1
|
Liu M, Xia Z, Zhang Y, Yang R, Luo W, Guo L, Liu Y, Lamesgen D, Sun H, He J, Sun L. Contamination of aflatoxin B 1, deoxynivalenol and zearalenone in feeds in China from 2021 to 2024. J Anim Sci Biotechnol 2025; 16:66. [PMID: 40340773 PMCID: PMC12063307 DOI: 10.1186/s40104-025-01213-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/14/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND This study was carried out to investigate the individual and combined contamination of aflatoxin B1 (AFB1), deoxynivalenol (DON), and zearalenone (ZEN) in feeds in China between 2021 and 2024. A total of 23,003 feed samples, including 17,489 feedstuff samples and 5,514 complete feed samples, were collected from different provinces of China for mycotoxin analysis. RESULTS The analyzed mycotoxins displayed considerably high contamination in the feed samples, with the individual contamination of AFB1, DON, and ZEN were 20.0%-100%, 33.3%-100%, and 85.0%-100%, respectively. The average concentrations of AFB1, DON, and ZEN were 1.2-728.7 μg/kg, 106-8,634.8 μg/kg, and 18.1-3,341.6 μg/kg, respectively. Notably, the rates over China's safety standards for AFB1, DON, and ZEN in raw ingredients were 9.7%, 2.7%, and 15.7%, respectively. Meanwhile, 3.5%, 1.1%, and 8.7% of analyzed complete feeds exceeded China's safety standards for AFB1, DON, and ZEN, respectively. Moreover, the co-contamination rates of AFB1, DON, and ZEN in more than 70% of raw ingredients and 87.5% of complete feed products were 60.0%-100% and 61.5%-100%, respectively. CONCLUSION This study reveals that the feeds in China have commonly been contaminated with AFB1, DON, and ZEN alone and their combination during the past four years. These findings highlight the significance of monitoring mycotoxin contaminant levels in domestic animal feed and the importance of carrying out feed administration and remediation strategies for mycotoxin control.
Collapse
Affiliation(s)
- Meng Liu
- Inner Mongolia Academy of Agriculture and Animal Husbandry Science, Hohhot, Inner Mongolia, 010031, China
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhiyuan Xia
- Inner Mongolia Academy of Agriculture and Animal Husbandry Science, Hohhot, Inner Mongolia, 010031, China
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yu Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Rengui Yang
- Tang Ren Shen Group Co., Ltd., Zhuzhou, Hunan, 412007, China
| | - Weicai Luo
- Haixing Group Co., Ltd., Zhangzhou, Fujian, 363100, China
| | - Lijia Guo
- Hebei Panshuo Biotechnology Co., Ltd., Baoding, Hebei, 071599, China
| | - Ying Liu
- Tianjin Animal Disease Prevention and Control Center, Tianjin, 300402, China
| | - Dessalegn Lamesgen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hua Sun
- Inner Mongolia Academy of Agriculture and Animal Husbandry Science, Hohhot, Inner Mongolia, 010031, China
| | - Jiangfeng He
- Inner Mongolia Academy of Agriculture and Animal Husbandry Science, Hohhot, Inner Mongolia, 010031, China.
| | - Lvhui Sun
- Inner Mongolia Academy of Agriculture and Animal Husbandry Science, Hohhot, Inner Mongolia, 010031, China.
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
2
|
Zhang J, Ma L, Wen K, Hou X. Fluorescence immunochromatographic assay for deoxynivalenol using immunomagnetic bead purification. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2025; 42:249-258. [PMID: 39787066 DOI: 10.1080/19440049.2024.2447042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/08/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
Deoxynivalenol (DON) contaminates various complex matrices, necessitating straightforward, effective cleanup and precise detection methods. This study employed immunomagnetic beads for sample purification and utilized a competitive time-resolved fluoro-immuno-chromatographic assay to achieve quantitative detection of DON in corn and its by-products. The limits of detection and quantification were 104 μg/kg and 243 μg/kg, respectively. Significant cross-reactivity was absent with most common toxins, except for 3-acetyl-deoxynivalenol, which exhibited a cross-reaction rate of 3167%. The recovery rates ranged from 86% to 117%, with coefficients of variation between 6.9% and 9.5%. The correlation coefficient with HPLC was 0.977. This method is rapid, accurate, and requires no large-scale equipment, facilitating on-site detection directly.
Collapse
Affiliation(s)
- Jialin Zhang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Licai Ma
- Beijing WDWK Biotechnology Company, Ltd, Beijing, China
| | - Kai Wen
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaolin Hou
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
3
|
Yang X, Liu B, Zhang L, Wang X, Xie J, Liang J. Spatial Distribution and Dietary Risk Assessment of Aflatoxins in Raw Milk and Dairy Feedstuff Samples from Different Climate Zones in China. Toxins (Basel) 2025; 17:41. [PMID: 39852994 PMCID: PMC11769556 DOI: 10.3390/toxins17010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
This study aimed to explore the contamination of aflatoxins by investigating the spatial distribution of aflatoxin B1 (AFB1) in cow feedstuff and aflatoxin M1 (AFM1) in raw milk, and the potential health risks of AFM1 in milk and dairy products. Feedstuff and raw milk were collected from 160 pastures in three climate zones of China from October to November 2020. The results indicated the level of AFB1 and AFM1 ranged from 51.1 to 74.1 ng/kg and 3.0 to 7.0 ng/kg, respectively. Spatial analysis indicated the contamination was mostly concentrated in the temperate monsoon climate zone. On average, the estimated dietary exposure to AFM1 from milk and dairy products for Chinese consumers ranged from 0.0138 to 0.0281 ng/kg bw/day, with the MOE values below 10,000, and liver cancer risk of 0.00004-0.00009 cases/100,000 persons/year. For different groups, the average exposure to AFM1 was highest in the temperate monsoon climate zone and for toddlers.
Collapse
Affiliation(s)
- Xueli Yang
- China National Center for Food Safety Risk Assessment, Beijing 100022, China; (X.Y.); (L.Z.); (X.W.)
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, No. 380, Jianquan 1st Street, Tianshan District, Urumqi 830001, China
| | - Bolin Liu
- Anhui Provincial Center for Disease Control and Prevention, No. 12560, Fuhua Avenue, Economic and Technological Development Zone, Hefei 230601, China; (B.L.); (J.X.)
| | - Lei Zhang
- China National Center for Food Safety Risk Assessment, Beijing 100022, China; (X.Y.); (L.Z.); (X.W.)
| | - Xiaodan Wang
- China National Center for Food Safety Risk Assessment, Beijing 100022, China; (X.Y.); (L.Z.); (X.W.)
| | - Jian Xie
- Anhui Provincial Center for Disease Control and Prevention, No. 12560, Fuhua Avenue, Economic and Technological Development Zone, Hefei 230601, China; (B.L.); (J.X.)
| | - Jiang Liang
- China National Center for Food Safety Risk Assessment, Beijing 100022, China; (X.Y.); (L.Z.); (X.W.)
| |
Collapse
|
4
|
Falkauskas R, Jovaišienė J, Vaičiulienė G, Kerzienė S, Jacevičienė I, Jacevičius E, Jarmalaitė I, Ivaškienė M, Daunoras G, Želvytė R, Baliukonienė V. Effect of In Vitro Ruminal pH on Zearalenone Degradation and Interaction with Other Mycotoxins in a Static Gastrointestinal Model. Toxins (Basel) 2024; 17:13. [PMID: 39852966 PMCID: PMC11768755 DOI: 10.3390/toxins17010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
The degradation of zearalenone (ZEN) in the rumen of dairy cows is influenced by rumen pH, which is a key factor affecting this process. The aim of this study was to investigate the variation of ZEN in interaction with other mycotoxins at different ruminal pH environments (physiological (pH 6.5) and acidic (pH 5.5)) using an in vitro rumen model. Rumen fluid was collected from the caudoventral part of the rumen of cows using a pharyngeal-esophageal probe. To determine the changes in different mycotoxins (ZEN; AFLB1; DON; T-2) in the rumen of cows, a model rumen system was used, and mycotoxins concentrations were detected by HPLC. The study found that at pH 6.5, ZEN alone and in combination with other mycotoxins (DON; T-2; AFLB1) significantly (p < 0.05) reduced ZEN levels compared to the rumen environment at pH 5.5. It was observed that α-zearalenol (α-ZEL) and β-zearalenol (β-ZEL) concentrations were generally higher at a rumen pH of 6.5 compared to pH 5.5, averaging 47.09 µg/L and 35.23 µg/L, respectively. Additionally, the frequency of detection for both α-ZEL and β-ZEL was greater at pH 6.5 than at pH 5.5. A comparison of α-ZEL concentrations in rumen samples at pH 5.5 showed a 20% increase from the 6th to the 9th hour of the test, while β-ZEL levels remained unchanged over the same period.
Collapse
Affiliation(s)
- Rimvydas Falkauskas
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (J.J.); (V.B.)
- National Food and Veterinary Risk Assessment Institute, J. Kairiukscio Str. 10, LT-08409 Vilnius, Lithuania; (I.J.); (E.J.); (I.J.)
| | - Jurgita Jovaišienė
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (J.J.); (V.B.)
| | - Gintarė Vaičiulienė
- Animal Reproduction Laboratory, Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania;
| | - Sigita Kerzienė
- Department of Animal Breeding, Faculty of Animal Science, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania;
| | - Ingrida Jacevičienė
- National Food and Veterinary Risk Assessment Institute, J. Kairiukscio Str. 10, LT-08409 Vilnius, Lithuania; (I.J.); (E.J.); (I.J.)
| | - Eugenijus Jacevičius
- National Food and Veterinary Risk Assessment Institute, J. Kairiukscio Str. 10, LT-08409 Vilnius, Lithuania; (I.J.); (E.J.); (I.J.)
| | - Inga Jarmalaitė
- National Food and Veterinary Risk Assessment Institute, J. Kairiukscio Str. 10, LT-08409 Vilnius, Lithuania; (I.J.); (E.J.); (I.J.)
| | - Marija Ivaškienė
- Dr. L. Kriaučeliūnas Small Animal Clinic, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania; (M.I.); (G.D.)
| | - Gintaras Daunoras
- Dr. L. Kriaučeliūnas Small Animal Clinic, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania; (M.I.); (G.D.)
| | - Rasa Želvytė
- The Research Center of Digestive Physiology and Pathology, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania;
| | - Violeta Baliukonienė
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (J.J.); (V.B.)
| |
Collapse
|
5
|
Li R, Tan B, Jiang Q, Chen F, Liu K, Liao P. Eucommia ulmoides flavonoids alleviate intestinal oxidative stress damage in weaned piglets by regulating the Nrf2/Keap1 signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117373. [PMID: 39571260 DOI: 10.1016/j.ecoenv.2024.117373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/17/2024] [Accepted: 11/17/2024] [Indexed: 12/09/2024]
Abstract
This study examined how Eucommia ulmoides flavonoids (EUF) protect against intestinal oxidative stress induced by deoxynivalenol (DON) in weaned piglets. Forty weaned piglets were randomly assigned to four dietary groups for a period of 14 days. The piglets were fed a control diet (Control) or the Control diet supplemented with 100 mg EUF/kg (EUF group), 4 mg DON/kg diet (DON group) or both (EUF+DON group) in a 2×2 factorial design. DON-challenged piglets on the EUF-supplemented diet showed significant improvements in growth performance. They also had notably lower serum levels of alkaline phosphatase (ALP), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) compared to those not receiving supplementation (P<0.05). In the EUF group, the relative weights of the liver, spleen, and kidneys were significantly lower than those in the control group (P<0.05). However, there were no significant differences in the relative heart weights among the four groups (P>0.05). Piglets challenged with DON and fed a diet supplemented with EUF showed significantly lower levels of interleukin-8 (IL-8) and interferon-γ (IFN-γ) mRNA and protein expression in serum and intestinal tissues compared to those in the DON group (P < 0.05). The EUF+DON group significantly increased the serum levels of glutathione peroxidase (GSH-Px), reactive oxygen species (ROS), and total antioxidative capability enzymes compared to the DON group (P<0.05). The EUF and DON group had significantly higher villus height, crypt depth, and villus height to crypt depth ratio in the small intestine compared to the supplemented DON-challenged piglets (P<0.05). Moreover, compared to the DON group, EUF can significantly enhance the expression of nuclear factor erythroid 2-related factor 2(Nfr2)/Kelch-like ECH-associating protein 1(Keap1) and antioxidant genes (i.e., HO-1, GCLC, GCLM), as well as their proteins in the DON-induced small intestines of piglets (P<0.05). In conclusion, EUF helps protect piglets from intestinal oxidative stress caused by DON by influencing the Nrf2/Keap1 signaling pathway, thereby supporting their intestinal health.
