1
|
Paié-Ribeiro J, Outor-Monteiro D, Guedes C, Gomes MJ, Teixeira J, Teixeira A, Pinheiro V. Effects of Olive Cake on the Performance, Digestibility, Blood Parameters, and Intestinal Villi of Bísaro Pigs. Animals (Basel) 2025; 15:1131. [PMID: 40281965 PMCID: PMC12024146 DOI: 10.3390/ani15081131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/06/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
Olive oil production generates by-products, such as olive cake (OC), which can be used in animal feed, reducing the environmental impact. This study assessed the effects of OC in pig diets on intestinal morphometry and blood parameters. Twenty-four Bísaro pigs were randomly assigned to three treatments: OC0 (control), OC15 (15% dehydrated OC), and OC25 (25% dehydrated OC) for 93 days. The apparent total tract digestibility (ATTD) of dry matter (DM), organic matter (OM), crude protein (CP), crude fat (CF), and fiber (NDF) was evaluated through total feces collection. No significant differences in average daily gain (ADG) or feed conversion ratio (FCR) were found (p > 0.05). However, average daily feed intake (ADFI) increased from 2.84 kg (control) to 3.46 kg (OC15) and 3.64 kg (OC25). OC inclusion increased the ADFI of CF (90.8 g to 171.5 g and 169.2 g) and NDF (586.8 g to 896.6 g and 1115.4 g). The ATTD of all parameters decreased with 25% OC. The digestible intake of DM, OM, and CP was unaffected, but CF intake was higher in OC-fed groups (p = 0.005). Histomorphometric analysis revealed no significant differences in villi size. Lymphocyte counts were higher in OC25 (p < 0.05). This study suggests that up to 15% OC inclusion is feasible without compromising the pigs' performance.
Collapse
Affiliation(s)
- Jessica Paié-Ribeiro
- Animal Science Department, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (D.O.-M.); (C.G.); (M.J.G.); (J.T.); (V.P.)
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Divanildo Outor-Monteiro
- Animal Science Department, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (D.O.-M.); (C.G.); (M.J.G.); (J.T.); (V.P.)
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- AL4Animals, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Cristina Guedes
- Animal Science Department, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (D.O.-M.); (C.G.); (M.J.G.); (J.T.); (V.P.)
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- AL4Animals, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Maria José Gomes
- Animal Science Department, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (D.O.-M.); (C.G.); (M.J.G.); (J.T.); (V.P.)
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- AL4Animals, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - José Teixeira
- Animal Science Department, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (D.O.-M.); (C.G.); (M.J.G.); (J.T.); (V.P.)
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Alfredo Teixeira
- Mountain Research Center (CIMO), Polytechnic Instituto of Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Victor Pinheiro
- Animal Science Department, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (D.O.-M.); (C.G.); (M.J.G.); (J.T.); (V.P.)
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- AL4Animals, Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
2
|
Baker JT, Deng Z, Gormley AR, Kim SW. Impacts of non-starch polysaccharide sources with enzymes influencing intestinal mucosa-associated microbiota and mucosal immunity of nursery pigs on growth and carcass traits at market weight. J Anim Sci Biotechnol 2025; 16:47. [PMID: 40165296 PMCID: PMC11959798 DOI: 10.1186/s40104-025-01170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/20/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND This study investigated the effects of different non-starch polysaccharide (NSP) sources with NSP degrading enzymes (NSPases) and the influence on the mucosa-associated microbiota and intestinal immunity of nursery pigs, on growth performance and carcass traits at market weight. METHODS One hundred and sixty newly weaned pigs at 7.0 ± 0.3 kg body weight (BW) were allotted in a 2 × 2 factorial with NSP sources and NSPases serving as factors. The 4 dietary treatments were: DDGS, corn distillers' dried grains with solubles as source of NSP; DDGS + NSPases (DDGS +), DDGS with xylanase at 0.01%, 3,000 U/kg of feed and β-mannanase at 0.05%, 400 U/kg of feed; SHWB, soybean hulls and wheat bran replacing corn DDGS as the source of NSP; SHWB with NSPases (SHWB +), SHWB with xylanase at 0.01%, 3,000 U/kg of feed and β-mannanase at 0.05%, 400 U/kg of feed. Pigs were fed for 37 d and housed in groups of 4 pigs per pen. At d 37, the median body weight pig in each pen was euthanized for sampling to analyze intestinal health parameters. Remaining pigs were fed a common diet for subsequent phases to evaluate the carryover effect on growth and carcass traits. RESULTS The SHWB decreased (P < 0.05) the relative abundance of Helicobacter, tended to increase (P = 0.074) the relative abundance of Lactobacillus, increased (P < 0.05) immunoglobulin G (IgG) in the jejunal mucosa, tended to increase (P = 0.096) the villus height (VH) in the jejunum, and tended to improve ADG (P = 0.099) and feed efficiency (P = 0.068) during phase 1 compared to DDGS treatment. Supplementation of NSPases increased (P < 0.05) Shannon index of diversity, increased the relative abundance of Streptococcus and Acinetobacter, and tended to increase (P = 0.082) dry matter digestibility. The BW of pigs fed SHWB was more uniform (P < 0.05) at the end of the 120 d study. Additionally, hot carcass weight of pigs fed SHWB tended to be more uniform (P = 0.089) than DDGS treatment. CONCLUSION Soybean hulls and wheat bran replacing DDGS in nursery diets improved uniformity of pigs at market weight, which might be attributed to beneficial modulation of the mucosa-associated microbiota and enhanced intestinal morphology during the nursery phase. Supplementation of NSPases had beneficial effects on the intestinal mucosa-associated microbiota, digestibility, and intestinal immunity in SHWB treatment, whereas no carryover effects were overserved at market weight.
Collapse
Affiliation(s)
- Jonathan T Baker
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | - Zixiao Deng
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | - Alexa R Gormley
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA.
| |
Collapse
|
3
|
Gao G, Cai L, Fan Y, Aroche Ginarte R, Li Y, Sun W, Jiang X, Li X, Pi Y. Effects of Different Hemicellulose Components on Fermentation Kinetics and Microbial Composition in Fecal Inoculum from Suckling Piglets In Vit ro. ACS OMEGA 2025; 10:9120-9131. [PMID: 40092836 PMCID: PMC11904680 DOI: 10.1021/acsomega.4c08848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/08/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
This study investigated the fermentation characteristics of different hemicellulose components using a fecal inoculum derived from suckling piglets. The results showed that after 60 h of fermentation, the arabinogalactan (Ara-gal), glucomannan (Glu-man), galactomannan (Gal-man), and mannan (Man) groups exhibited similar levels of gas production, which were higher than those of the β-glucan (β-Glu) group. The β-Glu group had the lowest pH value. After 48 h of fermentation, the Ara-gal group had the highest microbial crude protein content and the lowest ammonia nitrogen content. The Glu-man, Gal-man, and Man groups produced similar amounts of acetate, propionate, and total short-chain fatty acids (SCFAs), which were higher than those in the Ara-gal and β-Glu groups. Furthermore, the Man and Ara-gal groups showed the highest butyrate production. Significant differences in the microbial community composition were observed among the groups. Correlation analyses further revealed that the abundance of specific bacteria, such as Prevotella_9 and Parabacteroides, was closely related to the production of acetate, propionate, and butyrate. These results suggest that Glu-man, Gal-man, and Man undergo rapid fermentation, with Ara-gal following, while β-Glu ferments the slowest. The distinct fiber compositions and fermentation properties of different hemicellulose components significantly influence the microbial composition and SCFA production. Our findings offer valuable theoretical insights for selecting fiber components in the diets of suckling piglets and potentially in infants.
Collapse
Affiliation(s)
- Ge Gao
- Key Laboratory
of Feed Biotechnology of Ministry of Agriculture and Rural Affairs,
Institute of Feed Research, Chinese Academy
of Agricultural Sciences, Beijing 100081, China
| | - Long Cai
- Key Laboratory
of Feed Biotechnology of Ministry of Agriculture and Rural Affairs,
Institute of Feed Research, Chinese Academy
of Agricultural Sciences, Beijing 100081, China
| | - Yuyang Fan
- Key Laboratory
of Feed Biotechnology of Ministry of Agriculture and Rural Affairs,
Institute of Feed Research, Chinese Academy
of Agricultural Sciences, Beijing 100081, China
| | - Roisbel Aroche Ginarte
- Key Laboratory
of Feed Biotechnology of Ministry of Agriculture and Rural Affairs,
Institute of Feed Research, Chinese Academy
of Agricultural Sciences, Beijing 100081, China
- Department
of Animal Husbandry, Faculty of Agricultural Science, University of Granma, Bayamo 85100, Cuba
| | - Yanpin Li
- Key Laboratory
of Feed Biotechnology of Ministry of Agriculture and Rural Affairs,
Institute of Feed Research, Chinese Academy
of Agricultural Sciences, Beijing 100081, China
| | - Wenjuan Sun
- Key Laboratory
of Feed Biotechnology of Ministry of Agriculture and Rural Affairs,
Institute of Feed Research, Chinese Academy
of Agricultural Sciences, Beijing 100081, China
| | - Xianren Jiang
- Key Laboratory
of Feed Biotechnology of Ministry of Agriculture and Rural Affairs,
Institute of Feed Research, Chinese Academy
of Agricultural Sciences, Beijing 100081, China
| | - Xilong Li
- Key Laboratory
of Feed Biotechnology of Ministry of Agriculture and Rural Affairs,
Institute of Feed Research, Chinese Academy
of Agricultural Sciences, Beijing 100081, China
| | - Yu Pi
- Key Laboratory
of Feed Biotechnology of Ministry of Agriculture and Rural Affairs,
Institute of Feed Research, Chinese Academy
of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
4
|
Wang K, Huang L, Yang P, Zhuo Y, Che L, Xu S, Hua L, Li J, Feng B, Fang Z, Zhao X, Jiang X, Lin Y, Wu D. Nutritional values of soybean meal from different sources in multiparous sows. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:80-87. [PMID: 39967698 PMCID: PMC11833779 DOI: 10.1016/j.aninu.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 02/20/2025]
Abstract
This study determined the available energy content, apparent total tract digestibility (ATTD) of nutrients, and ileal amino acid (AA) digestibility of soybean meal (SBM) from different sources in non-gestating, non-lactating sows. In Exp. 1, 24 multiparous Landrace × Yorkshire (LY) sows (parity 3 to 5) were allotted to a replicated 12 × 3 Youden square design consisting of 12 diets and 3 periods. The 12 diets included 11 test diets containing SBM from different sources and a corn-based diet. Each period included a 5-d adaptation and a 5-d total fecal and urine collection. In Exp. 2, 8 multiparous LY sows (parity 3 to 5) were allotted to a replicated 4 × 3 Youden square design with 4 diets and 3 periods. The 4 diets included a nitrogen-free diet and 3 SBM diets (3 representative SBM samples were selected from Exp. 1). Our results showed that the coefficient of variation of ether extract, crude fiber, neutral detergent fiber, and acid detergent fiber levels in 11 SBM samples were >20%. There were no differences in digestible energy (DE), metabolizable energy (ME), and the ATTD of gross energy, nitrogen, and neutral detergent fiber values between different SBM samples (P > 0.05). Additionally, no differences in AA digestibility were identified among the 3 representative SBM samples (P > 0.05). In conclusion, there were no differences in DE, ME, and AA digestibility between different SBM samples fed to multiparous non-gestating sows. When formulating diets for sows, it is important to consider the differences in the nutritional value of SBM at different physiological stages.
Collapse
Affiliation(s)
| | | | | | - Yong Zhuo
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Lianqiang Che
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Shengyu Xu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Lun Hua
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Li
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Feng
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengfeng Fang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Xilun Zhao
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuemei Jiang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Lin
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - De Wu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
5
|
Pu G, Hou L, Zhao Q, Liu G, Wang Z, Zhou W, Niu P, Wu C, Li P, Huang R. Interactions between gut microbes and host promote degradation of various fiber components in Meishan pigs. mSystems 2025; 10:e0150024. [PMID: 39873521 PMCID: PMC11834408 DOI: 10.1128/msystems.01500-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025] Open
Abstract
Although metagenomic investigations into microbial fiber-degrading capabilities are currently prevalent, there is a notable gap in research concerning the regulatory mechanisms underpinning host-microbiota interactions that confer tolerance to high-fiber diets in pigs. In this study, 28 Meishan (MS) and 28 Large White (LW) pigs were subjected to feeding experiments involving various fiber levels. Subsequently, multi-omics was employed to investigate the influence of host-microbiota interactions on the fiber degradation of pigs. MS exhibited superior fiber digestibility compared with LW, particularly evident when fed a high-fiber diet. In MS, positive interactions among Treponema bryantii, Treponema sp., Rikenellaceae bacterium, and Bacteroidales bacterium WCE2004 facilitated the degradation of both cellulose and pectin. The reduced polymerization of polysaccharides and oligosaccharides observed in MS provides compelling evidence for their superior microbial fiber-degrading capability. The concentrations of propionate and butyrate retained in cecal lumen of MS was unchanged, whereas it was significantly increased in LW, indicating a strong absorption of short-chain fatty acids (SCFAs) in MS intestines. Correlation analysis using RNA-seq data revealed distinct patterns in LW and MS. In LW, microbial profiles along with GPR183 and GPR174 exhibited negative correlations with butyrate and propionate, respectively. Conversely, in MS, GPR174 and SLC2A4 were positively correlated with butyrate. Our findings underscore the dynamic collaboration among microbial species in degrading cellulose and pectin, coupled with the synergistic effects of SCFA transport-related genes, as crucial underpinnings for the heightened fiber digestibility observed in MS. These discoveries offer fresh perspectives into the intricate mechanisms governing host-microbiota interactions that influence fiber digestion in pigs. IMPORTANCE Studies on porcine intestinal microbiota have been widely conducted, and some microbial taxa with fiber degradation functions have been identified. However, the mechanisms of division among gut microbes in the degradation of complex fiber components are still unclear. In addition, the regulation of fiber digestion by host through absorption of short-chain fatty acids (SCFAs) needs to be further investigated. Our study used apparent total tract digestibility of dietary fiber to assess the utilization efficiency of dietary fiber between Meishan and Large White pigs. Subsequently, through metagenome sequencing and determination of fiber-degrading products, we found that in Meishan pigs, positive interactions among Treponema bryantii, Treponema sp., Rikenellaceae bacterium, and Bacteroidales bacterium WCE2004 facilitated the degradation of both cellulose and pectin. RNA-seq analysis elucidated breed-specific genes associated with SCFA absorption in cecum. By integrating multi-omics data, we constructed a framework outlining host-microbiota interactions that control dietary fiber utilization in pigs. Our data provide novel insights into host-microbiota interactions regulating fiber degradation and lay some theoretical foundations for improving the utilization efficiency of high-fiber cereal feed in pigs through targeted modulation of gut microbial function.
