1
|
Ali MS, Kang HS, Moon BY, Heo YE, Kim MY, Choi JH, Hwang YJ, Kim JI, Lee YH, Kim JM, Lim SK. Prevalence and characterization of ciprofloxacin-resistant Salmonella enterica spp. isolated from food animals during 2010-2023 in South Korea. Vet Q 2025; 45:1-11. [PMID: 40091866 PMCID: PMC11915734 DOI: 10.1080/01652176.2025.2473733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/24/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
We isolated 6,561 Salmonella strains from food animals, cattle (n = 217), pigs (n = 1526), chickens (n = 3942), and ducks (n = 876). Isolates were evaluated for antimicrobial sensitivity, mutations in quinolone resistance determination regions (QRDRs), and plasmid-mediated quinolone resistance (PMQR) genes. Clonal relationship and genetic diversity were assessed by multi-locus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Overall, 3.1% of isolates exhibited resistance to ciprofloxacin. Commonly identified mutations in QRDRs were S83F, D87N, and D87G in gyrA; T57S and S80I in parC; and L416F in parE. Furthermore, mutations differed by serotypes. In S. Albany, S83F mutation in gyrA and T57S in parC were prevalent, while in S. Kentucky, S83F and D87N in gyrA, T57S and S80I in parC; and in S. Indiana, S83F and D87G in gyrA, T57S and S80R in parC, and L416F in parE were common. Amongst PMQRs, qnrS was mainly observed in S. Albany, aac(6')-Ib-cr in S. Indiana, and qnrB1 in S. Albany. Among STs, ST198 S. Kentucky was predominant, followed by ST292 S. Albany and ST17 S. Indiana. Of 26 pulsotypes, KX1KA1 was mainly identified in S. Kentucky, AX1AA1 in S. Albany, and IX1IA1 in S. Indiana. Taken together, ciprofloxacin-resistant Salmonella can pose health hazards to humans and other animals.
Collapse
Affiliation(s)
- Md. Sekendar Ali
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Hee-Seung Kang
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Bo-Youn Moon
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Ye-Eun Heo
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Min Young Kim
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Ji-Hyun Choi
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Yu-Jeong Hwang
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Ji-In Kim
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Yeon-Hee Lee
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Jae-Myung Kim
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Suk-Kyung Lim
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| |
Collapse
|
2
|
Katonge JH, Ally ZK. Evolutionary relationships and genetic diversity in the BlaTEM gene among selected gram-negative bacteria. Biochem Biophys Rep 2025; 42:101985. [PMID: 40207084 PMCID: PMC11979915 DOI: 10.1016/j.bbrep.2025.101985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 03/19/2025] [Indexed: 04/11/2025] Open
Abstract
This study investigates the genetic diversity and evolutionary relationships of the blaTEM gene, a major determinant of beta-lactam antibiotic resistance. We analyzed nucleotide sequences of 32 β-lactamase-producing strains from Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis, and Acinetobacter baumannii obtained from public databases. Sequence analysis revealed 32 distinct sequences with 298 segregating sites and 303 mutations, indicating substantial genetic variability. A high level of haplotype diversity was observed, with 24 distinct haplotypes, reflecting evolutionary pressures and horizontal gene transfer. Phylogenetic analysis showed clear clades, suggesting the evolutionary relationships among blaTEM variants and interspecies gene transfer. The resistance profiles correlated with the genetic findings, particularly mutations. This analysis draws attention to the ongoing adaptive evolution of antibiotic resistance mechanisms, as well as the need for continued monitoring and novel therapeutic strategies. Further research with larger sample sizes and functional validation is needed to fully understand the implications of these variants in antibiotic resistance.
Collapse
Affiliation(s)
| | - Zainabu Khamis Ally
- Department of Biology, University of Dodoma, P. O. Box 338, Dodoma, Tanzania
| |
Collapse
|
3
|
Khalifa HO, Kayama S, Ramadan H, Yu L, Hayashi W, Sugawara Y, Kondo SU, Marzooq FA, Matsumoto T, Sugai M. Comprehensive Analysis of β-lactam Resistant Non-Typhoidal Salmonella Isolates: Phenotypic and Genotypic Insights from Clinical Samples in Japan. J Glob Antimicrob Resist 2025:S2213-7165(25)00092-X. [PMID: 40294860 DOI: 10.1016/j.jgar.2025.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/26/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025] Open
Abstract
OBJECTIVES This study examines β-lactam-resistant non-typhoidal Salmonella isolates using phenotypic and genotypic analyses to elucidate resistance mechanisms and epidemiological characteristics. METHODS A total of 1663 clinical Salmonella spp. isolates were collected (1994-2016), with 122 exhibiting β-lactam resistance, confirmed via antimicrobial susceptibility testing. Resistance mechanisms were further explored through genotypic analysis by whole genome sequencing, plasmid characterization, and phylogenomic investigations. RESULTS All isolates were resistant to at least one β-lactam. Resistance to third-generation cephalosporins was notable, while carbapenem resistance was rare (0.8%). High resistance was observed for minocycline (36.9%) and sulfamethoxazole-trimethoprim (28.7%), whereas resistance to fluoroquinolones (3.3%-5.7%), aminoglycosides (0.8%-8.2%), and tigecycline (8.2%) was low. All isolates remained susceptible to fosfomycin, and 21.3% exhibited multidrug resistance. Genotypic analysis identified diverse serotypes and sequence types, with S. Typhimurium and ST19 being predominant. The most common β-lactamase gene was blaTEM, followed by blaCARB-2, with significant correlations between β-lactam and aminoglycoside resistance genes. Plasmid analysis revealed a high prevalence of plasmid carriage, with IncFII(S) and IncFIB(S) being predominant, strongly associated with antimicrobial resistance genes. Phylogenetic analysis provided insights into the global dissemination of Salmonella, particularly those carrying mcr-9, while clustering analysis revealed shared genetic patterns among isolates sourced from different hosts, highlighting the potential for cross-species transmission. CONCLUSIONS These findings underscore the complex interplay of resistance mechanisms and emphasize the need for integrated surveillance and intervention strategies to combat antimicrobial resistance in Salmonella, reinforcing the necessity for ongoing public health efforts.
Collapse
Affiliation(s)
- Hazim O Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates; Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan; Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt.
| | - Shizuo Kayama
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Liansheng Yu
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Wataru Hayashi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yo Sugawara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sayaka Uchino Kondo
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Farah Al Marzooq
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Tetsuya Matsumoto
- Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
4
|
Yacoub HA, Mahmoud MM, Al-Hejin AM, Abujamel TS, Tabrez S, Abd-Elmaksoud S. Effect of Nk-lysin peptides on bacterial growth, MIC, antimicrobial resistance, and viral activities. Anim Biotechnol 2024; 35:2290520. [PMID: 38100547 DOI: 10.1080/10495398.2023.2290520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
NK-lysins from chicken, bovine and human are used as antiviral and antibacterial agents. Gram-negative and gram-positive microorganisms, including Streptococcus pyogenes, Streptococcus mutans, Escherichia coli, Pseudomonas aeruginosa, Klebsiella oxytoca, Shigella sonnei, Klebsiella pneumoniae and Salmonella typhimurium, are susceptible to NK-lysin treatment. The presence of dominant TEM-1 gene was noted in all untreated and treated bacteria, while TOHO-1 gene was absent in all bacteria. Importantly, β-lactamase genes CTX-M-1, CTX-M-8, and CTX-M-9 genes were detected in untreated bacterial strains; however, none of these were found in any bacterial strains following treatment with NK-lysin peptides. NK-lysin peptides are also used to test for inhibition of infectivity, which ranged from 50 to 90% depending on NK-lysin species. Chicken, bo vine and human NK-lysin peptides are demonstrated herein to have antibacterial activity and antiviral activity against Rotavirus (strain SA-11). On the basis of the comparison between these peptides, potent antiviral activity of bovine NK-lysin against Rotavirus (strain SA-11) is particularly evident, inhibiting infection by up to 90%. However, growth was also significantly inhibited by chicken and human NK-lysin peptides, restricted by 80 and 50%, respectively. This study provided a novel treatment using NK-lysin peptides to inhibit expression of β-lactamase genes in β-lactam antibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- Haitham A Yacoub
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Maged Mostafa Mahmoud
- Regerenative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia (SA)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia (SA)
| | - Ahmed M Al-Hejin
- Biological Sciences Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Turki S Abujamel
- Regerenative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia (SA)
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shams Tabrez
- Regerenative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia (SA)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia (SA)
| | - Sherif Abd-Elmaksoud
- Environmental Virology Laboratory, Water Pollution Research Department, Environmental Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
5
|
Peng J, Xiao R, Wu C, Zheng Z, Deng Y, Chen K, Xiang Y, Xu C, Zou L, Liao M, Zhang J. Characterization of the prevalence of Salmonella in different retail chicken supply modes using genome-wide and machine-learning analyses. Food Res Int 2024; 191:114654. [PMID: 39059904 DOI: 10.1016/j.foodres.2024.114654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/28/2024]
Abstract
Salmonella is a foodborne pathogen that causes salmonellosis, of which retail chicken meat is a major source. However, the prevalence of Salmonella in different retail chicken supply modes and the threat posed to consumers remains unclear. The prevalence, serotype distribution, antibiotic resistance, and genomic characteristics of Salmonella in three supply modes of retail chicken (live poultry, frozen, and chilled) were investigated using whole-genome sequencing (WGS) and machine learning (ML). In this study, 480 retail chicken samples from live poultry, frozen, and chilled supply modes in Guangzhou from 2020 to 2021, as well as 253 Salmonella isolates (total isolation rate = 53.1 %), were collected. The prevalence of isolates in the live poultry mode (67.5 %, 81/120) was statistically higher than in the frozen (50.0 %, 120/240) and chilled (43.3 %, 52/120) (P < 0.05) modes. Serotype identification showed significant differences in the serotype distribution of Salmonella in different supply modes. S. Enteritis (46.7 %) and S. Indiana (14.2 %) were predominant in the frozen mode. S. Agona (23.5 %) and S. Saintpaul (13.6 %) were predominant in live poultry, while S. Enteritis (40.4 %) and S. Kentucky (17.3 %) were predominant in chilled mode. Antibiotic testing showed that frozen mode isolates were more resistant; the multidrug-resistant (MDR) rate of isolates in the frozen mode reached 91.8 %, significantly higher than in the chilled (86.5 %) and live (74.1 %) (P < 0.05) modes. WGS was performed on 155 top serotypes (S. Enteritidis, S. Kentucky, S. Indiana, and S. Agona). The antibiotic resistance gene analysis showed that the abundance and carrying rate of antibiotic resistance genes of Salmonella in the frozen mode (54 types, 16.1 %) were significantly higher than in other modes (live poultry: 36 types, 9.4 %, P < 0.05; chilled: 31 types, 11.6 %). The blaNDM-1 and blaNDM-9 genes encoding carbapenem resistance were found in frozen mode isolates on a complex transposon consisting of TnAS3-IS26. Virulence factors and plasmid replicons were abundant in the studied frozen mode isolates. In addition, single nucleotide polymorphism (SNP) phylogenetic tree results showed that in the frozen supply mode, the S. Enteritidis clonal clade continued to contaminate retail chicken meat and was homologous to S. Enteritidis strains found in farm chicken embryos, slaughterhouse chicken carcasses, and patients from hospitals in China (SNP 0 = 10). Notably, the pan-genome-based ML model showed that characteristic genes in frozen and live poultry isolates differed. The narZ gene was a key characteristic gene in frozen isolates, encoding nitrate reductase, relating to anaerobic bacterial growth. The ydgJ gene is a key characteristic gene in the live mode and encodes an oxidoreductase related to oxidative function in bacteria. The high prevalence of live poultry mode Salmonella and the transmission of frozen mode MDR Salmonella in this study pose serious risks to food safety and public health, emphasizing the importance of improving disinfection and cold storage measures to reduce Salmonella contamination and transmission. In conclusion, the continued surveillance of Salmonella across different supply models and the development of an epidemiological surveillance system based on WGS is necessary.
Collapse
Affiliation(s)
- Junhao Peng
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control; Key Laboratory of Zoonoses, Ministry of Agriculture; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Renhang Xiao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control; Key Laboratory of Zoonoses, Ministry of Agriculture; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Canji Wu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control; Key Laboratory of Zoonoses, Ministry of Agriculture; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zexin Zheng
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control; Key Laboratory of Zoonoses, Ministry of Agriculture; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yuhui Deng
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control; Key Laboratory of Zoonoses, Ministry of Agriculture; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Kaifeng Chen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control; Key Laboratory of Zoonoses, Ministry of Agriculture; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yuwei Xiang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control; Key Laboratory of Zoonoses, Ministry of Agriculture; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Chenggang Xu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control; Key Laboratory of Zoonoses, Ministry of Agriculture; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Likou Zou
- College of Resource, Sichuan Agricultural University, 611130 Yaan, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control; Key Laboratory of Zoonoses, Ministry of Agriculture; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; School of Resources and Environmental, Zhongkai College of Agricultural Engineering, Guangxin Road No. 388, Baiyun District, Guangzhou 510550, Guangdong, China.
| | - Jianmin Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control; Key Laboratory of Zoonoses, Ministry of Agriculture; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Gharaibeh MH, Lafi SQ, Allah AMH, Qudsi FRA. Occurrence, virulence, and resistance genes in Salmonella enterica isolated from an integrated poultry company in Jordan. Poult Sci 2024; 103:103733. [PMID: 38631233 PMCID: PMC11040170 DOI: 10.1016/j.psj.2024.103733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Salmonella is considered one of the most common foodborne pathogens worldwide. The annual number of hospitalizations and deaths related to zoonotic salmonellosis, which is transmitted from animals to humans and infects poultry and meat, is expected to be significant. Hence, the primary aims of this research were to isolate and characterize Salmonella species obtained from an integrated poultry company and identify some virulence, and antimicrobial resistance, with a specific concern about colistin resistance genes. A total of 635 samples collected from various sources in an integrated company in Jordan were screened for Salmonella species accompanying their virulence and antimicrobial resistance genes. Samples were collected from parent stock house drag swabs, broiler farms, premix, cecum at the slaughterhouse level, prechilling and postchilling stages, and the final product. Salmonella species were detected in 3% (6/200) of investigated parent stock house drag swabs, 13.8% (11/80) from cloacal swabs from broiler farms, 16.9% (11/65) from boiler farms premix, 24.4% (11/45) from the cecum at slaughterhouse level, 16.4% (9/55) from the prechilling stage, 37.8% (17/45) from the postchilling stage and 53.3% (24/45) from the final product stage. No isolates were detected in feed mills (0/20), parents' premix (0/40), or hatcheries (0/40). Salmonella isolates were resistant to ciprofloxacin (91.0%), nalidixic acid (86.5%), doxycycline (83.1%), tetracycline (83.1%), sulphamethoxazole-trimethoprim (79.8%) and ampicillin (76.4%). Serotyping shows that S. Infantis was the predominant serovar, with 56.2%. Based on the minimum inhibitory concentration (MIC) test, 39.3% (35/89) of the isolates were resistant to colistin; however, no mcr genes were detected. Among antimicrobial-resistant genes, blaTEM was the most prevalent (88.8%). Furthermore, the spvC, ompA, and ompF virulence genes showed the highest percentages (97.8%, 97.8%, and 96.6%, respectively). In conclusion, Salmonella isolates were found at various stages in the integrated company. S. Infantis was the most prevalent serotype. No mcr genes were detected. Cross-contamination between poultry production stages highlights the importance of good hygiene practices. Furthermore, the presence of virulence genes and the patterns of antimicrobial resistance present significant challenges for public health.
