1
|
Wang H, Zhang W, Sun Y, Xu X, Chen X, Zhao K, Yang Z, Liu H. Nanotherapeutic strategies exploiting biological traits of cancer stem cells. Bioact Mater 2025; 50:61-94. [PMID: 40242505 PMCID: PMC12002948 DOI: 10.1016/j.bioactmat.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/08/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Cancer stem cells (CSCs) represent a distinct subpopulation of cancer cells that orchestrate cancer initiation, progression, metastasis, and therapeutic resistance. Despite advances in conventional therapies, the persistence of CSCs remains a major obstacle to achieving cancer eradication. Nanomedicine-based approaches have emerged for precise CSC targeting and elimination, offering unique advantages in overcoming the limitations of traditional treatments. This review systematically analyzes recent developments in nanomedicine for CSC-targeted therapy, emphasizing innovative nanomaterial designs addressing CSC-specific challenges. We first provide a detailed examination of CSC biology, focusing on their surface markers, signaling networks, microenvironmental interactions, and metabolic signatures. On this basis, we critically evaluate cutting-edge nanomaterial engineering designed to exploit these CSC traits, including stimuli-responsive nanodrugs, nanocarriers for drug delivery, and multifunctional nanoplatforms capable of generating localized hyperthermia or reactive oxygen species. These sophisticated nanotherapeutic approaches enhance selectivity and efficacy in CSC elimination, potentially circumventing drug resistance and cancer recurrence. Finally, we present an in-depth analysis of current challenges in translating nanomedicine-based CSC-targeted therapies from bench to bedside, offering critical insights into future research directions and clinical implementation. This review aims to provide a comprehensive framework for understanding the intersection of nanomedicine and CSC biology, contributing to more effective cancer treatment modalities.
Collapse
Affiliation(s)
- Hongyu Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Wenjing Zhang
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yun Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xican Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xiaoyang Chen
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Kexu Zhao
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Zhao Yang
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Huiyu Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| |
Collapse
|
2
|
Makowska A, Buhl EM, Göschel M, Kuo CC, Nothbaum C, Toktamis EA, Shen L, Abdallah AT, Weiskirchen R, Kontny U. Characterization and comparison of two NPC cell lines, C17 and C666-1, as models for studying the pathogenesis of nasopharyngeal carcinoma. Biochem Biophys Res Commun 2025; 772:152053. [PMID: 40412368 DOI: 10.1016/j.bbrc.2025.152053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/14/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor that originates from the epithelial cells of the nasopharynx. NPC is closely linked to Epstein-Barr virus (EBV) infection, which necessitates the use of EBV-positive cell lines for accurate pathology studies. In this paper, we present a detailed comparison of the C666-1 and C17 cell lines using bulk RNA-sequencing (RNA-Seq) methods. By thoroughly examining the gene expression profiles of these cell lines, we aim to elucidate the molecular mechanisms that drive NPC progression and metastasis. Understanding these mechanisms is crucial for developing effective treatment strategies. Cancer cell line models are essential in this research, as they provide a controlled environment for studying the complex interplay between viral and host cellular factors. Additionally, our study highlights the differences between the two cell lines, which could be pivotal in designing new experiments and tailoring therapeutic approaches.
Collapse
Affiliation(s)
- Anna Makowska
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Aachen, D-52074, Aachen, Germany.
| | - Eva Miriam Buhl
- Electron Microscopy Facility, Institute of Pathology, University Hospital Aachen, D-52074, Aachen, Germany.
| | - Maximilian Göschel
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Aachen, D-52074, Aachen, Germany.
| | - Chao-Chung Kuo
- Genomics Facility, Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany.
| | - Christina Nothbaum
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Aachen, D-52074, Aachen, Germany.
| | - Emel Aylin Toktamis
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Aachen, D-52074, Aachen, Germany.
| | - Lian Shen
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Aachen, D-52074, Aachen, Germany.
