxide, Endocan, Pentraxin and Presepsin in the first 3 days of ICU stay in a statistically significant manner, even if Presepsin decreased of 25% from day 1 to day 2 in the Pentaglobin group. It seems possible that Pentaglobin infusion reduces the Presepsin level in a more effective way if it were administered to a younger population (p = 0.012). In conclusion, age modifies the response of Presepsin to Pentaglobin and is a critical variable when investigating the effect of intravenous IgM-enriched immunoglobulins on sepsis.
Collapse
Affiliation(s)
- Giuliana Scarpati
- Dipartimento di Medicina e Chirurgia, Università Degli Studi di Salerno, Baronissi, Italy.,AOU San Giovanni di Dio e Ruggi D'Aragona, Salerno, Italy
| | - Daniela Baldassarre
- Dipartimento di Medicina e Chirurgia, Università Degli Studi di Salerno, Baronissi, Italy.,AOU San Giovanni di Dio e Ruggi D'Aragona, Salerno, Italy
| | - Giovanni Tripepi
- Section of Biostatistics, Institute of Clinical Physiology, CNR-IFC, Reggio Calabria, Italy
| | | | - Ornella Piazza
- Dipartimento di Medicina e Chirurgia, Università Degli Studi di Salerno, Baronissi, Italy.,AOU San Giovanni di Dio e Ruggi D'Aragona, Salerno, Italy
| |
Collapse
|
27
|
Coloretti I, Berlot G, Busani S, De Rosa FG, Donati A, Forfori F, Grasselli G, Mirabella L, Tascini C, Viale P, Girardis M. Rationale for Polyclonal Intravenous Immunoglobulin Adjunctive Therapy in COVID-19 Patients: Report of a Structured Multidisciplinary Consensus. J Clin Med 2021; 10:jcm10163500. [PMID: 34441796 PMCID: PMC8396919 DOI: 10.3390/jcm10163500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 01/08/2023] Open
Abstract
Introduction: Adjunctive therapy with polyclonal intravenous immunoglobins (IVIg) is currently used for preventing or managing infections and sepsis, especially in immunocompromised patients. The pathobiology of COVID-19 and the mechanisms of action of Ig led to the consideration of this adjunctive therapy, including in patients with respiratory failure due to the SARS-CoV-2 infection. This manuscript reports the rationale, the available data and the results of a structured consensus on intravenous Ig therapy in patients with severe COVID-19. Methods: A panel of multidisciplinary experts defined the clinical phenotypes of COVID-19 patients with severe respiratory failure and, after literature review, voted for the agreement on the rationale and the potential role of IVIg therapy for each phenotype. Due to the scarce evidence available, a modified RAND/UCLA appropriateness method was used. Results: Three different phenotypes of COVID-19 patients with severe respiratory failure were identified: patients with an abrupt and dysregulated hyperinflammatory response (early phase), patients with suspected immune paralysis (late phase) and patients with sepsis due to a hospital-acquired superinfection (sepsis by bacterial superinfection). The rationale for intravenous Ig therapy in the early phase was considered uncertain whereas the panelists considered its use in the late phase and patients with sepsis/septic shock by bacterial superinfection appropriate. Conclusion: As with other immunotherapies, IVIg adjunctive therapy may have a potential role in the management of COVID-19 patients. The ongoing trials will clarify the appropriate target population and the true effectiveness.
Collapse
Affiliation(s)
- Irene Coloretti
- Anaesthesia and Intensive Care Department, University Hospital of Modena, 41124 Modena, Italy; (I.C.); (S.B.)
| | - Giorgio Berlot
- Anestesia and Intensive Care Department, University Hospital of Trieste, 34127 Trieste, Italy;
| | - Stefano Busani
- Anaesthesia and Intensive Care Department, University Hospital of Modena, 41124 Modena, Italy; (I.C.); (S.B.)
| | | | - Abele Donati
- Anaesthesia and Intensive Care Department, University Hospital of Ancona, 60127 Ancona, Italy;
| | - Francesco Forfori
- Anaesthesia and Intensive Care Department, University Hospital of Pisa, 56124 Pisa, Italy;
| | - Giacomo Grasselli
- Anaesthesia and Intensive Care Department, University Hospital of Milan, 20122 Milano, Italy;
| | - Lucia Mirabella
- Anaesthesia and Intensive Care Department, University Hospital of Foggia, 71122 Foggia, Italy;
| | - Carlo Tascini
- Infectious Disease Department, University Hospital of Udine, 33100 Udine, Italy;
| | - Pierluigi Viale
- Infectious Disease Department, University Hospital of Bologna, 40126 Bologna, Italy;
| | - Massimo Girardis
- Anaesthesia and Intensive Care Department, University Hospital of Modena, 41124 Modena, Italy; (I.C.); (S.B.)