Collapse
Affiliation(s)
- Guang Pu
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Liming Hou
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Intestinal Microbiology, Huaian Academy, Nanjing Agricultural University, Nanjing, China
| | - Qingbo Zhao
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Gensheng Liu
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhongyu Wang
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wuduo Zhou
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Peipei Niu
- Laboratory of Intestinal Microbiology, Huaian Academy, Nanjing Agricultural University, Nanjing, China
| | - Chengwu Wu
- Laboratory of Intestinal Microbiology, Huaian Academy, Nanjing Agricultural University, Nanjing, China
| | - Pinghua Li
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Intestinal Microbiology, Huaian Academy, Nanjing Agricultural University, Nanjing, China
- Industrial Technology System Integration Innovation Center of Jiangsu Modern Agriculture (PIG), Nanjing, China
| | - Ruihua Huang
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Intestinal Microbiology, Huaian Academy, Nanjing Agricultural University, Nanjing, China
- Industrial Technology System Integration Innovation Center of Jiangsu Modern Agriculture (PIG), Nanjing, China
| |
Collapse
|
6
|
Monteiro MS, Carnevale RF, Muro BBD, Mezzina ALB, Carnino BB, Poor AP, Matajira CEC, Garbossa CAP. The Role of Nutrition Across Production Stages to Improve Sow Longevity. Animals (Basel) 2025; 15:189. [PMID: 39858189 PMCID: PMC11758652 DOI: 10.3390/ani15020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/31/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Modern hyperprolific sows are increasingly susceptible to health challenges. Their rapid growth rates predispose them to locomotor disorders, while high metabolic demands, reduced backfat thickness, and increased protein accretion heighten their vulnerability to heat stress and dystocia. Additionally, prolonged farrowing negatively affects the oxidative and inflammatory status of these females. Additionally, prevalent conditions such as gastric ulcers and cystitis raise ethical, welfare, and economic concerns. Despite the several studies related to sow nutrition, there are no studies which compile and extrapolate nutrition approaches from the rearing period and their impact on sows' health and longevity. Also, the aim of our review was to shed light on gaps that require further investigation. Controlling body condition scores is crucial for maximizing productivity in sows. During gestation, high-fiber diets help maintain optimal body condition and prevent constipation, particularly during the peripartum period. Antioxidants offer a range of beneficial effects during this critical phase. Additionally, probiotics and acidifiers can enhance gut health and lower the risk of genitourinary infections. On the day of farrowing, energy supplementation emerges as a promising strategy to reduce farrowing duration. Collectively, these strategies address major health challenges, enhancing welfare and promoting sow's longevity.
Collapse
Affiliation(s)
- Matheus Saliba Monteiro
- Nerthus Research and Development LTDA, Sao Carlos 13563-651, Sao Paulo, Brazil; (M.S.M.); (B.B.D.M.)
| | - Rafaella Fernandes Carnevale
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, Pirassununga 13635-900, Sao Paulo, Brazil; (R.F.C.); (A.L.B.M.); (B.B.C.)
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, 9820 Ghent, Belgium
| | - Bruno Bracco Donatelli Muro
- Nerthus Research and Development LTDA, Sao Carlos 13563-651, Sao Paulo, Brazil; (M.S.M.); (B.B.D.M.)
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, Pirassununga 13635-900, Sao Paulo, Brazil; (R.F.C.); (A.L.B.M.); (B.B.C.)
- PoulPharm, 8870 Izegem, Belgium;
| | - Ana Lígia Braga Mezzina
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, Pirassununga 13635-900, Sao Paulo, Brazil; (R.F.C.); (A.L.B.M.); (B.B.C.)
| | - Bruno Braga Carnino
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, Pirassununga 13635-900, Sao Paulo, Brazil; (R.F.C.); (A.L.B.M.); (B.B.C.)
| | | | - Carlos Emilio Cabrera Matajira
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Sao Paulo 05508-000, Sao Paulo, Brazil;
| | - Cesar Augusto Pospissil Garbossa
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, Pirassununga 13635-900, Sao Paulo, Brazil; (R.F.C.); (A.L.B.M.); (B.B.C.)
| |
Collapse
|
7
|
Yong F, Liu B, Li H, Hao H, Fan Y, Datsomor O, Han R, Jiang H, Che D. Relationship between dietary fiber physicochemical properties and feedstuff fermentation characteristics and their effects on nutrient utilization, energy metabolism, and gut microbiota in growing pigs. J Anim Sci Biotechnol 2025; 16:1. [PMID: 39748438 PMCID: PMC11697959 DOI: 10.1186/s40104-024-01129-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/14/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND There is a growing focus on using various plant-derived agricultural by-products to increase the benefits of pig farming, but these feedstuffs are fibrous in nature. This study investigated the relationship between dietary fiber physicochemical properties and feedstuff fermentation characteristics and their effects on nutrient utilization, energy metabolism, and gut microbiota in growing pigs. METHODS Thirty-six growing barrows (47.2 ± 1.5 kg) were randomly allotted to 6 dietary treatments with 2 apparent viscosity levels and 3 β-glucan-to-arabinoxylan ratios. In the experiment, nutrient utilization, energy metabolism, fecal microbial community, and production and absorption of short-chain fatty acid (SCFA) of pigs were investigated. In vitro digestion and fermentation models were used to compare the fermentation characteristics of feedstuffs and ileal digesta in the pig's hindgut. RESULTS The production dynamics of SCFA and dry matter corrected gas production of different feedstuffs during in vitro fermentation were different and closely related to the physical properties and chemical structure of the fiber. In animal experiments, increasing the dietary apparent viscosity and the β-glucan-to-arabinoxylan ratios both increased the apparent ileal digestibility (AID), apparent total tract digestibility (ATTD), and hindgut digestibility of fiber components while decreasing the AID and ATTD of dry matter and organic matter (P < 0.05). In addition, increasing dietary apparent viscosity and β-glucan-to-arabinoxylan ratios both increased gas exchange, heat production, and protein oxidation, and decreased energy deposition (P < 0.05). The dietary apparent viscosity and β-glucan-to-arabinoxylan ratios had linear interaction effects on the digestible energy, metabolizable energy, retained energy (RE), and net energy (NE) of the diets (P < 0.05). At the same time, the increase of dietary apparent viscosity and β-glucan-to-arabinoxylan ratios both increased SCFA production and absorption (P < 0.05). Increasing the dietary apparent viscosity and β-glucan-to-arabinoxylan ratios increased the diversity and abundance of bacteria (P < 0.05) and the relative abundance of beneficial bacteria. Furthermore, increasing the dietary β-glucan-to-arabinoxylan ratios led to a linear increase in SCFA production during the in vitro fermentation of ileal digesta (P < 0.001). Finally, the prediction equations for RE and NE were established. CONCLUSION Dietary fiber physicochemical properties alter dietary fermentation patterns and regulate nutrient utilization, energy metabolism, and pig gut microbiota composition and metabolites.
Collapse
Affiliation(s)
- Feng Yong
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Provincial Science and Technology Innovation Center of Pig industry Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Bo Liu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Provincial Science and Technology Innovation Center of Pig industry Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Huijuan Li
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Provincial Science and Technology Innovation Center of Pig industry Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Houxu Hao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Provincial Science and Technology Innovation Center of Pig industry Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yueli Fan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Provincial Science and Technology Innovation Center of Pig industry Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Osmond Datsomor
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Provincial Science and Technology Innovation Center of Pig industry Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Rui Han
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Provincial Science and Technology Innovation Center of Pig industry Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hailong Jiang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Provincial Science and Technology Innovation Center of Pig industry Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.
| | - Dongsheng Che
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Provincial Science and Technology Innovation Center of Pig industry Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
8
|
Zhao J, Zhao W, Dong J, Zhang H, Yang K, Gao S, Feng W, Song Y, Qi M, He X. Integrative analysis of metabolites and microbial diversity revealed metabolic mechanism of coarse feeding tolerance in Songliao Black sows during gestation. Front Microbiol 2024; 15:1484134. [PMID: 39629212 PMCID: PMC11611567 DOI: 10.3389/fmicb.2024.1484134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/30/2024] [Indexed: 12/07/2024] Open
Abstract
Dietary fiber is a key nutritional regulatory factor that has been studied intensively for its role in improving reproduction in sows during gestation. However, the metabolic mechanism underlying the effect of interactions between metabolites and gut microbes on coarse feeding tolerance in indigenous sows remains to be elucidated. Therefore, the present study aimed to investigate the effects of dietary supplementation with alfalfa at different content ratios on the reproductive performance of pregnant Songliao Black sows. In total, 40 Songliao Black sows at 30 days of gestation were allocated to four treatments, which received the following diets: (1) a corn-soybean meal basal diet with no alfalfa meal (CON group), (2) a corn-soybean meal basal diet +10% alfalfa meal (Treatment 1 group), (3) a corn-soybean meal basal diet +20% alfalfa meal (Treatment 2 group), and (4) a corn-soybean meal basal diet +30% alfalfa meal (Treatment 3 group). Untargeted metabolomics, 16S rDNA sequencing, and enzyme-linked immunosorbent assay (ELISA) were performed to determine the possible effects of metabolites, the microbial communities in fecal samples and their functional potential, and the effects of dietary fiber on serum biochemical parameters, oxidative stress, and reproductive hormones in Songliao Black sows during gestation. The results revealed that the meals with 10 and 20% alfalfa had a beneficial effect on sows in terms of improving the reproductive performance of these sows. Bacterial 16S rDNA sequencing of the fecal samples revealed that the 10% alfalfa meal group had a higher α-diversity and higher abundance of probiotics. Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria were revealed as the most abundant groups at the phylum level and Lactobacillus, Prevotella, Ruminococcus, Streptococcus, and Clostridium were the most abundant at the genus level in the sows fed with diets containing higher fiber levels. A total of 239 differential metabolites were identified in the sows fed with alfalfa meals. These metabolites were enriched mainly in the cAMP signaling pathway, biosynthesis of amino acids, and steroid biosynthesis. Pearson correlation analysis revealed significant positive correlations between Blautia and Daizein, Fibrobacter and 5-alpha-Cholestanone, Sphaerochaeta, Sutterella, and Metaraminol. Negative correlations were revealed between Sphaerochaeta and Erucic acid, Prevotellaceae and Harmaline, and Streptococcus and 5-alpha-Cholestanone. Collectively, these findings provide novel insights into the application of dietary fiber in sow diets.
Collapse
Affiliation(s)
- Jinbo Zhao
- Branch of Animal Husbandry and Veterinary, Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Wenjiang Zhao
- Branch of Animal Husbandry and Veterinary, Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Jiaqiang Dong
- Branch of Animal Husbandry and Veterinary, Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Hong Zhang
- Branch of Animal Husbandry and Veterinary, Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Kun Yang
- Branch of Animal Husbandry and Veterinary, Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Shengyue Gao
- Branch of Animal Husbandry and Veterinary, Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Wanyu Feng
- Branch of Animal Husbandry and Veterinary, Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Yan Song
- Branch of Animal Husbandry and Veterinary, Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Meiyu Qi
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Haerbin, China
| | - Xinmiao He
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Haerbin, China
| |
Collapse
|
9
|
Lyu W, Li DF, Li SY, Hu H, Zhou JY, Wang L. Gut microbiota modulation: a narrative review on a novel strategy for prevention and alleviation of ovarian aging. Crit Rev Food Sci Nutr 2024:1-13. [PMID: 38835159 DOI: 10.1080/10408398.2024.2361306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The global rise in life expectancy corresponds with a delay in childbearing age among women. Ovaries, seen as the chronometers of female physiological aging, demonstrate features of sped up aging, evidenced by the steady decline in both the quality and quantity of ovarian follicles from birth. The multifaceted pathogenesis of ovarian aging has kindled intensive research interest from the biomedical and pharmaceutical sectors. Novel studies underscore the integral roles of gut microbiota in follicular development, lipid metabolism, and hormonal regulation, forging a nexus with ovarian aging. In this review, we outline the role of gut microbiota in ovarian function (follicular development, oocyte maturation, and ovulation), compile and present gut microbiota alterations associated with age-related ovarian aging. We also discuss potential strategies for alleviating ovarian aging from the perspective of gut microbiota, such as fecal microbiota transplantation and probiotics.
Collapse
Affiliation(s)
- Wei Lyu
- Clinical Medical Research Center, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, California, USA
| | - De-Feng Li
- Clinical Medical Research Center, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Shu-Ying Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Hua Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Jian-Yun Zhou
- Clinical Medical Research Center, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Ling Wang
- Clinical Medical Research Center, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, California, USA
| |
Collapse
|
10
|
Huangfu W, Ma J, Zhang Y, Liu M, Liu B, Zhao J, Wang Z, Shi Y. Dietary Fiber-Derived Butyrate Alleviates Piglet Weaning Stress by Modulating the TLR4/MyD88/NF-κB Pathway. Nutrients 2024; 16:1714. [PMID: 38892647 PMCID: PMC11174469 DOI: 10.3390/nu16111714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
During weaning, piglets are susceptible to intestinal inflammation and impairment in barrier function. Dietary fiber (DF) plays an active role in alleviating weaning stress in piglets. However, the effects of different sources of dietary fiber on the performance of weaned piglets are inconsistent, and the mechanisms through which they affect intestinal health need to be explored. Therefore, in this study, sixty weaned piglets were randomly divided into three treatment groups: basal diet (control, CON), beet pulp (BP), and alfalfa meal (AM) according to the feed formulation for a 28-day trial. The results showed that both AM and BP groups significantly reduced diarrhea rate and serum inflammatory factors (IL-1β and TNF-α) and increased antioxidant markers (T-AOC and SOD), in addition to decreasing serum MDA and ROS concentrations in the AM group. At the same time, piglets in the AM group showed a significant reduction in serum intestinal permeability indices (LPS and DAO) and a substantial increase in serum immunoglobulin levels (IgA, IgG, and IgM) and expression of intestinal barrier-associated genes (Claudin1, Occludin, ZO-1, and MUC1), which resulted in an improved growth performance. Interestingly, the effect of DF on intestinal inflammation and barrier function can be attributed to its modulation of gut microbes. Fiber-degrading bacteria enriched in the AM group (Christensenellaceae_R-7_group, Pediococcus and Weissella) inhibited the production of TLR4- through the promotion of SCFAs (especially butyrate). MyD88-NF-κB signaling pathway activation reduces intestinal inflammation and repairs intestinal barrier function. In conclusion, it may provide some theoretical support and rationale for AM to alleviate weaning stress and improve early intestinal dysfunction, which may have implications for human infants.