Collapse
Affiliation(s)
- Rui Li
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Qian Jiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Fengming Chen
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan 410219, China
| | - Kai Liu
- Department of Infectious Diseases and Public Health, City University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Peng Liao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China.
| |
Collapse
|
6
|
Wu J, Wang H, Liao J, Ke L, Lu D, Deng B, Xu Z. Mitigation effects of plant carbon black on intestinal morphology, inflammation, antioxidant status, and microbiota in piglets challenged with deoxynivalenol. Front Immunol 2024; 15:1454530. [PMID: 39315103 PMCID: PMC11416923 DOI: 10.3389/fimmu.2024.1454530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Plant carbon black (PCB) is a new feed additive for zearalenone adsorption in China. However, information regarding whether PCB can effectively absorb deoxynivalenol (DON) is limited. Methods To explore this research gap, the present study examined the adsorption effectiveness of DON by PCB using a phosphate buffer, artificial gastric juice, and artificial intestinal juice. In a 21-day in vivo trial, 48 male piglets were randomly assigned to four treatment groups: (1) uncontaminated basal diet (CTR), (2) basal diet supplemented with 1 mg/kg PCB(PCB), (3) 2.3 mg/kg DON-contaminated diet (DON), and (4) 2.3 mg/kg DON-contaminated diet supplemented with 0.1% PCB (DON+PCB). Results When DON concentration was 1 µg/mL, the adsorption rate of PCB on DON in phosphate buffer systems (pH 2.0 and 6.0) and the artificial gastric and intestinal juices were 100%, 100%, 71.46%, and 77.20%, respectively. In the in vivo trial, the DON group significantly increased the DON+deepoxy-deoxynivalenol (DOM-1) content in serum as well as the inflammation cytokine proteins (interleukin-6, interleukin-8, and tumor necrosis factor-α) and mRNA expression of interleukin-6 and longchain acyl-CoA synthetase 4 in the jejunum and ileum. It decreased the villus height, goblet cells, mucosal thickness, and mRNA expression of Claudin-1 compared to the CTR group. In addition, DON decreased the Shannon and Simpson indices; reduced the relative abundances of Firmicutes, Lactobacillus, Candidatus_Saccharimonas, and Ruminococcus; and increased the relative abundances of Terrisporobacter and Clostridium_sensu_stricto_1 in the cecal content. Discussion In conclusion, these results suggest that PCB showed high adsorption efficacy on DON in vitro, and exhibit the protective effects against various intestinal toxicity manifestations in DON-challenged piglets.
Collapse
Affiliation(s)
- Jie Wu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hanyang Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jianling Liao
- Department of Techniques Developing, Fujian Baicaoshuang Biotechnology Co., Ltd., Nanping, China
| | - Linfu Ke
- Department of Techniques Developing, Fujian Baicaoshuang Biotechnology Co., Ltd., Nanping, China
| | - Deqiu Lu
- Department of Production Research and Development, Harbin PuFan Feed Co., Ltd., Harbin, China
| | - Bo Deng
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ziwei Xu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
7
|
Deng J, Yang JC, Feng Y, Xu ZJ, Kuča K, Liu M, Sun LH. AP-1 and SP1 trans-activate the expression of hepatic CYP1A1 and CYP2A6 in the bioactivation of AFB 1 in chicken. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1468-1478. [PMID: 38703348 DOI: 10.1007/s11427-023-2512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/09/2024] [Indexed: 05/06/2024]
Abstract
Dietary exposure to aflatoxin B1 (AFB1) is harmful to the health and performance of domestic animals. The hepatic cytochrome P450s (CYPs), CYP1A1 and CYP2A6, are the primary enzymes responsible for the bioactivation of AFB1 to the highly toxic exo-AFB1-8,9-epoxide (AFBO) in chicks. However, the transcriptional regulation mechanism of these CYP genes in the liver of chicks in AFB1 metabolism remains unknown. Dual-luciferase reporter assay, bioinformatics and site-directed mutation results indicated that specificity protein 1 (SP1) and activator protein-1 (AP-1) motifs were located in the core region -1,063/-948, -606/-541 of the CYP1A1 promoter as well as -636/-595, -503/-462, -147/-1 of the CYP2A6 promoter. Furthermore, overexpression and decoy oligodeoxynucleotide technologies demonstrated that SP1 and AP-1 were pivotal transcriptional activators regulating the promoter activity of CYP1A1 and CYP2A6. Moreover, bioactivation of AFB1 to AFBO could be increased by upregulation of CYP1A1 and CYP2A6 expression, which was trans-activated owing to the upregulalion of AP-1, rather than SP1, stimulated by AFB1-induced reactive oxygen species. Additionally, nano-selenium could reduce ROS, downregulate AP-1 expression and then decrease the expression of CYP1A1 and CYP2A6, thus alleviating the toxicity of AFB1. In conclusion, AP-1 and SP1 played important roles in the transactivation of CYP1A1 and CYP2A6 expression and further bioactivated AFB1 to AFBO in chicken liver, which could provide novel targets for the remediation of aflatoxicosis in chicks.
Collapse
Affiliation(s)
- Jiang Deng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia-Cheng Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Feng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ze-Jing Xu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Meng Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
8
|
Hong C, Huang Y, Cao S, Wang L, Yang X, Hu S, Gao K, Jiang Z, Xiao H. Accurate models and nutritional strategies for specific oxidative stress factors: Does the dose matter in swine production? J Anim Sci Biotechnol 2024; 15:11. [PMID: 38273345 PMCID: PMC10811888 DOI: 10.1186/s40104-023-00964-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/01/2023] [Indexed: 01/27/2024] Open
Abstract
Oxidative stress has been associated with a number of physiological problems in swine, including reduced production efficiency. Recently, although there has been increased research into regulatory mechanisms and antioxidant strategies in relation to oxidative stress-induced pig production, it remains so far largely unsuccessful to develop accurate models and nutritional strategies for specific oxidative stress factors. Here, we discuss the dose and dose intensity of the causes of oxidative stress involving physiological, environmental and dietary factors, recent research models and the antioxidant strategies to provide theoretical guidance for future oxidative stress research in swine.
Collapse
Affiliation(s)
- Changming Hong
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yujian Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shuting Cao
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Li Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xuefen Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shenglan Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Kaiguo Gao
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zongyong Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Hao Xiao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Guangzhou, 510640, China.
| |
Collapse
|
9
|
Ruan ML, Wang J, Xia ZY, Li XW, Zhang B, Wang GL, Wu YY, Han Y, Deng J, Sun LH. An integrated mycotoxin-mitigating agent can effectively mitigate the combined toxicity of AFB 1, DON and OTA on the production performance, liver and oviduct health in broiler breeder hens. Food Chem Toxicol 2023; 182:114159. [PMID: 37913901 DOI: 10.1016/j.fct.2023.114159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/06/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
This study was to evaluate the efficacy of an integrated mycotoxin-mitigating agent in reducing the adverse effects of co-occurring dietary aflatoxin B1 deoxynivalenol and ochratoxin A on broiler breeder hens. 360 30-week-old Hubbard Efficiency Plus broiler breeder hens were allocated into four groups and received a basal diet (BD; Control), BD added 0.15 mg/kg aflatoxin B1+1.5 mg/kg deoxynivalenol+0.12 mg/kg ochratoxin A (Toxins), BD plus Toxins with 0.1% TOXO-XL (Toxins + XL1), and BD plus Toxins with 0.2% TOXO-XL (Toxins + XL2), respectively, for 8 weeks, and then received the same BD for another 4 weeks. Compared with control, mycotoxins decreased total egg weigh, egg laying rate, settable eggs rate, hatch of total eggs rate, egg quality, but increased feed/egg ratio and mortality rate, and impaired the liver and oviduct health during weeks 1-8 and(or) 9-12. It also increased PC and MDA concentrations, TUNEL-positive cells and IL-1β and IL-6 expression, and decreased T-AOC, GPX and CAT activities in liver and/or oviduct. Notably, most of these negative changes were mitigated by both dosages of TOXO-XL. Generally, 0.2% TOXO-XL displayed better mitigation effects than 0.1% TOXO-XL. Conclusively, these findings revealed that TOXO-XL could mitigate the combined mycotoxins-induced toxicity on the performance, liver and oviduct health, through the regulation of redox, immunity, and apoptosis in broiler breeder hens.
Collapse
Affiliation(s)
- Meng-Ling Ruan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jie Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhi-Yuan Xia
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xue-Wu Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Newhope Liuhe Co. Ltd., Beijing, 100102, China
| | - Bo Zhang
- Selko Feed Additives, Nutreco, Stationsstraat 77, 3811, MH, Amersfoort, the Netherlands
| | - Guan-Lin Wang
- Selko Feed Additives, Nutreco, Stationsstraat 77, 3811, MH, Amersfoort, the Netherlands
| | - Yuan-Yuan Wu
- Selko Feed Additives, Nutreco, Stationsstraat 77, 3811, MH, Amersfoort, the Netherlands
| | - Yanming Han
- Selko Feed Additives, Nutreco, Stationsstraat 77, 3811, MH, Amersfoort, the Netherlands
| | - Jiang Deng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
10
|
Chen YC, Syu YH, Huang JY, Lin CY, Chan YH. Hybrid polymer dot-magnetic nanoparticle based immunoassay for dual-mode multiplexed detection of two mycotoxins. Chem Commun (Camb) 2023; 59:9968-9971. [PMID: 37501643 DOI: 10.1039/d3cc02586a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
We designed polymer dot-magnetic nanoparticle nanohybrids for signal enhancement in a test strip platform. Besides, the multicolor emissions of the Pdots embed multiplexing ability for this test strip. Two mycotoxins, aflatoxin B1 and zearalenone, were tested with the determined limits of detection of 2.15 ng mL-1 and 4.87 ng mL-1, respectively.
Collapse
Affiliation(s)
- Yi-Chen Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
| | - Yu-Han Syu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
| | - Jhen-Yan Huang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
| | - Chun-Yi Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
| | - Yang-Hsiang Chan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| |
Collapse
|
11
|
Li D, Liang G, Mu P, Lin J, Huang J, Guo C, Li Y, Lin R, Jiang J, Wu J, Deng Y, Wen J. Improvement of catalytic activity of sorbose dehydrogenase for deoxynivalenol degradation by rational design. Food Chem 2023; 423:136274. [PMID: 37159968 DOI: 10.1016/j.foodchem.2023.136274] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/27/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
Deoxynivalenol (DON) is the most frequently contaminated mycotoxin in food and feed worldwide, causing significant economic losses and health risks. Physical and chemical detoxification methods are widely used, but they cannot efficiently and specifically remove DON. In the study, the combination of bioinformatics screening and experimental verification confirmed that sorbose dehydrogenase (SDH) can effectively convert DON to 3-keto-DON and a substance that removes four hydrogen atoms for DON. Through rational design, the Vmax of the mutants F103L and F103A were increased by 5 and 23 times, respectively. Furthermore, we identified catalytic sites W218 and D281. SDH and its mutants have broad application conditions, including temperature ranges of 10-45 °C and pH levels of 4-9. Additionally, the half-lives of F103A at 90 °C (processing temperature) and 30 °C (storage temperature) were 60.1 min and 100.5 d, respectively. These results suggest that F103A has significant potential in the detoxification application of DON.