- Correspondence:
| |
Collapse
|
28
|
Corona A, Richini G, Simoncini S, Zangrandi M, Biasini M, Russo G, Pasqua M, Santorsola C, Gregorini C, Giordano C. Treating Critically Ill Patients Experiencing SARS-CoV-2 Severe Infection with Ig-M and Ig-A Enriched Ig-G Infusion. Antibiotics (Basel) 2021; 10:antibiotics10080930. [PMID: 34438980 PMCID: PMC8388937 DOI: 10.3390/antibiotics10080930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/15/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
SARS-CoV-2 in patients who need intensive care unit (ICU) is associated with a mortality rate ranging from 10 to 40–45%, with an increase in morbidity and mortality in presence of sepsis. We hypothesized that IgM and IgA enriched immunoglobulin G may support the sepsis-related phase improving patient outcome. We conducted a retrospective case–control study on 47 consecutive patients admitted to our ICU. At the time of admission, patients received anticoagulants (heparin sodium) together with the standard supportive treatment. We decided to add IgM and IgA enriched immunoglobulin G to the standard therapy. Patients receiving IgM and IgA enriched immunoglobulin G were compared with patients with similar baseline characteristics and treatment, receiving only standard therapy. The mortality resulted significantly higher in patients treated with standard therapy only (56.5 vs. 37.5%, p < 0.01) and, at day 7, the probability of dying was 3 times higher in this group. Variable life adjustment display (VLAD) was 2.4 and −2.2 (in terms of lives saved in relation with those expected and derived from Simplified Acute Physiology Score II) in the treated and not treated group, respectively. The treatment based on IgM and IgA enriched immunoglobulin G infusion seems to give an advantage on survival in SARS-CoV-2 severe infection.
Collapse
|
29
|
"Impact of pentaglobin in severe COVID 19 pneumonia- a prospective study.". Int Immunopharmacol 2021; 99:107968. [PMID: 34304002 PMCID: PMC8270756 DOI: 10.1016/j.intimp.2021.107968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/24/2021] [Accepted: 07/06/2021] [Indexed: 11/25/2022]
Abstract
Background The current COVID-19 pandemic has become a global public health crisis and presents a serious challenge in treatment of severe COVID pneumonia patients. With an imperative need for an effective treatment, we aimed to study the effectiveness of Pentaglobin, an intravenous immunoglobin in the treatment of severe Covid-19 pneumonia patients. Methods This is an open-label non-randomised controlled study. Patients in the study group (n = 17) received Pentaglobin in addition to standard therapy and the control group (n = 19) received only the standard of care treatment. Severity of illness were quantified by severity scores and inflammatory laboratory parameters were compared between the two groups. Results The average length of hospital stay in pentaglobin group were 12.35 ± 6.98 days compared to 10.94 ± 4.62 days in standard treatment group with mean difference of 1.4 days (p value = 0.4). Pentaglobin did not provide an added advantage in terms of reducing the duration of hospital stay. There was no significant difference between both the groups in terms of requirement of invasive ventilation (p = 0.56) and mortality (p = 0.86). CT Severity score (OR = 1.39 95% CI = 1.09–1.77, P = 0.01), APACHE II score (OR = 1.16 95% CI = 0.99–1.35, P = 0.05) and the SOFA score (OR = 2.11 95% CI = 1.13–3.93, P = 0.02) were independent predictors of mortality. Conclusion The administration of pentaglobin in COVID −19 patients has no significant effect in reducing the risk of mechanical ventilation or death, in disease worsening or in reduction of inflammation.