Collapse
Affiliation(s)
- Weikang Huangfu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (W.H.); (J.M.); (Y.Z.); (M.L.); (B.L.)
| | - Jixiang Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (W.H.); (J.M.); (Y.Z.); (M.L.); (B.L.)
| | - Yan Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (W.H.); (J.M.); (Y.Z.); (M.L.); (B.L.)
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (W.H.); (J.M.); (Y.Z.); (M.L.); (B.L.)
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (W.H.); (J.M.); (Y.Z.); (M.L.); (B.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (W.H.); (J.M.); (Y.Z.); (M.L.); (B.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (W.H.); (J.M.); (Y.Z.); (M.L.); (B.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| |
Collapse
|
11
|
Zheng J, Li S, He J, Liu H, Huang Y, Jiang X, Zhao X, Li J, Feng B, Che L, Fang Z, Xu S, Lin Y, Hua L, Zhuo Y, Wu D. A Gestational Pectin Diet Could Improve the Health of Multiparous Sows by Modulating the Gut Microbiota and Cytokine Level during Late Pregnancy. Animals (Basel) 2024; 14:1559. [PMID: 38891606 PMCID: PMC11171106 DOI: 10.3390/ani14111559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
This study aimed to investigate the effects of the dietary fiber pectin on the gut microbiota and health of parturient sows. A total of 30 parity 5-7, multiparous gestation sows (Large White × Landrace) were randomly assigned to two treatment groups after mating: Con (control, basic diet) and Pec (pectin, 3%). The sows received the two diets during gestation, and all sows were fed the same standard basic diet during lactation. The results of β-diversity showed that the composition of the gut microbiota was different in the Con and Pec groups. Compared with the sows in the Con group, the Pec sows showed a higher abundance of the gut bacteria Clostridium and Romboutsia and a lower abundance of harmful bacteria (Micrococcaceae, Coriobacteriaceae, Dorea, Actinomyces). On the other hand, the SCFA plasma concentration was increased in the Pec group, while pro-inflammatory cytokine (IL-6, IL-1β, and TNF-α) concentrations were decreased. In conclusion, the soluble dietary fiber pectin could improve the reproductive performance and health of sows by increasing the abundance of some commensal bacteria enhancing the metabolite SCFA levels and reducing the pro-inflammatory cytokine plasma levels.
Collapse
Affiliation(s)
- Jie Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Shuang Li
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Jiaqi He
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Hao Liu
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Yingyan Huang
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Xuemei Jiang
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Xilun Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Jian Li
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Lun Hua
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| | - De Wu
- Key Laboratory for Animal Disease-Resistance Nutrition, China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Chengdu 611130, China
| |
Collapse
|
12
|
Kowalski E, Aluwé M, Ampe B, Janssens S, Buys N, De Smet S, Millet S. Effect of sire type and a by-product based diet on performance and meat quality in growing-finishing pigs. Animal 2024; 18:101106. [PMID: 38442542 DOI: 10.1016/j.animal.2024.101106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
For many years, pig production has focused on maximizing performance by selecting for maximal muscle growth and feeding diets that allow the animals to express their genetic potential. However, it is unclear whether this selection for muscle deposition has affected the capacity of pigs to cope with by-product-based diets, which rely on fat as the primary energy source instead of starches and sugars. Therefore, an experiment was set up to investigate if different types of boars affect how their progeny cope with alternative ingredients in the diet, with a possible need for adapted breeding schemes. Two types of boars within the Piétrain sire line were used based on either a high or low estimated breeding value for daily feed intake (HFI: high feed intake, low feed intake). When their progeny reached 14 weeks of age, two dietary strategies were compared: a control (CON) vs a by-product-based diet high in fat and fiber (HFF). The CON diet was mainly based on cereals (corn, wheat, barley) and soybean meal. The HFF diet was formulated to contain the same net energy, CP and digestible amino acid levels without any cereals or soybean meal. In total 192 animals were included in the experiment (48 animals/type of boar/diet) and performance, digestibility, carcass and meat quality were compared. None of the parameters showed a significant interaction (P < 0.05) between the type of boar and diet, suggesting that shifting to diets that are less prone to feed-food competition is equally feasible in different types of pigs. Type of boar did affect performance, carcass quality and intramuscular fat content. HFI pigs showed higher daily feed intake (DFI) and daily gain (P < 0.001), with no significant difference in feed conversion ratio (P = 0.205), lower carcass quality (P < 0.001) and higher intramuscular fat content (P = 0.030). For both boar types, pigs fed the CON diet performed better, with a higher daily gain (P = 0.028), DFI (P = 0.011) and dressing yield (P = 0.009) and better digestibility (P < 0.001), but without differences in feed conversion ratio or meat quality. In conclusion, there was no indication that pigs differing in feed intake capacity cope differently with a high-fat, high-fiber diet based on by-products. Different types of pigs may cope well with diets that are less prone to feed-food competition.
Collapse
Affiliation(s)
- E Kowalski
- Flanders Research Institute for Agriculture, Fisheries and Food, Animal Sciences Unit, 9090, Melle, Belgium; Ghent University, Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, 9000 Ghent, Belgium
| | - M Aluwé
- Flanders Research Institute for Agriculture, Fisheries and Food, Animal Sciences Unit, 9090, Melle, Belgium
| | - B Ampe
- Flanders Research Institute for Agriculture, Fisheries and Food, Animal Sciences Unit, 9090, Melle, Belgium
| | - S Janssens
- KU Leuven, Center of Animal Breeding and Genetics, Department of Biosystems, 3001, Heverlee, Belgium
| | - N Buys
- KU Leuven, Center of Animal Breeding and Genetics, Department of Biosystems, 3001, Heverlee, Belgium
| | - S De Smet
- Ghent University, Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, 9000 Ghent, Belgium
| | - S Millet
- Flanders Research Institute for Agriculture, Fisheries and Food, Animal Sciences Unit, 9090, Melle, Belgium.
| |
Collapse
|
13
|
Islas-Fabila P, Roldán-Santiago P, de la Cruz-Cruz LA, Limón-Morales O, Dutro-Aceves A, Orozco-Gregorio H, Bonilla-Jaime H. Importance of Selected Nutrients and Additives in the Feed of Pregnant Sows for the Survival of Newborn Piglets. Animals (Basel) 2024; 14:418. [PMID: 38338061 PMCID: PMC10854669 DOI: 10.3390/ani14030418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
This systematic review analyzed the effect of selected nutrients and additives in the feed of pregnant sows on the survival of newborn piglets. We analyzed 720 peer-reviewed publications in English in PubMed® and Web of Science®, dated July 2023 to January 2024, related to the effect of dietary supplementation with fatty acids and various percentages of protein, amino acids, and/or sources of dietary fiber on the offspring of gestating sows. While several papers evaluated the effect of nutrition on gestating sows, only a few delved into the distinct feeding strategies required at each stage of gestation to meet the NRC's nutritional requirements for maternal tissue gain and postnatal neonatal survival and growth. This body of research suggests that as gestation progresses the sow's nutritional requirements increase, as the NRC established, to satisfy their own metabolic needs and those of their fetuses. Additional research is needed to determine an optimal feeding strategy.
Collapse
Affiliation(s)
- Paloma Islas-Fabila
- Programa de Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09340, Mexico;
| | - Patricia Roldán-Santiago
- Departamento de Reproducción, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Avenida Universidad, Mexico City 04510, Mexico
| | - Luis Alberto de la Cruz-Cruz
- Escuela de Medicina Veterinaria y Zootecnia, Universidad del Valle de México-Coyoacán, Calzada de Tlalpan, Mexico City 04910, Mexico; (L.A.d.l.C.-C.); (A.D.-A.)
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana, Unidad Xochimilco, Calzada del Hueso 1100, Coapa, Villa Quietud, Coyoacán, Mexico City 04960, Mexico;
| | - Ofelia Limón-Morales
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09340, Mexico;
| | - Anna Dutro-Aceves
- Escuela de Medicina Veterinaria y Zootecnia, Universidad del Valle de México-Coyoacán, Calzada de Tlalpan, Mexico City 04910, Mexico; (L.A.d.l.C.-C.); (A.D.-A.)
| | - Héctor Orozco-Gregorio
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana, Unidad Xochimilco, Calzada del Hueso 1100, Coapa, Villa Quietud, Coyoacán, Mexico City 04960, Mexico;
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09340, Mexico;
| |
Collapse
|
14
|
Yao R, Cools A, van Hees HMJ, Chiers K, Mebratu AT, Aluwé M, Maes D, Janssens GPJ. Getting clues from nature: the impact of grass hay on suckling piglets' gastrointestinal growth and colonic microbiota. Front Cell Infect Microbiol 2024; 13:1341147. [PMID: 38268791 PMCID: PMC10806113 DOI: 10.3389/fcimb.2023.1341147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction The effect of dietary fiber on pig production has been extensively evaluated. Inspired by observations of the diet of wild, young piglets, this study aimed to examine the possibility of feeding grass hay to suckling piglets besides concentrated creep feed. Methods The sow-nursed piglets in this study were divided into two groups based on balanced sow parities. The control group (CON, n = 7 sows) only received a regular, concentrated creep feed, while the treatment piglets (GH, n = 8 sows) were also provided with chopped grass hay from 2 days of age until weaning (28 days). At weaning, one piglet with a median weight was selected from each litter for post-mortem evaluation. Subsequently, six pigs around median weight per sow were grouped into nursery pens and monitored for their feed intake and body weight gain until 9 weeks of age. Results and discussion Piglets in GH consumed, on average, 57 g of grass hay per piglet during the entire lactation period. The emptied weight of the small and large intestine was significantly greater in GH (280 vs. 228 g, 88.8 vs. 79.3 g, respectively, p < 0.05), and the length of the large intestine was stimulated by the grass hay (164 vs. 150 cm, p < 0.05). Morphologically, the villus height in the jejunum was higher in GH (p < 0.05). In the large intestine, the crypt depth of the mid-colon was lower in GH. Moreover, the short-chain fatty acid (SCFA) concentrations in the cecum were increased in GH compared to CON (1,179 vs. 948 µmol/g dry matter, p < 0.05), whereas in the colon, SCFA concentrations were lower in CON (341 vs. 278 µmol/g dry matter, p < 0.05). There was no major impact of grass hay inclusion on the colonic microbiota composition. Only a trend was observed for a lower inverse of the classical Simpson (InvSimpon) index and a higher abundance of Lactobacillus genera in GH. After weaning, no significant differences in feed intake and body weight gain were observed. In conclusion, supplementing the grass hay to suckling piglets led to alterations in intestinal morphology, increased SCFA fermentation in proximal sections of large intestine, stimulation of gastrointestinal tract growth, and subtle modifications in colonic microbiota.
Collapse
Affiliation(s)
- Renjie Yao
- Department of Veterinary and Biosciences, Ghent University, Merelbeke, Belgium
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke, Belgium
| | - An Cools
- Department of Veterinary and Biosciences, Ghent University, Merelbeke, Belgium
| | - Hubèrt M. J. van Hees
- Department of Veterinary and Biosciences, Ghent University, Merelbeke, Belgium
- Trouw Nutrition Research & Development, Amersfoort, Netherlands
| | - Koen Chiers
- Department of Pathology, Ghent University, Merelbeke, Belgium
| | - Awot Teklu Mebratu
- Department of Veterinary and Biosciences, Ghent University, Merelbeke, Belgium
| | - Marijke Aluwé
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Dominiek Maes
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke, Belgium
| | | |
Collapse
|
15
|
Wisbech SJ, Nielsen TS, Bach Knudsen KE, Theil PK, Bruun TS. Effect of different feeding strategies and dietary fiber levels on energy and protein retention in gestating sows. J Anim Sci 2024; 102:skae092. [PMID: 38659196 PMCID: PMC11104775 DOI: 10.1093/jas/skae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024] Open
Abstract
The aim of the study was to investigate whether increased inclusion of sugar beet pulp (SBP) alters retention of fat, protein, and energy when backfat (BF) is restored in early- and mid-gestation. In total, 46 sows were fed one of four dietary treatments with increasing inclusion of SBP providing dietary fiber (DF) levels of 119, 152, 185, and 217 g/kg; sows were assigned to one of three feeding strategies (FS; high, medium, and low) depending on BF thickness at mating and again at day 30 for the following month. On days 0, 30, 60, and 108, body weight (BW) and BF thickness were measured and body pools of protein and fat were estimated using the deuterium oxide technique. On days 30 and 60, urine, feces, and blood samples were collected to quantify metabolites, energy, and nitrogen (N) balances. On days 15 and 45, heart rate was recorded to estimate heat energy. At farrowing, total born and weight of the litter were recorded. In early gestation, BW gain (P < 0.01) and body protein retention increased (P < 0.05) with increasing fiber inclusion, while body fat retention increased numerically by 59%. The increase in BF was greatest for sows fed the high FS, intermediate when fed the medium strategy, and negligible for sows fed the lowest FS (P < 0.001). Nitrogen intake, N loss in feces, and N balance increased linearly, whereas N loss in urine tended to decrease with increasing inclusion of fibers in early gestation. Concomitantly, fecal energy output and energy lost as methane increased linearly (P < 0.001), while energy output in urine declined linearly. Total metabolizable energy (ME) intake therefore increased from 36.5 MJ ME/d in the low fiber group to 38.5 MJ ME/d in the high fiber group (P < 0.01). Changing the ME towards more ketogenic energy was expected to favor fat retention rather than protein retention. However, due to increased intake of ME and increased N efficiency with increasing fiber inclusion, the sows gained more weight and protein with increasing fiber inclusion. In conclusion, increased feed intake improved both fat and protein retention, whereas increased DF intake increased protein retention.
Collapse
Affiliation(s)
- Sigrid J Wisbech
- Department of Animal and Veterinary Sciences, Aarhus University AU-Viborg, DK-8830 Tjele, Denmark
| | - Tina S Nielsen
- Department of Animal and Veterinary Sciences, Aarhus University AU-Viborg, DK-8830 Tjele, Denmark
| | - Knud E Bach Knudsen
- Department of Animal and Veterinary Sciences, Aarhus University AU-Viborg, DK-8830 Tjele, Denmark
| | - Peter K Theil
- Department of Animal and Veterinary Sciences, Aarhus University AU-Viborg, DK-8830 Tjele, Denmark
| | | |
Collapse
|
16
|
Zeng F, Zhang S. Impacts of sow behaviour on reproductive performance: current understanding. JOURNAL OF APPLIED ANIMAL RESEARCH 2023. [DOI: 10.1080/09712119.2023.2185624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Fanwen Zeng
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro animal Genomics and Molecular Breeding, College of Animal Science of South China Agricultural University, Guangzhou, China
| | - Shouquan Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro animal Genomics and Molecular Breeding, College of Animal Science of South China Agricultural University, Guangzhou, China
| |
Collapse
|
17
|
Ludwiczak A, Kasprowicz-Potocka M, Zaworska-Zakrzewska A, Składanowska-Baryza J, Rodriguez-Estevez V, Sanz-Fernandez S, Diaz-Gaona C, Ferrari P, Pedersen LJ, Couto MYR, Revilla I, Sell-Kubiak E. Husbandry practices associated with extensification in European pig production and their effects on pork quality. Meat Sci 2023; 206:109339. [PMID: 37716226 DOI: 10.1016/j.meatsci.2023.109339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 07/27/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
This review has been developed as part of the mEATquality project with the main objective to examine the types of extensification practices used in European pig husbandry and their effect on intrinsic meat quality. Literature search has resulted in 679 references in total, from which 53 showed a strict compliance with the goals of this review: 1) the use of local European breeds and their crossbreds (22 papers); 2) addition of forage to diet (9 papers); 3) increased space allowance (3 papers); 4) enrichment of environment (19 papers). The evaluation of selected extensification factors showed that not all of them have a clear impact on meat quality, and are often confounded. The most clear differences were observed when comparing autochthonous with commercial breeds, and systems with access to pastures or woodlands vs. indoor housing. Despite many studies focusing on the extensification of husbandry practices, some of the factors cannot be confirmed to have a direct effect on pork intrinsic quality.