Collapse
Affiliation(s)
- Danyang Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| | - Guoqiang Liang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| | - Peiqiang Mu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| | - Jinquan Lin
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| | - Jiarun Huang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| | - Chongwen Guo
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| | - Yang Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| | - Ruqin Lin
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| | - Jun Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| | - Jun Wu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| |
Collapse
|
12
|
Chen X, Ma J, Chen H. Induction of autophagy via the ROS-dependent AMPK/mTOR pathway protects deoxynivalenol exposure grass carp hepatocytes damage. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108687. [PMID: 36921881 DOI: 10.1016/j.fsi.2023.108687] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/04/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Deoxynivalenol (DON) is one of the most frequently found mycotoxin sources in feed and raw food products, endangering human and animal health. The mechanism of grass carp (Ctenopharyngodon idellus) liver cell (L8824) toxicity induced by DON is still unknown. The DON was administered to the L8824 cells in concentrations of 150, 200, and 250 ng/mL for 24 h. The results of this study suggested that DON could enable L8824 cells to significantly increase the levels of autophagy. Concurrently, DON could trigger autophagy through the AMPK-mTOR pathway, which upregulated the expression of p-AMPK and p-ULK1 while downregulating the expression of p-mTOR. In the meantime, DON treatment could alter the levels of expression of the related proteins in autophagy. Additionally, DON treatment dramatically reduced the activity of the antioxidant enzymes as well as increased the levels of oxidase, which increased the production of ROS in L8824 cells. This indicates that DON could induce oxidative stress. Furthermore, we discovered that DON exposure caused apoptosis, which is characterized by elevated levels of BAX, Caspase 9, Caspase 3, and decreased Bcl-2 levels. Next, it was investigated how oxidative stress affected DON-induced autophagy. The research revealed that the oxidative stress inhibitor (NAC) attenuated DON-induced autophagy. Additionally, the study also investigated how autophagy worked under the L8824 cells induced by DON. The ROS production, however, was enhanced by the addition of the autophagy inhibitor (3-MA). Additionally, co-treatment with the apoptosis inhibitor Z-VAD-FMK had no influence on autophagy. The combined findings showed that induction of autophagy via the ROS-dependent AMPK-mTOR pathway protects DON-induced L8824 cells from damage.
Collapse
Affiliation(s)
- Xin Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, 150030, PR China
| | - Jun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, 150030, PR China
| | - Hao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, 150030, PR China.
| |
Collapse
|
13
|
Rasouli H, Nayeri FD, Khodarahmi R. May phytophenolics alleviate aflatoxins-induced health challenges? A holistic insight on current landscape and future prospects. Front Nutr 2022; 9:981984. [PMID: 36386916 PMCID: PMC9649842 DOI: 10.3389/fnut.2022.981984] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
The future GCC-connected environmental risk factors expedited the progression of nCDs. Indeed, the emergence of AFs is becoming a global food security concern. AFs are lethal carcinogenic mycotoxins, causing damage to the liver, kidney, and gastrointestinal organs. Long-term exposure to AFs leads to liver cancer. Almost a variety of food commodities, crops, spices, herbaceous materials, nuts, and processed foods can be contaminated with AFs. In this regard, the primary sections of this review aim to cover influencing factors in the occurrence of AFs, the role of AFs in progression of nCDs, links between GCC/nCDs and exposure to AFs, frequency of AFs-based academic investigations, and world distribution of AFs. Next, the current trends in the application of PPs to alleviate AFs toxicity are discussed. Nearly, more than 20,000 published records indexed in scientific databases have been screened to find recent trends on AFs and application of PPs in AFs therapy. Accordingly, shifts in world climate, improper infrastructures for production/storage of food commodities, inconsistency of global polices on AFs permissible concentration in food/feed, and lack of the public awareness are accounting for a considerable proportion of AFs damages. AFs exhibited their toxic effects by triggering the progression of inflammation and oxidative/nitrosative stress, in turn, leading to the onset of nCDs. PPs could decrease AFs-associated oxidative stress, genotoxic, mutagenic, and carcinogenic effects by improving cellular antioxidant balance, regulation of signaling pathways, alleviating inflammatory responses, and modification of gene expression profile in a dose/time-reliant fashion. The administration of PPs alone displayed lower biological properties compared to co-treatment of these metabolites with AFs. This issue might highlight the therapeutic application of PPs than their preventative content. Flavonoids such as quercetin and oxidized tea phenolics, curcumin and resveratrol were the most studied anti-AFs PPs. Our literature review clearly disclosed that considering PPs in antioxidant therapies to alleviate complications of AFs requires improvement in their bioavailability, pharmacokinetics, tissue clearance, and off-target mode of action. Due to the emergencies in the elimination of AFs in food/feedstuffs, further large-scale clinical assessment of PPs to decrease the consequences of AFs is highly required.
Collapse
Affiliation(s)
- Hassan Rasouli
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Dehghan Nayeri
- Department of Biotechnology, Faculty of Agricultural and Natural Sciences, Imam Khomeini International University (IKIU), Qazvin, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
14
|
Jing S, Liu C, Zheng J, Dong Z, Guo N. Toxicity of zearalenone and its nutritional intervention by natural products. Food Funct 2022; 13:10374-10400. [PMID: 36165278 DOI: 10.1039/d2fo01545e] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zearalenone (ZEN) is a toxic secondary metabolite mainly produced by fungi of the genus Fusarium, and is often present in various food and feed ingredients such as corn and wheat. The structure of ZEN is similar to that of natural estrogen, and it can bind to estrogen receptors and has estrogenic activity. Therefore, it can cause endocrine-disrupting effects and promote the proliferation of estrogen receptor-positive cell lines. In addition, ZEN can cause oxidative damage, endoplasmic reticulum stress, apoptosis, and other hazards, resulting in systemic toxic effects, including reproductive toxicity, hepatotoxicity, and immunotoxicity. In the past few decades, researchers have tried many ways to remove ZEN from food and feed, but it is still a challenge to eliminate it. In recent years, natural compounds have become of interest for their excellent protective effects on human health from food contaminants. Researchers have discovered that natural compounds often used as dietary supplements can effectively alleviate ZEN-induced systemic toxic effects. Most of the compounds mitigate ZEN-induced toxicity through antioxidant effects. In this article, the contamination of food and feed by ZEN and the various toxic effects and mechanisms of ZEN are reviewed, as well as the mitigation effects of natural compounds on ZEN-induced toxicity.
Collapse
Affiliation(s)
- Siyuan Jing
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Chunmei Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jian Zheng
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Zhijian Dong
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Na Guo
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
15
|
Wang L, Wang X, Chang J, Wang P, Liu C, Yuan L, Yin Q, Zhu Q, Lu F. Effect of the Combined Compound Probiotics with Glycyrrhinic Acid on Alleviating Cytotoxicity of IPEC-J2 Cells Induced by Multi-Mycotoxins. Toxins (Basel) 2022; 14:toxins14100670. [PMID: 36287939 PMCID: PMC9612255 DOI: 10.3390/toxins14100670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Aflatoxins B1 (AFB1), deoxynivalenol (DON) and zearalenone (ZEA) are the three most prevalent mycotoxins, whose contamination of food and feed is a severe worldwide problem. In order to alleviate the toxic effects of multi-mycotoxins (AFB1 + DON + ZEA, ADZ) on inflammation and apoptosis in swine jejunal epithelial cells (IPEC-J2), three species of probiotics (Bacillus subtilis, Saccharomyces cerevisiae and Pseudomonas lactis at 1 × 105 CFU/mL, respectively) were mixed together to make compound probiotics (CP), which were further combined with 400 μg/mL of glycyrrhinic acid (GA) to make bioactive materials (CGA). The experiment was divided into four groups, i.e., the control, ADZ, CGA and ADZ + CGA groups. The results showed that ADZ decreased cell viability and induced cytotoxicity, while CGA addition could alleviate ADZ-induced cytotoxicity. Moreover, the mRNA expressions of IL-8, TNF-α, NF-Κb, Bcl-2, Caspase-3, ZO-1, Occludin, Claudin-1 and ASCT2 genes, and protein expressions of TNF-α and Claudin-1 were significantly upregulated in ADZ group; while the mRNA abundances of IL-8, TNF-α, NF-Κb, Caspase-3, ASCT2 genes, and protein expressions of TNF-α and Claudin-1 were significantly downregulated in the ADZ + CGA group. In addition, the protein expressions of COX-2, ZO-1, and ASCT2 were significantly downregulated in the ADZ group, compared with the control group; whereas CGA co-incubation with ADZ could increase these protein expressions to recover to normal levels. This study indicated that CGA could alleviate cytotoxicity, apoptosis and inflammation in ADZ-induced IPEC-J2 cells and protect intestinal cell integrity from ADZ damages.
Collapse
Affiliation(s)
- Lijun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaomin Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Juan Chang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ping Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Chaoqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Lin Yuan
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou 450003, China
| | - Qingqiang Yin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Correspondence:
| | - Qun Zhu
- Henan Delin Biological Product Co., Ltd., Xinxiang 453000, China
| | - Fushan Lu
- Henan Puai Feed Co., Ltd., Zhoukou 466000, China
| |
Collapse
|
16
|
Purar B, Djalovic I, Bekavac G, Grahovac N, Krstović S, Latković D, Janić Hajnal E, Živančev D. Changes in Fusarium and Aspergillus Mycotoxin Content and Fatty Acid Composition after the Application of Ozone in Different Maize Hybrids. Foods 2022; 11:2877. [PMID: 36141007 PMCID: PMC9498628 DOI: 10.3390/foods11182877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Mycotoxins in maize represent a great threat to human health. For this reason, novel technics such as ozone treatment are used to reduce the content of maize mycotoxins. However, there is little knowledge about the effect of ozone treatment on maize quality parameters. This study investigated the changes in Fusarium and Aspergillus mycotoxins and the changes in fatty acids during the ozone treatment of maize samples. Sixteen maize hybrids were visually tested for the naturally occurring ear rot severity and treated with three different concentrations of ozone (40, 70, and 85 mg/L). Mycotoxin content in maize samples was determined using a high-performance liquid chromatography (HPLC) system, whereas dominant fatty acids were determined using gas chromatography coupled with a flame ionization detector (GC-FID). Ozone treatments could be successfully applied to reduce the content of mycotoxins in maize below the detection limit. Ozone treatments increased the content of monounsaturated fatty acids (MUFAs) and decreased the content of polyunsaturated fatty acids (PUFAs), i.e., linoleic acid (36.7% in relation to the lowest applied ozone concentration), which negatively affected the nutritional value of maize.
Collapse
Affiliation(s)
- Božana Purar
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki 30, 21000 Novi Sad, Serbia
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki 30, 21000 Novi Sad, Serbia
| | - Goran Bekavac
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki 30, 21000 Novi Sad, Serbia
| | - Nada Grahovac
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki 30, 21000 Novi Sad, Serbia
| | - Saša Krstović
- Faculty of Agriculture, University of Novi Sad, Sq. D. Obradovic 8, 21000 Novi Sad, Serbia
| | - Dragana Latković
- Faculty of Agriculture, University of Novi Sad, Sq. D. Obradovic 8, 21000 Novi Sad, Serbia
| | - Elizabet Janić Hajnal
- Institute of Food Technology, University of Novi Sad, Bul. Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Dragan Živančev
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki 30, 21000 Novi Sad, Serbia
| |
Collapse
|
17
|
Deoxynivalenol: An Overview on Occurrence, Chemistry, Biosynthesis, Health Effects and Its Detection, Management, and Control Strategies in Food and Feed. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13020023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mycotoxins are fungi-produced secondary metabolites that can contaminate many foods eaten by humans and animals. Deoxynivalenol (DON), which is formed by Fusarium, is one of the most common occurring predominantly in cereal grains and thus poses a significant health risk. When DON is ingested, it can cause both acute and chronic toxicity. Acute signs include abdominal pain, anorexia, diarrhea, increased salivation, vomiting, and malaise. The most common effects of chronic DON exposure include changes in dietary efficacy, weight loss, and anorexia. This review provides a succinct overview of various sources, biosynthetic mechanisms, and genes governing DON production, along with its consequences on human and animal health. It also covers the effect of environmental factors on its production with potential detection, management, and control strategies.