Collapse
|
30
|
Liu J, Chen Y, Li R, Wu Z, Xu Q, Li Z, Annane D, Feng H, Huang S, Guo J, Zhang L, Ye X, Zhu W, Du H, Liu Y, Wang T, Chen L, Wen Z, Teboul JL, Chen D. Intravenous immunoglobulin treatment for patients with severe COVID-19: a retrospective multicentre study. Clin Microbiol Infect 2021; 27:1488-1493. [PMID: 34020032 PMCID: PMC8131555 DOI: 10.1016/j.cmi.2021.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/25/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022]
Abstract
Objectives Intravenous immunoglobulin (IVIG) is commonly used to treat severe COVID-19, although the clinical outcome of such treatment remains unclear. This study evaluated the effectiveness of IVIG treatment in severe COVID-19 patients. Methods This retrospective multicentre study evaluated 28-day mortality in severe COVID-19 patients with or without IVIG treatment. Each patient treated with IVIG was matched with one untreated patient. Logistic regression and inverse probability weighting (IPW) were used to control confounding factors. Results The study included 850 patients (421 IVIG-treated patients and 429 non-IVIG-treated patients). After matching, 406 patients per group remained. No significant difference in 28-day mortality was observed after IPW analysis (average treatment effect (ATE) = 0.008, 95% CI –0.081 to 0.097, p 0.863). There were no significant differences between the IVIG group and non-IVIG group for acute respiratory distress syndrome, diffuse intravascular coagulation, myocardial injury, acute hepatic injury, shock, acute kidney injury, non-invasive mechanical ventilation, invasive mechanical ventilation, continuous renal replacement therapy and extracorporeal membrane oxygenation except for prone position ventilation (ATE = –0.022, 95% CI –0.041 to –0.002, p 0.028). Discussion IVIG treatment was not associated with significant changes in 28-day mortality in severe COVID-19 patients. The effectiveness of IVIG in treating patients with severe COVID-19 needs to be further investigated through future studies.
Collapse
Affiliation(s)
- Jiao Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yizhu Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ranran Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixiong Wu
- Department of Surgical Intensive Care Unit, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Qianghong Xu
- Department of Critical Care Medicine, Zhejiang Hospital, Hangzhou, China
| | - Zhongyi Li
- Department of Critical Care Medicine, Wuhan No.9 Hospital, Wuhan, China
| | - Djillali Annane
- FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis), RHU RECORDS (Rapid rEcognition of CORticosteroiD resistant or sensitive Sepsis), Department of Intensive Care, Hôpital Raymond Poincaré (APHP), Laboratory of Infection & Inflammation - U1173, School of Medicine Simone Veil, University Versailles Saint Quentin - University Paris Saclay, INSERM, Garches, France
| | - Huibin Feng
- Intensive Care Unit, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Sisi Huang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Guo
- Intensive Care Unit, Huazhong University of Science and Technology Union Jiangbei Hospital, Caidian District, Wuhan, China
| | - Lidi Zhang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofei Ye
- Department of Health Statistics, Second Military Medical University, Shanghai, China
| | - Wei Zhu
- Intensive Care Unit, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Hangxiang Du
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong'an Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Limin Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenliang Wen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jean-Louis Teboul
- Service de Médecine-Intensive Réanimation, Hôpital Bicêtre, AP-HP, Université Paris-Saclay, Inserm UMR 999, Université Paris-Saclay, Le Kremlin-Bicêtre, France.
| | - Dechang Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
31
|
Jarczak D, Kluge S, Nierhaus A. Sepsis-Pathophysiology and Therapeutic Concepts. Front Med (Lausanne) 2021; 8:628302. [PMID: 34055825 PMCID: PMC8160230 DOI: 10.3389/fmed.2021.628302] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a life-threatening condition and a global disease burden. Today, the heterogeneous syndrome is defined as severe organ dysfunction caused by a dysregulated host response to infection, with renewed emphasis on immune pathophysiology. Despite all efforts of experimental and clinical research during the last three decades, the ability to positively influence course and outcome of the syndrome remains limited. Evidence-based therapy still consists of basic causal and supportive measures, while adjuvant interventions such as blood purification or targeted immunotherapy largely remain without proof of effectiveness so far. With this review, we aim to provide an overview of sepsis immune pathophysiology, to update the choice of therapeutic approaches targeting different immunological mechanisms in the course of sepsis and septic shock, and to call for a paradigm shift from the pathogen to the host response as a potentially more promising angle.
Collapse
Affiliation(s)
- Dominik Jarczak
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Axel Nierhaus
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
32
|
Immohr MB, Akhyari P, Aubin H, Westenfeld R, Mehdiani A, Bruno RR, Sipahi NF, Erbel-Khurtsidze S, Reinecke P, Tudorache I, Lichtenberg A, Boeken U. Treatment of donor-specific antibody-mediated rejection after heart transplantation by IgM-enriched human immunoglobulin. ESC Heart Fail 2021; 8:3413-3417. [PMID: 33969938 PMCID: PMC8318410 DOI: 10.1002/ehf2.13409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/07/2021] [Accepted: 04/24/2021] [Indexed: 12/25/2022] Open
Abstract
Antibody‐mediated graft rejection caused by donor‐specific antibodies (DSA‐MR) remains a serious problem after heart transplantation (HTx). IgM‐enriched human intravenous immunoglobulin (IGM‐IVIG) consists of 76% IgG, 12% IgM, and 12% IgA and provides a new multifactorial approach for DSA‐MR. Between 2017 and 2020, four (P1–4) of 102 patients developed DSA‐MR after HTx in our department and were repetitively treated with IGM‐IVIG in combination with anti‐thymocyte globulin. While in P1 and P4, DSA‐MR occurred within the early post‐operative interval, P2 and P3 developed DSA‐MR approximately 1 year after transplantation. An impairment of ventricular function was observed in three of four patients. Furthermore, P1 and P4 suffered from malign ventricular arrhythmias. After the application of IGM‐IVIG, the ventricular function recovered, and all patients could be discharged from the hospital. As part of a multifactorial therapeutic approach, treatment with IGM‐IVIG seems to be a safe and effective strategy to address DSA‐MR.