Collapse
Affiliation(s)
- Agnieszka Ludwiczak
- Department of Animal Breeding and Product Quality Assessment, Poznań University of Life Sciences, Słoneczna 1, Suchy Las 62-002, Poland.
| | | | - Anita Zaworska-Zakrzewska
- Department of Animal Nutrition, Poznań University of Life Sciences, Wołyńska 33, Poznań 60-637, Poland.
| | - Joanna Składanowska-Baryza
- Department of Animal Breeding and Product Quality Assessment, Poznań University of Life Sciences, Słoneczna 1, Suchy Las 62-002, Poland.
| | - Vicente Rodriguez-Estevez
- Department of Animal Production, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Campus de Rabanales, Córdoba 14014, Spain.
| | - Santos Sanz-Fernandez
- Department of Animal Production, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Campus de Rabanales, Córdoba 14014, Spain.
| | - Cipriano Diaz-Gaona
- Department of Animal Production, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Campus de Rabanales, Córdoba 14014, Spain.
| | - Paolo Ferrari
- Research Centre for Animal Production (CRPA), Viale Timavo, 43/2, Reggio Emilia 42121, Italy.
| | - Lene Juul Pedersen
- Department of Animal Science, Aarhus University, Blichers Allé 20, Tjele 8830, Denmark.
| | | | - Isabel Revilla
- Food Technology Area, University of Salamanca, Escuela Politécnica Superior de Zamora, Avda. Requejo 33, Zamora 49022, Spain.
| | - Ewa Sell-Kubiak
- Department of Genetics and Animal Breeding, Poznań University of Life Sciences, Wołyńska 33, Poznań 60-637, Poland.
| |
Collapse
|
18
|
Qin F, Wei W, Gao J, Jiang X, Che L, Fang Z, Lin Y, Feng B, Zhuo Y, Hua L, Wang J, Sun M, Wu D, Xu S. Effect of Dietary Fiber on Reproductive Performance, Intestinal Microorganisms and Immunity of the Sow: A Review. Microorganisms 2023; 11:2292. [PMID: 37764136 PMCID: PMC10534349 DOI: 10.3390/microorganisms11092292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Dietary fiber is a substance that cannot be digested by endogenous digestive enzymes but can be digested by the cellulolytic enzymes produced by intestinal microorganisms. In the past, dietary fiber was considered an anti-nutrient component in diets because it could resist digestion by endogenous enzymes secreted by the intestine and has a negative effect on the digestion of energy-producing nutrients. However, due to its functional properties, potential health benefits to animals, and innate fermentability, it has attracted increasing attention in recent years. There are a plethora of studies on dietary fiber. Evidence suggests that dietary fiber can provide energy for pigs through intestinal microbial fermentation and improve sow welfare, reproductive performance, intestinal flora, and immunity. This is a brief overview of the composition and classification of dietary fiber, the mechanism of action and effects of dietary fiber on reproductive performance, intestinal microorganisms, and the immune index of the sow. This review also provides scientific guidance for the application of dietary fiber in sow production.
Collapse
Affiliation(s)
- Feng Qin
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Wenyan Wei
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Junjie Gao
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Xuemei Jiang
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Lianqiang Che
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Zhengfeng Fang
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Yan Lin
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Bin Feng
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Yong Zhuo
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Lun Hua
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Jianping Wang
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Yucheng District, Ya’an 625014, China;
| | - De Wu
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| | - Shengyu Xu
- Key Laboratory of Sichuan Province, Animal Nutrition Institute, Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China; (F.Q.); (W.W.); (J.G.); (X.J.); (L.C.); (Z.F.); (Y.L.); (B.F.); (Y.Z.); (L.H.); (J.W.); (D.W.)
| |
Collapse
|
19
|
Álvarez-Rodríguez M, Roca J, Martínez EA, Rodríguez-Martínez H. Mating modifies the expression of crucial oxidative-reductive transcripts in the pig oviductal sperm reservoir: is the female ensuring sperm survival? Front Endocrinol (Lausanne) 2023; 14:1042176. [PMID: 37351104 PMCID: PMC10282951 DOI: 10.3389/fendo.2023.1042176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 05/17/2023] [Indexed: 06/24/2023] Open
Abstract
Background Mating induces large changes in the female genital tract, warranting female homeostasis and immune preparation for pregnancy, including the preservation of crucial oxidative status among its pathways. Being highly susceptible to oxidative stress, sperm survival and preserved function depend on the seminal plasma, a protection that is removed during sperm handling but also after mating when spermatozoa enter the oviduct. Therefore, it is pertinent to consider that the female sperm reservoir takes up this protection, providing a suitable environment for sperm viability. These aspects have not been explored despite the increasing strategies in modulating the female status through diet control and nutritional supplementation. Aims To test the hypothesis that mating modifies the expression of crucial oxidative-reductive transcripts across the entire pig female genital tract (cervix to infundibulum) and, particularly in the sperm reservoir at the utero-tubal junction, before ovulation, a period dominated by estrogen stimulation of ovarian as well as of seminal origin. Methods The differential expression of estrogen (ER) and progesterone (PR) receptors and of 59 oxidative-reductive transcripts were studied using a species-specific microarray platform, in specific segments of the peri-ovulatory sow reproductive tract in response to mating. Results Mating induced changes along the entire tract, with a conspicuous downregulation of both ER and PR and an upregulation of superoxide dismutase 1 (SOD1), glutaredoxin (GLRX3), and peroxiredoxin 1 and 3 (PRDX1, PRDX3), among other NADH Dehydrogenase Ubiquinone Flavoproteins, in the distal uterus segment. These changes perhaps helped prevent oxidative stress in the area adjacent to the sperm reservoir at the utero-tubal junction. Concomitantly, there were a downregulation of catalase (CAT) and NADH dehydrogenase (ubiquinone) oxidoreductases 1 beta subcomplex, subunit 1 (NDUFB1) in the utero-tubal junction alongside an overall downregulation of CAT, SOD1, and PRDX3 in the ampullar and infundibulum segments. Conclusions Natural mating is an inducer of changes in the expression of female genes commanding antioxidant enzymes relevant for sperm survival during sperm transport, under predominant estrogen influence through the bloodstream and semen. The findings could contribute to the design of new therapeutics for the female to improve oxidative-reductive balance.
Collapse
Affiliation(s)
- Manuel Álvarez-Rodríguez
- Department of Biomedical and Clinical Sciences (BKV), BKH/Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
- Department of Animal Reproduction, Instituto Nacional de Investigación Agraria y Alimentaria (INIA)-CSIC, Madrid, Spain
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia, Murcia, Spain
| | - Emilio A. Martínez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia, Murcia, Spain
| | - Heriberto Rodríguez-Martínez
- Department of Biomedical and Clinical Sciences (BKV), BKH/Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
20
|
Zhuo Y, Zou X, Wang Y, Jiang X, Sun M, Xu S, Lin Y, Hua L, Li J, Feng B, Fang Z, Che L, Wu D. Nutritional values of cottonseed meal from different sources fed to gestating and non-pregnant sows. J Anim Sci 2023; 101:skad118. [PMID: 37085272 PMCID: PMC10199790 DOI: 10.1093/jas/skad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/20/2023] [Indexed: 04/23/2023] Open
Abstract
This study set out to determine the apparent total tract digestibility (ATTD) of the nutrients and energy in six cottonseed meal (CSM) feedstuffs fed to pregnant and non-pregnant sows. The six types of CSM were: two expelled CSMs with crude protein (CP) levels of 40.67% and 44.64%, and four solvent-extracted CSMs with CP levels of 45.18%, 51.16%, 56.44%, and 59.63%. Fourteen gestating sows (at the fourth parity with body weights of 220.6 ± 18.4 kg at days 30 of gestation) and 14 non-pregnant sows (after the third parity with body weights of 219 ± 14.6 kg) were assigned to a replicated 7 × 3 Youden square design with seven diets and three periods. The seven diets included an entirely corn-based diet and six diets each containing 20.0% of the six CSMs tested. Each period included a 5-d acclimation to the experimental diets, followed by a 5-d period during which urine and feces were collected. Significant differences were found among the six CSM diets, regardless of reproductive stage, regarding 1) the ATTD of neutral detergent fiber (NDF) (P < 0.05) and 2) the ATTD of dry matter (DM), organic matter (OM), and CP and the gross energy (GE) (P < 0.01). Non-pregnant sows had a greater ATTD of OM and CP (P < 0.01) compared with gestating sows. The digestible energy (DE) and metabolizable energy (ME) of the six CSM samples ranged from 12.48 to 17.15 MJ/kg and 11.35 to 15.88 MJ/kg, respectively, for non-pregnant sows, and from 12.86 to 16.41 MJ/kg and 12.43 to 14.72 MJ/kg, respectively, for gestating sows. However, the DE, ME, and ME:DE ratios of each CSM were similar between gestating and non-pregnant sows. DE and ME were negatively correlated with NDF and ADF, respectively, but were positively corrected with CP level (P < 0.01). Collectively, the DE, ME, and nutrient digestibility of CSM varied greatly according to the chemical compositions, and CSMs with higher protein and lower fiber levels had greater DE and ME levels.
Collapse
Affiliation(s)
- Yong Zhuo
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China and Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiangyang Zou
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China and Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ya Wang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China and Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xuemei Jiang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China and Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mengmeng Sun
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China and Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shengyu Xu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China and Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yan Lin
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China and Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lun Hua
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China and Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jian Li
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China and Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bin Feng
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China and Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhengfeng Fang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China and Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lianqiang Che
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China and Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - De Wu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China and Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
21
|
Huang S, Wu D, Hao X, Nie J, Huang Z, Ma S, Chen Y, Chen S, Wu J, Sun J, Ao H, Gao B, Tan C. Dietary fiber supplementation during the last 50 days of gestation improves the farrowing performance of gilts by modulating insulin sensitivity, gut microbiota, and placental function. J Anim Sci 2023; 101:skad021. [PMID: 36634095 PMCID: PMC9912709 DOI: 10.1093/jas/skad021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
Our previous study found dietary konjac flour (KF) supplementation could improve insulin sensitivity and reproductive performance of sows, but its high price limits its application in actual production. This study aimed to investigate the effects of supplementation of a cheaper combined dietary fiber (CDF, using bamboo shoots fiber and alginate fiber to partially replace KF) from the last 50 days of gestation to parturition on farrowing performance, insulin sensitivity, gut microbiota, and placental function of gilts. Specifically, a total of 135 pregnant gilts with a similar farrowing time were blocked by backfat thickness and body weight on day 65 of gestation (G65d) and assigned to 1 of the 3 dietary treatment groups (n = 45 per group): basal diet (CON), basal diet supplemented with 2% KF or 2% CDF (CDF containing 15% KF, 60% bamboo shoots fiber, and 25% alginate fiber), respectively. The litter performance, insulin sensitivity and glucose tolerance parameters, placental vessel density, and short-chain fatty acids (SCFAs) levels in feces were assessed. The gut microbiota population in gilts during gestation was also assessed by 16S rDNA gene sequencing. Compared with CON, both KF and CDF treatments not only increased the piglet birth weight (P < 0.05) and piglet vitality (P < 0.01) but also decreased the proportion of piglets with birth weight ≤ 1.2 kg (P < 0.01) and increased the proportion of piglets with birth weight ≥ 1.5 kg (P < 0.01). In addition, KF or CDF supplementation reduced fasting blood insulin level (P < 0.05), homeostasis model assessment-insulin resistance (P < 0.05), serum hemoglobin A1c (P < 0.05), and the level of advanced glycation end products (P < 0.05) at G110d, and increased the placental vascular density (P < 0.05) at farrowing. Meanwhile, KF or CDF supplementation increased microbial diversity (P < 0.05) and SCFAs levels (P < 0.05) in feces at G110d. Notably, the production cost per live-born piglet was lower in CDF group (¥ 36.1) than KF group (¥ 41.3). Overall, KF or CDF supplementation from G65d to farrowing could improve the farrowing performance of gilts possibly by improving insulin sensitivity, regulating gut microbiota and metabolites, and increasing placental vascular density, with higher economic benefits and a similar effect for CDF vs. KF, suggesting the potential of CDF as a cheaper alternative to KF in actual production.
Collapse
Affiliation(s)
- Shuangbo Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Deyuan Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiangyu Hao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jiawei Nie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zihao Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shuo Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yiling Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shengxing Chen
- Joinsha Animal Health Products (XIAMEN) Co., Ltd., Xiamen, Fujian 361000, China
| | - Jianyao Wu
- Joinsha Animal Health Products (XIAMEN) Co., Ltd., Xiamen, Fujian 361000, China
| | - Jihui Sun
- Joinsha Animal Health Products (XIAMEN) Co., Ltd., Xiamen, Fujian 361000, China
| | - Huasun Ao
- Joinsha Animal Health Products (XIAMEN) Co., Ltd., Xiamen, Fujian 361000, China
| | - Binghui Gao
- Joinsha Animal Health Products (XIAMEN) Co., Ltd., Xiamen, Fujian 361000, China
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
22
|
Effect of unconventional feeds on production cost, growth performance and expression of quantitative genes in growing pigs. JOURNAL OF THE INDONESIAN TROPICAL ANIMAL AGRICULTURE 2022. [DOI: 10.14710/jitaa.47.4.301-317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
This study examined the effects of unconventional feed on performance characteristics and candi-date gene expression in growing pigs of 3-5months of age. A Total of forty-five (45) growing pigs were randomly allotted into five treatments consisting of whole maize (T1), brewer’s dried grain (T2), cassava peel meal (T3), plantain peel meal (T4), and corn husk meal (T5), at 35% inclusion rate. Per-formance data were collected for 12weeks, while duodenum and liver samples were collected after the experiment for gene expression analysis. Data were analyzed in a completely randomized design. Diets significantly (p< 0.05) affected growth performance with treatment 2 recording the highest average daily weight gain of 0.21±0.02 whilecorn husk meal (T5)had the least 0.11±0.01. Feed efficiency was highest for whole maize (T1) and brewer’s dried grain (T2) (0.10±0.02) and lowest for t5 (0.07±0.17). Cost-benefit analysis were significantly different (p<0.05) with t4 recording the highest gross margin. Insulin-like growth factor1 and leptin gene were differentially expressed in tissues, while no significant differences (p>0.05) existed for growth hormone gene and ryanodine receptor1 gene. The results showed commendable gross margin, however, cognizance should be taken in the quantity of brewer’s dried grain fed to pigs since it increased the expression of ryanodine receptor 1 gene that leads to por-cine malignant hypertermia and pale soft exudates pork.