Collapse
|
18
|
Li Q, Zhao T, He H, Robert N, Ding T, Hu X, Zhang T, Pan Y, Cui Y, Yu S. Ascorbic acid protects the toxic effects of aflatoxin B 1 on yak oocyte maturation. Anim Sci J 2022; 93:e13702. [PMID: 35257449 DOI: 10.1111/asj.13702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/26/2022] [Accepted: 02/03/2022] [Indexed: 11/29/2022]
Abstract
High-quality oocytes are a prerequisite for successful fertilization. Mammals feeding on aflatoxin-contaminated feed can cause reproductive toxicity, including follicular atresia, poor oocyte development and maturation, and aberrant epigenetic modifications of oocytes. In addition, the important role of ascorbic acid (AA) in reproductive biology has been confirmed, and AA is widely used as an antioxidant in cell culture. However, the toxic effects of aflatoxin B1 (AFB1 ) on yak oocytes and whether AA has protective effects remain unknown. In this study, we found that exposure to AFB1 impedes meiotic maturation of oocytes, promotes apoptosis by triggering high levels of reactive oxygen species (ROS), and disrupts mitochondrial distribution and actin integrity, resulting in a decrease in the fertilization ability and parthenogenetic development ability of oocytes. In addition, these injuries changed the DNA methylation transferase transcription level of mature oocytes. After adding 50 μg/ml AA, the indices recovered to levels close to those of the control group. The results showed that AA could protect yak oocytes from the toxic effects of AFB1 and improve the quality of oocytes.
Collapse
Affiliation(s)
- Qin Li
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Tian Zhao
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Honghong He
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Niayale Robert
- Laboratory of Animal Anatomy & Tissue Embryology, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Tianyi Ding
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xuequan Hu
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Tongxiang Zhang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yangyang Pan
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan Cui
- Laboratory of Animal Anatomy & Tissue Embryology, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
19
|
Xie K, He X, Hu G, Zhang H, Chen Y, Hou DX, Song Z. The preventive effect and mechanisms of adsorbent supplementation in low concentration aflatoxin B1 contaminated diet on subclinical symptom and histological lesions of broilers. Poult Sci 2022; 101:101634. [PMID: 35065342 PMCID: PMC8783143 DOI: 10.1016/j.psj.2021.101634] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 12/02/2022] Open
Abstract
This study aimed to investigate the subclinical symptom and histological lesions of 21-day-old and 42-day-old broilers exposure to low concentration aflatoxin B1 (AFB1), and the preventive effect with adsorbent (Toxo-MX) supplementation. A total of 576 one-day-old Arbor Acres broilers were randomly allotted into 6 treatments 8 replicates and 12 birds per cage, fed with 0 ppb, 60 ppb and 120 ppb AFB1 contamination diet with or without Toxo-MX supplementation. Results showed both 60 ppb and 120 ppb AFB1 contamination significantly reduced growth performance in 21-day-old broilers (P < 0.05), but not in 42-day-old broilers (P > 0.05), however, AFB1 contamination in diet caused a higher feed to gain ratio (P < 0.05). Broilers of 21-day-old exposure to 60 ppb and 120 ppb AFB1 increased mRNA expression of hepatic inflammatory cytokines, and superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activity (P < 0.05), 42-day-old broilers showed a same change in 120 ppb but not in 60 ppb of AFB1 contamination (P < 0.05). mRNA expressions of clauding-1, Zonula occludens-1 (ZO-1), and occludin decreased, but Bax, Bcl-2, and caspase-3 increased in 21-day-old broilers exposure to 60 ppb and 120 ppb AFB1 (P < 0.05), broilers of 42-day-old resisted on intestinal aflatoxicosis impairment against 60 ppb AFB1 contamination (P < 0.05), but not in 120 ppb (P < 0.05). Toxo-MX supplementation significantly reversed the detrimental effects on growth performance in both age broilers and reduced the accelerated feed to gain ratio caused by AFB1 (P < 0.05). Intestinal mRNA expression of tight junction and apoptotic genes in both age broilers were recovered by Toxo-MX supplementation (P < 0.05). However, Toxo-MX did not restore the accelerated expression of hepatic inflammation cytokines and SOD, GSH-Px in 120ppb AFB1 group (P < 0.05). The data demonstrated that diet supplementation with Toxo-MX reversed the detrimental effect on growth performance and intestine in broilers exposure to 60 ppb and 120 ppb AFB1. However, did not completely recovered hepatic inflammation induced by AFB1.
Collapse
Affiliation(s)
- Kun Xie
- College of Animal Science and Technology, Hunan Engineering Research Center for Poultry Safety, Hunan Agricultural University, Changsha 410128, Hunan, China; Course of Biological Science and Technology, United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Xi He
- College of Animal Science and Technology, Hunan Engineering Research Center for Poultry Safety, Hunan Agricultural University, Changsha 410128, Hunan, China; Hunan Co-Innovation Center of Animal Production Safety, Engineering Research Center, Changsha 410128, Hunan, China; Hunan Engineering Research Center of Poultry Production Safety, Changsha 410128, Hunan, China
| | - Guili Hu
- College of Animal Science and Technology, Hunan Engineering Research Center for Poultry Safety, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Haihan Zhang
- College of Animal Science and Technology, Hunan Engineering Research Center for Poultry Safety, Hunan Agricultural University, Changsha 410128, Hunan, China; Hunan Co-Innovation Center of Animal Production Safety, Engineering Research Center, Changsha 410128, Hunan, China; Hunan Engineering Research Center of Poultry Production Safety, Changsha 410128, Hunan, China
| | - Yuguang Chen
- College of Animal Science and Technology, Hunan Engineering Research Center for Poultry Safety, Hunan Agricultural University, Changsha 410128, Hunan, China; Hunan Co-Innovation Center of Animal Production Safety, Engineering Research Center, Changsha 410128, Hunan, China; Hunan Engineering Research Center of Poultry Production Safety, Changsha 410128, Hunan, China
| | - De-Xing Hou
- Course of Biological Science and Technology, United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan; Department of Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Zehe Song
- College of Animal Science and Technology, Hunan Engineering Research Center for Poultry Safety, Hunan Agricultural University, Changsha 410128, Hunan, China; Hunan Co-Innovation Center of Animal Production Safety, Engineering Research Center, Changsha 410128, Hunan, China; Hunan Engineering Research Center of Poultry Production Safety, Changsha 410128, Hunan, China.
| |
Collapse
|
20
|
Liu S, Mao X, Ge L, Hou L, Le G, Gan F, Wen L, Huang K. Phenethyl isothiocyanate as an anti-nutritional factor attenuates deoxynivalenol-induced IPEC-J2 cell injury through inhibiting ROS-mediated autophagy. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:300-309. [PMID: 35024467 PMCID: PMC8717381 DOI: 10.1016/j.aninu.2021.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/21/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022]
Abstract
Deoxynivalenol (DON) is considered to be the most harmful mycotoxin that affects the intestinal health of animals and humans. Phenethyl isothiocyanate (PEITC) in feedstuff is an anti-nutritional factor and impairs nutrient digestion and absorption in the animal intestinal. In the current study, we aimed to explore the effects of PEITC on DON-induced apoptosis, intestinal tight junction disorder, and its potential molecular mechanism in the porcine jejunum epithelial cell line (IPEC-J2). Our results indicated that PEITC treatment markedly alleviated DON-induced cytotoxicity, decreasing the apoptotic cell percentage and pro-apoptotic mRNA/protein levels, and increasing zonula occludens-1 (ZO-1), occludin and claudin-1 mRNA/protein expression. Meanwhile, PEITC treatment ameliorated DON-induced an increase of the inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) mRNA levels and intracellular reactive oxygen species (ROS) level, and a decrease of glutathione peroxidase 1 (GPx1), superoxide dismutase 2 (SOD2), catalase (CAT) and heme oxygenase 1 (HO-1) mRNA levels. Additionally, PEITC treatment significantly down-regulated autophagy-related protein 5 (ATG5), beclin-1 and microtubule-associated protein 1 light chain 3B (LC3-Ⅱ) mRNA/protein levels, decreased the number of green fluorescent protein-microtubule-associated protein 1 light-chain 3 (GFP-LC3) puncta and phosphatidylinositol 3 kinase (PI3K) protein expression, and up-regulated phospho-protein kinase B (p-Akt) and phospho-mammalian target of rapamycin (p-mTOR) protein expression against DON. However, the activation of autophagy by rapamycin, an autophagy agonist, abolished the protective effects of PEITC against DON-induced cytotoxicity, apoptosis and intestinal tight junction disorder. Collectively, PEITC could confer protection against DON-induced porcine intestinal epithelial cell injury by suppressing ROS-mediated autophagy.
Collapse
Affiliation(s)
- Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinru Mao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Ge
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guannan Le
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lixin Wen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
21
|
Grgic D, Varga E, Novak B, Müller A, Marko D. Isoflavones in Animals: Metabolism and Effects in Livestock and Occurrence in Feed. Toxins (Basel) 2021; 13:836. [PMID: 34941674 PMCID: PMC8705642 DOI: 10.3390/toxins13120836] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/29/2022] Open
Abstract
Soybeans are a common ingredient of animal feed. They contain isoflavones, which are known to act as phytoestrogens in animals. Isoflavones were described to have beneficial effects on farm animals. However, there are also reports of negative outcomes after the consumption of isoflavones. This review summarizes the current knowledge of metabolization of isoflavones (including the influence of the microbiome, phase I and phase II metabolism), as well as the distribution of isoflavones and their metabolites in tissues. Furthermore, published studies on effects of isoflavones in livestock species (pigs, poultry, ruminants, fish) are reviewed. Moreover, published studies on occurrence of isoflavones in feed materials and co-occurrence with zearalenone are presented and are supplemented with our own survey data.
Collapse
Affiliation(s)
- Dino Grgic
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090 Vienna, Austria; (D.G.); (E.V.)
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090 Vienna, Austria; (D.G.); (E.V.)
| | - Barbara Novak
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria; (B.N.); (A.M.)
| | - Anneliese Müller
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria; (B.N.); (A.M.)
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090 Vienna, Austria; (D.G.); (E.V.)
| |
Collapse
|
22
|
Tang M, Yuan D, Liao P. Berberine improves intestinal barrier function and reduces inflammation, immunosuppression, and oxidative stress by regulating the NF-κB/MAPK signaling pathway in deoxynivalenol-challenged piglets. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117865. [PMID: 34358871 DOI: 10.1016/j.envpol.2021.117865] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/02/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
The aim of this study was to evaluate the effect of berberine (BBR) on the intestinal health of piglets exposed to deoxynivalenol (DON). A total of 180 weaned piglets were randomly allotted to 1 of 3 treatment groups with 10 replication pens per treatment and 6 piglets per pen. The treatments were basal diet, basal diet +4 mg/kg DON, and basal diet +4 mg/kg DON +40 mg/kg BBR. The experiment lasted for 21 d. BBR improved the growth performance of DON-challenged piglets. BBR could inhibit DON-induced intestinal injury by increasing the expression of serum antioxidant enzymes and T cell surface antigens and reducing the release of proinflammatory cytokines in the small intestine. BBR significantly increased the protein expression levels of zonula occludens 1 (ZO-1), Occludin and Claudin-1 in the ileal and jejunal mucosa and increased the morphological parameters of the jejunum. Moreover, we found that BBR significantly reduced the DON-induced gene and protein expression levels of ERK, JNK, and NF-κB in the jejunum and ileum. In conclusion, BBR can regulate DON-induced intestinal injury, immunosuppression and oxidative stress by regulating the NF-κB and MAPK signaling pathways and ultimately maintain the intestinal health of piglets.