Collapse
Affiliation(s)
- Mohammad H Gharaibeh
- Department of Basic Veterinary Medical Science, Faculty of Veterinary Medicine, Jordan University of Science and Technology, 22110, Jordan.
| | - Shawkat Q Lafi
- Department of Pathology and Public Health, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmed M Habib Allah
- Department of Basic Veterinary Medical Science, Faculty of Veterinary Medicine, Jordan University of Science and Technology, 22110, Jordan
| | - Farah R Al Qudsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, 21121, Jordan
| |
Collapse
|
7
|
Sutar AA, Dashpute RS, Shinde YD, Mukherjee S, Chowdhury C. A Systemic Review on Fitness and Survival of Salmonella in Dynamic Environment and Conceivable Ways of Its Mitigation. Indian J Microbiol 2024; 64:267-286. [PMID: 39011015 PMCID: PMC11246371 DOI: 10.1007/s12088-023-01176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/05/2023] [Indexed: 07/17/2024] Open
Abstract
Gastroenteritis caused by non-typhoidal Salmonella still prevails resulting in several recent outbreaks affecting many people worldwide. The presence of invasive non-typhoidal Salmonella is exemplified by several characteristic symptoms and their severity relies on prominent risk factors. The persistence of this pathogen can be attributed to its broad host range, complex pathogenicity and virulence and adeptness in survival under challenging conditions inside the host. Moreover, a peculiar aid of the ever-changing climatic conditions grants this organism with remarkable potential to survive within the environment. Abusive use of antibiotics for the treatment of gastroenteritis has led to the emergence of multiple drug resistance, making the infections difficult to treat. This review emphasizes the importance of early detection of Salmonella, along with strategies for accomplishing it, as well as exploring alternative treatment approaches. The exceptional characteristics exhibited by Salmonella, like strategies of infection, persistence, and survival parallelly with multiple drug resistance, make this pathogen a prominent concern to human health.
Collapse
Affiliation(s)
- Ajit A Sutar
- Biochemical Sciences Division, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MH 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Rohit S Dashpute
- Biochemical Sciences Division, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MH 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Yashodhara D Shinde
- Biochemical Sciences Division, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MH 411008 India
| | - Srestha Mukherjee
- Biochemical Sciences Division, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MH 411008 India
| | - Chiranjit Chowdhury
- Biochemical Sciences Division, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MH 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
8
|
Ramatla T, Khasapane NG, Mlangeni LN, Mokgokong P, Ramaili T, Ndou R, Nkhebenyane JS, Lekota K, Thekisoe O. Detection of Salmonella Pathogenicity Islands and Antimicrobial-Resistant Genes in Salmonella enterica Serovars Enteritidis and Typhimurium Isolated from Broiler Chickens. Antibiotics (Basel) 2024; 13:458. [PMID: 38786186 PMCID: PMC11117945 DOI: 10.3390/antibiotics13050458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Rapid growth in commercial poultry production is one of the major sources of Salmonella infections that leads to human salmonellosis. The two main Salmonella enterica serovars associated with human salmonellosis are enteritidis and typhimurium. The aim of this study was to determine the prevalence of S. enterica serovars Enteritidis and S. Typhimurium as well as their Salmonella pathogenicity islands (SPI) and antibiotic resistance profiles in broiler chicken feces from slaughterhouses. A total of 480 fecal samples from broiler chickens that were grouped into 96 pooled samples were identified to have Salmonella spp. using the invA gene, whilst the Spy and sdfI genes were used to screen for the presence of S. Enteritidis and S. Typhimurium serovars, respectively, by polymerase chain reaction (PCR) assays. The isolates were also screened for the presence of Salmonella pathogenicity islands (SPIs) using PCR. The disc diffusion assay was performed to determine the antibiotic resistance profiles of the isolates. A total of 36 isolates were confirmed as Salmonella spp. through amplification of the invA gene. Out of 36 confirmed Salmonella spp. a total of 22 isolates were classified as S. Enteritidis (n = 8) and were S. Typhimurium (n = 14) serovars. All (n = 22) S. Enteritidis and S. Typhimurium isolates possessed the hilA (SPI-1), ssrB (SPI-2) and pagC (SPI-11) pathogenicity islands genes. Amongst these serovars, 50% of the isolates (n = 11/22) were resistant to tetracycline and nalidixic acid. Only 22% of the isolates, S. Typhimurium (13.6%) and S. Enteritidis (9.1%) demonstrated resistance against three or more antibiotic classes. The most detected antibiotic resistance genes were tet(K), mcr-1, sulI and strA with 13 (59.1%), 9 (40.9%), 9 (40.9%) and 7 (31.8%), respectively. The findings of this study revealed that S. Typhimurium is the most prevalent serotype detected in chicken feces. To reduce the risk to human health posed by salmonellosis, a stringent public health and food safety policy is required.
Collapse
Affiliation(s)
- Tsepo Ramatla
- Centre for Applied Food Safety and Biotechnology, Department of Life Sciences, Central University of Technology, 1 Park Road, Bloemfontein 9300, South Africa; (T.R.); (J.S.N.)
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (L.N.M.); (P.M.); (R.N.); (K.L.); (O.T.)
| | - Ntelekwane G. Khasapane
- Centre for Applied Food Safety and Biotechnology, Department of Life Sciences, Central University of Technology, 1 Park Road, Bloemfontein 9300, South Africa; (T.R.); (J.S.N.)
| | - Lungile N. Mlangeni
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (L.N.M.); (P.M.); (R.N.); (K.L.); (O.T.)
| | - Prudent Mokgokong
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (L.N.M.); (P.M.); (R.N.); (K.L.); (O.T.)
| | - Taole Ramaili
- Department of Animal Health, School of Agriculture, North-West University, Mmabatho 2735, South Africa;
| | - Rendani Ndou
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (L.N.M.); (P.M.); (R.N.); (K.L.); (O.T.)
| | - Jane S. Nkhebenyane
- Centre for Applied Food Safety and Biotechnology, Department of Life Sciences, Central University of Technology, 1 Park Road, Bloemfontein 9300, South Africa; (T.R.); (J.S.N.)
| | - Kgaugelo Lekota
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (L.N.M.); (P.M.); (R.N.); (K.L.); (O.T.)
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (L.N.M.); (P.M.); (R.N.); (K.L.); (O.T.)
| |
Collapse
|
9
|
Wang W, Cui J, Liu F, Hu Y, Li F, Zhou Z, Deng X, Dong Y, Li S, Xiao J. Genomic characterization of Salmonella isolated from retail chicken and humans with diarrhea in Qingdao, China. Front Microbiol 2023; 14:1295769. [PMID: 38164401 PMCID: PMC10757937 DOI: 10.3389/fmicb.2023.1295769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Salmonella, especially antimicrobial resistant strains, remains one of the leading causes of foodborne bacterial disease. Retail chicken is a major source of human salmonellosis. Here, we investigated the prevalence, antimicrobial resistance (AMR), and genomic characteristics of Salmonella in 88 out of 360 (24.4%) chilled chicken carcasses, together with 86 Salmonella from humans with diarrhea in Qingdao, China in 2020. The most common serotypes were Enteritidis and Typhimurium (including the serotype I 4,[5],12:i:-) among Salmonella from both chicken and humans. The sequence types were consistent with serotypes, with ST11, ST34 and ST19 the most dominantly identified. Resistance to nalidixic acid, ampicillin, tetracycline and chloramphenicol were the top four detected in Salmonella from both chicken and human sources. High multi-drug resistance (MDR) and resistance to third-generation cephalosporins resistance were found in Salmonella from chicken (53.4%) and humans (75.6%). In total, 149 of 174 (85.6%) Salmonella isolates could be categorized into 60 known SNP clusters, with 8 SNP clusters detected in both sources. Furthermore, high prevalence of plasmid replicons and prophages were observed among the studied isolates. A total of 79 antimicrobial resistant genes (ARGs) were found, with aac(6')-Iaa, blaTEM-1B, tet(A), aph(6)-Id, aph(3″)-Ib, sul2, floR and qnrS1 being the dominant ARGs. Moreover, nine CTX-M-type ESBL genes and the genes blaNMD-1, mcr-1.1, and mcr-9.1 were detected. The high incidence of MDR Salmonella, especially possessing lots of mobile genetic elements (MGEs) in this study posed a severe risk to food safety and public health, highlighting the importance of improving food hygiene measures to reduce the contamination and transmission of this bacterium. Overall, it is essential to continue monitoring the Salmonella serotypes, implement the necessary prevention and strategic control plans, and conduct an epidemiological surveillance system based on whole-genome sequencing.
Collapse
Affiliation(s)
- Wei Wang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Jing Cui
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao Institute of Preventive Medicine, Qingdao, China
| | - Feng Liu
- Pharmaceutical Department, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital) Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao, China
| | - Yujie Hu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Fengqin Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Zhemin Zhou
- Key Laboratory of Alkene-carbon Fibres-based Technology and Application for Detection of Major Infectious Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, China
| | - Xiangyu Deng
- Center for Food Safety, University of Georgia, Griffin, GA, United States
| | - Yinping Dong
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Shaoting Li
- Guangdong University of Technology, Guangzhou, China
| | - Jing Xiao
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|
10
|
Nuanmuang N, Leekitcharoenphon P, Njage PMK, Gmeiner A, Aarestrup FM. An Overview of Antimicrobial Resistance Profiles of Publicly Available Salmonella Genomes with Sufficient Quality and Metadata. Foodborne Pathog Dis 2023; 20:405-413. [PMID: 37540138 PMCID: PMC10510693 DOI: 10.1089/fpd.2022.0080] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Salmonella enterica (S. enterica) is a commensal organism or pathogen causing diseases in animals and humans, as well as widespread in the environment. Antimicrobial resistance (AMR) has increasingly affected both animal and human health and continues to raise public health concerns. A decade ago, it was estimated that the increased use of whole genome sequencing (WGS) combined with sharing of public data would drastically change and improve the surveillance and understanding of Salmonella epidemiology and AMR. This study aimed to evaluate the current usefulness of public WGS data for Salmonella surveillance and to investigate the associations between serovars, antibiotic resistance genes (ARGs), and metadata. Out of 191,306 Salmonella genomes deposited in European Nucleotide Archive and NCBI databases, 47,452 WGS with sufficient minimum metadata (country, year, and source) of S. enterica were retrieved from 116 countries and isolated between 1905 and 2020. For in silico analysis of the WGS data, KmerFinder, SISTR, and ResFinder were used for species, serovars, and AMR identification, respectively. The results showed that the five common isolation sources of S. enterica are human (29.10%), avian (22.50%), environment (11.89%), water (9.33%), and swine (6.62%). The most common ARG profiles for each class of antimicrobials are β-lactam (blaTEM-1B; 6.78%), fluoroquinolone [(parC[T57S], qnrB19); 0.87%], folate pathway antagonist (sul2; 8.35%), macrolide [mph(A); 0.39%], phenicol (floR; 5.94%), polymyxin B (mcr-1.1; 0.09%), and tetracycline [tet(A); 12.95%]. Our study reports the first overview of ARG profiles in publicly available Salmonella genomes from online databases. All data sets from this study can be searched at Microreact.
Collapse
Affiliation(s)
- Narong Nuanmuang
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Pimlapas Leekitcharoenphon
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Patrick Murigu Kamau Njage
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Alexander Gmeiner
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Frank M. Aarestrup
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
11
|
Fakorede CO, Amisu KO, Saki M, Akinyemi KO. Co-existence of extended-spectrum β-lactamases bla CTX-M-9 and bla CTX-M-15 genes in Salmonella species isolated from febrile and diarrhoeagenic patients in Lagos, Nigeria: a cross-sectional study. Eur J Med Res 2023; 28:3. [PMID: 36593500 PMCID: PMC9806906 DOI: 10.1186/s40001-022-00960-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Resistance to different antimicrobial classes by Salmonella species has generated a global public health concern. The spread of extended-spectrum β-lactamases (ESBLs) blaCTX gene variants is also increasing. This study aimed to investigate the antibiotic resistance and the carriage of blaCTX-M-9 and blaCTX-M-15 as well as the quinolone resistance gene (qnrB19) among Salmonella species from hospitalised patients in Lagos, Nigeria. METHODS In this cross-sectional study from April 2021 to August 2021, a total of 508 samples were collected from hospitalised patients. The samples were subjected to standard microbiological investigation. All the isolates were identified using API 20E kits and real-time polymerase chain reaction (RT-PCR). The in vitro antibiotic susceptibility testing (AST) was investigated using the disk diffusion method. Detection of antibiotic resistance and virulence gene makers was conducted using RT-PCR. RESULTS In total, 24 Salmonella species were identified. All the isolates were non-typhoidal Salmonella isolates. None of the isolates screened was S. Typhi and S. Paratyphi. Most of the isolates were susceptible to imipenem, ciprofloxacin, ofloxacin and gentamycin, while a high level of resistance to all cephalosporins, penicillin, and some carbapenems was observed. In total, 79.2% (19/24) of the Salmonella isolates harboured the blaCTX-M variant including 54.2% (13/24) blaCTX-M-9 and 12.5% (3/24) blaCTX-M-15, while co-habitation of blaCTX-M-9 and blaCTX-M-15 was observed in 12.5% (3/24) of the isolates, respectively. None of the isolates harboured quinolone-resistant qnrB19 gene and virulence gene stn. However, invA gene was present in 66.7% (16/24) of all isolates. CONCLUSIONS This study is considered the first report of blaCTX-M-9 and blaCTX-M-15 variants in Salmonella species in Nigeria. The continued existence of cefotaximase (CTX-M)-producing Salmonella within our environment calls for the prudent use of cephalosporins.
Collapse
Affiliation(s)
- Christopher O Fakorede
- Department of Microbiology, Faculty of Science, Lagos State University, Lasu Post Office, Ojo, P.O. Box 0001, Lagos, Nigeria
| | - Kehinde O Amisu
- Department of Microbiology, Faculty of Science, Lagos State University, Lasu Post Office, Ojo, P.O. Box 0001, Lagos, Nigeria
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Infectious Ophthalmologic Research Center, Imam Khomeini Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Kabiru O Akinyemi
- Department of Microbiology, Faculty of Science, Lagos State University, Lasu Post Office, Ojo, P.O. Box 0001, Lagos, Nigeria.
| |
Collapse
|
12
|
Khan AS, Pierneef RE, Gonzalez-Escalona N, Maguire M, Georges K, Abebe W, Adesiyun AA. Phylogenetic analyses of Salmonella detected along the broiler production chain in Trinidad and Tobago. Poult Sci 2022; 102:102322. [PMID: 36473385 PMCID: PMC9720344 DOI: 10.1016/j.psj.2022.102322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/12/2022] Open
Abstract
This study was conducted to determine the phylogenies of Salmonella strains isolated from cross-sectional studies conducted at hatcheries, broiler farms, processing plants, and retail outlets (broiler production chain) in Trinidad and Tobago over 4 yr (2016-2019). Whole-genome sequencing (WGS) was used to characterize Salmonella isolates. Core genome phylogenies of 8 serovars of public health significance were analyzed for similarities in origin and relatedness. In addition, Salmonella strains isolated from human salmonellosis cases in Trinidad were analyzed for their relatedness to the isolates detected along the broiler production chain. The common source of these isolates of diverse serovars within farms, within processing plants, between processing plants and retail outlets, and among farm-processing plant-retail outlet continuum was well-supported (bootstrap value >70%) by the core genome phylogenies for the respective serovars. Also, genome analyses revealed clustering of Salmonella serovars of regional (intra-Caribbean) and international (extra-Caribbean) origin. Similarly, strains of S. Enteritidis and S. Infantis isolated from human clinical salmonellosis in 2019 from Trinidad and Tobago clustered with our processing plant isolates recovered in 2018. This study is the first phylogenetic analysis of Salmonella isolates using WGS from the broiler industry in the Caribbean region. The use of WGS confirmed the genetic relatedness and transmission of Salmonella serovars contaminating chickens in broiler processing, and retailing in the country, with zoonotic and food safety implications for humans.