Collapse
Affiliation(s)
- Moritz Benjamin Immohr
- Department of Cardiac Surgery, Medical Faculty, Heinrich-Heine-University Medical School, Moorenstraße 5, Duesseldorf, 40225, Germany
| | - Payam Akhyari
- Department of Cardiac Surgery, Medical Faculty, Heinrich-Heine-University Medical School, Moorenstraße 5, Duesseldorf, 40225, Germany
| | - Hug Aubin
- Department of Cardiac Surgery, Medical Faculty, Heinrich-Heine-University Medical School, Moorenstraße 5, Duesseldorf, 40225, Germany
| | - Ralf Westenfeld
- Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine-University Medical School, Duesseldorf, Germany
| | - Arash Mehdiani
- Department of Cardiac Surgery, Medical Faculty, Heinrich-Heine-University Medical School, Moorenstraße 5, Duesseldorf, 40225, Germany
| | - Raphael Romano Bruno
- Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine-University Medical School, Duesseldorf, Germany
| | - Nihat Firat Sipahi
- Department of Cardiac Surgery, Medical Faculty, Heinrich-Heine-University Medical School, Moorenstraße 5, Duesseldorf, 40225, Germany
| | - Sophiko Erbel-Khurtsidze
- Department of Cardiac Surgery, Medical Faculty, Heinrich-Heine-University Medical School, Moorenstraße 5, Duesseldorf, 40225, Germany
| | - Petra Reinecke
- Institute of Pathology, Heinrich-Heine-University Medical School, Duesseldorf, Germany
| | - Igor Tudorache
- Department of Cardiac Surgery, Medical Faculty, Heinrich-Heine-University Medical School, Moorenstraße 5, Duesseldorf, 40225, Germany
| | - Artur Lichtenberg
- Department of Cardiac Surgery, Medical Faculty, Heinrich-Heine-University Medical School, Moorenstraße 5, Duesseldorf, 40225, Germany
| | - Udo Boeken
- Department of Cardiac Surgery, Medical Faculty, Heinrich-Heine-University Medical School, Moorenstraße 5, Duesseldorf, 40225, Germany
| |
Collapse
|
33
|
Berlot G, Scamperle A, Istrati T, Dattola R, Longo I, Chillemi A, Baronio S, Quarantotto G, Zanchi S, Roman-Pognuz E, Bixio M, Tomasini A. Kinetics of Immunoglobulins in Septic Shock Patients Treated With an IgM- and IgA-Enriched Intravenous Preparation: An Observational Study. Front Med (Lausanne) 2021; 8:605113. [PMID: 33732713 PMCID: PMC7956982 DOI: 10.3389/fmed.2021.605113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/08/2021] [Indexed: 11/30/2022] Open
Abstract
Objective: To assess the variations of the blood levels of immunoglobulins (Ig) in septic shock patients treated with an Ig preparation enriched in IgM and IgA (eIg). Design: The blood levels of Ig in survivors (S) and non-survivors (NS) of a group of septic shock patients were measured before the initial administration (D0) and 1 (D1), 4 (D4), and 7 (D7) days thereafter. The SAPS II score, the capillary permeability, the primary site of infection, the antibiotic appropriateness, and the outcome at 28 days were also assessed. Results: In the interval D0–D7, the IgM increased significantly only in the S while remained stable in NS; the IgA significantly increased in both groups; the IgG did not vary significantly in both groups. At D4, the capillary permeability significantly decreased in S but not in NS. Conclusions: The kinetics of the different classes of Ig after eIg were different between S and NS. This could be related either to (a) different capillary permeability in the two groups or to (b) higher Ig consumption in NS. Further studies to confirm the benefits of eIg in the treatment of sepsis syndrome and to define the specific target population and the correct eIg dose are warranted.