Collapse
Affiliation(s)
- Min Tang
- The Third Department of Obstetrics and Gynecology, Mawangdui District of Hunan Provincial People's Hospital, Hunan, 410016, China.
| | - Daixiu Yuan
- Department of Medicine, Jishou University, Jishou, Hunan, 416000, China.
| | - Peng Liao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China.
| |
Collapse
|
23
|
Seo H, Jang S, Jo H, Kim H, Lee S, Yun H, Jeong M, Moon J, Na T, Cho H. Optimization of the QuEChERS-Based Analytical Method for Investigation of 11 Mycotoxin Residues in Feed Ingredients and Compound Feeds. Toxins (Basel) 2021; 13:toxins13110767. [PMID: 34822551 PMCID: PMC8618524 DOI: 10.3390/toxins13110767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022] Open
Abstract
Mycotoxins are toxic substances naturally produced by various fungi, and these compounds not only inflict economic damage, but also pose risks to human and animal health. The goal of the present study was to optimize the QuEChERS-based extraction and liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for the analysis of 11 mycotoxins, such as aflatoxins (AFs), ochratoxin A (OTA), fumonisins (FBs), T-2 toxin, HT-2 toxin, zearalenone (ZEN), and deoxynivalenol (DON), commonly found in feed. The QuEChERS method, characterized by being “quick, easy, cheap, effective, rugged, and safe”, has become one of the most common extractions and clean-up procedures for mycotoxin analyses in food. Therefore, in this experiment, an optimal method for the analysis of 11 mycotoxins in feed was established by modifying the general QuEChERS method. In this process, it was confirmed that even if feed samples of different weights were extracted, the quantitative value of mycotoxins in the feed was not affected. To reduce matrix effects, 13C-labeled compounds and deuterium were used as internal standards. This optimized method was then applied in the determination of 11 mycotoxins in 736 feed ingredients and compound feeds obtained from South Korea. The results showed that the occurrence rates of FBs, ZEN, and DON were 59.4%, 38.0%, and 32.1%, respectively, and OTA, AFs, and T-2 toxin and HT-2 toxin were found in fewer than 1% of the 736 feeds. The mean concentration ranges of FBs, ZEN, and DON were 757–2387, 44–4552, and 248–9680 μg/kg, respectively. Among the samples in which DON and ZEN were detected, 10 and 12 samples exceeded the management recommendation standards presented by the Ministry of Agriculture, Food and Rural Affairs (MAFRA). However, when the detected concentrations of DON and ZEN were compared with guideline levels in foreign countries, such as the US, Japan, China, and the EU, the number of positive samples changed. In addition, the co-occurrence of mycotoxins in the feed was analyzed, and the results showed that 43.8% of the samples were contaminated with two or three mycotoxins, among which the co-occurrence rate of FBs, ZEN, and DON was the highest. In conclusion, these results suggest the need for stricter management standards for FBs, DON, and ZEN in South Korea, and emphasize the importance of the continuous monitoring of feeds.
Collapse
Affiliation(s)
- Hyungju Seo
- Experiment Research Institute, National Agricultural Products Quality Management Service, 141, Yongjeon-ro, Gimcheon-si 39660, Korea; (H.S.); (S.J.); (H.K.); (S.L.); (H.Y.); (M.J.)
| | - Sunyeong Jang
- Experiment Research Institute, National Agricultural Products Quality Management Service, 141, Yongjeon-ro, Gimcheon-si 39660, Korea; (H.S.); (S.J.); (H.K.); (S.L.); (H.Y.); (M.J.)
| | - Hyeongwook Jo
- Hansalim Agro-Food Analysis Center, Hankyong National University Industry Academic Cooperation Foundation, Suwon 16500, Korea; (H.J.); (J.M.)
| | - Haejin Kim
- Experiment Research Institute, National Agricultural Products Quality Management Service, 141, Yongjeon-ro, Gimcheon-si 39660, Korea; (H.S.); (S.J.); (H.K.); (S.L.); (H.Y.); (M.J.)
| | - Seunghwa Lee
- Experiment Research Institute, National Agricultural Products Quality Management Service, 141, Yongjeon-ro, Gimcheon-si 39660, Korea; (H.S.); (S.J.); (H.K.); (S.L.); (H.Y.); (M.J.)
| | - Hyejeong Yun
- Experiment Research Institute, National Agricultural Products Quality Management Service, 141, Yongjeon-ro, Gimcheon-si 39660, Korea; (H.S.); (S.J.); (H.K.); (S.L.); (H.Y.); (M.J.)
| | - Minhee Jeong
- Experiment Research Institute, National Agricultural Products Quality Management Service, 141, Yongjeon-ro, Gimcheon-si 39660, Korea; (H.S.); (S.J.); (H.K.); (S.L.); (H.Y.); (M.J.)
| | - Joonkwan Moon
- Hansalim Agro-Food Analysis Center, Hankyong National University Industry Academic Cooperation Foundation, Suwon 16500, Korea; (H.J.); (J.M.)
| | - Taewoong Na
- Experiment Research Institute, National Agricultural Products Quality Management Service, 141, Yongjeon-ro, Gimcheon-si 39660, Korea; (H.S.); (S.J.); (H.K.); (S.L.); (H.Y.); (M.J.)
- Correspondence: (T.N.); (H.C.); Tel.: +82-54-429-7813 (T.N.); +82-54-429-7810 (H.C.)
| | - Hyunjeong Cho
- Experiment Research Institute, National Agricultural Products Quality Management Service, 141, Yongjeon-ro, Gimcheon-si 39660, Korea; (H.S.); (S.J.); (H.K.); (S.L.); (H.Y.); (M.J.)
- Correspondence: (T.N.); (H.C.); Tel.: +82-54-429-7813 (T.N.); +82-54-429-7810 (H.C.)
| |
Collapse
|
24
|
Mallmann C, Simões CT, Vidal JK, da Silva CR, de Lima Schlösser L, de Almeida CA. Occurrence and concentration of mycotoxins in maize dried distillers’ grains produced in Brazil. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The presence of mycotoxins in dried distillers’ grains with solubles (DDGS), a by-product of bioethanol production from maize, has been a matter of concern due to the increasing global utilisation of this ingredient in animal feed. In this study, 186 samples of maize DDGS produced in Brazil were analysed for the presence of major mycotoxins: aflatoxins (B1, B2, G1, and G2), fumonisins (B1 and B2), zearalenone (ZEN), deoxynivalenol (DON) and ochratoxin A (OTA). Samples were provided by the local industry between January 2017 and October 2020, and mycotoxins were quantified by LC-MS/MS. More than 98% of the analysed samples were contaminated with mycotoxins, from which 59.9% had a single mycotoxin, 29.9% two mycotoxins, and 9.1% more than two mycotoxins. The most prevalent metabolites were fumonisin B1 and B2, being detected in 98.8% (mean 3,207 μg/kg) and 97.6% (mean 1,243 μg/kg) of the samples, respectively; aflatoxin B1 had the third highest positivity, with 32.3% (mean 1.47 μg/kg), followed by ZEN, with 18.01% (mean 18.2 μg/kg), DON, with 12.9% (mean 59.6 μg/kg), and OTA was not detected. Co-occurrence of total aflatoxins (AFT = aflatoxin B1+B2+G1+G2) and total fumonisins (FBT = fumonisin B1+B2) was observed in 32.07% of the samples analysed for these mycotoxins. Co-occurrence of AFT and ZEN was found in 7.84% of the samples analysed for such mycotoxins, while FBT and DON co-occurred at 13.01%. AFT, FBT, DON and ZEN co-occurred in only one sample (0.84%). Except for FBT, a considerable number of samples presented the evaluated mycotoxins below their respective limit of quantification (LOQ) with percentages of 67.61% for AFT, 81.99% for ZEN, 87.07% for DON and 100% for OTA. Since the production of bioethanol and its by-products is growing worldwide, including in Brazil, mycotoxicological monitoring of maize DDGS is crucial to identify the effects of mycotoxins occurrence in animal feed formulated with this ingredient.
Collapse
Affiliation(s)
- C.A. Mallmann
- Department of Preventive Veterinary Medicine, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - C. Tonial Simões
- Department of Preventive Veterinary Medicine, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - J. Kobs Vidal
- Department of Preventive Veterinary Medicine, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - C. Rosa da Silva
- Department of Preventive Veterinary Medicine, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - L.M. de Lima Schlösser
- Department of Preventive Veterinary Medicine, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - C.A. Araújo de Almeida
- Department of Preventive Veterinary Medicine, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil
| |
Collapse
|
25
|
Lv S, Wu X, Guan J, Yan Y, Ge M, Zhu G. Quantification and Confirmation of Zearalenone Using a LC-MS/MS QTRAP System in Multiple Reaction Monitoring and Enhanced Product Ion Scan Modes. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-01985-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Zhao L, Zhang L, Xu Z, Liu X, Chen L, Dai J, Karrow NA, Sun L. Occurrence of Aflatoxin B 1, deoxynivalenol and zearalenone in feeds in China during 2018-2020. J Anim Sci Biotechnol 2021; 12:74. [PMID: 34243805 PMCID: PMC8272344 DOI: 10.1186/s40104-021-00603-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/09/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The current study was conducted to investigate the individual and combined occurrence of aflatoxin B1 (AFB1), deoxynivalenol (DON) and zearalenone (ZEN) in feeds from various Provinces of China during 2018 to 2020. A total of 3,507 feed samples, including 2,090 feed ingredients and 1,417 complete feed samples, were collected from different areas of China for mycotoxins analysis. RESULTS The individual contamination of AFB1, DON and ZEN were present in more than 81.9%, 96.4% and 96.9% of feed samples, respectively, with average concentration ranges of AFB1 between 1.2-27.4 μg/kg, DON between 458.0-1,925.4 μg/kg and ZEN between 48.1-326.8 μg/kg. Notably, 0.9%, 0.5% and 0.1% of feed ingredients, and 1.2-12.8%, 0.9-2.9% and 0-8.9% of complete feeds for pigs, poultry and ruminants with AFB1, ZEN and DON that exceeded China's safety standards, respectively. Moreover, more than 81.5% of feed ingredients and 95.7% of complete feeds were co-contaminated with various combinations of these mycotoxins. CONCLUSION This study indicates that the feeds in China were universally contaminated with AFB1, DON and ZEN during the past 3 years. These findings highlight the significance of monitoring mycotoxin contaminant levels in the domestic animal feed, and the importance of carrying out feed administration and remediation strategies for mycotoxin control.