Collapse
Affiliation(s)
- Anisa S. Khan
- School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Rian E. Pierneef
- Agricultural Research Council-Biotechnology Platform, Pretoria 0110, South Africa
| | - Narjol Gonzalez-Escalona
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, USA
| | - Meghan Maguire
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, USA
| | - Karla Georges
- School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Woubit Abebe
- Department of Pathobiology, Center for Food Animal Health, Food Safety and Food Defense, Tuskegee University, College of Veterinary Medicine, Tuskegee, AL 36088, USA
| | - Abiodun A. Adesiyun
- School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago,Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa,Corresponding author:
| |
Collapse
|
13
|
Tang B, Elbediwi M, Nambiar RB, Yang H, Lin J, Yue M. Genomic Characterization of Antimicrobial-Resistant Salmonella enterica in Duck, Chicken, and Pig Farms and Retail Markets in Eastern China. Microbiol Spectr 2022; 10:e0125722. [PMID: 36047803 PMCID: PMC9603869 DOI: 10.1128/spectrum.01257-22] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/17/2022] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial-resistant Salmonella enterica poses a significant public health concern worldwide. However, the dissemination of Salmonella enterica among food animals in eastern China has not been fully addressed. Here, we demonstrated the antimicrobial resistance (AMR) patterns and the whole-genome characterization of 105 S. enterica isolates from 1,480 fecal samples and anal swabs collected from 22 different farms (chickens, ducks, and pigs) and two live animal markets located in Zhejiang and Fujian Provinces in eastern China in 2019. The prevalence of isolates in duck farms (19.17%, 23/120) was statistically significantly higher (P < 0.001) than that in chicken farms (6.61%, 37/523) and pig farms (3.50%, 7/200). Among these isolates, 75.26% (79/105) were multidrug resistant, with the highest rates of resistance to tetracycline (76.20%) and ampicillin (67.62%) and the lowest resistance rate to meropenem (0.00%). The serotypes were consistent with sequence types and were closely related to the sampling animal species and sites. S. enterica serotype Kentucky (20.95%, 22/105) was the most frequent serotype and harbored more AMR patterns and genes than others. Furthermore, IncFII(S) and IncHI2 were the most prevalent replicons. A total of 44 acquired AMR genes were found. Among those genes, aac(6')-Iaa, blaTEM-1B, floR, dfrA14, fosA7, mph(A), qnrS1, sul1, tet(A), and ARR-3 were the dominant AMR genes mediating the AMR toward aminoglycosides, β-lactams, phenicol, trimethoprim, fosfomycin, macrolide, quinolone, sulfonamides, tetracycline, and rifampin, respectively. The consistency of acquired AMR genes with AMR phenotypes for ampicillin, ceftiofur, ceftazidime, meropenem, sulfamethoxazole-trimethoprim, and tetracycline was >90%. Together, our study highlights the application of whole-genome sequencing to assess veterinary public health threats. IMPORTANCE Public health is a significant concern in China, and the foodborne pathogen Salmonella, which is spread via the animal-borne food chain, plays an important role in the overall disease burden in China annually. The development of advanced sequencing technologies has introduced a new way of understanding emerging pathogens. However, the routine surveillance application of this method in China remains in its infancy. Here, we applied a pool of all isolates from the prevalence data in Zhejiang and Fujian for whole-genome sequencing and combined these data with the cutting-edge bioinformatic analysis pipeline for one-step determination of the complete genetic makeup for all 105 genomes. The illustrated method could provide a cost-effective approach, without labor-intensive laboratory characterization, for predicting serotypes, genotypes, plasmid types, antimicrobial resistance genes, and virulence genes, and thus would provide essential knowledge for emerging pathogens. Our findings and perspectives are essential for delivering updated knowledge on foodborne pathogens in an understudied region in China.
Collapse
Affiliation(s)
- Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Mohammed Elbediwi
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
| | - Reshma B. Nambiar
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiahui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Min Yue
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| |
Collapse
|
14
|
Chen J, Ed-Dra A, Zhou H, Wu B, Zhang Y, Yue M. Antimicrobial resistance and genomic investigation of non-typhoidal Salmonella isolated from outpatients in Shaoxing city, China. Front Public Health 2022; 10:988317. [PMID: 36176509 PMCID: PMC9513250 DOI: 10.3389/fpubh.2022.988317] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/17/2022] [Indexed: 01/26/2023] Open
Abstract
Human non-typhoidal salmonellosis is among the leading cause of morbidity and mortality worldwide, resulting in huge economic losses and threatening the public health systems. To date, epidemiological characteristics of non-typhoidal Salmonella (NTS) implicated in human salmonellosis in China are still obscure. Herein, we investigate the antimicrobial resistance and genomic features of NTS isolated from outpatients in Shaoxing city in 2020. Eighty-seven Salmonella isolates were recovered and tested against 28 different antimicrobial agents, representing 12 categories. The results showed high resistance to cefazolin (86.21%), streptomycin (81.61%), ampicillin (77.01%), ampicillin-sulbactam (74.71%), doxycycline (72.41%), tetracycline (71.26%), and levofloxacin (70.11%). Moreover, 83.91% of isolates were resistant to ≥3 categories, which were considered multi-drug resistant (MDR). Whole-genome sequencing (WGS) combined with bioinformatic analysis was used to predict serovars, MLST types, plasmid replicons, antimicrobial resistance genes, and virulence genes, in addition to the construction of phylogenomic to determine the epidemiological relatedness between isolates. Fifteen serovars and 16 STs were identified, with the dominance of S. I 4, [5], 12:i:- ST34 (25.29%), S. Enteritidis ST11 (22.99%), and S. Typhimurium ST19. Additionally, 50 resistance genes representing ten categories were detected with a high prevalence of aac(6')-Iaa (100%), bla TEM-1B (65.52%), and tet(A) (52.87%), encoding resistance to aminoglycosides, β-lactams, and tetracyclines, respectively; in addition to chromosomic mutations affecting gyrA gene. Moreover, we showed the detection of 18 different plasmids with the dominance of IncFIB(S) and IncFII(S) (39.08%). Interestingly, all isolates harbor the typical virulence genes implicated in the virulence mechanisms of Salmonella, while one isolate of S. Jangwani contains the cdtB gene encoding typhoid toxin production. Furthermore, the phylogenomic analysis showed that all isolates of the same serovar are very close to each other and clustered together in the same clade. Together, we showed a high incidence of MDR among the studied isolates which is alarming for public health services and is a major threat to the currently available treatments to deal with human salmonellosis; hence, efforts should be gathered to further introduce WGS in routinely monitoring of AMR Salmonella in the medical field in order to enhance the effectiveness of surveillance systems and to limit the spread of MDR clones.
Collapse
Affiliation(s)
- Jiancai Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | | | - Haiyang Zhou
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Beibei Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yunyi Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China,*Correspondence: Yunyi Zhang
| | - Min Yue
- Hainan Institute of Zhejiang University, Sanya, China,Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Min Yue
| |
Collapse
|
15
|
Detection of extended spectrum beta-lactamase (ESBL)–production in Salmonella Typhimurium isolated from poultry birds in Nasarawa State, Nigeria. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
16
|
Gildea L, Ayariga JA, Ajayi OS, Xu J, Villafane R, Samuel-Foo M. Cannabis sativa CBD Extract Shows Promising Antibacterial Activity against Salmonella typhimurium and S. newington. Molecules 2022; 27:2669. [PMID: 35566019 PMCID: PMC9099639 DOI: 10.3390/molecules27092669] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 12/27/2022] Open
Abstract
Products derived from Cannabis sativa L. have gained increased interest and popularity. As these products become common amongst the public, the health and potential therapeutic values associated with hemp have become a premier focus of research. While the psychoactive and medicinal properties of Cannabis products have been extensively highlighted in the literature, the antibacterial properties of cannabidiol (CBD) have not been explored in depth. This research serves to examine the antibacterial potential of CBD against Salmonella newington and S. typhimurium. In this study, we observed bacterial response to CBD exposure through biological assays, bacterial kinetics, and fluorescence microscopy. Additionally, comparative studies between CBD and ampicillin were conducted against S. typhimurium and S. newington to determine comparative efficacy. Furthermore, we observed potential resistance development of our Salmonella spp. against CBD treatment.
Collapse
Affiliation(s)
- Logan Gildea
- The Microbiology Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA; (L.G.); (R.V.)
| | - Joseph Atia Ayariga
- The Biomedical Engineering Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA
| | - Olufemi S. Ajayi
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA; (J.X.); (M.S.-F.)
| | - Junhuan Xu
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA; (J.X.); (M.S.-F.)
| | - Robert Villafane
- The Microbiology Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA; (L.G.); (R.V.)
| | - Michelle Samuel-Foo
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA; (J.X.); (M.S.-F.)
| |
Collapse
|
17
|
Laure NN, Ahn J. Antibiofilm Activity of β-Lactam/β-Lactamase Inhibitor Combination against Multidrug-Resistant Salmonella Typhimurium. Pathogens 2022; 11:pathogens11030349. [PMID: 35335673 PMCID: PMC8950422 DOI: 10.3390/pathogens11030349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/03/2022] [Accepted: 03/12/2022] [Indexed: 02/05/2023] Open
Abstract
This study was designed to assess the effect of β-lactam/β-lactamase inhibitor combinations on the inhibition of biofilm formation of Salmonella Typhimurium. The anti-planktonic and anti-biofilm activities of ampicillin (AMP), ceftriaxone (CEF), and combination treatments of antibiotics and sulbactam (AMP + SUL and CEF + SUL) were evaluated against antibiotic-sensitive S. Typhimurium ATCC 19585 (STAS) and clinically isolated multidrug-resistant (MDR) S. Typhimurium CCARM 8009 (STMDR). Compared to the control, the minimum inhibitory concentrations (MICs) of AMP against STAS and CEF against STMDR were decreased from 32 to 16 μg/mL and 0.25 to 0.125 μg/mL, respectively, in the presence of SUL. The numbers of STMDR treated with AMP + SUL and CEF + SUL were effectively reduced by more than 2 logs after 4 h of incubation at 37 °C. The β-lactamase activities of STAS and STMDR treated with AMP and CEF were reduced from 3.3 to 2.6 μmol/min/mL and from 8.3 to 3.4 μmol/min/mL, respectively, in the presence of SUL. The biofilm cell numbers of STAS and STMDR were reduced at all treatments after 24 h of incubation at 37 °C. The biofilm cell numbers of STAS and STMDR were reduced by more than 2 logs in the presence of SUL compared to the AMP and CEF alone. The lowest relative fitness level was 0.6 in STAS treated with AMP + SUL, while no significant differences in the relative fitness were observed in STMDR. This study suggests that β-lactamase inhibitors (BLIs) could be used for controlling biofilm formation of β-lactamase-producing multidrug-resistant S. Typhimurium.
Collapse
Affiliation(s)
- Nana Nguefang Laure
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea;
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea;
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: ; Tel.: +82-33-250-6564
| |
Collapse
|
18
|
Molecular Characterization of Salmonella Detected along the Broiler Production Chain in Trinidad and Tobago. Microorganisms 2022; 10:microorganisms10030570. [PMID: 35336145 PMCID: PMC8955423 DOI: 10.3390/microorganisms10030570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
This cross-sectional study determined the serovars, antimicrobial resistance genes, and virulence factors of Salmonella isolated from hatcheries, broiler farms, processing plants, and retail outlets in Trinidad and Tobago. Salmonella in silico serotyping detected 23 different serovars where Kentucky 20.5% (30/146), Javiana 19.2% (28/146), Infantis 13.7% (20/146), and Albany 8.9% (13/146) were the predominant serovars. There was a 76.0% (111/146) agreement between serotyping results using traditional conventional methods and whole-genome sequencing (WGS) in in silico analysis. In silico identification of antimicrobial resistance genes conferring resistance to aminoglycosides, cephalosporins, peptides, sulfonamides, and antiseptics were detected. Multidrug resistance (MDR) was detected in 6.8% (10/146) of the isolates of which 100% originated from broiler farms. Overall, virulence factors associated with secretion systems and fimbrial adherence determinants accounted for 69.3% (3091/4463), and 29.2% (1302/4463) counts, respectively. Ten of 20 isolates of serovar Infantis (50.0%) showed MDR and contained the blaCTX-M-65 gene. This is the first molecular characterization of Salmonella isolates detected along the entire broiler production continuum in the Caribbean region using WGS. The availability of these genomes will help future source tracking during epidemiological investigations associated with Salmonella foodborne outbreaks in the region and worldwide.
Collapse
|
19
|
Jesumirhewe C, Springer B, Allerberger F, Ruppitsch W. Genetic Characterization of Antibiotic Resistant Enterobacteriaceae Isolates From Bovine Animals and the Environment in Nigeria. Front Microbiol 2022; 13:793541. [PMID: 35283848 PMCID: PMC8916115 DOI: 10.3389/fmicb.2022.793541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/10/2022] [Indexed: 11/30/2022] Open
Abstract
There is a link between antibiotic resistance in humans, livestock and the environment. This study was carried out to characterize antibiotic resistant bovine and environmental Enterobacteriaceae isolates from Edo state, Nigeria. A total of 109 consecutive isolates of Enterobacteriaceae were isolated from March–May 2015 from 150 fecal samples of healthy bovine animals from three farms at slaughter in Edo state Nigeria. Similarly, 43 Enterobacteriaceae isolates were also obtained from a total of 100 environmental samples from different sources. Isolates were recovered and identified from samples using standard microbiological techniques. Recovered isolates were pre-identified by the Microbact Gram-Negative identification system and confirmed with Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry and ribosomal multilocus sequence typing (rMLST). Antibiotic susceptibility testing was carried out by Kirby-Bauer method for 14 antibiotics. Whole genome sequencing (WGS) was carried out for isolate characterization and identification of resistance determinants. Out of 109 animal and 43 environmental Enterobacteriaceae isolates, 18 (17%) and 8 (19%) isolates based on selection criteria showed antibiotic resistance and were further investigated by whole genome sequencing (WGS). Resistance genes were detected in all (100%) of the resistant bovine and environmental Enterobacteriaceae isolates. The resistance determinants included β-lactamase genes, aminoglycoside modifying enzymes, qnr genes, sulfonamide, tetracycline and trimethoprim resistance genes, respectively. Out of the 18 and 8 resistant animal and environmental isolates 3 (17%) and 2 (25%) were multidrug resistant (MDR) and had resistance determinants which included efflux genes, regulatory systems modulating antibiotic efflux and antibiotic target alteration genes. Our study shows the dissemination of antibiotic resistance especially MDR strains among Nigerian bovine and environmental Enterobacteriaceae isolates. The presence of these resistant strains in animals and the environment constitute a serious health concern indicated by the difficult treatment options of the infections caused by these organisms. To the best of our knowledge we report the first detailed genomic characterization of antibiotic resistance in bovine and environmental Enterobacteriaceae isolates for Nigeria.