Collapse
|
23
|
Liu J, Luo Y, Kong X, Yu B, Zheng P, Huang Z, Mao X, Yu J, Luo J, Yan H, He J. Effects of Dietary Fiber on Growth Performance, Nutrient Digestibility and Intestinal Health in Different Pig Breeds. Animals (Basel) 2022; 12:ani12233298. [PMID: 36496820 PMCID: PMC9740264 DOI: 10.3390/ani12233298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/29/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
To explore the effect of dietary fiber on growth performance and intestinal health in different pig breeds, forty Taoyuan and Duroc pigs (pure breeds) of 60 days of age were randomly divided into a 2 (diet) × 2 (breed) factorial experiment (n = 10), and fed with a basal diet (BD) or high-fiber diet (HFD). The trial lasted for 28 d, and results showed that the Taoyuan pigs had a higher average daily feed intake (ADFI) than the Duroc pigs (p < 0.05). The average daily gain (ADG) and digestibilities of gross energy (GE) and crude protein (CP) were higher in Taoyuan pigs than in the Duroc pigs under HFD feeding (p < 0.05). The HFD increased the superoxide dismutase (SOD) and catalase (CAT) activity in Taoyuan pigs (p < 0.05). Interestingly, Taoyuan pigs had a higher jejunal villus height and ratio of villus height to crypt depth (V/C) than the Duroc pigs. The HFD significantly improved the villus height and V/C ratio in duodenum and jejunum (p < 0.05). The HFD also increased the jejunal maltase and ileal sucrase activities in Duroc and Taoyuan pigs, respectively (p < 0.05). Taoyuan pigs had a higher expression level of duodenal fatty acid transport protein-1 (FATP-1) than the Duroc pigs (p < 0.05). Furthermore, the HFD acutely improved the expression levels of ileal SGLT-1 and GLUT-2, and the expression levels of jejunal occludin and claudin-1 in Taoyuan pigs (p < 0.05). Importantly, Taoyuan pigs had a higher colonic Bifidobacterium abundance than the Duroc pigs (p < 0.05). The HFD not only elevated the colonic Lactobacillus abundance and butyrate acid content in Taoyuan pigs, but also increased the acetic and propionic acid contents in both the pig breeds (p < 0.05). These results indicated a difference in dietary fiber (DF) utilization by the two pig breeds, and results may also suggest a beneficial character of DF in regulating intestinal health.
Collapse
Affiliation(s)
- Jiahao Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 610000, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 610000, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 610000, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 610000, China
| | - Xiangfeng Kong
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410000, China
- Correspondence: (X.K.); (J.H.); Tel.: +86-13419354223 (J.H.); Fax: +86-28-8629-1781 (J.H.)
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 610000, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 610000, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 610000, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 610000, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 610000, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 610000, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 610000, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 610000, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 610000, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 610000, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 610000, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 610000, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 610000, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 610000, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 610000, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 610000, China
- Correspondence: (X.K.); (J.H.); Tel.: +86-13419354223 (J.H.); Fax: +86-28-8629-1781 (J.H.)
| |
Collapse
|
24
|
Recent Research and Application Prospect of Functional Oligosaccharides on Intestinal Disease Treatment. Molecules 2022; 27:molecules27217622. [PMID: 36364447 PMCID: PMC9656564 DOI: 10.3390/molecules27217622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
The intestinal tract is an essential digestive organ of the human body, and damage to the intestinal barrier will lead to various diseases. Functional oligosaccharides are carbohydrates with a low degree of polymerization and exhibit beneficial effects on human intestinal health. Laboratory experiments and clinical studies indicate that functional oligosaccharides repair the damaged intestinal tract and maintain intestinal homeostasis by regulating intestinal barrier function, immune response, and intestinal microbial composition. Functional oligosaccharides treat intestinal disease such as inflammatory bowel disease (IBD) and colorectal cancer (CRC) and have excellent prospects for therapeutic application. Here, we present an overview of the recent research into the effects of functional oligosaccharides on intestinal health.
Collapse
|
25
|
Jin S, Wijerathne CUB, Au-Yeung KKW, Lei H, Yang C, O K. Effects of high- and low-fiber diets on intestinal oxidative stress in growing-finishing pigs. J Anim Sci 2022; 100:skac306. [PMID: 36104002 PMCID: PMC9667964 DOI: 10.1093/jas/skac306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/13/2022] [Indexed: 09/16/2023] Open
Abstract
Feed is the most expensive facet of commercial pork production. In order to reduce feed costs, using high-fiber ingredients has become a common practice. Moderate levels of fiber can maintain intestinal physiological function and promote intestinal health. Oxidative stress is linked to impaired nutrient absorption and growth performance. This study investigated the effects of high-fiber (5.26% crude fiber) and low-fiber (2.46% crude fiber) diets on growth performance and intestinal oxidative stress parameters in growing-finishing pigs. Forty growing pigs with initial body weight (27.07 ± 1.26 kg) were randomly assigned to 2 treatment groups with 10 replicates of 2 pigs per pen. Pigs were weighed on day 35, 42, and 70. The feed intake was recorded daily to calculate growth performance parameters. On day 70, eight pigs in each treatment group were randomly selected and euthanized to obtain jejunum to measure oxidative stress status. Pigs fed a high-fiber diet were heavier than those fed a low-fiber diet on days 35, 42, and 70 (P < 0.05). During the whole feeding period, pigs fed a high-fiber diet had a higher average daily gain than those fed a low-fiber diet (P < 0.05). The low-fiber diet resulted in increased levels of malondialdehyde (P < 0.05) in the jejunum, suggesting that the low-fiber diet contributed to oxidative stress in the jejunum. The low-fiber diet also led to a significant increase in glutathione and oxidized glutathione levels (P < 0.05) in the jejunum, indicating that pigs fed a low-fiber diet needed to produce more antioxidant substances to cope with oxidative stress in the intestine. This was accompanied by a significant increase in the expression of glutathione synthesizing enzymes in the jejunum of the low-fiber group (P < 0.05). These results suggest that the high-fiber diet can improve growth performance and maintain intestinal health in growing-finishing pigs by reducing intestinal oxidative stress.
Collapse
Affiliation(s)
- Shunshun Jin
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- CCARM, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Charith U B Wijerathne
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- CCARM, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Kathy K W Au-Yeung
- CCARM, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Huaigang Lei
- Topigs Norsvin Canada Inc., Oak Bluff, MB R4G 0C4, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Karmin O
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- CCARM, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
26
|
Formulating Diets for Improved Health Status of Pigs: Current Knowledge and Perspectives. Animals (Basel) 2022; 12:ani12202877. [DOI: 10.3390/ani12202877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Our understanding of nutrition has been evolving to support both performance and immune status of pigs, particularly in disease-challenged animals which experience repartitioning of nutrients from growth towards the immune response. In this sense, it is critical to understand how stress may impact nutrient metabolism and the effects of nutritional interventions able to modulate organ (e.g., gastrointestinal tract) functionality and health. This will be pivotal in the development of effective diet formulation strategies in the context of improved animal performance and health. Therefore, this review will address qualitative and quantitative effects of immune system stimulation on voluntary feed intake and growth performance measurements in pigs. Due to the known repartitioning of nutrients, the effects of stimulating the immune system on nutrient requirements, stratified according to different challenge models, will be explored. Finally, different nutritional strategies (i.e., low protein, amino acid-supplemented diets; functional amino acid supplementation; dietary fiber level and source; diet complexity; organic acids; plant secondary metabolites) will be presented and discussed in the context of their possible role in enhancing the immune response and animal performance.
Collapse
|
27
|
Nguyen TT, Chidgey K, Wester T, Morel P. Provision of lucerne in the diet or as a manipulable enrichment material enhances feed efficiency and welfare status for growing-finishing pigs. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
28
|
Sandström V, Chrysafi A, Lamminen M, Troell M, Jalava M, Piipponen J, Siebert S, van Hal O, Virkki V, Kummu M. Food system by-products upcycled in livestock and aquaculture feeds can increase global food supply. NATURE FOOD 2022; 3:729-740. [PMID: 37118146 DOI: 10.1038/s43016-022-00589-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 08/10/2022] [Indexed: 04/30/2023]
Abstract
Many livestock and aquaculture feeds compete for resources with food production. Increasing the use of food system by-products and residues as feed could reduce this competition. We gathered data on global food system material flows for crop, livestock and aquaculture production, focusing on feed use and the availability of by-products and residues. We then analysed the potential of replacing food-competing feedstuff-here cereals, whole fish, vegetable oils and pulses that account for 15% of total feed use-with food system by-products and residues. Considering the nutritional requirements of food-producing animals, including farmed aquatic species, this replacement could increase the current global food supply by up to 13% (10-16%) in terms of kcal and 15% (12-19%) in terms of protein content. Increasing the use of food system by-products as feed has considerable potential, particularly when combined with other measures, in the much-needed transition towards circular food systems.
Collapse
Affiliation(s)
- Vilma Sandström
- Water & Development Research Group, Aalto University, Espoo, Finland.
| | - Anna Chrysafi
- Water & Development Research Group, Aalto University, Espoo, Finland
| | - Marjukka Lamminen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Max Troell
- Beijer Institute of Ecological Economics, Royal Swedish Academy of Sciences, Stockholm, Sweden
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| | - Mika Jalava
- Water & Development Research Group, Aalto University, Espoo, Finland
| | | | - Stefan Siebert
- Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Ollie van Hal
- Louis Bolk Institute, Bunnik, the Netherlands
- Animal Production Systems group, Wageningen University, Wageningen, the Netherlands
| | - Vili Virkki
- Water & Development Research Group, Aalto University, Espoo, Finland
| | - Matti Kummu
- Water & Development Research Group, Aalto University, Espoo, Finland.
| |
Collapse
|
29
|
Trabue SL, Kerr BJ, Scoggin KD, Andersen DS, van Weelden M. Swine diets: Impact of carbohydrate sources on manure characteristics and gas emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153911. [PMID: 35189227 DOI: 10.1016/j.scitotenv.2022.153911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Swine growers seeking to lower costs and environmental impact have turned to alternative carbohydrate feed sources. A feeding trial was conducted to determine the effect carbohydrate sources have on manure composition and gas emissions. A total of 48 gilts averaging 138 kg BW were fed diets consisting of (a) low fiber (LF) grain, or (b) high fiber (HF) aro-industrial co-product (AICP). The LF diets included corn and soybean meal (CSBM) and barley soybean meal (BSBM). The HF AICP diets were CSBM based and supplemented with one of the following materials: beet pulp; corn distillers dried grains with solubles; soybean hulls; or wheat bran. Diets were fed for 42 d with an average daily feed intake of 2.71 kg d-1. Feces and urine were collected twice daily and added to manure storage containers in which manure slurries were monitored for gas emissions and chemical properties. Manures of animals fed HF diets had significantly (P < 0.05) more excretion of solids, C, N, and organic N, but less total S compared to pigs fed the LF diets. Animals feed HF diets had significantly (P < 0.05) higher levels of ammonia, sulfide, volatile fatty acids, and phenols in manure compared to pigs fed the LF diets. Manure of animals fed HF diets had 30% (P < 0.05) lower NH3 and 17% lower hydrogen sulfide emissions; however, fiber had no impact on odor emissions. Based on the partitioning of nutrients, animals fed HF fiber diets had increased manure retention for C and N but decreased levels of N gas emissions and manure S. There were little differences in manure and gas emissions for animals fed LF diets, but the source of HF AICP diets had a significant impact on manure composition and gas emissions.
Collapse
Affiliation(s)
- S L Trabue
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA 50011, United States of America.
| | - B J Kerr
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA 50011, United States of America
| | - K D Scoggin
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA 50011, United States of America
| | - D S Andersen
- Iowa State University, Department of Agriculture and Biological Engineering, Ames, IA 50011, United States of America
| | - M van Weelden
- Iowa State University, Department of Agriculture and Biological Engineering, Ames, IA 50011, United States of America
| |
Collapse
|
30
|
Yang M, Hua L, Mao Z, Lin Y, Xu S, Li J, Jiang X, Wu D, Zhuo Y, Huang J. Effects of Dietary Fiber, Crude Protein Level, and Gestation Stage on the Nitrogen Utilization of Multiparous Gestating Sows. Animals (Basel) 2022; 12:ani12121543. [PMID: 35739881 PMCID: PMC9219437 DOI: 10.3390/ani12121543] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/05/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
To investigate the effects of dietary fiber (DF), crude protein (CP) level, and gestation stage on nitrogen utilization, 28 Landrace-Yorkshire cross gestating sows at parity two were randomly divided into four dietary treatments with seven duplicates of one pig with a repeated-measures design. The diets comprised one with normal crude protein (CP) of 13.3%, one with a low CP diet of 10.1%, and two diets, one with dietary fiber (DF) supplementation of inulin and cellulose at the ratio of 1:1 and one without DF. The total litter size, litter size alive, and newborn birthweight of piglets did not differ between treatment groups. Sows that received high DF levels had greater nitrogen output in feces, lower urinary nitrogen, and increased nitrogen retention. Sows that received a low CP diet had reduced nitrogen excretion in feces and urine, lower nitrogen retention, and an unchanged nitrogen retention ratio. Sows at the late stage of gestation on days 95 to 98 had lower nitrogen excretion in urine and greater nitrogen retention than in the early stage of gestation on days 35 to 38, associated with a significant decrease in serum amino acids in late gestation. Maternal protein deposition was increased by high DF, decreased by low CP, and lower in late gestation compared with early gestation. Collectively, DF improved nitrogen utilization by decreasing urine nitrogen output, and nitrogen utilization increased as gestation advanced.
Collapse
Affiliation(s)
- Min Yang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.Y.); (L.H.); (Z.M.); (Y.L.); (S.X.); (J.L.); (X.J.); (D.W.)