Collapse
Affiliation(s)
- Ling Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lei Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zijian Xu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xingda Liu
- Guilin Li Yuan Grain and Oil Food Group Co., Ltd, Guilin, 541001, Guangxi, China
| | - Liyuan Chen
- Jiangsu Aomai Bio-Technology Co., Ltd, Nanjing, 211226, China
| | - Jiefan Dai
- Department of Agriculture of Sichuan Province, Chengdu, 610041, China
| | | | - Lvhui Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
27
|
Waqas M, Pervaiz W, Zia KM, Iqbal SZ. Assessment of aflatoxin
B
1
in animal feed and aflatoxin
M
1
in raw milk samples of different species of milking animals from Punjab, Pakistan. J Food Saf 2021. [DOI: 10.1111/jfs.12893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Muhammad Waqas
- Department of Applied Chemistry Government College University Faisalabad Pakistan
| | - Wajeeha Pervaiz
- Department of Applied Chemistry Government College University Faisalabad Pakistan
| | - Khalid Mahmood Zia
- Department of Chemistry Government College University Faisalabad Pakistan
| | - Shahzad Zafar Iqbal
- Department of Applied Chemistry Government College University Faisalabad Pakistan
| |
Collapse
|
28
|
Zhou S, Xu L, Kuang H, Xiao J, Xu C. Immunoassays for rapid mycotoxin detection: state of the art. Analyst 2021; 145:7088-7102. [PMID: 32990695 DOI: 10.1039/d0an01408g] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The widespread presence of mycotoxins in nature not only poses a huge health risk to people in terms of food but also causes incalculable losses to the agricultural economy. As a rapidly developing technology in recent years, the mycotoxin immunoassay technology has approached or even surpassed the traditional chromatography technology in some aspects. Using this approach, the lateral flow immunoassay (LFIA) has attracted the interest of researchers due to its user-friendly operation, short time consumption, little interference, low cost, and ability to process a large number of samples at the same time. This paper provides an overview of the immunogens commonly used for mycotoxins, the development of antibodies, and the use of gold nanoparticles, quantum dots, carbon nanoparticles, enzymes, and fluorescent microsphere labeling materials for the construction of LFIAs to improve detection sensitivity. The analytical performance, detection substrates, detection limits or detection ranges of LFIA for mycotoxins have been listed in recent years. Finally, we describe the future outlook for the field, predicting that portable mobile detection devices and simultaneous quantitative detection of multiple mycotoxins is one of the important directions for future development.
Collapse
Affiliation(s)
- Shengyang Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, China.
| | | | | | | | | |
Collapse
|
29
|
Kananub S, Jala P, Laopiem S, Boonsoongnern A, Sanguankiat A. Mycotoxin profiles of animal feeds in the central part of Thailand: 2015-2020. Vet World 2021; 14:739-743. [PMID: 33935421 PMCID: PMC8076449 DOI: 10.14202/vetworld.2021.739-743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/05/2021] [Indexed: 12/05/2022] Open
Abstract
Background and Aim: Mycotoxin contamination in animal feeds is of considerable concern because it can affect animal health systems. As a result of contamination in the food chain, humans can indirectly come into contact with mycotoxins. The present study aimed to present mycotoxin contamination patterns in animal feeds from 2015 to 2020 and elucidate associations between the type of feed and the type of ingredient. Materials and Methods: Data were summarized from the records of the Kamphaeng Saen Veterinary Diagnosis Center from 2015 to 2020, which comprised the analyses of aflatoxin (AFL), zearalenone (ZEA), T-2 toxin (T-2), fumonisin (FUM), and deoxynivalenol (DON) contamination in feed ingredients, complete feeds, and unclassified feeds. Descriptive statistics, Chi-squared tests, and Fisher’s exact tests were used for data analysis. Results: ZEA was prevalent in animal feeds. The prevalence of each mycotoxin was constant from 2015 to 2020. Approximately 20-30% of samples were positive for AFL and FUM. The highest contamination was ZEA, which was found in 50% of the samples, and the occurrence of T-2 and DON was <10%. AFL significantly contaminated complete feeds more than feed ingredients. Feed ingredients were related to mycotoxin contaminations. The highest levels of AFL, FUM, and DON contamination occurred in 2017. The data in this year consisted mostly of soybean, corn, and rice bran. Conclusion: The number of positive samples of all five mycotoxins was constant from 2015 to 2020, but the occurrence of ZEA was the highest. Mycotoxins in feedstuffs are significantly related to the type of feed and the type of ingredient.
Collapse
Affiliation(s)
- Suppada Kananub
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Prakorn Jala
- Kamphaeng Saen Veterinary Diagnostic Center, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Sudtisa Laopiem
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Alongkot Boonsoongnern
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Arsooth Sanguankiat
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand
| |
Collapse
|
30
|
Nontoxic dose of Phenethyl isothiocyanate ameliorates deoxynivalenol-induced cytotoxicity and inflammation in IPEC-J2 cells. Res Vet Sci 2021; 136:66-73. [PMID: 33588096 DOI: 10.1016/j.rvsc.2021.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 12/30/2022]
Abstract
The intestinal tract is a target for the deoxynivalenol (DON), which has adverse effects in animals and humans' health by affecting intestinal functions. Phenethyl isothiocyanate (PEITC) is an important degradation product of glucosinolates (GSLs), belonging to an anti-nutritional factor that affects the digestion and absorption of nutrients in the animals' intestinal. However, little attention has been paid to the interaction and its mechanism between DON and PEITC. Therefore, the purpose of this study was to assess the effects of PEITC on DON-induced cytotoxicity and inflammation, and explore the potential mechanisms in IPEC-J2 cells. Our results showed that DON exposure could decrease the cell viability and pro-inflammatory cytokine expression in IPEC-J2 cells in a dose-dependent manner. PEITC treatment at the concentrations of 1.25-5 μM had no significant effect on IPEC-J2 cells viability, but above 10 μM of PEITC treatment significantly reduced the cell viability. Interestingly, 1.25-5 μM of PEITC treatment could suppress 4 μM of DON-induced decrease in cell viability and increase in pro-inflammatory cytokine expression. Meanwhile, the protein ratios of p-p65/p-65 and p-IκBα/IκBα were markedly decreased in the groups treated with 1.25-5 μM PEITC compared to DON exposure alone. However, the protective effects of PEITC treatment were significantly blocked after pre-treatment with LPS, NF-κB activator, in IPEC-J2 cells. In conclusion, these findings indicated that the nontoxic dose of PEITC could alleviate DON-induced cytotoxicity and inflammation responses via suppressing the NF-κB signaling pathway in IPEC-J2 cells. Our results provide a new theoretical basis for the rational addition of rapeseed meal in animal feedstuff.
Collapse
|
31
|
Xu Y, Sun MH, Li XH, Ju JQ, Chen LY, Sun YR, Sun SC. Modified hydrated sodium calcium aluminosilicate-supplemented diet protects porcine oocyte quality from zearalenone toxicity. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:124-132. [PMID: 32683748 DOI: 10.1002/em.22399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/06/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Zearalenone (ZEN) is one of the most common mycotoxins produced by fungus in contaminated feed. ZEN has multiple toxicities, including reproductive toxicity of domestic animals, particularly pigs. However, studies on the effects of ZEN on ovary/oocytes have been primarily based on in vitro experiments, and there is still no evidence from porcine in vivo models due to multiple limitations. Moreover, no report has investigated the effect of hydrated sodium calcium aluminosilicate (HSCAS) as a supplement on pig oocyte quality. In the present study, we fed pigs a 1.0 mg/kg ZEN-contaminated diet for 10 days. The results showed that pigs fed ZEN presented reduced oocyte-cumulus cell interactions, an increase in the number of denuded oocytes in ovaries, a decrease in the number of oocytes in each ovary, and an increase in the oocyte death rate. Oocytes from ZEN-exposed pigs exhibited a delayed cell cycle and abnormal cytoskeletal dynamics during meiotic maturation, which could be due to oxidative stress-induced autophagy. Moreover, we also show that supplementing the ZEN-contaminated diet with modified HSCAS effectively protected porcine oocyte quality. Taken together, our study provides in vivo data demonstrating the protective effects of HSCAS against ZEN toxicity in porcine oocytes.
Collapse
Affiliation(s)
- Yao Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ming-Hong Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Han Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | | | - Yu-Rong Sun
- Jiangsu Aomai Bio-tech Company, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
32
|
Mahato DK, Devi S, Pandhi S, Sharma B, Maurya KK, Mishra S, Dhawan K, Selvakumar R, Kamle M, Mishra AK, Kumar P. Occurrence, Impact on Agriculture, Human Health, and Management Strategies of Zearalenone in Food and Feed: A Review. Toxins (Basel) 2021; 13:92. [PMID: 33530606 PMCID: PMC7912641 DOI: 10.3390/toxins13020092] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 12/22/2022] Open
Abstract
Mycotoxins represent an assorted range of secondary fungal metabolites that extensively occur in numerous food and feed ingredients at any stage during pre- and post-harvest conditions. Zearalenone (ZEN), a mycotoxin categorized as a xenoestrogen poses structural similarity with natural estrogens that enables its binding to the estrogen receptors leading to hormonal misbalance and numerous reproductive diseases. ZEN is mainly found in crops belonging to temperate regions, primarily in maize and other cereal crops that form an important part of various food and feed. Because of the significant adverse effects of ZEN on both human and animal, there is an alarming need for effective detection, mitigation, and management strategies to assure food and feed safety and security. The present review tends to provide an updated overview of the different sources, occurrence and biosynthetic mechanisms of ZEN in various food and feed. It also provides insight to its harmful effects on human health and agriculture along with its effective detection, management, and control strategies.
Collapse
Affiliation(s)
- Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia;
| | - Sheetal Devi
- National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana 131028, India;
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (S.P.); (B.S.); (K.K.M.); (S.M.)
| | - Bharti Sharma
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (S.P.); (B.S.); (K.K.M.); (S.M.)
| | - Kamlesh Kumar Maurya
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (S.P.); (B.S.); (K.K.M.); (S.M.)
| | - Sadhna Mishra
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (S.P.); (B.S.); (K.K.M.); (S.M.)
| | - Kajal Dhawan
- Department of Food Technology and Nutrition, School of Agriculture Lovely Professional University, Phagwara 144411, India;
| | - Raman Selvakumar
- Centre for Protected Cultivation Technology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India;
| | - Madhu Kamle
- Applied Microbiology Lab., Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India;
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea
| | - Pradeep Kumar
- Applied Microbiology Lab., Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India;
| |
Collapse
|
33
|
Chi J, Zhu D, Chen Y, Huang G, Lin X. Online specific recognition of mycotoxins using aptamer-grafted ionic affinity monolith with mixed-mode mechanism. J Chromatogr A 2021; 1639:461930. [PMID: 33556780 DOI: 10.1016/j.chroma.2021.461930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/10/2021] [Accepted: 01/17/2021] [Indexed: 01/05/2023]
Abstract
Herein, a facile and practical aptamer-grafted ionic affinity monolith with mixed-mode mechanism was explored as a versatile platform for online specific recognition of polar and non-polar mycotoxins. The mixed-mode mechanism including molecular affinity adsorption (between aptamers and targets), hydrophilic interaction and ionic interaction (between stationary phase and targets) were adopted and provided a better flexibility in adjusting separation selectivity to reduce nonspecific adsorption with respect to the single mode. Preparation and characterization of aptamer-based affinity monoliths were investigated, The characterization of pore size distribution, Brunauer-Emmett-Teller (BET) surface area and the specificity and cross-reaction were also evaluated. As a result, the hydrophilic nature and negative charge on affinity monolith were obtained. Multiple interactions including aptamer affinity binding, hydrophilic interaction (HI) and ion exchange (IE) could be adopted for online selective extraction. Specific recognitions of polar ochratoxin A (OTA), non-polar zearalenone (ZEN) and aflatoxin B1 (AFB1) was fulfilled with LODs as 0.03, 0.05 and 0.05 μg/L, respectively. Applied to real cereals, good recoveries of the fortified OTA, AFB1 and ZEN were achieved as 92.6 ± 1.3% ~ 95.6 ± 1.3% (n=3), 93.9 ± 2.3% ~ 98.2 ± 3.4% (n=3) and 92.7 ± 2.0% ~ 96.9 ± 3.5% (n=3) in corn, wheat and rice, respectively. The results displayed that Apt-MCs with hydrophilic and ionic interaction mixed-mode mechanism were efficient enough and competent for the online recognition of mycotoxins in cereals.