Collapse
Affiliation(s)
- Christiana Jesumirhewe
- Department of Pharmaceutical Microbiology, Prof Dora Akunyili College of Pharmacy, Igbinedion University, Okada, Nigeria
- *Correspondence: Christiana Jesumirhewe,
| | - Burkhard Springer
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Franz Allerberger
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Werner Ruppitsch
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| |
Collapse
|
20
|
Molecular Survey and Identification of Campylobacter spp. in Layer Farms in Central Ethiopia. Trop Med Infect Dis 2022; 7:tropicalmed7020031. [PMID: 35202226 PMCID: PMC8876474 DOI: 10.3390/tropicalmed7020031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Few data are available on Campylobacter spp. presence in chickens in Ethiopia. Due to its importance for both the poultry sector and public health, a sampling activity was planned to evaluate Campylobacter spp. presence in layer farms in Bishoftu and Mojo, Central Ethiopia. Twenty cloacal pooled samples were collected and tested with molecular assays for detection and Sanger-sequenced for species identification. As a secondary aim, samples were also tested for Salmonella spp. by PCR, and all samples were negative. On the other hand, 70% of cloacal swab pools were positive for Campylobacter spp.: 71.4% of the positive samples belonged to C. jejuni species, 21.4% to C. avium and 7.1% to C. helveticus. Campylobacter spp. was identified in almost all farms regardless of farm and flock size, age and hybrid types of the birds and antimicrobial treatment. Campylobacter jejuni is a common finding in chickens, whereas species such as C. avium and C. helveticus were newly reported in Ethiopia, revealing a variability that needs to be monitored in light of the public health significance of this pathogen.
Collapse
|
21
|
Karabasanavar N, Sivaraman GK, S P S, Nair AS, Vijayan A, Rajan V, P S G. Non-diarrhoeic pigs as source of highly virulent and multidrug-resistant non-typhoidal Salmonella. Braz J Microbiol 2022; 53:1039-1049. [PMID: 35128626 PMCID: PMC9151962 DOI: 10.1007/s42770-022-00700-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
Food-producing animals act as reservoirs of non-typhoidal Salmonella (NTS) serovars with potential food safety and public health implications. The present cross-sectional study aimed at determining the prevalence of Salmonella serotypes in non-diarrhoeic pigs and characterizing the isolates using molecular tools. Salmonella isolates (n = 22) recovered from faecal samples of 194 randomly selected pigs were characterized for virulence and antimicrobial resistance and subtyped using XbaI-PFGE. The prevalence of Salmonella in apparently healthy non-diarrhoeic pigs was 11.3% (95%CI, 4.3-19.5%), with S. Weltevreden (81.8%) and S. Enteritidis (18.2%) being the serotypes detected. Salmonella isolates harboured virulence genes such as invA (100%), stn (100%), spvR/spvC (86.3%) and fimA (22.7%). Phenotypically, isolates showed sensitivity to chloramphenicol, levofloxacin and ciprofloxacin and resistance to tetracycline and ampicillin (100%), streptomycin (86.4%), amoxicillin-clavulanate (63.6%), cefotaxime (22.7%) and ceftriaxone (9.1%). Notably, 18.2% isolates were multidrug-resistant (≥ 3 antimicrobial class) with multiple antimicrobial resistance (MAR) index of 0.56-0.67 (18.2%), 0.44 (45.5%), 0.33 (31.8%) and 0.22 (4.5%). Genotypically, isolates carried various antibiotic resistance genes: ESBL (blaTEM and blaOXA), aminoglycoside (strA, strB and aadA1), sulphonamide (sul1, sul2 and dfrA1), tetracycline (tetA and tetB) and plasmid AmpC beta-lactamase (ACC, FOX, MOX, DHA, CIT and EBC). The present investigation emphasizes the epidemiological significance of PFGE typing in the detection of emerging strains of highly virulent and multidrug-resistant S. Weltevreden and S. Enteritidis in non-diarrhoeic pigs that pose serious public health implications in the pork supply chain environment. More extensive longitudinal study is warranted to provide epidemiological links between environmental reservoirs and animal and human infections in piggery settings.
Collapse
Affiliation(s)
- Nagappa Karabasanavar
- Department of Veterinary Public Health & Epidemiology, Veterinary College (Karnataka Veterinary, Animal & Fisheries Sciences University), Vidyanagar, Hassan, 573 202, Karnataka, India.
| | - G K Sivaraman
- Microbiology, Fermentation & Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Cochin, 682 029, Kerala, India
| | - Satheesha S P
- Department of Veterinary Public Health & Epidemiology, Veterinary College (Karnataka Veterinary, Animal & Fisheries Sciences University), Vidyanagar, Hassan, 573 202, Karnataka, India
| | - Archana S Nair
- Department of Veterinary Public Health & Epidemiology, Veterinary College (Karnataka Veterinary, Animal & Fisheries Sciences University), Vidyanagar, Hassan, 573 202, Karnataka, India
| | - Ardhra Vijayan
- Microbiology, Fermentation & Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Cochin, 682 029, Kerala, India
| | - Vineeth Rajan
- Microbiology, Fermentation & Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Cochin, 682 029, Kerala, India
| | - Girish P S
- ICAR National Research Centre On Meat, Hyderabad, 500 092, Telangana, India
| |
Collapse
|
22
|
Molecular Detection of Integrons, Colistin and β-lactamase Resistant Genes in Salmonella enterica Serovars Enteritidis and Typhimurium Isolated from Chickens and Rats Inhabiting Poultry Farms. Microorganisms 2022; 10:microorganisms10020313. [PMID: 35208768 PMCID: PMC8876313 DOI: 10.3390/microorganisms10020313] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
Abstract
The rapid growth of multidrug-resistant Salmonella is a global public health concern. The aim of this study was to detect integrons, colistin and β-lactamase resistance genes in Salmonella enteritidis and typhimurium. A total of 63 isolates of S. enteritidis (n = 18) and S. typhimurium (n = 45) from fecal samples of layers and rats at chicken farms were screened for antibiotic resistant genes. Conventional PCR was performed for the detection of integrons (classes 1, 2, and 3), colistin (mcr-1-5) and β-lactamase (blaCTX-M, blaCTX-M-1, blaCTX-M-2, blaCTX-M-9, blaCTX-M-15, blaTEM, blaSHV, and blaOXA) resistant genes. Of these isolates, 77% and 27% of S. typhimurium and S. enteritidis harboured the mcr-4 encoded gene for colistin, respectively. The prevalence of class 1 integrons for S. typhimurium and S. enteritidis was 100% for each serovar, while for class 2 integrons of S. typhimurium and S. enteritidis it was 49% and 33% respectively, while class 3 integron genes was not detected. Our study also detected high levels of β-lactamase encoding genes (bla gene), namely blaCTX-M, blaCTX-M-1, blaCTX-M-9 and blaTEM from both S. typhimurium and S. enteritidis. This, to our knowledge, is the first report of mcr-4 resistance gene detection in Salmonella serovars in South Africa. This study also highlights the importance of controlling rats at poultry farms in order to reduce the risk of transmission of antibiotic resistance to chickens and eventually to humans.
Collapse
|
23
|
Shaheen A, Tariq A, Iqbal M, Mirza O, Haque A, Walz T, Rahman M. Mutational Diversity in the Quinolone Resistance-Determining Regions of Type-II Topoisomerases of Salmonella Serovars. Antibiotics (Basel) 2021; 10:antibiotics10121455. [PMID: 34943668 PMCID: PMC8698434 DOI: 10.3390/antibiotics10121455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 01/24/2023] Open
Abstract
Quinolone resistance in bacterial pathogens has primarily been associated with mutations in the quinolone resistance-determining regions (QRDRs) of bacterial type-II topoisomerases, which are DNA gyrase and topoisomerase IV. Depending on the position and type of the mutation (s) in the QRDRs, bacteria either become partially or completely resistant to quinolone. QRDR mutations have been identified and characterized in Salmonella enterica isolates from around the globe, particularly during the last decade, and efforts have been made to understand the propensity of different serovars to carry such mutations. Because there is currently no thorough analysis of the available literature on QRDR mutations in different Salmonella serovars, this review aims to provide a comprehensive picture of the mutational diversity in QRDRs of Salmonella serovars, summarizing the literature related to both typhoidal and non-typhoidal Salmonella serovars with a special emphasis on recent findings. This review will also discuss plasmid-mediated quinolone-resistance determinants with respect to their additive or synergistic contributions with QRDR mutations in imparting elevated quinolone resistance. Finally, the review will assess the contribution of membrane transporter-mediated quinolone efflux to quinolone resistance in strains carrying QRDR mutations. This information should be helpful to guide the routine surveillance of foodborne Salmonella serovars, especially with respect to their spread across countries, as well as to improve laboratory diagnosis of quinolone-resistant Salmonella strains.
Collapse
Affiliation(s)
- Aqsa Shaheen
- Department of Biochemistry and Biotechnology, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan
- Correspondence: (A.S.); (M.R.); Tel.: +92-53-3643112-187 (A.S.); +92-42-35953122 (M.R.)
| | - Anam Tariq
- Drug Discovery and Structural Biology Group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan; (A.T.); (M.I.)
| | - Mazhar Iqbal
- Drug Discovery and Structural Biology Group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan; (A.T.); (M.I.)
| | - Osman Mirza
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Abdul Haque
- Human Infectious Diseases Group, Akhuwat First University, Faisalabad 38000, Pakistan;
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, Rockefeller University, New York, NY 10065, USA;
| | - Moazur Rahman
- School of Biological Sciences, Quaid-I-Azam Campus, University of the Punjab, Lahore 54590, Pakistan
- Correspondence: (A.S.); (M.R.); Tel.: +92-53-3643112-187 (A.S.); +92-42-35953122 (M.R.)
| |
Collapse
|
24
|
Millanao AR, Mora AY, Villagra NA, Bucarey SA, Hidalgo AA. Biological Effects of Quinolones: A Family of Broad-Spectrum Antimicrobial Agents. Molecules 2021; 26:7153. [PMID: 34885734 PMCID: PMC8658791 DOI: 10.3390/molecules26237153] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 11/28/2022] Open
Abstract
Broad antibacterial spectrum, high oral bioavailability and excellent tissue penetration combined with safety and few, yet rare, unwanted effects, have made the quinolones class of antimicrobials one of the most used in inpatients and outpatients. Initially discovered during the search for improved chloroquine-derivative molecules with increased anti-malarial activity, today the quinolones, intended as antimicrobials, comprehend four generations that progressively have been extending antimicrobial spectrum and clinical use. The quinolone class of antimicrobials exerts its antimicrobial actions through inhibiting DNA gyrase and Topoisomerase IV that in turn inhibits synthesis of DNA and RNA. Good distribution through different tissues and organs to treat Gram-positive and Gram-negative bacteria have made quinolones a good choice to treat disease in both humans and animals. The extensive use of quinolones, in both human health and in the veterinary field, has induced a rise of resistance and menace with leaving the quinolones family ineffective to treat infections. This review revises the evolution of quinolones structures, biological activity, and the clinical importance of this evolving family. Next, updated information regarding the mechanism of antimicrobial activity is revised. The veterinary use of quinolones in animal productions is also considered for its environmental role in spreading resistance. Finally, considerations for the use of quinolones in human and veterinary medicine are discussed.
Collapse
Affiliation(s)
- Ana R. Millanao
- Facultad de Ciencias, Instituto de Farmacia, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Aracely Y. Mora
- Programa de Doctorado en Bioquímica, Universidad de Chile, Santiago 8380544, Chile;
| | - Nicolás A. Villagra
- Escuela de Tecnología Médica, Universidad Andres Bello, Santiago 8370071, Chile;
| | - Sergio A. Bucarey
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile;
| | - Alejandro A. Hidalgo
- Escuela de Química y Farmacia, Universidad Andres Bello, Santiago 8370071, Chile
| |
Collapse
|
25
|
Fang SB, Lauderdale TLY, Huang CH, Chang PR, Wang YH, Shigemura K, Lin YH, Chang WC, Wang KC, Huang TW, Chang YC. Genotypic Diversity of Ciprofloxacin Nonsusceptibility and Its Relationship with Minimum Inhibitory Concentrations in Nontyphoidal Salmonella Clinical Isolates in Taiwan. Antibiotics (Basel) 2021; 10:1383. [PMID: 34827321 PMCID: PMC8614936 DOI: 10.3390/antibiotics10111383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 11/25/2022] Open
Abstract
This study analyzed the genetic diversity of ciprofloxacin (CIP) nonsusceptibility and the relationship between two major mechanisms and minimum inhibitory concentrations (MICs) of CIP in nontyphoidal Salmonella (NTS). Chromosomal mutations in quinolone resistance-determining regions (QRDRs) and plasmid-mediated quinolone resistance (PMQR) genes were searched from ResFinder, ARG-ANNOT, and PubMed for designing the sequencing regions in gyrA, gyrB, parC, and parE, and the 13 polymerase chain reactions for PMQR genes. We found that QRDR mutations were detected in gyrA (82.1%), parC (59.0%), and parE (20.5%) but not in gyrB among the 39 isolates. Five of the 13 PMQR genes were identified, including oqxA (28.2%), oqxB (28.2%), qnrS (18.0%), aac(6')-Ib-cr (10.3%), and qnrB (5.1%), which correlated with the MICs of CIP within 0.25-2 μg/mL, and it was found that oxqAB contributed more than qnr genes to increase the MICs. All the isolates contained either QRDR mutations (53.8%), PMQR genes (15.4%), or both (30.8%). QRDR mutations (84.6%) were more commonly detected than PMQR genes (46.2%). QRDR mutation numbers were significantly associated with MICs (p < 0.001). Double mutations in gyrA and parC determined high CIP resistance (MICs ≥ 4 μg/mL). PMQR genes contributed to intermediate to low CIP resistance (MICs 0.25-2 μg/mL), thus providing insights into mechanisms underlying CIP resistance.
Collapse
Affiliation(s)
- Shiuh-Bin Fang
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-R.C.); (Y.-H.L.); (K.-C.W.)
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan;
| | - Tsai-Ling Yang Lauderdale
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan;
| | - Chih-Hung Huang
- Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan;
| | - Pei-Ru Chang
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-R.C.); (Y.-H.L.); (K.-C.W.)
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yuan-Hung Wang
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Katsumi Shigemura
- Department of Urology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Ying-Hsiu Lin
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-R.C.); (Y.-H.L.); (K.-C.W.)
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Chiao Chang
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan;
| | - Ke-Chuan Wang
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-R.C.); (Y.-H.L.); (K.-C.W.)