- Pet Nutrition and Health Research Center, Chengdu Agricultural College, Chengdu 611130, China
| | - Lun Hua
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.Y.); (L.H.); (Z.M.); (Y.L.); (S.X.); (J.L.); (X.J.); (D.W.)
| | - Zhengyu Mao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.Y.); (L.H.); (Z.M.); (Y.L.); (S.X.); (J.L.); (X.J.); (D.W.)
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.Y.); (L.H.); (Z.M.); (Y.L.); (S.X.); (J.L.); (X.J.); (D.W.)
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.Y.); (L.H.); (Z.M.); (Y.L.); (S.X.); (J.L.); (X.J.); (D.W.)
| | - Jian Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.Y.); (L.H.); (Z.M.); (Y.L.); (S.X.); (J.L.); (X.J.); (D.W.)
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.Y.); (L.H.); (Z.M.); (Y.L.); (S.X.); (J.L.); (X.J.); (D.W.)
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.Y.); (L.H.); (Z.M.); (Y.L.); (S.X.); (J.L.); (X.J.); (D.W.)
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.Y.); (L.H.); (Z.M.); (Y.L.); (S.X.); (J.L.); (X.J.); (D.W.)
- Correspondence: (Y.Z.); (J.H.)
| | - Jiankui Huang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (M.Y.); (L.H.); (Z.M.); (Y.L.); (S.X.); (J.L.); (X.J.); (D.W.)
- Guangxi Shangda Technology, Co., Ltd., Guangxi Research Center for Nutrition and Engineering Technology of Breeding Swine, Nanning 530105, China
- Correspondence: (Y.Z.); (J.H.)
| |
Collapse
|
31
|
Kaewtapee C, Jantra N, Petchpoung K, Rakangthong C, Bunchasak C. Chemical composition and standardized ileal digestibility of crude protein and amino acid in whole yeast and autolyzed yeast derived from sugarcane ethanol production fed to growing pigs. Anim Biosci 2022; 35:1400-1407. [PMID: 35507855 PMCID: PMC9449396 DOI: 10.5713/ab.21.0540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/21/2022] [Indexed: 11/27/2022] Open
Abstract
Objective This research determined the chemical composition and the apparent and standardized ileal digestibility (AID and SID) of crude protein (CP) and amino acids (AA) in whole yeast and autolyzed yeast derived from sugarcane ethanol production fed to growing pigs. Methods Six growing pigs were randomly allocated in a replicated 3×3 Latin square design with 3 diets and 3 periods of 7 days each, resulting in a total of 6 experimental replications. Three assay diets were formulated using whole yeast, autolyzed yeast, or soybean meal as the sole sources of dietary CP and AA. Pigs were allowed to adapt to the assay diets for 5 days. Thereafter, ileal digesta samples were collected continuously for 8 hours on days 6 and 7. Results There was no difference in the chemical composition between whole yeast and autolyzed yeast, but whole yeast had low digestibility of CP and AA due to the presence of a rigid cell wall. As conducting autolysis can induce cell wall damage, the AID and SID of CP and AA were greater in autolyzed yeast than in whole yeast. Conclusion The information obtained on the SID of CP and AA in both yeast products can be used for the accurate estimation of the bioavailability of CP and AA in feed formulations. The yeast products derived from sugarcane ethanol production are an alternative protein source in pig diets.
Collapse
|
32
|
Wisbech SJ, Bruun TS, Theil PK. Increased feed supply and dietary fiber from sugar beet pulp improved energy retention in gestating sows. J Anim Sci 2022; 100:skac054. [PMID: 35213701 PMCID: PMC9030113 DOI: 10.1093/jas/skac054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/24/2022] [Indexed: 11/12/2022] Open
Abstract
The aim of the study was to investigate whether increased inclusion of sugar beet pulp (SBP) alters retention of fat, protein, and energy when backfat (BF) is restored in early- and mid-gestation. In total, 46 sows were fed one of four treatments with increasing inclusion of SBP with dietary fiber (DF) levels of 119, 152, 185, and 217 g/kg; sows were assigned to one of three feeding strategies (FS; high, medium, and low) depending on BF thickness at mating and again at day 30 for the following month. On days 0, 30, 60, and 108, body weight (BW) and BF thickness were measured, and body pools of protein and fat were estimated using the deuterium technique. On days 30 and 60, urine, feces, and blood samples were collected to quantify metabolites, energy, and N balances. On days 15 and 45, heart rates were recorded to estimate the heat production. At farrowing, total born and weight of the litter were recorded. In early gestation, BW gain (P < 0.01) and body protein retention increased (P < 0.05) with increasing fiber inclusion, while body fat retention increased numerically by 59%. Increase in BF was the greatest for sows fed the high FS, intermediate when fed the medium strategy, and negligible for sows fed the lowest FS. N intake, N loss in feces, and N balance increased linearly, whereas N loss in urine tended to decrease with increasing inclusion of fibers in early gestation. Concomitantly, fecal energy output and energy lost as methane increased linearly (P < 0.001), while energy output in urine declined linearly, and total metabolizable energy intake, therefore, increased from 40.5 MJ ME/d in the low-fiber group to 43.5 mega joule (MJ) metabolizable energy (ME)/d in the high-fiber group (P < 0.001). Changing the metabolizable energy toward more ketogenic energy was expected to favor fat retention rather than protein retention. However, due to increased intake of metabolizable energy and increased N efficiency with increasing fiber inclusion, the sows gained more weight and protein with increasing fiber inclusion. In conclusion, increased feed intake improved both fat and protein retention, whereas increased DF concentration increased protein retention.
Collapse
Affiliation(s)
- Sigrid J Wisbech
- Department of Animal Science, Aarhus University Campus at Foulum, DK-8830 Tjele, Denmark
| | | | - Peter K Theil
- Department of Animal Science, Aarhus University Campus at Foulum, DK-8830 Tjele, Denmark
| |
Collapse
|
33
|
Li Q, Yang S, Zhang X, Liu X, Wu Z, Qi Y, Guan W, Ren M, Zhang S. Maternal Nutrition During Late Gestation and Lactation: Association With Immunity and the Inflammatory Response in the Offspring. Front Immunol 2022; 12:758525. [PMID: 35126349 PMCID: PMC8814630 DOI: 10.3389/fimmu.2021.758525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
The immature immune system at birth and environmental stress increase the risk of infection in nursing pigs. Severe infection subsequently induces intestinal and respiratory diseases and even cause death of pigs. The nutritional and physiological conditions of sows directly affect the growth, development and disease resistance of the fetus and newborn. Many studies have shown that providing sows with nutrients such as functional oligosaccharides, oils, antioxidants, and trace elements could regulate immunity and the inflammatory response of piglets. Here, we reviewed the positive effects of certain nutrients on milk quality, immunoglobulin inflammatory response, oxidative stress, and intestinal microflora of sows, and further discuss the effects of these nutrients on immunity and the inflammatory response in the offspring.
Collapse
Affiliation(s)
- Qihui Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Siwang Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaoli Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xinghong Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhihui Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yingao Qi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, Fengyang, China
- *Correspondence: Man Ren, ; Shihai Zhang,
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- *Correspondence: Man Ren, ; Shihai Zhang,
| |
Collapse
|
34
|
Men Z, Cao M, Gong Y, Hua L, Zhang R, Zhu X, Tang L, Jiang X, Xu S, Li J, Che L, Lin Y, Feng B, Fang Z, Wu D, Zhuo Y. Microbial and metabolomic mechanisms mediating the effects of dietary inulin and cellulose supplementation on porcine oocyte and uterine development. J Anim Sci Biotechnol 2022; 13:14. [PMID: 35033192 PMCID: PMC8760789 DOI: 10.1186/s40104-021-00657-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
Background Dietary fiber (DF) is often eschewed in swine diet due to its anti-nutritional effects, but DF is attracting growing attention for its reproductive benefits. The objective of this study was to investigate the effects of DF intake level on oocyte maturation and uterine development, to determine the optimal DF intake for gilts, and gain microbial and metabolomic insight into the underlying mechanisms involved. Methods Seventy-six Landrace × Yorkshire (LY) crossbred replacement gilts of similar age (92.6 ± 0.6 d; mean ± standard deviation [SD]) and body weight (BW, 33.8 ± 3.9 kg; mean ± SD) were randomly allocated to 4 dietary treatment groups (n = 19); a basal diet without extra DF intake (DF 1.0), and 3 dietary groups ingesting an extra 50% (DF 1.5), 75% (DF 1.75), and 100% (DF 2.0) dietary fiber mixture consisting of inulin and cellulose (1:4). Oocyte maturation and uterine development were assessed on 19 d of the 2nd oestrous cycle. Microbial diversity of faecal samples was analysed by high-throughput pyrosequencing (16S rRNA) and blood samples were subjected to untargeted metabolomics. Results The rates of oocytes showing first polar bodies after in vitro maturation for 44 h and uterine development increased linearly with increasing DF intake; DF 1.75 gilts had a 19.8% faster oocyte maturation rate and a 48.9 cm longer uterus than DF 1.0 gilts (P < 0.05). Among the top 10 microbiota components at the phylum level, 8 increased linearly with increasing DF level, and the relative abundance of 30 of 53 microbiota components at the genus level (> 0.1%) increased linearly or quadratically with increasing DF intake. Untargeted metabolic analysis revealed significant changes in serum metabolites that were closely associated with microbiota, including serotonin, a gut-derived signal that stimulates oocyte maturation. Conclusions The findings provide evidence of the benefits of increased DF intake by supplementing inulin and cellulose on oocyte maturation and uterine development in gilts, and new microbial and metabolomic insight into the mechanisms mediating the effects of DF on reproductive performance of replacement gilts. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00657-0.
Collapse
Affiliation(s)
- Zhaoyue Men
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China.,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Meng Cao
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Yuechan Gong
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Lun Hua
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Ruihao Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China.,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Xin Zhu
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China.,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Lianchao Tang
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Jian Li
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
35
|
Plush KJ, Nowland TL. Disentangling the behavioural and fibre influences of nesting enrichment for sows on piglet survival. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
The influence of satiety on the motivation of stall-housed gestating sows to exit their stall. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2021.105508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Xia B, Wu W, Zhang L, Wen X, Xie J, Zhang H. Gut microbiota mediates the effects of inulin on enhancing sulfomucin production and mucosal barrier function in a pig model. Food Funct 2021; 12:10967-10982. [PMID: 34651635 DOI: 10.1039/d1fo02582a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dietary fibers (DFs) have many beneficial effects on intestinal health by ameliorating intestinal inflammation and modulating the microbial community composition, thereby affecting the barrier function. This study aims to characterize the gut microbiota of pigs fed with DFs, revealing a link between the intestinal microbiota and mucin chemotypes. Pigs (six per group) were randomly allotted to consume one of the following diets: control (CON) or a diet supplemented with 5% microcrystalline cellulose (MCC) or inulin (INU) for 72 days. We found that INU but not MCC enhanced the colonic barrier function by promoting the expression of ZO-1, Occludin and MUC2 and reducing the colonic crypt depth. INU increased sulfomucin production and mRNA levels of sulfotransferases Gal3ST1 and Gal3ST2. Goblet cells in the ileum were found to contain predominantly sialomucins while colonic goblet cells were dominated by sulfomucins with sialomucins absent. DF consumption increased the concentrations of short-chain fatty acids (SCFAs) of the ileum and colon compared to the CON diet. Moreover, the results of 16S rRNA gene sequencing analysis revealed that DFs significantly altered the composition of ileal and colonic mucosal microbiota. Network analysis indicated that INU-induced changes in bacterial genera and SCFAs, such as Akkermansia and butyrate, were significantly related with sulfomucins and the mucosal barrier function-gene in pigs. Collectively, these findings suggest that the intestinal mucosal microbiota and SCFAs induced by INU play a crucial role in modulating the chemotypes of mucin and the barrier function.
Collapse
Affiliation(s)
- Bing Xia
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China. .,College of Animal Science and Technology, Northwest A&F University, Yangling District 712100, China
| | - Weida Wu
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Li Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaobin Wen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jingjing Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
38
|
Hu P, Wang L, Hu Z, Jiang L, Hu H, Rao Z, Wu L, Tang Z. Effects of Multi-Bacteria Solid-State Fermented Diets with Different Crude Fiber Levels on Growth Performance, Nutrient Digestibility, and Microbial Flora of Finishing Pigs. Animals (Basel) 2021; 11:ani11113079. [PMID: 34827811 PMCID: PMC8614399 DOI: 10.3390/ani11113079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Dietary cellulase was found to be an important nutrient, and solid-state fermentation could improve the nutritional value of feed. To study the effects of multi-bacteria solid-state fermented diets and dietary crude fiber levels on finishing pigs, a total of 36 pigs were divided into four treatments: (1) pigs fed a basal diet containing 7.00% CF (HF), (2) pigs fed a basal multi-bacteria fermentation diet containing 7.00% CF (HFM), (3) pigs fed a basal diet containing 2.52% CF (LF), and (4) piglets fed a basal multi-bacteria fermentation diet containing 2.52% CF (LFM). The growth performance, nutrient digestibility and digestion amount, serum biochemical index, and fecal microflora were evaluated. Multi-bacteria solid-state fermentation had a positive effect on the nutrient digestion and serum biochemical indicators, which was contrary to high-fiber diets. Both high-fiber diets and multi-bacteria solid-state fermentation could optimize intestinal flora in finishing pigs. Abstract This study aimed to investigate the effects of multi-bacteria solid-state fermented diets with different crude fiber (CF) levels on growth performance, nutrient digestibility, and microbial flora of finishing pigs. The multi-bacteria solid-state fermented diets were made up of Lactobacillus amylovorus, Enterococcus faecalis, Bacillus subtilis, and Candida utilis. According to a 2 (factors) × 2 (levels) design, with the two factors being multi-bacteria solid-state fermentation (fed non-fermented diet or multi-bacteria fermentation) or CF levels (fed a basal diet containing 2.52% CF or 7.00% CF), a total of 36 finishing pigs (70.80 ± 5.75 kg) were divided into 4 treatments with 9 barrows per group: (1) pigs fed a diet containing 7.00% CF (HF), (2) pigs fed a multi-bacteria fermentation diet containing 7.00% CF (HFM), (3) pigs fed a diet containing 2.52% CF (LF), and (4) piglets fed a multi-bacteria fermentation diet containing 2.52% CF (LFM). This experiment lasted 28 days. The multi-bacteria solid-state fermented diet increased the backfat thickness (p < 0.05) and apparent total tract nutrient digestibility (ATTD) of CF, neutral detergent fiber (NDF), acid detergent fiber (ADF), crude protein (CP), 8 amino acids (Trp, Asp, Gly, Cys, Val, Met, Ile, and Leu), total essential amino acids (EAA), total non-essential amino acids (NEEA), and total amino acids (TAA) (p < 0.05). Multi-bacteria solid-state fermented diet increased serum concentrations of HDL-c, ABL, TP, and GLU, the serum enzyme activities of GSH-Px, T-AOC, SOD, and CAT (p < 0.05), the relative abundance of Lactobacillus, Oscillospira, and Coprococcus (p < 0.05), and the abundance of YAMINSYN3-PWY, PWY-7013, GOLPDLCAT-PWY, ARGORNPROST-PWY, and PWY-5022 pathways (p < 0.05). The multi-bacteria solid-state fermented diet reduced the digestion amount of CF, NDF, and ADF (p < 0.05), the serum concentrations of TC, TG, LDL-c, BUN, and MDA (p < 0.05), the relative abundance of Streptococcaceae (p < 0.05), and the abundance of PWY-6470, PWY0-862, HSERMETANA-PWY, LACTOSECAT-PWY, MET-SAM-PWY, PWY-6700, PWY-5347, PWY0-1061, and LACTOSECAT-PWY pathways (p < 0.05). The high-fiber diet increased average daily feed intake (p < 0.05), the serum concentrations of TC, TG, LDL-c, BUN, and MDA (p < 0.05), the relative abundance of Clostridiaceae_Clostridium and Coprococcus (p < 0.05), and the abundance of TCA-GLYOX-BYPASS, GLYCOLYSIS-TCA-GLYOX-BYPASS, and PWY-6906 pathways (p < 0.05). The high-fiber diet reduced chest circumference (p < 0.05) and ATTD of ether extract (EE), CF, NDF, ADF, Ca, CP, 18 amino acids (Trp, Thr, Val, Met, Ile, Leu, Phe, Lys, His, Arg Asp, Ser, Glu, Gly, Ala, Cys, Tyr, and Pro), EAA, NEAA, and TAA (p < 0.05). The high-fiber diet also reduced the serum concentrations of HDL-c, TP, ABL, and GLU, the serum enzyme activities of T-AOC, GSH-Px, SOD, and CAT (p < 0.05), and the relative abundance of Akkermansia and Oscillospira (p < 0.05). There was no significant effect of the interaction between multi-bacteria fermentation and dietary CF levels, except on the digestion amount of CF (p < 0.05). The 7.00% CF had a negative effect on the digestion of nutrients, but multi-bacteria solid-state fermentation diets could relieve this negative effect and increase backfat thickness. High-fiber diets and multi-bacteria solid-state fermentation improved the diversity and abundance of fecal microorganisms in finishing pigs.