Collapse
Affiliation(s)
- Jinxin Chi
- Institute of analytical technology and smart instruments, Xiamen Huaxia University, Xiamen, 361024, China
| | - Dandan Zhu
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China
| | - Yiqiong Chen
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China
| | - Guihua Huang
- Institute of analytical technology and smart instruments, Xiamen Huaxia University, Xiamen, 361024, China..
| | - Xucong Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China..
| |
Collapse
|
34
|
Wang H, Yan F, Guo F, Liu X, Yang X, Yang X. Determination and prediction of standardized ileal amino acid digestibility of corn distillers dried grains with soubles in broiler chickens. Poult Sci 2020; 99:4990-4997. [PMID: 32988535 PMCID: PMC7598326 DOI: 10.1016/j.psj.2020.06.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/25/2020] [Accepted: 06/20/2020] [Indexed: 11/05/2022] Open
Abstract
The experiment was conducted to evaluate ileal digestibility of amino acids (AA) in 8 corn distillers dried grains with solubles (DDGS) fed to broilers and to establish prediction equations for standardized ileal digestibility (SID) of AA for broilers based on the physicochemical properties. A total of 1,152 1-day-old male broilers were divided into 2 test stages (from day 9 to 14 and from day 23 to 28). In each stage, 576 broilers were randomly allotted to 1 of 9 diets (8 replicates, 8 birds per replicate) including a nitrogen-free diet and 8 corn DDGS test diets. Titanium dioxide (0.5%) was included in all diets as an external marker. In 8 corn DDGS samples, the contents of aflatoxin B1, deoxynivalenol, zearalenone, and zein were from 1.54 to 15.50 ppb, 0.44 to 5.12 ppm, 127.10 to 1062.46 ppb, and 3.10 to 26.89%, respectively; the content of lysine and methionine (Met) ranged from 0.36 to 0.67% (CV 21.51%) and from 0.16 to 0.74% (CV 58.04%), respectively. The SID of AA, except for valine and alanine, were significantly different (P < 0.05) at day 28. A positive correlation was observed (P < 0.05) between degree of lightness and SID of CP, Met, and total amino acid (TAA) at day 14. A negative correlation was observed (P < 0.05) between mycotoxins and SID of CP, lysine, Met, and TAA at day 28. The R2 value of stepwise regression equations for predicting the SID of AA at day 14 and day 28 was best for glutamic acid (R2 = 1.000 using ether extract, crude fiber, CP, aflatoxin B1, and neutral detergent fiber) and TAA (R2 = 0.904 using ether extract), respectively. In conclusion, this experiment suggested mycotoxin can be used to predict the SID of AA in corn DDGS with reasonable accuracy, and the results of SID and prediction equations could be used to evaluate the digestibility of corn DDGS in broilers.
Collapse
Affiliation(s)
- Huimei Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Fang Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Fangshen Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xingpeng Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China.
| |
Collapse
|
35
|
Muñoz-Solano B, González-Peñas E. Mycotoxin Determination in Animal Feed: An LC-FLD Method for Simultaneous Quantification of Aflatoxins, Ochratoxins and Zearelanone in This Matrix. Toxins (Basel) 2020; 12:E374. [PMID: 32516887 PMCID: PMC7354491 DOI: 10.3390/toxins12060374] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/22/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022] Open
Abstract
Mycotoxins are toxic compounds for humans and animals that are produced by fungi. Mycotoxin contamination in feed is a global safety concern and effective control of these compounds in this matrix is needed. This study proposes a simple, cost-effective analytical method based on liquid chromatography coupled with a fluorescence detector, which is suitable for the routine monitoring of some of the most important mycotoxins in feed: aflatoxins (G2, G1, B2, and B1), zearalenone, and ochratoxins A and B. Mycotoxin extraction, chromatographic separation and quantification are carried out simultaneously for all mycotoxins. The extraction procedure is performed using acetonitrile, water and orthophosphoric acid (80:19:1). Purification of the extract is carried out using an OASIS PRIME HLB solid-phase extraction cartridge followed by a dispersive liquid-liquid microextraction procedure. Aflatoxins G1 and B1 are derivatized post-column (photochemical reactor at 254 nm) to increase their signal. The method has been validated in feed for pigs, cows, sheep, and poultry with very satisfactory results. The detection limits are 2 μg/kg for aflatoxins B1 and G1, 0.64 μg/kg for aflatoxins B2 and G2, 42 μg/kg for zearalenone, and 5 μg/kg for ochratoxins A and B. These values are low enough to allow for monitoring of these mycotoxins in feed. Global recovery values were between 73.6% and 88.0% for all toxins with a relative standard deviation (RSD) % < 7%. This methodology will facilitate laboratory control and analysis of mycotoxins in feed.
Collapse
Affiliation(s)
| | - Elena González-Peñas
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain;
| |
Collapse
|
36
|
Liao P, Li Y, Li M, Chen X, Yuan D, Tang M, Xu K. Baicalin alleviates deoxynivalenol-induced intestinal inflammation and oxidative stress damage by inhibiting NF-κB and increasing mTOR signaling pathways in piglets. Food Chem Toxicol 2020; 140:111326. [DOI: 10.1016/j.fct.2020.111326] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 01/24/2023]
|
37
|
Tumukunde E, Ma G, Li D, Yuan J, Qin L, Wang S. Current research and prevention of aflatoxins in China. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2503] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Since their discovery in the 1960s, aflatoxins were found to have a considerable impact on the health of humans and animals as well as the country’s economy and international trade. Aflatoxins are often found in nuts, cereals and animal feeds, which has a significant danger to the food industry. Over the years, several steps have been undertaken worldwide to minimise their contamination in crops and their exposure to humans and animals. China is one of the largest exporters and importers of food and animal feed. As a result, many studies have been carried out in China related to aflatoxins, including their distribution, pollution, detection methods, monitoring, testing and managing. Chinese scientists studied aflatoxins in microbiological, toxicological, ecological effects as well as policies relating to their controlling. China has thus put into practice a number of strategies aiming at the prevention and control of aflatoxins in order to protect consumers and ensure a safe trade of food and feed, and the status and enlargement of these strategies are very important and useful for many consumers and stakeholders in China. Therefore, this article aims at the detriment assessments, regulations, distribution, detection methods, prevention and control of aflatoxins in China. It equally provides useful information about the recent safety management systems in place to fight the contamination of aflatoxins in food and feed in China.
Collapse
Affiliation(s)
- E. Tumukunde
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China P.R
| | - G. Ma
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China P.R
| | - D. Li
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China P.R
| | - J. Yuan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China P.R
| | - L. Qin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China P.R
| | - S. Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China P.R
| |
Collapse
|
38
|
Lv S, Wang H, Yan Y, Ge M, Guan J. Quantification and confirmation of four aflatoxins using a LC-MS/MS QTRAP system in multiple reaction monitoring, enhanced product ion scan, and MS 3 modes. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2020; 26:63-77. [PMID: 31357879 DOI: 10.1177/1469066719866050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A simple, rapid, and efficient liquid chromatography tandem mass spectrometry (LC-MS/MS) method, operated in electrospray ionization and quadrupole linear ion trap modes, has been developed for the identification and structural characterization of aflatoxins in peanuts and its derivative products or bean sauce. Samples (5 g) were extracted with acetonitrile/water/formic acid (79:20:1, v/v). After centrifugation and dilution, the extracts were separated on a C18 analytical column by gradient elution (acetonitrile/0.2% formic acid) and analyzed by UPLC-MS/MS. External calibration was used for qualification. The developed multiple reaction monitoring-information-dependent acquisition-enhanced product ion method enabled quantification and confirmation of the analytes in a single run. Enhanced product ion mode was used for qualitative analysis, while multiple reaction monitoring mode was used for quantitative analysis. An in-house library was constructed for identification. Calibration curves showed good linearity with correlation coefficients (r) higher than 0.994. Limits of detection were determined to be below 0.26 µg kg-1 for most analytes. The recoveries for those substances were in the acceptable range of 80.2%-119.1%. A new LC-MS3 method was established for further confirmation. One pickled pepper peanut was found to contain aflatoxins B1, B2, and G1 with contents of 90.93, 26.64, and 1.92 µg kg-1, respectively.
Collapse
Affiliation(s)
- Shencong Lv
- Jiaxing Center for Disease Control and Prevention, Zhejiang, China
| | - Henghui Wang
- Jiaxing Center for Disease Control and Prevention, Zhejiang, China
| | - Yong Yan
- Jiaxing Center for Disease Control and Prevention, Zhejiang, China
| | - Miaohua Ge
- Jiaxing Center for Disease Control and Prevention, Zhejiang, China
| | - Jian Guan
- Jiaxing Center for Disease Control and Prevention, Zhejiang, China
| |
Collapse
|
39
|
The Evaluation of the Antioxidant and Intestinal Protective Effects of Baicalin-Copper in Deoxynivalenol-Challenged Piglets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5363546. [PMID: 32064026 PMCID: PMC6996692 DOI: 10.1155/2020/5363546] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022]
Abstract
The present study was performed to evaluate the antioxidant and intestinal protective effects of baicalin-copper on deoxynivalenol-challenged piglets. Forty weaned piglets were randomly divided into four groups and assigned to different diets: (1) basal diet (Con), (2) 4 mg/kg deoxynivalenol of basal diet (DON), (3) 5 g/kg baicalin-copper of basal diet (BCU); and (4) 4 mg/kg deoxynivalenol + 5 g/kg baicalin‐copper of basal diet (DBCU). The results showed that the ADFI and ADG of piglets in the DON group were markedly lower than those in the Con group, but the ADFI and ADG of the DBCU group were not significantly different from those of the Con group. In piglets fed a DON-contaminated diet, dietary supplementation with BCU significantly decreased the mRNA levels of P70S6K, 4E-BP1, and HSP70 in the liver, the protein expression of HO-1 in the jejunum, and the expression of p-Nrf2 and p-NF-κB in the ileum but increased Mn-SOD activity in serum. Dietary supplementation with BCU increased jejunal maltase, ZIP4 and MT mRNA levels, and serum concentrations of Arg, Val, Ile, Leu, Lys, and Tyr in DON-contaminated piglets. In summary, BCU can alleviate the growth impairment induced by DON and enhance antioxidant capacity and nutrition absorption in piglets fed DON-contaminated diets.
Collapse
|
40
|
Deoxynivalenol Induces Intestinal Damage and Inflammatory Response through the Nuclear Factor-κB Signaling Pathway in Piglets. Toxins (Basel) 2019; 11:toxins11110663. [PMID: 31739564 PMCID: PMC6891563 DOI: 10.3390/toxins11110663] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/23/2019] [Accepted: 11/12/2019] [Indexed: 12/30/2022] Open
Abstract
Deoxynivalenol (DON) is highly toxic to animals and humans, but pigs are most sensitive to it. The porcine mucosal injury related mechanism of DON is not yet fully clarified. Here, we investigated DON-induced injury in the intestinal tissues of piglet. Thirty weanling piglets [(Duroc × Landrace) × Yorkshire] were randomly divided into three groups according to single factor experimental design (10 piglets each group). Piglets were fed a basal diet in the control group, while low and high dose groups were fed a DON diet (1300 and 2200 μg/kg, respectively) for 60 days. Scanning electron microscopy results indicated that the ultrastructure of intestinal epithelial cells in the DON-treated group was damaged. The distribution and optical density (OD) values of zonula occludens 1 (ZO-1) protein in the intestinal tissues of DON-treated groups were decreased. At higher DON dosage, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α mRNA levels were elevated in the intestinal tissues. The mRNA and protein levels of NF-κB p65, IκB-α, IKKα/β, iNOS, and COX-2 in the small intestinal mucosa were abnormally altered with an increase in DON concentration. These results indicate that DON can persuade intestinal damage and inflammatory responses in piglets via the nuclear factor-κB signaling pathway.