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Tzu-Wen Huang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Yu-Chu Chang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| |
Collapse
|
26
|
Potential Influence of Regulation of the Food Value Chain on Prevalence and Patterns of Antimicrobial Resistance: the Case of Tilapia (Oreochromis niloticus). Appl Environ Microbiol 2021; 87:e0094521. [PMID: 34550759 DOI: 10.1128/aem.00945-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The current study was designed to evaluate the potential impact of the level of regulation on the prevalence and patterns of antimicrobial agent resistance in bacteria isolated from fish. The study sites included two large lakes and both semiregulated and unregulated fish value chains. A total of 328 bacterial isolates belonging to 11 genera were evaluated for antimicrobial susceptibility testing using the disk diffusion method. The bacterial species were tested against 12 different antibiotics (trimethoprim-sulfamethoxazole, tetracycline, ampicillin, cefotaxime, chloramphenicol, nalidixic acid, amoxicillin, meropenem, ciprofloxacin, nitrofurantoin, cefuroxime, and kanamycin). Data analysis was done to assess the heterogeneity in proportion of resistant bacterial species within and between the two value chains using a random-effects model proposed by DerSimonian and Laird (Control Clin Trials 7:177-188, 1986). Statistical heterogeneity within and between groups was estimated using the Cochran chi-square test and the Cochrane I2 index. The overall proportion of bacterial species resistant to antimicrobial agents in semiregulated and unregulated value chains ranged from 0.00 to 0.88 and 0.09 to 0.95, respectively. Shigella spp. had the highest proportion of bacteria that were resistant to most of the antimicrobial agents used. The bacterial species were highly resistant to ampicillin and amoxicillin, and the highest multidrug resistance capacity was observed in Shigella spp. (18.3%, n = 328), Vibrio spp. (18.3%), and Listeria monocytogenes (12.2%). We observed strong heterogeneity within and between the two value chains regarding proportion of resistant bacterial species. Sun-dried fish in both value chains had significantly high proportions of resistant bacterial species. Comparing the two value chains, the unregulated value chain had a significantly higher proportion of bacterial species that were resistant. In order to mitigate the risk of transmitting antimicrobial-resistant bacteria to consumers along the fish value chain, good manufacturing practices coupled with identification and management of possible sources of contamination are recommended for fish and potentially other foods distributed along the less regulated value chains. IMPORTANCE In order to mitigate the risk of transmitting antimicrobial-resistant bacteria to consumers along the fish value chain, good manufacturing practices coupled with identification and management of possible sources of contamination are recommended for fish and potentially other foods distributed along the less regulated value chains.
Collapse
|
27
|
Elbediwi M, Tang Y, Shi D, Ramadan H, Xu Y, Xu S, Li Y, Yue M. Genomic Investigation of Antimicrobial-Resistant Salmonella enterica Isolates From Dead Chick Embryos in China. Front Microbiol 2021; 12:684400. [PMID: 34497590 PMCID: PMC8419455 DOI: 10.3389/fmicb.2021.684400] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Salmonella spp. is recognized as an important zoonotic pathogen. The emergence of antimicrobial resistance in Salmonella enterica poses a great public health concern worldwide. While the knowledge on the incidence and the characterization of different S. enterica serovars causing chick embryo death remains obscure in China. In this study, we obtained 45 S. enterica isolates from 2,139 dead chick embryo samples collected from 28 breeding chicken hatcheries in Henan province. The antimicrobial susceptibility assay was performed by the broth microdilution method and the results showed that 31/45 (68.8%) isolates were multidrug-resistant (≥3 antimicrobial classes). Besides the highest resistance rate was observed in the aminoglycoside class, all the isolates were susceptible to chloramphenicol, azithromycin, and imipenem. Furthermore, genomic characterization revealed that S. Enteritidis (33.33%; 15/45) was a frequent serovar that harbored a higher number of virulence factors compared to other serovars. Importantly, genes encoding β-lactamases were identified in three serovars (Thompson, Enteritidis, and Kottbus), whereas plasmid-mediated quinolone resistance genes (qnrB4) were detected in certain isolates of S. Thompson and the two S. Kottbus isolates. All the examined isolates harbored the typical virulence factors from Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2). Additionally, a correlation analysis between the antimicrobial resistance genes, phenotype, and plasmids was conducted among Salmonella isolates. It showed strong positive correlations (r < 0.6) between the different antimicrobial-resistant genes belonging to certain antimicrobial classes. Besides, IncF plasmid showed a strong negative correlation (r > −0.6) with IncHI2 and IncHI2A plasmids. Together, our study demonstrated antimicrobial-resistant S. enterica circulating in breeding chicken hatcheries in Henan province, highlighting the advanced approach, by using genomic characterization and statistical analysis, in conducting the routine monitoring of the emerging antimicrobial-resistant pathogens. Our findings also proposed that the day-old breeder chicks trading could be one of the potential pathways for the dissemination of multidrug-resistant S. enterica serovars.
Collapse
Affiliation(s)
- Mohammed Elbediwi
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Yanting Tang
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Dawei Shi
- National Institutes for Food and Drug Control, Beijing, China
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.,Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States National Poultry Research Center, United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Athens, GA, United States
| | - Yaohui Xu
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Sihong Xu
- National Institutes for Food and Drug Control, Beijing, China
| | - Yan Li
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China.,Hainan Institute of Zhejiang University, Sanya, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Min Yue
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China.,Hainan Institute of Zhejiang University, Sanya, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Mshana SE, Sindato C, Matee MI, Mboera LEG. Antimicrobial Use and Resistance in Agriculture and Food Production Systems in Africa: A Systematic Review. Antibiotics (Basel) 2021; 10:976. [PMID: 34439026 PMCID: PMC8389036 DOI: 10.3390/antibiotics10080976] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/07/2021] [Accepted: 08/08/2021] [Indexed: 01/10/2023] Open
Abstract
In Africa, there is dearth of information on antimicrobial use (AMU) in agriculture and food production systems and its consequential resistance in pathogens that affect animal, human and environmental health. Data published between 1980 and 2021 on the magnitude of AMU and AMR in agriculture and food productions systems in Africa were reviewed. Data from 13-27 countries in Africa indicate that 3558-4279 tonnes of antimicrobials were used in animals from 2015 to 2019. Tetracyclines and polypeptides contributed the largest proportion of antimicrobials used. Cattle and poultry production account for the largest consumption of antimicrobials in Africa. Although limited studies have reported AMR in crops, fish and beekeeping, AMR from a variety of farm animals has been substantially documented in Africa. Some countries in Africa have developed policies/plans to address AMU and AMR in agriculture and food production systems; however, their enforcement is challenged by weak regulations. In conclusion, although there is limited information on the quantities of antimicrobials used in agriculture and food production system, the levels of AMR are high. There is a need to strengthen regulatory authorities with a capacity to monitor AMU in agriculture and food production systems in Africa.
Collapse
Affiliation(s)
- Stephen E. Mshana
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro 65125, Tanzania; (S.E.M.); (C.S.); (M.I.M.)
- Catholic University of Health and Allied Sciences, P.O. Box 1424, Mwanza 33109, Tanzania
| | - Calvin Sindato
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro 65125, Tanzania; (S.E.M.); (C.S.); (M.I.M.)
- National Institute for Medical Research, P.O. Box 482, Tabora 45026, Tanzania
| | - Mecky I. Matee
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro 65125, Tanzania; (S.E.M.); (C.S.); (M.I.M.)
- Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam 11103, Tanzania
| | - Leonard E. G. Mboera
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro 65125, Tanzania; (S.E.M.); (C.S.); (M.I.M.)
| |
Collapse
|
29
|
Prevalence of Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae in Ethiopia: A Systematic Review and Meta-Analysis. Int J Microbiol 2021; 2021:6669778. [PMID: 33859697 PMCID: PMC8026286 DOI: 10.1155/2021/6669778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/19/2021] [Accepted: 03/21/2021] [Indexed: 11/25/2022] Open
Abstract
Background Antimicrobial resistance especially caused by extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-PE) has become a global public health concern. Globally, these isolates have remained the most important causes of several infections and associated mortality. Their rapid spread in Ethiopia is associated with a lack of regular surveillance and antibiotic stewardship programs. Isolates of ESBL-PE from different regions of Ethiopia were searched exhaustively. However, published data regarding the pooled estimate of ESBL-PE are not conducted in Ethiopia. For this reason, we systematically reviewed laboratory-based studies to summarize the overall pooled prevalence of the isolates recovered from various human specimens. Methods An exhaustive literature search was carried out using the major electronic databases including PubMed, Web of Science, MEDLINE, EMBASE, CINAHL, Google Scholar, Cochrane Library, Scopus, and Wiley Online Library to identify potentially relevant studies without date restriction. Original articles which address the research question were identified, screened, and included using the PRISMA follow diagram. Data extraction form was prepared in Microsoft Excel, and data quality was assessed by using 9-point Joanna Briggs Institute critical appraisal tools. Then, data were exported to STATA 16.0 software for analyses of pooled estimation of outcome measures. Estimation of outcome measures at 95% confidence interval was performed using Der-Simonian-Laird's random-effects model. Finally, results were presented via text, figures, and tables. Results A comprehensive electronic database literature search has yielded a total of 86 articles. Among the total, 68 original articles were excluded after the review process. A total of 18 studies with 1191 bacterial isolates recovered from 7919 various clinical samples sizes were included for systematic review and meta-analysis. In this study, the pooled prevalence of ESBL-PE was 18% (95% CI: 9–26). Nine out of the total (50%) reviewed articles were studied using the combination disk test. Likewise, E. coli and K. pneumoniae (50% both) were the predominant isolates of ESBL-PE in addition to other isolates such as Salmonella spp. and Shigella spp. Conclusion This meta-analysis has shown a low pooled estimate of ESBL-PE in Ethiopia.
Collapse
|
30
|
Asfaw Geresu M, Assefa Wayuo B, Mamo Kassa G. Occurrence and Antimicrobial Susceptibility Profile of Salmonella Isolates from Animal Origin Food Items in Selected Areas of Arsi Zone, Southeastern Ethiopia, 2018/19. Int J Microbiol 2021; 2021:6633522. [PMID: 33859696 PMCID: PMC8026285 DOI: 10.1155/2021/6633522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/22/2021] [Accepted: 03/22/2021] [Indexed: 11/28/2022] Open
Abstract
The status of Salmonella and its antimicrobial susceptibility profile in animal origin food items from different catering establishments in Ethiopia is scarce. Hence, this study aimed to investigate the occurrence and antimicrobial susceptibility profile of Salmonella isolates from animal origin food items in the selected areas of Arsi Zone. One hundred ninety-two animal origin food samples were collected and processed for Salmonella isolation. Isolates were tested for their susceptibility to 13 antimicrobials using Kirby-Bauer disk diffusion assay. An overall prevalence of 9.4% (18/192) Salmonella spp. isolates were recovered from animal origin food samples collected from different catering establishments. Seven (21.9%) of "Dulet," 4 (12.5%) of "Kitfo," 3 (9.4%) of "Kurt," 2 (6.3%) of raw milk, 1 (3.1%) of egg sandwich and 1 (3.1%) of cream cake samples were positive for Salmonella. Catering establishments, protective clothing, source of contamination, manner of hand washing, and money handling were among the putative risk factors that were significantly associated (p < 0.05) with Salmonella spp. occurrence. Ampicillin, nitrofurans, and sulphonamide resistance were significantly associated (p < 0.05) with Salmonella spp. occurrence in the selected food items. Three (16.7%), 5 (27.8%), 5 (27.8%), and 4 (22.2%) of the isolates were resistant to 3, 4, 5, and 6 antibiotics, respectively, whereas only a sole isolate was resistant to two antibiotics (viz. ampicillin and kanamycin). In conclusion, the general sanitary condition of the catering establishments, utensils used, and personnel hygienic practices were not to the recommended standards in the current study. Besides, detection of multidrug-resistant strains of Salmonella in animal origin food items from different catering establishments suggests the need for detailed epidemiological and molecular characterization of the pathogen so as to establish the sources of acquisition of resistant Salmonella strains. Hence, implementation of Salmonella prevention and control strategies from farm production to consumption of animal origin food items are crucial.
Collapse
Affiliation(s)
- Minda Asfaw Geresu
- Department of Veterinary Science, College of Agriculture and Environmental Science, Arsi University, Asella, Ethiopia
| | - Behailu Assefa Wayuo
- Department of Veterinary Science, College of Agriculture and Environmental Science, Arsi University, Asella, Ethiopia
| | - Gezahegne Mamo Kassa
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| |
Collapse
|
31
|
Mthembu TP, Zishiri OT, El Zowalaty ME. Genomic Characterization of Antimicrobial Resistance in Food Chain and Livestock-Associated Salmonella Species. Animals (Basel) 2021; 11:872. [PMID: 33803844 PMCID: PMC8003163 DOI: 10.3390/ani11030872] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
The rising trend of antimicrobial resistance (AMR) by foodborne bacteria is a public health concern as these pathogens are easily transmitted to humans through the food chain. Non-typhoid Salmonella spp. is one of the leading foodborne pathogens which infect humans worldwide and is associated with food and livestock. Due to the lack of discovery of new antibiotics and the pressure exerted by antimicrobial resistance in the pharmaceutical industry, this review aimed to address the issue of antibiotic use in livestock which leads to AMR in Salmonella. Much attention was given to resistance to carbapenems and colistin which are the last-line antibiotics used in cases of multi drug resistant bacterial infections. In the present review, we highlighted data published on antimicrobial resistant Salmonella species and serovars associated with livestock and food chain animals. The importance of genomic characterization of carbapenem and colistin resistant Salmonella in determining the relationship between human clinical isolates and food animal isolates was also discussed in this review. Plasmids, transposons, and insertion sequence elements mediate dissemination of not only AMR genes but also genes for resistance to heavy metals and disinfectants, thus limiting the therapeutic options for treatment and control of Salmonella. Genes for resistance to colistin (mcr-1 to mcr-9) and carbapenem (blaVIM-1, blaDNM-1, and blaNDM-5) have been detected from poultry, pig, and human Salmonella isolates, indicating food animal-associated AMR which is a threat to human public health. Genotyping, plasmid characterization, and phylogenetic analysis is important in understanding the epidemiology of livestock-related Salmonella so that measures of preventing foodborne threats to humans can be improved.
Collapse
Affiliation(s)
- Thobeka P. Mthembu
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (T.P.M.); (O.T.Z.)
| | - Oliver T. Zishiri
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (T.P.M.); (O.T.Z.)
| | - Mohamed E. El Zowalaty
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala SE 751 23, Sweden
| |
Collapse
|
32
|
Diriba K, Awulachew E, Gemede A, Anja A. The magnitude of extended-spectrum beta-lactamase- producing Enterobacteriaceae from clinical samples in Ethiopia: a systematic review and meta-analysis. Access Microbiol 2021; 3:000195. [PMID: 34151151 PMCID: PMC8209701 DOI: 10.1099/acmi.0.000195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The rapid spread of resistance among extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae is a serious problem around the world. It results in serious clinical complications in humans and has become a global threat. Therefore, this systematic review and meta-analysis was aimed to estimate the pooled prevalence of ESBL-producing Enterobacteriaceae in different clinical samples in Ethiopia. METHODS A systematic search was conducted on PubMed, Web of Science, Embase, Google Scholar and the Cochrane Library. All identified observational studies reporting the prevalence of ESBL-producing Enterobacteriaceae from clinical samples in Ethiopia were included. Four authors independently extracted data and analysed using R software version 3.6.1 and STATA statistical software version 13. A random-effects model was computed to estimate the pooled prevalence of ESBL-producing Enterobacteriaceae in Ethiopia. RESULTS Of 142 articles reviewed, 14 studies that fulfilled the inclusion criteria were included in the meta-analysis. The pooled prevalence of ESBL-producing Enterobacteriaceae in the different clinical specimens in Ethiopia was 49 % (95 % CI: 39, 60). Klebsiella pneumoniae was the leading ESBL-producing Enterobacteriaceae followed by Escherichia coli and Acinetobacter baumannii with a prevalence of 74, 67 and 60 %, respectively. ESBL-producing isolates showed a high rate of resistance to cefotaxime, ceftriaxone, ceftazidime, Amoxicillin clavulanic acid (AMC), ampicillin and aztreonam. The better options for the treatment of ESBL-producing Enterobacteriaceae are amikacin and Imipenem. CONCLUSION The magnitude of ESBL-producing Enterobacteriaceae in different clinical samples in Ethiopia is alarmingly high and represents a threat to human health. Hence, a coordinated effort needs to be implemented for the prevention and control of these Enterobacteriaceae .