Collapse
Affiliation(s)
- Giorgio Berlot
- Department of Anesthesia and Intensive Care, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Alice Scamperle
- Department of Anesthesia and Intensive Care, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Tatiana Istrati
- Department of Anesthesia and Intensive Care, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Roberto Dattola
- Department of Anesthesia and Intensive Care, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Irene Longo
- Department of Anesthesia and Intensive Care, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Antonino Chillemi
- Department of Anesthesia and Intensive Care, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Silvia Baronio
- Department of Anesthesia and Intensive Care, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Giada Quarantotto
- Department of Anesthesia and Intensive Care, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Silvia Zanchi
- Department of Anesthesia and Intensive Care, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Erik Roman-Pognuz
- Department of Anesthesia and Intensive Care, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Mattia Bixio
- Department of Anesthesia and Intensive Care, San Martino Hospital, Genova, Italy
| | - Ariella Tomasini
- Department of Anesthesia and Intensive Care, Cattinara Hospital, University of Trieste, Trieste, Italy
| |
Collapse
|
34
|
Busani S, Roat E, Tosi M, Biagioni E, Coloretti I, Meschiari M, Gelmini R, Brugioni L, De Biasi S, Girardis M. Adjunctive Immunotherapy With Polyclonal Ig-M Enriched Immunoglobulins for Septic Shock: From Bench to Bedside. The Rationale for a Personalized Treatment Protocol. Front Med (Lausanne) 2021; 8:616511. [PMID: 33681248 PMCID: PMC7930614 DOI: 10.3389/fmed.2021.616511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/27/2021] [Indexed: 01/19/2023] Open
Abstract
Septic shock still has a high mortality rate which has not hinted at decreasing in recent years. Unfortunately, randomized trials failed mainly because the septic patient was considered as a homogeneous entity. All this creates a sort of therapeutic impotence in everyday clinical practice in treating patients with septic shock. The need to customize therapy on each patient with sepsis has now become an established necessity. In this scenario, adjuvant therapies can help if interpreted as modulators of the immune system. Indeed, the host's immune response differs from patient to patient based on the virulence of the pathogen, comorbidity, infection site, and prolonged hospitalization. In this review, we summarize the rationale for using immunoglobulins as an adjunctive treatment. Furthermore, we would like to suggest a possible protocol to personalize treatment in the different clinical scenarios of the host's response to serious infectious events.
Collapse
Affiliation(s)
- Stefano Busani
- Intensive Care Unit, University Hospital Policlinico di Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Erika Roat
- Intensive Care Unit, University Hospital Policlinico di Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Martina Tosi
- Intensive Care Unit, University Hospital Policlinico di Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Emanuela Biagioni
- Intensive Care Unit, University Hospital Policlinico di Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Irene Coloretti
- Intensive Care Unit, University Hospital Policlinico di Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Marianna Meschiari
- Infectious Diseases Unit, University Hospital Policlinico di Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberta Gelmini
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucio Brugioni
- Internal Medicine Department, Azienda Ospedaliero-Universitaria Policlinico of Modena, Modena, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Massimo Girardis
- Intensive Care Unit, University Hospital Policlinico di Modena, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
35
|
Anwar MM. Immunotherapies and COVID-19 related Neurological manifestations: A Comprehensive Review Article. J Immunoassay Immunochem 2021; 41:960-975. [PMID: 33393415 DOI: 10.1080/15321819.2020.1865400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In December 2019, an outbreak of pandemic severe respiratory distress syndrome coronavirus disease 2019 (COVID-19) initially occurred in China, has spread the world resulted in serious threats to human public health. Uncommon neurological manifestations with pathophysiological symptoms were observed in infected patients including headache, seizures, and neuroimmunological disorders. Regardless of whether these neurological symptoms are direct or indirect casual infection relationship, this novel viral infection has a relevant impact on the neuroimmune system that requires a neurologist's careful assessment. Recently, the use of immunotherapy has been emerged in fighting against COVID-19 infection despite the uncertain efficiency in managing COVID-19 related disorders or even its proven failure by increasing its severity. Herein, the author is addressing the first approaches in using immunotherapies in controlling COVID-19 viral impact on the brain by highlighting their role in decreasing or increasing infection risks among subjects. This point of view review article supports the use of immunotherapies in managing COVID-19 neurological disorders but in optimal timing and duration to ensure the maximum therapeutic outcome by reducing morbidity and mortality rate. Based on recently published data, the current review article highlights the beneficial effects and drawbacks of using immunotherapies to combat COVID-19 and its neurological symptoms.
Collapse
Affiliation(s)
- Mai M Anwar
- Department of Biochemistry, National Organization for Drug Control and Research (Nodcar)/egyptian Drug Authority , Cairo, Egypt
| |
Collapse
|