Collapse
|
39
|
Threadgold T, Greenwood EC, Van Wettere W. Identifying Suitable Supplements to Improve Piglet Survival during Farrowing and Lactation. Animals (Basel) 2021; 11:ani11102912. [PMID: 34679933 DOI: 10.3390/ani1110291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 05/22/2023] Open
Abstract
Piglet mortality during parturition and prior to weaning is an ongoing economic and welfare issue. This review collates the current literature describing the effects of specific dietary supplements on key parameters affecting piglet survival. Four distinct parameters were identified as having a direct impact on the survival of piglets to weaning: stillbirth rate, birth weight and weight variation, daily gain and weaning weight, and colostrum and milk quality. In the primary stage, relevant literature from the past 5 years was reviewed, followed by a secondary review of literature older than 5 years. The focal parameters benefitted from different supplements. For example, stillbirth may be reduced by supplements in late gestation, including forms of arginine, alpha-tocopherol-selenium, uridine, and Saccharomyces cerevisiae yeast culture, whereas average daily gain and weaning weight were related closely to supplements which improved colostrum and milk quality, most commonly fats and fatty acids in the form of n-3 polyunsaturated fatty acids, soybean oil, and fish oil, and polysaccharides, such as ginseng polysaccharide. Therefore, an effective supplement plan for piglet mortality reduction must consider the circumstances of the individual system and target one or more of the highlighted parameters.
Collapse
Affiliation(s)
- Tobias Threadgold
- School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Mudla Wirra Road, Roseworthy, SA 5371, Australia
| | - Emma Catharine Greenwood
- School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Mudla Wirra Road, Roseworthy, SA 5371, Australia
| | - William Van Wettere
- School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Mudla Wirra Road, Roseworthy, SA 5371, Australia
| |
Collapse
|
40
|
Threadgold T, Greenwood EC, Van Wettere W. Identifying Suitable Supplements to Improve Piglet Survival during Farrowing and Lactation. Animals (Basel) 2021; 11:ani11102912. [PMID: 34679933 PMCID: PMC8532790 DOI: 10.3390/ani11102912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
Piglet mortality during parturition and prior to weaning is an ongoing economic and welfare issue. This review collates the current literature describing the effects of specific dietary supplements on key parameters affecting piglet survival. Four distinct parameters were identified as having a direct impact on the survival of piglets to weaning: stillbirth rate, birth weight and weight variation, daily gain and weaning weight, and colostrum and milk quality. In the primary stage, relevant literature from the past 5 years was reviewed, followed by a secondary review of literature older than 5 years. The focal parameters benefitted from different supplements. For example, stillbirth may be reduced by supplements in late gestation, including forms of arginine, alpha-tocopherol-selenium, uridine, and Saccharomyces cerevisiae yeast culture, whereas average daily gain and weaning weight were related closely to supplements which improved colostrum and milk quality, most commonly fats and fatty acids in the form of n-3 polyunsaturated fatty acids, soybean oil, and fish oil, and polysaccharides, such as ginseng polysaccharide. Therefore, an effective supplement plan for piglet mortality reduction must consider the circumstances of the individual system and target one or more of the highlighted parameters.
Collapse
|
41
|
Luo Z, Zhao Y, Zeng L, Yin J, Zeng Q, Li X, He J, Wang J, Tan B. Effects of Fermented Radix puerariae Residue on Nutrient Digestibility and Reproductive Performance of Sows. Front Nutr 2021; 8:715713. [PMID: 34527689 PMCID: PMC8435608 DOI: 10.3389/fnut.2021.715713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/05/2021] [Indexed: 11/19/2022] Open
Abstract
This study was conducted to investigate the effect of fermented Radix puerariae residue (FRPR) on reproductive performance, apparent total tract digestibility (ATTD) of nutrients, and fecal short-chain fatty acid (SCFA) contents of sows. A total of 36 landrace × large white multiparous sows were randomly arranged into three treatments, representing supplementation with 0, 2, and 4% FRPR to a corn-soybean meal and wheat bran-based diet during the whole gestation period. The results showed that dietary FRPR had no effects on litter size and the number of total alive piglets (P > 0.05), and that the number of weaned piglets and weaning weight of litter were increased in sows with 4% FRPR treatment compared with control treatment (P < 0.05). Dietary 4% FRPR significantly decreased constipation rate, improved the ATTD of dry matter and organics, and fecal contents of acetate, propionate, and total SCFAs (P < 0.05). In the offspring piglets, serum concentrations of total protein, alkaline phosphatase, IgG, IL-10, and TGF-β were increased, but blood urea nitrogen content was decreased with 4% FRPR treatment (P < 0.05). There were no significant differences in all determined indexes except for fecal acetic acid and total SCFAs between control and 2% FRPR treatment (P > 0.05). These findings indicated that FRPR used in the diets of sows showed positive effects on fecal characteristics, utilization of nutrients, and reproductive performance. Maternal supplementation with 4% FRPR is recommended for improving immune responses, weaning litter size, and litter weight of offspring piglets, which provide useful information for the application of residues of R. puerariae.
Collapse
Affiliation(s)
- Zhenfu Luo
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yuanyuan Zhao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Liming Zeng
- College of Animal Science, Jiangxi Agricultural University, Nanchang, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qinghua Zeng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xilong Li
- Key Laboratory of Feed Biotechnology, The Ministry of Agriculture of the People's Republic of China, Beijing, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Bi'e Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
42
|
The Effects of Zearalenone on the Localization and Expression of Reproductive Hormones in the Ovaries of Weaned Gilts. Toxins (Basel) 2021; 13:toxins13090626. [PMID: 34564630 PMCID: PMC8470812 DOI: 10.3390/toxins13090626] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/22/2021] [Accepted: 09/05/2021] [Indexed: 12/14/2022] Open
Abstract
This study aims to investigate the effects of zearalenone (ZEA) on the localizations and expressions of follicle stimulating hormone receptor (FSHR), luteinizing hormone receptor (LHR), gonadotropin releasing hormone (GnRH) and gonadotropin releasing hormone receptor (GnRHR) in the ovaries of weaned gilts. Twenty 42-day-old weaned gilts were randomly allocated into two groups, and treated with a control diet and a ZEA-contaminated diet (ZEA 1.04 mg/kg), respectively. After 7-day adjustment, gilts were fed individually for 35 days and euthanized for blood and ovarian samples collection before morning feeding on the 36th day. Serum hormones of E2, PRG, FSH, LH and GnRH were determined using radioimmunoassay kits. The ovaries were collected for relative mRNA and protein expression, and immunohistochemical analysis of FSHR, LHR, GnRH and GnRHR. The results revealed that ZEA exposure significantly increased the final vulva area (p < 0.05), significantly elevated the serum concentrations of estradiol, follicle stimulating hormone and GnRH (p < 0.05), and markedly up-regulated the mRNA and protein expressions of FSHR, LHR, GnRH and GnRHR (p < 0.05). Besides, the results of immunohistochemistry showed that the immunoreactive substances of ovarian FSHR, LHR, GnRH and GnRHR in the gilts fed the ZEA-contaminated diet were stronger than the gilts fed the control diet. Our findings indicated that dietary ZEA (1.04 mg/kg) could cause follicular proliferation by interfering with the localization and expression of FSHR, LHR, GnRH and GnRHR, and then affect the follicular development of weaned gilts.
Collapse
|
43
|
Martins JS, Genova JL, Leal IF, Barbosa KA, Santos LBDA, Rupolo PE, Reis LE, Oliveira NTED, Carvalho PLDO, Bruno LDG. Potential impacts of guava seed meal on piglet feeding as a dietary fibre alternative. JOURNAL OF APPLIED ANIMAL RESEARCH 2021. [DOI: 10.1080/09712119.2021.1961780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Jansller Luiz Genova
- Animal Science Department, State University of Western Paraná, Marechal Cândido Rondon, Brazil
| | | | | | | | - Paulo Evaristo Rupolo
- Animal Science Department, State University of Western Paraná, Marechal Cândido Rondon, Brazil
| | - Luiz Eduardo Reis
- Animal Science Department, State University of Western Paraná, Marechal Cândido Rondon, Brazil
| | | | | | | |
Collapse
|
44
|
Yang M, Mao Z, Jiang X, Cozannet P, Che L, Xu S, Lin Y, Fang Z, Feng B, Wang J, Li J, Wu D, Zhuo Y. Dietary fiber in a low-protein diet during gestation affects nitrogen excretion in primiparous gilts, with possible influences from the gut microbiota. J Anim Sci 2021; 99:6237918. [PMID: 33871635 DOI: 10.1093/jas/skab121] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/16/2021] [Indexed: 12/28/2022] Open
Abstract
We investigated the effects of dietary fiber (DF) supplementation in normal or low crude protein (CP) diets on reproductive performance and nitrogen (N) utilization in primiparous gilts. In total, 77 Landrace × Yorkshire pregnant gilts were randomly allocated to four dietary treatments in a 2 × 2 factorial design. The groups comprised 1) equal intake of normal CP (12.82% and 0.61% total lysine), 2) low CP (LP) (10.53% and 0.61% total lysine), and 3) with or 4) without DF supplementation (cellulose, inulin, and pectin in a 34:10:1 ratio). A low-protein diet during gestation significantly reduced daily weight gain from days 91 to 110 of pregnancy (-162.5 g/d, P = 0.004). From N balance trials conducted at days 35 to 38, 65 to 68, and 95 to 98 of pregnancy, DF addition increased fecal N excretion at days 65 to 68 (+24.1%) and 95 to 98 (+13.8%) of pregnancy (P < 0.05) but reduced urinary N excretion (P < 0.05), resulting in greater N retention at each gestational stage. DF increased fecal microbial protein levels and excretion during gestation. An LP diet also reduced urinary N excretion at different gestational stages. An in vitro fermentation trial on culture media with nonprotein N urea and ammonium bicarbonate (NH4HCO3) as the only N sources revealed that microbiota derived from feces of gestating gilts fed the high DF diet exhibited a greater capacity to convert nonprotein N to microbial protein. Microbial fecal diversity, as measured by 16S rRNA sequencing, revealed significant changes from DF but not CP diets. Gilts fed an LP diet had a higher number of stillbirths (+0.83 per litter, P = 0.046) and a lower piglet birth weight (1.52 vs. 1.37 kg, P = 0.006), regardless of DF levels. Collectively, DF supplementation to gestation diets shifted N excretion from urine to feces in the form of microbial protein, suggesting that the microbiota had a putative role in controlling N utilization from DF. Additionally, a low-protein diet during gestation negatively affected the litter performance of gilts.
Collapse
Affiliation(s)
- Min Yang
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China.,Chengdu Agricultural College, Wenjiang, Chengdu 611130, People's Republic of China
| | - Zhengyu Mao
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - Xuemei Jiang
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | | | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - Jianping Wang
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - Jian Li
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - De Wu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, and Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, People's Republic of China
| |
Collapse
|
45
|
Shang Q, Liu H, Wu D, Mahfuz S, Piao X. Source of fiber influences growth, immune responses, gut barrier function and microbiota in weaned piglets fed antibiotic-free diets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:315-325. [PMID: 34258419 PMCID: PMC8245821 DOI: 10.1016/j.aninu.2020.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/03/2020] [Accepted: 12/28/2020] [Indexed: 01/25/2023]
Abstract
This study examined the impacts of different fiber sources on growth, immune status and gut health in weaned piglets fed antibiotic-free diets. Sixty piglets (BW = 8.18 ± 1.35 kg) were assigned to 3 dietary treatments based on BW and gender in a randomized complete block design (5 replicates/treatment and 4 piglets [2 barrows and 2 gilts]/replicate): (1) an antibiotic-free diet (control, CON); (2) CON + 6% wheat bran (WB); (3) CON + 4% sugar beet pulp (SBP). Dietary WB supplementation tended to increase ADG compared with CON from d 1 to 14 (P = 0.051) and from d 1 to 28 (P = 0.099). Supplementation of WB increased (P < 0.05) G:F compared with CON and SBP from d 1 to 14 and from d 1 to 28. Compared with CON, the addition of WB reduced (P < 0.05) diarrhea rate from d 1 to 14 and tended (P = 0.054) to reduce diarrhea rate from d 1 to 28. The addition of WB decreased (P < 0.05) serum diamine oxidase activity on d 14, and up-regulated (P < 0.05) ileal mRNA levels of occludin on d 28 when compared with CON. Piglets fed WB showed decreased (P < 0.05) serum interleukin-6 levels compared to those fed SBP and decreased (P < 0.05) ileal interleukin-8 levels compared to those fed CON and SBP on d 28. Supplementation of WB increased (P < 0.05) serum levels of immunoglobulin A (IgA), IgG and IgM compared with SBP on d 14, and increased (P < 0.05) the levels of serum IgA and ileal sIgA compared with CON and SBP on d 28. Piglets fed WB showed an enhanced (P < 0.05) α-diversity of cecal microbiota than those fed SBP, while piglets fed SBP showed reduced (P < 0.05) α-diversity of cecal microbiota than those fed CON. Compared with CON, the addition of WB elevated (P < 0.05) the abundance of Lachnospira and cecal butyric acid level. Piglets fed WB also showed increased (P < 0.05) abundances of Lachnospira and unclassified_f_Lachnospiraceae compared with those fed SBP. Collectively, the supplementation of WB to antibiotic-free diets improved performance, immune responses, gut barrier function and microbiota compared with the CON and SBP fed piglets. Therefore, supplementing weaned piglets with WB was more effective than SBP.