Collapse
Affiliation(s)
- Kuma Diriba
- Department of Medical Laboratory Sciences, Health Science and Medical College, Dilla University, Dilla, Ethiopia
| | - Ephrem Awulachew
- Department of Medical Laboratory Sciences, Health Science and Medical College, Dilla University, Dilla, Ethiopia
| | - Aschelew Gemede
- Department of Medical Laboratory Sciences, Health Science and Medical College, Dilla University, Dilla, Ethiopia
| | - Asrat Anja
- Department of Medical Laboratory Sciences, Health Science and Medical College, Dilla University, Dilla, Ethiopia
| |
Collapse
|
33
|
Gutema FD, Rasschaert G, Agga GE, Merera O, Duguma AB, Abdi RD, Duchateau L, Mattheus W, Gabriël S, De Zutter L. Prevalence, Antimicrobial Resistance, and Molecular Characterization of Salmonella in Cattle, Beef, and Diarrheic Patients in Bishoftu, Ethiopia. Foodborne Pathog Dis 2021; 18:283-289. [PMID: 33567225 DOI: 10.1089/fpd.2020.2869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Within Ethiopia, there is a lack of information on the genetic relatedness of Salmonella from cattle, beef, and diarrheic patients and its potential transmission from cattle to humans through consumption of contaminated beef. The objective of this study was to assess the prevalence and determine the serotypes, genetic relatedness, and antimicrobial resistance of Salmonella in cattle in two local slaughterhouses, in beef at retail shops, and in diarrheic patients in the only hospital in Bishoftu, Ethiopia. Salmonella was detected in 2.5% (6/240) of cattle samples, in 8.7% (11/127) of beef samples, and in 2.3% (5/216) of the diarrheic patients. Four Salmonella serotypes: Salmonella Typhimurium, Salmonella Eastbourne, Salmonella Saintpaul, and Salmonella Cotham were identified. Salmonella Typhimurium and Salmonella Eastbourne were isolated from cattle and beef, whereas Salmonella Saintpaul and Salmonella Cotham were isolated only from diarrheic patients. Except for serotype Salmonella Saintpaul, all isolates were grouped into five pulsotypes, of which two pulsotypes contained isolates from cattle and beef. Isolates from humans represented unique pulsotypes. Among the 22 Salmonella isolates tested, 95.5% were resistant to at least 1 of the 14 antimicrobials tested. Three Salmonella isolates originating from cattle were multidrug resistant. One human isolate was susceptible to all antimicrobials tested. More specifically, resistance to ampicillin, sulfamethoxazole, tetracycline, tigecycline, and trimethoprim were observed. The most frequently observed resistance was to sulfamethoxazole (90.9%, 20/22) followed by trimethoprim (22.7%, 5/22). The study revealed considerable Salmonella contamination of beef at retail shops, antimicrobial resistance to commonly used antimicrobials, and shared genetically similar Salmonella serotypes between cattle and beef; the link with humans could not be established. Still, the findings of Salmonella in cattle and beef, the propensity of transfer of Salmonella from cattle to beef coupled with the common consumption of raw/undercooked beef are likely to pose public health risk in Ethiopia.
Collapse
Affiliation(s)
- Fanta D Gutema
- Department of Microbiology, Immunology and Veterinary Public Health, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia.,Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Geertrui Rasschaert
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium
| | - Getahun E Agga
- Food Animal Environmental Systems Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Bowling Green, Kentucky, USA
| | - Olana Merera
- College of Veterinary Medicine, Samara University, Samara, Ethiopia
| | - Addisu B Duguma
- Department of Internal Medicine, Bishoftu Hospital, Bishoftu, Ethiopia
| | - Reta D Abdi
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Greenvale, New York, USA
| | - Luc Duchateau
- Biometrics Research Center, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Wesley Mattheus
- Department of Human Bacterial Diseases, Sciensano, Brussels, Belgium
| | - Sarah Gabriël
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Lieven De Zutter
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
34
|
Shang K, Wei B, Cha SY, Zhang JF, Park JY, Lee YJ, Jang HK, Kang M. The Occurrence of Antimicrobial-Resistant Salmonella enterica in Hatcheries and Dissemination in an Integrated Broiler Chicken Operation in Korea. Animals (Basel) 2021; 11:E154. [PMID: 33440890 PMCID: PMC7827806 DOI: 10.3390/ani11010154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/19/2020] [Accepted: 01/07/2021] [Indexed: 11/16/2022] Open
Abstract
Positive identification rates of Salmonella enterica in hatcheries and upstream breeder farms were 16.4% (36/220) and 3.0% (6/200), respectively. Among the Salmonella serovars identified in the hatcheries, S. enterica ser. Albany (17/36, 47.2%) was the most prevalent, followed by the serovars S. enterica ser. Montevideo (11/36, 30.6%) and S. enterica ser. Senftenberg (5/36, 13.9%), which were also predominant. Thirty-six isolates showed resistance to at least one antimicrobial tested, of which 52.8% (n = 19) were multidrug resistant (MDR). Thirty-three isolates (enrofloxacin, MIC ≥ 0.25) showed point mutations in the gyrA and parC genes. One isolate, S. enterica ser. Virchow, carrying the blaCTX-M-15 gene from the breeder farm was ceftiofur resistant. Pulsed-field gel electrophoresis (PFGE) showed that 52.0% S. enterica ser. Montevideo and 29.6% S. enterica ser. Albany isolates sourced from the downstream of hatcheries along the broiler chicken supply chain carried the same PFGE types as those of the hatcheries. Thus, the hatcheries showed a high prevalence of Salmonella isolates with high antimicrobial resistance and no susceptible isolate. The AMR isolates from hatcheries originating from breeder farms could disseminate to the final retail market along the broiler chicken supply chain. The emergence of AMR Salmonella in hatcheries may be due to the horizontal spread of resistant isolates. Therefore, Salmonella control in hatcheries, particularly its horizontal transmission, is important.
Collapse
Grants
- 119059-2 Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry(IPET) through Animal Disease Management Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs(MAFRA)
- 716002-7 Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry(IPET) through Agriculture, Food and Rural Affairs Convergence Technologies Program for Educating Creative Global Leader, funded by Ministry of Agriculture, Food an
- 320005-4 Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry(IPET) through Agriculture, Food and Rural Affairs Convergence Technologies Program for Educating Creative Global Leader, funded by Ministry of Agriculture, Food an
- 2017R1D1A1B03030883 Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education
Collapse
Affiliation(s)
- Ke Shang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (K.S.); (B.W.); (S.-Y.C.); (J.-F.Z.); (J.-Y.P.); (Y.-J.L.)
| | - Bai Wei
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (K.S.); (B.W.); (S.-Y.C.); (J.-F.Z.); (J.-Y.P.); (Y.-J.L.)
| | - Se-Yeoun Cha
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (K.S.); (B.W.); (S.-Y.C.); (J.-F.Z.); (J.-Y.P.); (Y.-J.L.)
| | - Jun-Feng Zhang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (K.S.); (B.W.); (S.-Y.C.); (J.-F.Z.); (J.-Y.P.); (Y.-J.L.)
| | - Jong-Yeol Park
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (K.S.); (B.W.); (S.-Y.C.); (J.-F.Z.); (J.-Y.P.); (Y.-J.L.)
| | - Yea-Jin Lee
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (K.S.); (B.W.); (S.-Y.C.); (J.-F.Z.); (J.-Y.P.); (Y.-J.L.)
| | - Hyung-Kwan Jang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (K.S.); (B.W.); (S.-Y.C.); (J.-F.Z.); (J.-Y.P.); (Y.-J.L.)
- Bio Disease Control (BIOD) Co., Ltd., Iksan 54596, Korea
| | - Min Kang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (K.S.); (B.W.); (S.-Y.C.); (J.-F.Z.); (J.-Y.P.); (Y.-J.L.)
- Bio Disease Control (BIOD) Co., Ltd., Iksan 54596, Korea
| |
Collapse
|
35
|
Xu X, Biswas S, Gu G, Elbediwi M, Li Y, Yue M. Characterization of Multidrug Resistance Patterns of Emerging Salmonella enterica Serovar Rissen along the Food Chain in China. Antibiotics (Basel) 2020; 9:antibiotics9100660. [PMID: 33007986 PMCID: PMC7600917 DOI: 10.3390/antibiotics9100660] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 11/25/2022] Open
Abstract
Salmonella spp. are recognized as important foodborne pathogens globally. Salmonella enterica serovar Rissen is one of the important Salmonella serovars linked with swine products in numerous countries and can transmit to humans by food chain contamination. Worldwide emerging S. Rissen is considered as one of the most common pathogens to cause human salmonellosis. The objective of this study was to determine the antimicrobial resistance properties and patterns of Salmonella Rissen isolates obtained from humans, animals, animal-derived food products, and the environment in China. Between 2016 and 2019, a total of 311 S. Rissen isolates from different provinces or province-level cities in China were included here. Bacterial isolates were characterized by serotyping and antimicrobial susceptibility testing. Minimum inhibitory concentration (MIC) values of 14 clinically relevant antimicrobials were obtained by broth microdilution method. S. Rissen isolates from humans were found dominant (67%; 208/311). S. Rissen isolates obtained from human patients were mostly found with diarrhea. Other S. Rissen isolates were acquired from food (22%; 69/311), animals (8%; 25/311), and the environment (3%; 9/311). Most of the isolates were resistant to tetracycline, trimethoprim-sulfamethoxazole, chloramphenicol, streptomycin, sulfisoxazole, and ampicillin. The S. Rissen isolates showed susceptibility against ceftriaxone, ceftiofur, gentamicin, nalidixic acid, ciprofloxacin, and azithromycin. In total, 92% of the S. Rissen isolates were multidrug-resistant and ASSuT (27%), ACT (25%), ACSSuT (22%), ACSSuTAmc (11%), and ACSSuTFox (7%) patterns were among the most prevalent antibiotic resistance patterns found in this study. The widespread dissemination of antimicrobial resistance could have emerged from misuse of antimicrobial agents in animal husbandry in China. These findings could be useful for rational antimicrobial usage against Salmonella Rissen infections.
Collapse
Affiliation(s)
- Xuebin Xu
- Department of Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China;
| | - Silpak Biswas
- Institute of Veterinary Sciences & Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (S.B.); (M.E.); (Y.L.)
| | - Guimin Gu
- Guangxi Institute for Product Quality Inspection, Nanning 530007, China;
| | - Mohammed Elbediwi
- Institute of Veterinary Sciences & Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (S.B.); (M.E.); (Y.L.)
- Animal Health Research Institute, Agriculture Research Centre, Cairo 11435, Egypt
| | - Yan Li
- Institute of Veterinary Sciences & Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (S.B.); (M.E.); (Y.L.)
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Min Yue
- Institute of Veterinary Sciences & Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (S.B.); (M.E.); (Y.L.)
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
- Correspondence: ; Tel./Fax: +86-0571-8898-2832
| |
Collapse
|
36
|
Shen H, Chen H, Ou Y, Huang T, Chen S, Zhou L, Zhang J, Hu Q, Zhou Y, Ma W. Prevalence, serotypes, and antimicrobial resistance of Salmonella isolates from patients with diarrhea in Shenzhen, China. BMC Microbiol 2020; 20:197. [PMID: 32631309 PMCID: PMC7339465 DOI: 10.1186/s12866-020-01886-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/29/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Salmonella is one of the main causative agents of diarrhea which results in substantial disease burden. To determine the prevalence, serotype distribution, and antimicrobial resistance profiles of clinical Salmonella isolates in Shenzhen, a 6-year surveillance study was conducted. RESULTS A total of 297 (5.7%) Salmonella strains were isolated from stool samples from 5239 patients. Among the 42 serotypes identified, serotype Typhimurium was the most common one which represented 39.7% of the isolates (118), followed by serotype Enteritidis (71, 23.9%), London (12, 4.0%), 4, 5, 12: i: - (11, 3.7%), and Senftenberg (8, 2.7%). A high frequency of resistance was found in ampicillin (70.6%), piperacillin (64.5%), tetracycline (63.5%), and streptomycin (54.3%). Resistance to ampicillin and tetracycline was observed in 95.3% of S. Typhimurium isolates; and nalidixic acid in 93.1% of S. Enteritidis isolates. Resistance to 5 or more antimicrobial agents was found in 78.8% of S. Typhimurium and 69.0% of S. Enteritidis isolates. A decreased susceptibility to ciprofloxacin and levofloxacin was associated with amino acid alteration in gyrA gene. Point mutations without amino acid changes were seen in gyrB, parC, and parE genes. CONCLUSIONS A broad range of serotypes are responsible for Salmonellosis in Shenzhen, with Enteritidis and Typhimurium being the most common serotypes. The high level of antibiotic resistance is of public health significance and ongoing monitoring combined with rational use of antibiotics are recommended. Point mutations in gyrA gene might play an important role in the resistance to fluoroquinolones.
Collapse
Affiliation(s)
- Hongwei Shen
- Shenzhen Hospital, Southern Medical University, Xinhu Road 1333, Baoan District, Shenzhen, 518110, Guangdong, China.,Futian District Center for Disease Control and Prevention, Hongli Xilu 8043, Futian District, Shenzhen, 518040, China
| | - Haochuan Chen
- Futian District Center for Disease Control and Prevention, Hongli Xilu 8043, Futian District, Shenzhen, 518040, China
| | - Yongxuan Ou
- Futian District Center for Disease Control and Prevention, Hongli Xilu 8043, Futian District, Shenzhen, 518040, China
| | - Tingting Huang
- Shenzhen Hospital, Southern Medical University, Xinhu Road 1333, Baoan District, Shenzhen, 518110, Guangdong, China
| | - Siping Chen
- Shenzhen Hospital, Southern Medical University, Xinhu Road 1333, Baoan District, Shenzhen, 518110, Guangdong, China
| | - Lintao Zhou
- Shenzhen Children's Hospital, Yitian Road 7019, Shenzhen, 518038, China
| | - Jinjin Zhang
- Futian District Center for Disease Control and Prevention, Hongli Xilu 8043, Futian District, Shenzhen, 518040, China
| | - Qinghua Hu
- Shenzhen Center for Disease Control and Prevention, Longyuan Road 8, Nanshan District, Shenzhen, 518000, China
| | - Yiwen Zhou
- Shenzhen Hospital, Southern Medical University, Xinhu Road 1333, Baoan District, Shenzhen, 518110, Guangdong, China
| | - Wen Ma
- Shenzhen Hospital, Southern Medical University, Xinhu Road 1333, Baoan District, Shenzhen, 518110, Guangdong, China.
| |
Collapse
|
37
|
Dagnew B, Alemayehu H, Medhin G, Eguale T. Prevalence and antimicrobial susceptibility of Salmonella in poultry farms and in-contact humans in Adama and Modjo towns, Ethiopia. Microbiologyopen 2020; 9:e1067. [PMID: 32510864 PMCID: PMC7424249 DOI: 10.1002/mbo3.1067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/02/2020] [Accepted: 05/14/2020] [Indexed: 12/22/2022] Open
Abstract
Consumption of contaminated poultry and poultry products represents a common source of nontyphoidal Salmonella infection. Little is known on the status of Salmonella and their antimicrobial susceptibility in poultry farms in Ethiopia. This study investigated the prevalence, serotype distribution, and antimicrobial susceptibility of nontyphoidal Salmonella among poultry farms in Adama and Modjo towns. Three hundred thirty‐four cloacal swabs, 384 fecal droppings of birds, 59 feed, 59 floor swabs, and 36 stools from in‐contact humans were collected and processed for Salmonella isolation. Isolates were tested for their susceptibility to 15 antimicrobials using Kirby–Bauer disk diffusion assay. Seventeen (28.8%) of the farms and 24 (2.9%) of the samples from poultry farms and 2.8% (1/36) of stool samples of humans in‐contact with poultry were positive for Salmonella. Most of the isolates (n = 21) were recovered from fecal droppings of birds while the remaining isolates were recovered from floor swab samples (n = 2) and cloacal swab sample (n = 1). Only three Salmonella serovars: S. Haifa (n = 14, 56%), S. Anatum (n = 7; 28%), and S. Give (n = 4; 16%) were detected. Poultry farms in Adama town, large flock sized farms, and farms that used antimicrobials were significantly associated with the occurrence of Salmonella (p < .05). Twenty (80%) and 19 (76%) of Salmonella isolates were resistant to streptomycin and tetracycline, respectively. Nineteen (76%) of the isolates were resistant to two or more antimicrobials. Detection of multidrug‐resistant strains of Salmonella in poultry farms suggests the need for detailed epidemiological and molecular studies to establish sources of acquisition of resistant Salmonella strains.