Collapse
|
41
|
Liu F, Malaphan W, Xing F, Yu B. Biodetoxification of fungal mycotoxins zearalenone by engineered probiotic bacterium Lactobacillus reuteri with surface-displayed lactonohydrolase. Appl Microbiol Biotechnol 2019; 103:8813-8824. [PMID: 31628520 DOI: 10.1007/s00253-019-10153-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/09/2019] [Accepted: 09/24/2019] [Indexed: 01/08/2023]
Abstract
Zearalenone (ZEN) is one of the common mycotoxins with quite high occurrence rate and is harmful to animal and human health. Lactobacillus reuteri is known as a probiotic bacterium with active immune stimulating and high inhibitory activity against pathogenic microorganisms. In this study, we expressed the lactonohydrolase from Rhinocladiella mackenziei CBS 650.93 (RmZHD) in L. reuteri via secretion and surface-display patterns, respectively. Endogenous signal peptides from L. reuteri were first screened to achieve high expression for efficient ZEN hydrolysis. For secretion expression, signal peptide from collagen-binding protein showed the best performance, while the one from fructose-2,6-bisphosphatase worked best for surface-display expression. Both of the engineered strains could completely hydrolyze 5.0 mg/L ZEN in 8 h without detrimental effects on bacterial growth. The acid and bile tolerance assay and anchoring experiment on Caco-2 cells indicated both of the abovementioned engineered strains could survive during digestion and colonize on intestinal tract, in which the surface-displayed strain had a better performance on ZEN hydrolysis. Biodetoxification of model ZEN-contaminated maize kernels showed the surface-displayed L. reuteri strain could completely hydrolyze 2.5 mg/kg ZEN within 4 h under low water condition. The strain could also efficiently detoxify natural ZEN-contaminated corn flour in the in vitro digestion model system. The colonized property, survival capacity, and the efficient hydrolysis performance as well as probiotic functionality make L. reuteri strain an ideal host for detoxifying residual ZEN in vivo, which shows a great potential for application in feed industry.
Collapse
Affiliation(s)
- Feixia Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wanna Malaphan
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Fuguo Xing
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport ProcessMinistry of Agriculture and Rural Affairs, Beijing, China
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
42
|
Prevalent Mycotoxins in Animal Feed: Occurrence and Analytical Methods. Toxins (Basel) 2019; 11:toxins11050290. [PMID: 31121952 PMCID: PMC6563184 DOI: 10.3390/toxins11050290] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022] Open
Abstract
Today, we have been witnessing a steady tendency in the increase of global demand for maize, wheat, soybeans, and their products due to the steady growth and strengthening of the livestock industry. Thus, animal feed safety has gradually become more important, with mycotoxins representing one of the most significant hazards. Mycotoxins comprise different classes of secondary metabolites of molds. With regard to animal feed, aflatoxins, fumonisins, ochratoxins, trichothecenes, and zearalenone are the more prevalent ones. In this review, several constraints posed by these contaminants at economical and commercial levels will be discussed, along with the legislation established in the European Union to restrict mycotoxins levels in animal feed. In addition, the occurrence of legislated mycotoxins in raw materials and their by-products for the feeds of interest, as well as in the feeds, will be reviewed. Finally, an overview of the different sample pretreatment and detection techniques reported for mycotoxin analysis will be presented, the main weaknesses of current methods will be highlighted.
Collapse
|
43
|
Li XG, Zhu M, Chen MX, Fan HB, Fu HL, Zhou JY, Zhai ZY, Gao CQ, Yan HC, Wang XQ. Acute exposure to deoxynivalenol inhibits porcine enteroid activity via suppression of the Wnt/β-catenin pathway. Toxicol Lett 2019; 305:19-31. [DOI: 10.1016/j.toxlet.2019.01.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 12/06/2018] [Accepted: 01/18/2019] [Indexed: 12/21/2022]
|
44
|
Chen Y, Liu Y. Non-coplanar and coplanar polychlorinated biphenyls potentiate genotoxicity of aflatoxin B1 in a human hepatocyte line by enhancing CYP1A2 and CYP3A4 expression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:945-954. [PMID: 31159144 DOI: 10.1016/j.envpol.2018.12.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants and hazardous to human health. Aflatoxin B1 (AFB1) is a strong carcinogen dependent on activation by cytochrome P450 (CYP) 1A2 and 3A4. Humans in some regions may be exposed to both PCBs and AFB1. Since PCBs are CYP inducers, we were interested in their combined genotoxicity. In this study, the effects of non-coplanar 2,3,3'-tri- (PCB 20), 2,2'5,5'-tetra- (PCB 52), 2,3,3',4'-tetrachlorobiphenyl (PCB 56), and coplanar 3,3',4,4',5-pentachlorobiphenyl (PCB 126) on protein levels of CYP1A1, 1A2, and 3A4, and nuclear receptors AhR, CAR and PXR in a human hepatocyte (L-02) line were investigated. Moreover, the combined effects of each PCB and AFB1 for induction of micronuclei and double-strand DNA breaks (indicated by an elevation of γ-H2AX) were analyzed. The results indicated that PCBs 20, 52 and 56 reduced the expression of AhR, while elevated that of CAR and PXR, with thresholds at low micromolar concentrations. However, they were less potent than PCB 126, which was active at sub-nanomolar levels. Overexpression of human splice variant CAR 3 in the cells increased CYP1A2 and 3A4 levels, which were further enhanced by each non-coplanar PCB, suggesting a role of CAR in modulating CYPs. Pretreatment of cells with each test PCB potentiated both micronuclei formation and DNA damage induced by AFB1. This study suggests that both non-coplanar and coplanar PCBs may enhance the genotoxicity of AFB1, through acting on various nuclear receptors; the potentiation of AFB1 genotoxicity by PCBs and the potential health implications may deserve concerns and further investigation.
Collapse
Affiliation(s)
- Yuting Chen
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), 1023 S. Shatai Road, Guangzhou, 510515, China.
| |
Collapse
|
45
|
Witaszak N, Stępień Ł, Bocianowski J, Waśkiewicz A. Fusarium Species and Mycotoxins Contaminating Veterinary Diets for Dogs and Cats. Microorganisms 2019; 7:microorganisms7010026. [PMID: 30669691 PMCID: PMC6352256 DOI: 10.3390/microorganisms7010026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 12/30/2022] Open
Abstract
Veterinary diets are intended for diseased animals and may contain cereal grains, mainly maize and/or wheat. These, in turn, are often infected with pathogens of the Fusarium genus, which are able to produce numerous harmful mycotoxins. Forty-two samples of veterinary diets for dogs and cats were analyzed for the presence of Fusarium species and mycotoxins. Species were identified using molecular methods and the ergosterol and mycotoxins (fumonisin B1, deoxynivalenol, nivalenol and zearalenone) were quantified using HPLC methods. Two Fusarium species were identified: Fusarium proliferatum and Fusarium verticillioides. The highest concentrations of fumonisin B1, deoxynivalenol, nivalenol and zearalenone were 74.83, 2318.05, 190.90, and 45.84 ng/g, respectively. Only 9.5% of the samples were free from Fusarium mycotoxins. The acceptable limits of mycotoxin content in animal feed, specified by the EU regulations, were not exceeded in any of the samples tested. The mean mycotoxin content in veterinary diets for cats was lower than for dogs. Thus, it is recommended that veterinary diets are examined, since the mycotoxin contamination pose additional risk to animal health. The knowledge on Fusarium occurrence in veterinary diets is scarce and as far as we are aware this is the first report concerning the occurrence of Fusarium spp. and their important secondary metabolites—mycotoxins—in different types of veterinary diets for companion animals in Poland.
Collapse
Affiliation(s)
- Natalia Witaszak
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznań 60-479, Poland.
| | - Łukasz Stępień
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznań 60-479, Poland.
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznan University of Life Sciences, Wojska Polskiego 28, Poznań 60-637, Poland.
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, Poznań 60-625, Poland.
| |
Collapse
|
46
|
Kalagatur NK, Mudili V, Kamasani JR, Siddaiah C. Discrete and combined effects of Ylang-Ylang (Cananga odorata) essential oil and gamma irradiation on growth and mycotoxins production by Fusarium graminearum in maize. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.07.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
47
|
Carere J, Hassan YI, Lepp D, Zhou T. The enzymatic detoxification of the mycotoxin deoxynivalenol: identification of DepA from the DON epimerization pathway. Microb Biotechnol 2018; 11:1106-1111. [PMID: 29148251 PMCID: PMC6196400 DOI: 10.1111/1751-7915.12874] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 01/10/2023] Open
Abstract
The biological detoxification of mycotoxins, including deoxynivalenol (DON), represents a very promising approach to address the challenging problem of cereal grain contamination. The recent discovery of Devosia mutans 17-2-E-8 (Devosia spp. 17-2-E-8), a bacterial isolate capable of transforming DON to the non-toxic stereoisomer 3-epi-deoxynivalenol, along with earlier reports of bacterial species capable of oxidizing DON to 3-keto-DON, has generated interest in the possible mechanism and enzyme(s) involved. An understanding of these details could pave the way for novel strategies to manage this widely present toxin. It was previously shown that DON epimerization proceeds through a two-step biocatalysis. Significantly, this report describes the identification of the first enzymatic step in this pathway. The enzyme, a dehydrogenase responsible for the selective oxidation of DON at the C3 position, was shown to readily convert DON to 3-keto-DON, a less toxic intermediate in the DON epimerization pathway. Furthermore, this study provides insights into the PQQ dependence of the enzyme. This enzyme may be part of a feasible strategy for DON mitigation within the near future.
Collapse
Affiliation(s)
- Jason Carere
- Guelph Research and Development CentreAgriculture and Agri‐Food Canada93 Stone Road WestGuelphONN1G 5C9Canada
| | - Yousef I. Hassan
- Guelph Research and Development CentreAgriculture and Agri‐Food Canada93 Stone Road WestGuelphONN1G 5C9Canada
| | - Dion Lepp
- Guelph Research and Development CentreAgriculture and Agri‐Food Canada93 Stone Road WestGuelphONN1G 5C9Canada
| | - Ting Zhou
- Guelph Research and Development CentreAgriculture and Agri‐Food Canada93 Stone Road WestGuelphONN1G 5C9Canada
| |
Collapse
|
48
|
Wang J, Li M, Zhang W, Gu A, Dong J, Li J, Shan A. Protective Effect of N-Acetylcysteine against Oxidative Stress Induced by Zearalenone via Mitochondrial Apoptosis Pathway in SIEC02 Cells. Toxins (Basel) 2018; 10:E407. [PMID: 30304829 PMCID: PMC6215273 DOI: 10.3390/toxins10100407] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 01/06/2023] Open
Abstract
Zearalenone (ZEN), a nonsteroidal estrogen mycotoxin, is widely found in feed and foodstuffs. Intestinal cells may become the primary target of toxin attack after ingesting food containing ZEN. Porcine small intestinal epithelial (SIEC02) cells were selected to assess the effect of ZEN exposure on the intestine. Cells were exposed to ZEN (20 µg/mL) or pretreated with (81, 162, and 324 µg/mL) N-acetylcysteine (NAC) prior to ZEN treatment. Results indicated that the activities of glutathione peroxidase (Gpx) and glutathione reductase (GR) were reduced by ZEN, which induced reactive oxygen species (ROS) and malondialdehyde (MDA) production. Moreover, these activities increased apoptosis and mitochondrial membrane potential (ΔΨm), and regulated the messenger RNA (mRNA) expression of Bax, Bcl-2, caspase-3, caspase-9, and cytochrome c (cyto c). Additionally, NAC pretreatment reduced the oxidative damage and inhibited the apoptosis induced by ZEN. It can be concluded that ZEN-induced oxidative stress and damage may further induce mitochondrial apoptosis, and pretreatment of NAC can degrade this damage to some extent.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | - Mengmeng Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | - Wei Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | - Aixin Gu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | - Jiawen Dong
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | - Jianping Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
49
|
Klingelhöfer D, Zhu Y, Braun M, Bendels MH, Brüggmann D, Groneberg DA. Aflatoxin – Publication analysis of a global health threat. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.02.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
50
|
Zhang X, Tang Q, Mi T, Zhao S, Wen K, Guo L, Mi J, Zhang S, Shi W, Shen J, Ke Y, Wang Z. Dual-wavelength fluorescence polarization immunoassay to increase information content per screen: Applications for simultaneous detection of total aflatoxins and family zearalenones in maize. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|