Collapse
Affiliation(s)
- Qinghui Shang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hansuo Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Di Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shad Mahfuz
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
46
|
Shurson GC, Hung YT, Jang JC, Urriola PE. Measures Matter-Determining the True Nutri-Physiological Value of Feed Ingredients for Swine. Animals (Basel) 2021; 11:1259. [PMID: 33925594 PMCID: PMC8146707 DOI: 10.3390/ani11051259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 01/10/2023] Open
Abstract
Many types of feed ingredients are used to provide energy and nutrients to meet the nutritional requirements of swine. However, the analytical methods and measures used to determine the true nutritional and physiological ("nutri-physiological") value of feed ingredients affect the accuracy of predicting and achieving desired animal responses. Some chemical characteristics of feed ingredients are detrimental to pig health and performance, while functional components in other ingredients provide beneficial health effects beyond their nutritional value when included in complete swine diets. Traditional analytical procedures and measures are useful for determining energy and nutrient digestibility of feed ingredients, but do not adequately assess their true physiological or biological value. Prediction equations, along with ex vivo and in vitro methods, provide some benefits for assessing the nutri-physiological value of feed ingredients compared with in vivo determinations, but they also have some limitations. Determining the digestion kinetics of the different chemical components of feed ingredients, understanding how circadian rhythms affect feeding behavior and the gastrointestinal microbiome of pigs, and accounting for the functional properties of many feed ingredients in diet formulation are the emerging innovations that will facilitate improvements in precision swine nutrition and environmental sustainability in global pork-production systems.
Collapse
Affiliation(s)
- Gerald C. Shurson
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA; (Y.-T.H.); (J.C.J.); (P.E.U.)
| | | | | | | |
Collapse
|
47
|
Inclusion of Oat and Yeast Culture in Sow Gestational and Lactational Diets Alters Immune and Antimicrobial Associated Proteins in Milk. Animals (Basel) 2021; 11:ani11020497. [PMID: 33672799 PMCID: PMC7918739 DOI: 10.3390/ani11020497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary This study investigated the impact that supplementing sow’s gestation and lactation feed with oat alone or together with brewer’s yeast has on milk proteins and piglet growth and health. Oat and yeast supplements increased abundance of several milk proteins involved in immune protection. Piglets born from either the oat- or yeast-supplemented sows had decreased incidence of diarrhea after weaning. The average birth weights for piglets born of dams that consumed Oat were significantly greater than those that did not. However, piglets born to sows that consumed yeast in combination with oat weighed less at weaning and gained the least amount of weight post-weaning. These data suggest that oat, and to a lesser extent, yeast, added to maternal diets during gestation and lactation can positively impact milk, growth, and health of offspring but given in combination can potentially negatively affect piglet weight gain. Abstract Maternal diet supplementation with pro- and prebiotics is associated with decreased incidence of diarrhea and greater piglet performance. This study investigated the impact adding whole ground oat as a prebiotic, alone or in combination with a probiotic, yeast culture (YC) (Saccharomyces cerevisiae), to sow gestation and lactation rations had on milk protein composition, piglet growth, and incidence of post-weaning diarrhea (PWD). Diets: control (CON), CON + yeast culture (YC) [5 g/kg], CON + oat (15% inclusion rate) (Oat) or CON+ YC [5 g/kg] + Oat (15%) were fed the last 30 days of gestation and throughout lactation (18–21 days). Shotgun proteome analysis of day 4 and 7 postpartum milk found 36 differentially abundant proteins (P-adj < 0.1) in both Oat and YC supplemented sows relative to CON. Notable was the increased expression of antimicrobial proteins, lactoferrin and chitinase in milk of Oat and YC sows compared to CON. The levels of IgA, IgM (within colostrum and milk) and IgG (within milk) were similar across treatments. However, colostral IgG levels in Oat-supplemented sows were significantly lower (p < 0.05) than that of the control sows, IgG from Oat-supplemented sows displayed greater reactivity to E. coli-antigens compared with CON and YC. Piglets from sows that consumed Oat alone or in combination weighed significantly more (p < 0.05) at birth compared to CON and YC. However, piglets in the Oat + YC group weighed less at weaning and had the lowest weight gain (p < 0.05) postweaning, compared with CON. Taken together with the observation that piglets of either YC- or Oat-fed sows had less PWD compared to CON and YC+ Oat suggests that Oat or YC supplementation positively impacts piglets through expression of certain milk-associated immune and antimicrobial proteins.
Collapse
|
48
|
Pi Y, Hu J, Bai Y, Wang Z, Wu Y, Ye H, Zhang S, Tao S, Xiao Y, Han D, Ni D, Zou X, Wang J. Effects of dietary fibers with different physicochemical properties on fermentation kinetics and microbial composition by fecal inoculum from lactating sows in vitro. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:907-917. [PMID: 32737882 DOI: 10.1002/jsfa.10698] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/22/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Efficient utilization of dietary fibers (DFs) is important for optimizing feed resource utilization and animal health. The aim of the current study was to assess the effects of DFs with varying physicochemical properties (bulky, viscous, and fermentable) on fermentation kinetics and microbial composition during in vitro fermentation by fecal inoculum from lactating sow. According to the physicochemical properties, three different DFs, lignocellulose (LC), modified cassava starch (MCS) and konjac flour (KF) were selected as bulky fiber, fermentable fiber and viscous fiber respectively. Gas production, short-chain fatty acids (SCFAs) profiles and microbial composition were monitored during the fermentation. RESULTS Results showed that the gas production in 72 h (GP72h ) ranked as: KF > MCS > LC (P < 0.05). The halftime of asymptotic gas production ranked as: KF < MCS = LC (P < 0.001). At 36 h of fermentation, MCS group showed higher concentrations of formic acid and lactate than LC and KF groups, whereas KF group showed higher concentrations of propionate and butyrate than LC and MCS groups (P < 0.05). At 72 h of fermentation, KF group showed higher concentrations of formic acid, lactate and propionate than LC and MCS groups, whereas MCS group showed higher concentrations of acetate and butyrate than LC and KF groups (P < 0.05). At 36 h of fermentation, Anaerovibrio and Erysipelatoclostridium abundances were higher in KF group, whereas Proteiniclasticum abundance was higher in MCS group. At 72 h of fermentation, the abundance of Fibrobacter in LC group was higher than that in MCS and KF groups. In addition, we also observed that the abundances of certain specific bacteria (Anaerovibrio and Erysipelatoclostridium) were closely related to the SCFAs production (propionate and butyrate) at different fermentation times. CONCLUSION Collectively, the present study revealed that KF is a fast fermentation fiber which could produce propionate and butyrate rapidly, whereas LC is difficult to be fermented by bacteria. In addition, the fermentation of DFs with different physicochemical properties had divergent impacts on microbial composition and SCFA production. These findings deepen our understanding of the mechanisms of interaction between DFs and intestinal microbiota, and provide new ideas for the rational use of fiber resources in lactating sows. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu Pi
- State Key Laboratory of Biological Feed, Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co. Ltd, Ganzhou, China
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jie Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu Bai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhibo Wang
- State Key Laboratory of Biological Feed, Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co. Ltd, Ganzhou, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Ye
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shiyi Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shiyu Tao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dongjiao Ni
- State Key Laboratory of Biological Feed, Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co. Ltd, Ganzhou, China
| | - Xinhua Zou
- State Key Laboratory of Biological Feed, Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co. Ltd, Ganzhou, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
49
|
Consumption of Dietary Fiber from Different Sources during Pregnancy Alters Sow Gut Microbiota and Improves Performance and Reduces Inflammation in Sows and Piglets. mSystems 2021; 6:6/1/e00591-20. [PMID: 33500330 PMCID: PMC7842364 DOI: 10.1128/msystems.00591-20] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although the direct effects of dietary fiber on gut microbiota composition have been studied extensively, systematic evaluation of different fiber sources on gut health and inflammatory responses of sows and their offspring has rarely been conducted. Excessive reactive oxygen species produced by overactive metabolic processes during late pregnancy and lactation of sows leads to increased endotoxin levels, disordered gut microbiota, decreased SCFA production, and secretion of proinflammatory factors, which in turn causes local inflammation of the gut, potential damage of the gut microbial barrier, increased gut permeability, increased blood endotoxin levels (resulting in systemic inflammation), and ultimately decreased sow and piglet performance. In pregnant and lactating sows, metabolism and immunity undergo drastic changes, which can lead to constipation, abortion, and intrauterine growth restriction (IUGR) and reduce production performance. Dietary fiber can regulate animal gut microbiota, alleviate inflammatory responses, and improve performance. Here, 48 sows (Large × Landrace) were randomly allocated to groups including, control, and with alfalfa meal (AM), beet pulp, and soybean skin dietary supplementation for 60 days of gestation. The AM diet decreased IUGR, increased food intake during lactation, and promoted the reproductive performance and physical condition of sows. Further, the AM diet significantly reduced markers of intestinal permeability (reactive oxygen species and endotoxin) in sow serum, and of systemic inflammation (interleukin-6 [IL-6] and tumor necrosis factor alpha) in sow feces and serum, as well as piglet serum, while it increased the anti-inflammatory marker, IL-10, in sow serum and feces. The AM diet also significantly affected gut microbiota by increasing the relative abundance of proinflammatory bacteria, while decreasing anti-inflammatory bacteria. Moreover, the total short-chain fatty acid (SCFA) content was higher in feces from sows fed an AM diet, with butyric acid content significantly higher during lactation, than in controls. Sow performance was correlated with intestinal permeability, inflammation, and gut microbiota, which were also vertically transmitted to piglets. Our results are significant for guiding feed management in the pig breeding industry. Further, the “sows to piglets” model provides a reference for the effect of dietary fiber on the gastrointestinal function of human mothers and infants. IMPORTANCE Although the direct effects of dietary fiber on gut microbiota composition have been studied extensively, systematic evaluation of different fiber sources on gut health and inflammatory responses of sows and their offspring has rarely been conducted. Excessive reactive oxygen species produced by overactive metabolic processes during late pregnancy and lactation of sows leads to increased endotoxin levels, disordered gut microbiota, decreased SCFA production, and secretion of proinflammatory factors, which in turn causes local inflammation of the gut, potential damage of the gut microbial barrier, increased gut permeability, increased blood endotoxin levels (resulting in systemic inflammation), and ultimately decreased sow and piglet performance. Our results showed that supplementation of the diet with alfalfa meal in mid and late pregnancy can reverse this process. Our findings lay a foundation for improving the gut health of sows and piglets and provide insights into the study of the gastrointestinal tract function in human mothers and infants.
Collapse
|
50
|
Hu Y, Huang X, Zong X, Bi Z, Cheng Y, Xiao X, Wang F, Wang Y, Lu Z. Chicory fibre improves reproductive performance of pregnant rats involving in altering intestinal microbiota composition. J Appl Microbiol 2020; 129:1693-1705. [PMID: 32356327 DOI: 10.1111/jam.14679] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 01/09/2023]
Abstract
AIM Chicory fibre (CF) is rich in fructan, which always functions as a quality dietary fibre source during mammalian pregnancy; however, its effect on reproductive performance remains unclear. METHODS AND RESULTS 40 pregnant SD rats were randomly allotted to receive one of four diets: basal diet (control group), basal diet + 5% CF, basal diet + 10% CF, and basal diet + 15% CF, respectively. We found that CF significantly increased the number born alive and total litter birth weight (P < 0·05), increased the expression of intestinal tight junction proteins, mucins and antimicrobial peptides, accompanied by the increase of villi height and the decrease of crypts depth of pregnant SD rats (P < 0·05). We also observed that CF markedly increased the acetic acid, propanoic acid, butyric acid and total SCFAs concentrations in caecum contents and promoted the expression of SCFAs-related receptors (P < 0·05). Notably, rats fed CF increased the relative abundance of Bacteroidetes (P < 0·001), decreased the relative abundance of Firmicutes and Proteobacteria, while markedly lowered the Firmicutes/ Bacteroidetes ratio (F/B ratio) (P < 0·05). Intriguingly, the number born alive and total litter birth weight were positively correlated with some probiotics and negatively correlated with other harmful bacteria by Pearson correlation analysis. CONCLUSION Collectively, CF can enhance intestinal barrier function and maintain intestinal health, and may improve reproductive performance by altering intestinal microbiota composition. SIGNIFICANCE AND IMPACT OF THE STUDY Adding suitable dietary fibre to the diet can improve the reproductive performance of sows. Indeed, there exist various problems in the application of traditional dietary fibres, including high insoluble fibre content and anti-nutritional factor level, and mycotoxin contamination. This study demonstrates that dietary CF supplementation improves reproductive performance and intestinal health. Thus, CF can be applied in pregnancy animals as a new dietary fibre additive in animal husbandry.
Collapse
Affiliation(s)
- Y Hu
- National Engineering Laboratory of Bio-Feed Safety and Pollution Prevention, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - X Huang
- National Engineering Laboratory of Bio-Feed Safety and Pollution Prevention, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - X Zong
- National Engineering Laboratory of Bio-Feed Safety and Pollution Prevention, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Z Bi
- National Engineering Laboratory of Bio-Feed Safety and Pollution Prevention, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Y Cheng
- National Engineering Laboratory of Bio-Feed Safety and Pollution Prevention, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - X Xiao
- National Engineering Laboratory of Bio-Feed Safety and Pollution Prevention, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - F Wang
- National Engineering Laboratory of Bio-Feed Safety and Pollution Prevention, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Y Wang
- National Engineering Laboratory of Bio-Feed Safety and Pollution Prevention, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Z Lu
- National Engineering Laboratory of Bio-Feed Safety and Pollution Prevention, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture, Institute of Feed Science, Zhejiang University, Hangzhou, China
| |
Collapse
|