Collapse
Affiliation(s)
- Betelhem Dagnew
- College of Veterinary Medicine, Samara University, Samara, Ethiopia
| | - Haile Alemayehu
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Girmay Medhin
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tadesse Eguale
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
38
|
Qian H, Cheng S, Liu G, Tan Z, Dong C, Bao J, Hong J, Jin D, Bao C, Gu B. Discovery of seven novel mutations of gyrB, parC and parE in Salmonella Typhi and Paratyphi strains from Jiangsu Province of China. Sci Rep 2020; 10:7359. [PMID: 32355184 PMCID: PMC7193621 DOI: 10.1038/s41598-020-64346-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/15/2020] [Indexed: 01/25/2023] Open
Abstract
Objective: To investigate the prevalence of Salmonella Typhi and Paratyphi resistance to quinolones and characterize the underlying mechanism in Jiangsu Province of China. Methods: Antimicrobial susceptibility testing was performed using Kirby-Bauer disc diffusion system. Quinolone resistance-determining region (QRDR), plasmid-mediated quinolone resistance (PMQR) determinant genes were detected by PCR and sequencing. Results: Out of 239 Salmonella isolates, 164 were S. Typhi and 75 were S. Paratyphi. 128 (53.6%) Salmonella isolates were resistant to nalidixic acid; 11 (4.6%) isolates to ciprofloxacin and 66 (27.6%) isolates were intermediate to ciprofloxacin. QRDR were present in 69 S. Typhi isolates, among which mutation at codon 83 (n = 45) and 133 (n = 61) predominated. In S. Paratyphi, the most common mutations were detected in gyrA at codon 83(n = 24) and parC: T57S (n = 8). Seven mutations were first reported in Salmonella isolates including gyrB: S426G, parC: D79G and parE: [S498T, E543K, V560G, I444S, Y434S]. PMQR genes including qnrD1, qnrA1, qnrB4, aac (6′)-Ib-cr4 and qnrS1 were detected in 1, 2, 3, 7 and 9 isolates, relatively. Conclusions: High resistance to quinolones in Salmonella remains a serious problem in Jiangsu, China. The presence of the novel mutations increases the complexity of quinolone-resistant genotypes and poses a threat to public health. Subject terms: Salmonella Typhi, Salmonella Paratyphi, antimicrobial resistance, QRDR, PMQR.
Collapse
Affiliation(s)
- Huimin Qian
- Department of Acute Infectious Disease Prevention and Control, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, 210029, China
| | - Siyun Cheng
- Xuzhou Medical University School of Medical Technology, Xuzhou, 221004, China
| | - Guoye Liu
- Xuzhou Medical University School of Medical Technology, Xuzhou, 221004, China
| | - Zhongming Tan
- Department of Acute Infectious Disease Prevention and Control, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, 210029, China
| | - Chen Dong
- Department of Acute Infectious Disease Prevention and Control, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, 210029, China
| | - Jinfeng Bao
- Xuzhou Medical University School of Medical Technology, Xuzhou, 221004, China
| | - Jie Hong
- Department of Acute Infectious Disease Prevention and Control, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, 210029, China
| | - Dazhi Jin
- Centre of Laboratory Medicine, Zhejiang Provincial People Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.,School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China
| | - Changjun Bao
- Department of Acute Infectious Disease Prevention and Control, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, 210029, China.
| | - Bing Gu
- Xuzhou Medical University School of Medical Technology, Xuzhou, 221004, China. .,Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
39
|
Kimera ZI, Mshana SE, Rweyemamu MM, Mboera LEG, Matee MIN. Antimicrobial use and resistance in food-producing animals and the environment: an African perspective. Antimicrob Resist Infect Control 2020; 9:37. [PMID: 32122406 PMCID: PMC7053060 DOI: 10.1186/s13756-020-0697-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 02/07/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The overuse of antimicrobials in food animals and the subsequent contamination of the environment have been associated with development and spread of antimicrobial resistance. This review presents information on antimicrobial use, resistance and status of surveillance systems in food animals and the environment in Africa. METHODS Information was searched through PubMed, Google Scholar, Web of Science, and African Journal Online databases. Full-length original research and review articles on antimicrobial use, prevalence of AMR from Africa covering a period from 2005 to 2018 were examined. The articles were scrutinized to extract information on the antimicrobial use, resistance and surveillance systems. RESULTS A total of 200 articles were recovered. Of these, 176 studies were included in the review while 24 articles were excluded because they were not relevant to antimicrobial use and/or resistance in food animals and the environment. The percentage of farms using antimicrobials in animal production ranged from 77.6% in Nigeria to 100% in Tanzania, Cameroon, Zambia, Ghana and Egypt. The most antibiotics used were tetracycline, aminoglycoside and penicillin groups. The percentage of multi drug resistant isolates ranged from 20% in Nigeria to 100% in South Africa, Zimbabwe and Tunisia. In the environment, percentage of multi drug resistant isolates ranged from 33.3% in South Africa to 100% in Algeria. None of the countries documented national antimicrobial use and resistance surveillance system in animals. CONCLUSION There is high level of antimicrobial use, especially tetracycline, aminoglycoside and penicillin in animal production systems in Africa. This is likely to escalate the already high prevalence of antimicrobial resistance and multi drug resistance in the continent. This, coupled with weak antimicrobial resistance surveillance systems in the region is a great concern to the animals, environment and humans as well.
Collapse
Affiliation(s)
- Zuhura I Kimera
- Department of Microbiology and Immunology, School of Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
- Ministry of Livestock and Fisheries, Dodoma, Tanzania.
| | - Stephen E Mshana
- Department of Microbiology and Immunology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Mark M Rweyemamu
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Chuo Kikuu Morogoro, Tanzania
| | - Leonard E G Mboera
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Chuo Kikuu Morogoro, Tanzania
| | - Mecky I N Matee
- Department of Microbiology and Immunology, School of Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Chuo Kikuu Morogoro, Tanzania
| |
Collapse
|
40
|
Mthembu TP, Zishiri OT, El Zowalaty ME. Molecular Detection Of Multidrug-Resistant Salmonella Isolated From Livestock Production Systems In South Africa. Infect Drug Resist 2019; 12:3537-3548. [PMID: 31814742 PMCID: PMC6861519 DOI: 10.2147/idr.s211618] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/12/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Antibiotic-resistant bacterial pathogens associated with livestock remain a major concern worldwide as they get transmitted from animals to humans and cause foodborne and zoonotic diseases. METHODS Antimicrobial resistance in livestock-associated Salmonella spp in South Africa was investigated using molecular DNA methods. Three hundred and sixty-one environmental faecal samples were randomly collected from avian (chicken and ducks), cows, pigs, goats, and sheep. Salmonella spp. were isolated on selective media and were confirmed using the polymerase chain reaction. Antimicrobial susceptibility testing against ampicillin, chloramphenicol, ciprofloxacin, ceftriaxone, azithromycin, tetracycline, amoxicillin-clavulanate and trimethoprim-sulfamethoxazole was determined using the Kirby-Bauer disk diffusion method. Isolates were screened for the presence of blaTEM-1, blaCMY-2, tetA, tetC, sul2 and dfrA7 resistance genes by PCR. RESULTS Most of the isolates were resistant to ampicillin (64%), tetracycline (63%), amoxicillin-clavulanate (49%), trimethoprim-sulfamethoxazole (38%), and ceftriaxone (20%). Eight percent of the tested isolates were ciprofloxacin-resistant Salmonella spp. Multidrug resistance was observed with the mean multiple antibiotic resistance (MAR) index of 0.31. The study demonstrated that 43% of the isolates were multiple drug resistant. The prevalence rates of resistance genes were 44% for blaTEM-1 , 35% for blaCMY-2 , 21% for sul2, 18% for tetC, 14% for dfrA7 and 8% for tetA. CONCLUSION Resistance to ceftriaxone, detection of blaCMY-2 gene and the high level of intermediate susceptibility (33%) against ciprofloxacin suggested that livestock carry problematic Salmonella spp. This study used the global one-health initiative to report the potential public health risks of livestock-associated pathogens and highlights the importance of monitoring the trends of antimicrobial resistance for sustainability of antibiotics.
Collapse
Affiliation(s)
- Thobeka P Mthembu
- School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Oliver T Zishiri
- School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Mohamed E El Zowalaty
- Virology and Microbiology Research Group, School of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
- Infectious Diseases and Anti-Infective Research Group, College of Pharmacy, University of Sharjah, Sharjah, 27272, UAE
| |
Collapse
|
41
|
Zhan Z, Xu X, Gu Z, Meng J, Wufuer X, Wang M, Huang M, Chen J, Jing C, Xiong Z, Zeng M, Liao M, Zhang J. Molecular epidemiology and antimicrobial resistance of invasive non-typhoidal Salmonella in China, 2007-2016. Infect Drug Resist 2019; 12:2885-2897. [PMID: 31571942 PMCID: PMC6750164 DOI: 10.2147/idr.s210961] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/08/2019] [Indexed: 01/28/2023] Open
Abstract
Purpose Human infections caused by invasive non-typhoidal Salmonella (iNTS) are highly prevalent worldwide. However, data for such infections in China are scarce. This study reports the epidemiology of iNTS in China. Methods INTS isolates were recovered from blood and other clinical specimens collected during 2007-2016 across five provinces (Shanghai, Xinjiang, Fujian, Guangxi, and Chongqing) in China. Antimicrobial susceptibility was performed using the agar dilution method and molecular epidemiology was performed using standard microbiological techniques. Results A total of 178 iNTS isolates were recovered from approximately 9700 patient specimens during 2007-2016. The predominant serovars were Salmonella Enteritidis (57/178, 32%), Salmonella Choleraesuis (47/178, 26.4%), and Salmonella Typhimurium (24/178, 13.5%). Up to 50 isolates (28.1%) were from patients who were ≤1 year of age, while 28 (15.7%) were from patients who were ≥60 years. Among these isolates, high rates of resistance to nalidixic acid (114/178, 64%), sulfisoxazole (59%), ciprofloxacin (15.2%), and cefotaxime (8.4%) were found. Moreover, 53.4% (95/178) exhibited multidrug resistance, and 3.9% (7/178) showed co-resistance to third-generation cephalosporins and ciprofloxacin. Steadily increasing numbers of nalidixic acid, cefotaxime, and ciprofloxacin-resistant isolates, but decreasing numbers of multidrug resistance isolates were detected during the study period. Detection of quinolone genes in 114 nalidixic acid-resistant isolates showed that 58.3% (67/114) harbored plasmid-mediated quinolone resistance (PMQR) genes [aac(6´)-Ib-cr, qnrA, qnrB, oqxAB, qepA, qnrS, and qnrD] and 98.2% (112/114) exhibited mutations in quinolone resistance determining regions [gyrA, parC, and parE]. Furthermore, we detected beta-lactamases genes in the ceftriaxone-resistant isolates. The most common were blaTEM-1 (93.3%), followed by blaCTX-M-55 (40%), blaCMY-2 (33.3%), and blaOXA-1 (33.3%). Finally, a range of pulsed-field gel electrophoresis patterns were detected among the Salmonella Enteritidis and Salmonella Typhimurium isolates. Conclusion High rates of multidrug resistance and steadily increasing cefotaxime and ciprofloxacin-resistant iNTS could pose a significant challenge for the effective treatment of salmonellosis in China.
Collapse
Affiliation(s)
- Zeqiang Zhan
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xuebin Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Zhen Gu
- Emerging Infections Program China Office, Beijing, 102206, China
| | - Jianghong Meng
- Department of Food Science and Nutrition, University of Maryland, College Park, Maryland 20742, USA
| | - Xiayidan Wufuer
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, Urumchi 830001, China
| | - Mingliu Wang
- Guangxi Zhuang Autonomous Region Disease Prevention and Control Center, Nanning 530028, China
| | - Meilian Huang
- Xiamen City Children's Hospital, Xiamen 361006, China
| | - Jianhui Chen
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350001, China
| | - Chunmei Jing
- Chongqing City Children's Hospital, Chongqing 400014, China
| | - Zhiying Xiong
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Mei Zeng
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai 200336, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jianmin Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
42
|
Chen Q, Gong X, Zheng F, Ji P, Yuan Z, Liu Y, Wei Y. Prevalence and Characteristics of Quinolone Resistance in Salmonella Isolated from Retail Foods in Lanzhou, China. J Food Prot 2019; 82:1591-1597. [PMID: 31433240 DOI: 10.4315/0362-028x.jfp-19-001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The aim of this study was to determinate the prevalence of Salmonella in retail foods and its resistance to quinolones in retail foods in Lanzhou, People's Republic of China. In this work, 2,182 food samples, collected from March 2015 to December 2018, were analyzed to detect Salmonella and then analyzed for serotype distribution, quinolone resistance, and quinolone-resistant gene detection. The findings demonstrate that the overall prevalence of Salmonella in these food categories was low. A total of 41 (1.9%) of 2,182 food samples were found to be positive for Salmonella. Ten distinct serovars were identified, and Salmonella Derby, Salmonella Anatum, and Salmonella Enteritidis were the most prevalent serovars. According to the broth microdilution test, the resistance percentages were 90.2% to nalidixic acid, 39.0% to enrofloxacin, 41.5% to ciprofloxacin, 29.3% to ofloxacin, and 26.8% to levofloxacin. Among the quinolone-resistant isolates, 12 strains had a single mutation in gyrA at codon 83 (Ser→Phe) or codon 87 (Asp→Asn or Asp→Gly). Five isolates had one parC mutation (Ser80→Arg) and one or two gyrA hot spot mutations. qnr genes were found in seven isolates (five qnrB and two qnrD), and the aac(6')-Ib gene in seven isolates. Two isolates carry both qnrB and aac(6')-Ib-cr genes. Based on these results, a low prevalence of Salmonella contamination in retail foods was found, but it might play a potential risk factor in the spread of quinolone-resistant Salmonella strains in the Lanzhou region.
Collapse
Affiliation(s)
- Qiwei Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, People's Republic of China.,State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou 730046, People's Republic of China
| | - Xiongwei Gong
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou 730046, People's Republic of China
| | - Fuying Zheng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou 730046, People's Republic of China
| | - Peng Ji
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Ziwen Yuan
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Yongsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou 730046, People's Republic of China
| | - Yanming Wei
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| |
Collapse
|
43
|
BlaOXA-10 and PSE-1 Genes Located on Class 1 Integrons in Gallibacterium anatis. Curr Microbiol 2019; 76:959-961. [DOI: 10.1007/s00284-018-1477-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
|
44
|
Pragasam AK, Anandan S, John J, Neeravi A, Narasimman V, Muthuirulandi Sethuvel DP, Elangovan D, Veeraraghavan B. An emerging threat of ceftriaxone-resistant non-typhoidal salmonella in South India: Incidence and molecular profile. Indian J Med Microbiol 2019; 37:198-202. [PMID: 31745019 DOI: 10.4103/ijmm.ijmm_19_300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Non-typhoidal Salmonella (NTS) infection is a serious public health problem globally. Although NTS infections are self-limited, antimicrobial therapy is recommended for severe infections and immunocompromised patients. Antimicrobial resistance (AMR) in these pathogens further limits its therapeutic options. Here, we report an incidence of ceftriaxone resistance in NTS over the past 9 years in a southern Indian region. Materials and Methods Molecular mechanisms of resistance in ceftriaxone-resistant NTS have been tested by both phenotypic and molecular methods. Minimum inhibitory concentration was determined by the E-test and broth microdilution method. AMR gene markers of β-lactamases such as AmpCs (blaMOX, blaCMY, blaDHA, blaFOX, blaACC and blaACT) and extended-spectrum β-lactamases (ESBLs) (blaSHV, blaTEM, blaVEB, blaPER, blaCTXM-1like,blaCTXM-2like, blaCTXM-8like, blaCTXM-9like and blaCTXM-25like) were screened. The presence of IncH12 and IncI1 plasmid was also analysed. Results The study reports a 5% prevalence of ceftriaxone resistance in NTS. The most common serogroup was Salmonella Group B followed by Salmonella Group E and Salmonella group C1/C2. The occurrence of blaCTX-M-1, blaTEM, blaCMY and blaSHV genes was observed in 54%, 54%, 48% and 3% of the isolates, respectively. Interestingly, few isolates carried dual resistance genes (ESBLs and AmpCs). IncH12 and IncI1 plasmid was identified in isolates carrying ESBL and AmpC genes, respectively. Conclusion This study shows that ceftriaxone resistance is mainly mediated by β-lactamases such as ESBL and AmpC. As the incidence of ceftriaxone resistance is rising gradually over the years, it is imperative to monitor the AMR in this species.
Collapse
Affiliation(s)
- Agila Kumari Pragasam
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Shalini Anandan
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - James John
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Ayyanraj Neeravi
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Vignesh Narasimman
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | | | - Divyaa Elangovan
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| |
Collapse
|
45
|
Jeon HY, Kim YB, Lim SK, Lee YJ, Seo KW. Characteristics of cephalosporin-resistant Salmonella isolates from poultry in Korea, 2010–2017. Poult Sci 2019; 98:957-965. [DOI: 10.3382/ps/pey418] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/16/2018] [Indexed: 12/26/2022] Open
|
46
|
Eguale T, Asrat D, Alemayehu H, Nana I, Gebreyes WA, Gunn JS, Engidawork E. Phenotypic and genotypic characterization of temporally related nontyphoidal Salmonella strains isolated from humans and food animals in central Ethiopia. Zoonoses Public Health 2018; 65:766-776. [PMID: 29984468 DOI: 10.1111/zph.12490] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 05/12/2018] [Accepted: 05/27/2018] [Indexed: 11/28/2022]
Abstract
Salmonella is one of the common causes of food-borne bacterial illnesses. The primary sources of human nontyphoidal Salmonella (NTS) infection are food animals. This study characterized temporally and spatially related Salmonella isolated during April 2013 to March 2014 from faeces of diarrhoeic human patients in Addis Ababa (n = 68) and food animals (n = 84) in Addis Ababa and surrounding districts (dairy cattle, n = 30; slaughtered cattle, n = 20; poultry, n = 26; swine n = 8). Isolates were serotyped, page typed and tested for antimicrobial susceptibility using Kirby-Bauer disc diffusion method, and genotyped by pulsed-field gel electrophoresis (PFGE). The dominant Salmonella serovars isolated from food animals were S. Saintpaul (38.1%), S. Typhimurium (17.9%) and S. Kentucky (9.5%), whereas in humans, S. Typhimurium (39.7%), S. Virchow (30.9%) and S. Kottbus (10.3%) were frequently isolated. Resistance to streptomycin, sulfisoxazole, tetracycline, ampicillin and cephalothin was higher in animal isolates than human isolates, and mean number of antimicrobials to which isolates were resistant was significantly higher in isolates from cattle and poultry compared to those from humans (p < 0.05). All S. Kentucky isolated from animals and humans were multidrug resistant (MDR) with shared resistance phenotype (AmpCfCipTeSuSNa). Although this study involved small sample size and was not able to show clear epidemiological linkage among isolates from various sources, genotyping by PFGE analysis demonstrated circulation of closely related genotypes of S. Virchow, S. Typhimurium and S. Kentucky among humans and food animals. Detection of related Salmonella isolates from humans and animals, the high MDR status of isolates from animals and close proximity of farms and human residential areas in the absence of appropriate biosecurity present major public health problem. Integrated surveillance of Salmonella serovars in humans and animals and implementation of appropriate hazard analysis and pathogen control strategies along critical points of the food chain from farm to table is recommended.
Collapse
Affiliation(s)
- Tadesse Eguale
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Daniel Asrat
- Department of Microbiology, Immunology & Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Haile Alemayehu
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ismael Nana
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio
| | - Wondwossen A Gebreyes
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio
| | - John S Gunn
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio
| | - Ephrem Engidawork
- Department of Pharmacology and Clinical Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
47
|
Cuypers WL, Jacobs J, Wong V, Klemm EJ, Deborggraeve S, Van Puyvelde S. Fluoroquinolone resistance in Salmonella: insights by whole-genome sequencing. Microb Genom 2018; 4. [PMID: 29975627 PMCID: PMC6113872 DOI: 10.1099/mgen.0.000195] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Fluoroquinolone (FQ)-resistant Salmonella spp. were listed by the WHO in 2017 as priority pathogens for which new antibiotics were urgently needed. The overall global burden of Salmonella infections is high, but differs per region. Whereas typhoid fever is most prevalent in South and South-East Asia, non-typhoidal salmonellosis is prevalent across the globe and associated with a mild gastroenteritis. By contrast, invasive non-typhoidal Salmonella cause bloodstream infections associated with high mortality, particularly in sub-Saharan Africa. Most Salmonella strains from clinical sources are resistant to first-line antibiotics, with FQs now being the antibiotic of choice for treatment of invasive Salmonella infections. However, FQ resistance is increasingly being reported in Salmonella, and multiple molecular mechanisms are already described. Whole-genome sequencing (WGS) is becoming more frequently used to analyse bacterial genomes for antibiotic-resistance markers, and to understand the phylogeny of bacteria in relation to their antibiotic-resistance profiles. This mini-review provides an overview of FQ resistance in Salmonella, guided by WGS studies that demonstrate that WGS is a valuable tool for global surveillance.
Collapse
Affiliation(s)
- Wim L Cuypers
- 1Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium.,2Department of Mathematics and Computer Science, University of Antwerp, Antwerpen, Belgium
| | - Jan Jacobs
- 3Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium.,4Department of Microbiology and Immunology, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Vanessa Wong
- 5Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,6Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - Stijn Deborggraeve
- 1Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Sandra Van Puyvelde
- 6Wellcome Trust Sanger Institute, Hinxton, UK.,1Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| |
Collapse
|
48
|
Bandyopadhyay S, Banerjee J, Bhattacharyya D, Samanta I, Mahanti A, Dutta TK, Ghosh S, Nanda PK, Dandapat P, Bandyopadhyay S. Genomic Identity of Fluoroquinolone-Resistant blaCTX-M-15-Type ESBL and pMAmpC β-Lactamase Producing Klebsiella pneumoniae from Buffalo Milk, India. Microb Drug Resist 2018; 24:1345-1353. [PMID: 29565231 DOI: 10.1089/mdr.2017.0368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
We investigated the occurrence of extended-spectrum β-lactamase (ESBL) and AmpC-type β-lactamase (ACBL) producing quinolone-resistant Klebsiella pneumoniae (KP) in milk samples of apparently healthy buffaloes (n = 348) and buffaloes (n = 19) with evidence of subclinical mastitis from seven districts of West Bengal, India. In total, 12 ESBL producing KP were isolated with blaCTX-M-15 gene and 7 of them were ACBL producers, as well. The blaCTX-M-15 genes were carried by transposable element ISEcp1. The plasmid-mediated quinolone resistance genes-qnrS, qnrA, qnrB, qepA, and aac(6')-Ib-cr were detected in five, one, three, four, and one isolate (s), respectively. In addition, eight isolates carried mutation in gyrase (gyrA) and six in topoisomerase IV (parC). Resistance markers/genes for sulfonamide (sul1), tetracycline [tet(A) and tet(B)], and aminoglycoside (aacC2) were also detected in eight, four, and one isolate(s), respectively. The class I integrons identified in five isolates carried aad2/aad5 and dfrA12/dfrA17 gene cassettes. The enterobacterial repetitive intergenic consensus-PCR revealed that all the isolates were genetically diverse and comprised a heterogeneous population. Isolation of multidrug-resistant KP, a typical nosocomial pathogen from buffalo milk, reiterates the need to monitor farm animals for ESBL producing Enterobacteriaceae and emphasizes on judicious use of antibiotics in animal husbandry sector.
Collapse
Affiliation(s)
| | - Jaydeep Banerjee
- 1 ICAR-Indian Veterinary Research Institute , ERS, Kolkata, India
| | | | | | | | - Tapan K Dutta
- 3 Department of Veterinary Microbiology, CAU , Selesih, Aizawl, Mizoram, India
| | - Sarbaswarup Ghosh
- 4 Sasya Shyamala Krishi Vigyan Kendra, Ramakrishna Mission Vivekananda Educational and Research Institute , Arapanch, Sonarpur, Kolkata, India
| | - Pramod K Nanda
- 1 ICAR-Indian Veterinary Research Institute , ERS, Kolkata, India
| | | | | |
Collapse
|
49
|
Odoch T, Sekse C, L'Abee-Lund TM, Høgberg Hansen HC, Kankya C, Wasteson Y. Diversity and Antimicrobial Resistance Genotypes in Non-Typhoidal Salmonella Isolates from Poultry Farms in Uganda. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E324. [PMID: 29438292 PMCID: PMC5858393 DOI: 10.3390/ijerph15020324] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 11/23/2022]
Abstract
Non-typhoidal Salmonella (NTS) are foodborne pathogens of global public health significance. The aim of this study was to subtype a collection of 85 NTS originating from poultry farms in Uganda, and to evaluate a subgroup of phenotypically resistant isolates for common antimicrobial resistance genes and associated integrons. All isolates were subtyped by pulsed-field gel electrophoresis (PFGE). Phenotypically resistant isolates (n = 54) were screened by PCR for the most relevant AMR genes corresponding to their phenotypic resistance pattern, and all 54 isolates were screened by PCR for the presence of integron class 1 and 2 encoding genes. These genes are known to commonly encode resistance to ampicillin, tetracycline, ciprofloxacin, trimethoprim, sulfonamide and chloramphenicol. PFGE revealed 15 pulsotypes representing 11 serotypes from 75 isolates, as 10 were non-typable. Thirty one (57.4%) of the 54 resistant isolates carried at least one of the seven genes (blaTEM-1,cmlA, tetA, qnrS,sul1,dhfrI,dhfrVII) identified by PCR and six (11%) carried class 1 integrons. This study has shown that a diversity of NTS-clones are present in Ugandan poultry farm settings, while at the same time similar NTS-clones occur in different farms and areas. The presence of resistance genes to important antimicrobials used in human and veterinary medicine has been demonstrated, hence the need to strengthen strategies to combat antimicrobial resistance at all levels.
Collapse
Affiliation(s)
- Terence Odoch
- Department of Bio-security, Ecosystems and Veterinary Public Health, College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Makerere University, P.O. Box 7062, Kampala, Uganda.
| | | | - Trine M L'Abee-Lund
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), 0454 Oslo, Norway.
| | - Helge Christoffer Høgberg Hansen
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), 0454 Oslo, Norway.
| | - Clovice Kankya
- Department of Bio-security, Ecosystems and Veterinary Public Health, College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Makerere University, P.O. Box 7062, Kampala, Uganda.
| | - Yngvild Wasteson
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), 0454 Oslo, Norway.
| |
Collapse
|
50
|
Tadesse G, Tessema TS, Beyene G, Aseffa A. Molecular epidemiology of fluoroquinolone resistant Salmonella in Africa: A systematic review and meta-analysis. PLoS One 2018; 13:e0192575. [PMID: 29432492 PMCID: PMC5809059 DOI: 10.1371/journal.pone.0192575] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/25/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Wide-ranging evidence on the occurrence of fluoroquinolone (FQ) resistance genetic determinants in African Salmonella strains is not available. The main objectives of this study were to assess the heterogeneity, estimate pooled proportions and describe the preponderance of FQ-resistance determinants in typhoidal and non-typhoidal Salmonella (NTS) isolates of Africa. METHODS Genetic and phenotypic data on 6103 Salmonella isolates were considered. Meta- and frequency analyses were performed depending on the number of studies by category, number of isolates and risks of bias. A random effects model was used to assess heterogeneity and estimate pooled proportions. Relative and cumulative frequencies were calculated to describe the overall preponderance of FQ-resistance determinants in quinolone resistant isolates. RESULTS The pooled proportion of gyrA mutants (Salmonella enterica serovar Typhi, Salmonella enterica serovar Typhimurium, and Salmonella enterica serovar Enteritidis) was estimated at 5.7% (95% Confidence interval (CI) = 2.6, 9.8; Tau squared (T2) = 0.1105), and was higher in S. Typhi than in S. Typhimurium (odds ratio (OR) = 3.3, 95%CI = 2, 5.7). The proportions of each of gyrB and parC mutants, and strains with Plasmid Mediated Quinolone Resistance genes (qnrA, qnrB and qnrS) were low (≤ 0.3%). Overall, 23 mutant serotypes were identified, and most strains had mutations at codons encoding Ser83 and Asp87 of gyrA (82%, 95%CI = 78, 86). CONCLUSIONS Mutations at gyrA appear to account for ciprofloxacin non-susceptibility in most clinical Salmonella strains in Africa. The estimates could be harnessed to develop a mismatch-amplification mutation-assay for the detection of FQ-resistant strains in Africa.
Collapse
Affiliation(s)
- Getachew Tadesse
- Department of Biomedical Sciences, College of Veterinary Medicine and Agriculture, Addis Ababa University, Debre Zeit, Ethiopia
| | - Tesfaye S. Tessema
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Getenet Beyene
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute (AHRI), ALERT Campus, Addis Ababa, Ethiopia
| |
Collapse
|