| | - Ali T Abdallah
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty and University Hospital Cologne, University of Cologne, D-50931, Cologne, Germany; Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, D-50924, Cologne, Germany.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital Aachen, D-52074, Aachen, Germany.
| | - Udo Kontny
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Aachen, D-52074, Aachen, Germany.
| |
Collapse
|
3
|
Ying S, Liu H, Zhang Y, Mei Y. Harnessing Dendritic Cell Function in Hepatocellular Carcinoma: Advances in Immunotherapy and Therapeutic Strategies. Vaccines (Basel) 2025; 13:496. [PMID: 40432108 PMCID: PMC12115466 DOI: 10.3390/vaccines13050496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/29/2025] [Accepted: 05/01/2025] [Indexed: 05/29/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a major cause of cancer-related mortality worldwide. Conventional therapies are frequently limited by tumor heterogeneity and the immunosuppressive tumor microenvironment (TME). Dendritic cells (DCs), central to orchestrating antitumor immunity, have become key targets for HCC immunotherapy. This review examines the biological functions of DC subsets (cDC1, cDC2, pDC, and moDC) and their roles in initiating and modulating immune responses against HCC. We detail the mechanisms underlying DC impairment within the TME, including suppression by regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), and cancer-associated fibroblasts (CAFs). Additionally, we discuss novel DC-based therapeutic strategies, such as DC-based vaccines designed to enhance antigen presentation and T cell activation. Combining DC vaccines with immune checkpoint inhibitors (ICIs), including PD-1/PD-L1 and CTLA-4 blockers, demonstrates synergistic effects that can overcome immune evasion and improve clinical outcomes. Despite progress, challenges related to DC subset heterogeneity, TME complexity, and patient variability require the further optimization and personalization of DC-based therapies. Future research should focus on refining these strategies, leveraging advanced technologies like genomic profiling and artificial intelligence, to maximize therapeutic efficacy and revolutionize HCC treatment. By restoring DC function and reprogramming the TME, DC-based immunotherapy holds immense potential to transform the management of HCC and improve patient survival.
Collapse
Affiliation(s)
- Shiding Ying
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Haiyan Liu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore 117456, Singapore
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore 117456, Singapore
| | - Yu Mei
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
4
|
Maleki L, Fattahi B, Razavi SM, Shekarian M, Eskandari S. CD44 and EPCAM expression in pleomorphic adenoma and mucoepidermoid carcinoma: An immunohistochemical method. Dent Res J (Isfahan) 2025; 22:16. [PMID: 40351859 PMCID: PMC12063989 DOI: 10.4103/drj.drj_545_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 05/14/2025] Open
Abstract
Background Recent studies have indicated that assessing the expression levels of cancer stem cell markers is critical in predicting the behavior of these neoplasms. This study aimed to evaluate and compare the expression levels of CD44 and epithelial cell adhesion molecule (EpCAM) markers in pleomorphic adenoma (PA) and mucoepidermoid carcinoma (MEC) using immunohistochemistry. Materials and Methods In this cross-sectional descriptive-analytical study, 20 samples each of PA and MEC were selected from Kashani Hospital, Isfahan, Iran, based on inclusion and exclusion criteria. Specimens were prepared using immunohistochemical methods and analyzed under an optical microscope. Pathologists evaluated microscopic grade, staining intensity and percentage, and the staining intensity distribution (SID) index. Statistical analysis was conducted with SPSS (version 26), employing the Kolmogorov-Smirnov test, t-test, Chi-square, and Fisher's exact test. Results The mean frequency of stained cells for both CD44 (P = 0.39) and EpCAM (P = 0.40) markers showed no statistically significant differences between the PA and MEC groups. Similarly, the mean intensity of staining did not differ significantly for either CD44 (P = 0.40) or EpCAM (P = 0.18). The average SID index for the EpCAM marker in the MEC group was significantly higher than the PA group (P = 0.03) and for the EpCAM marker, there was a significant difference between the average SID index and all three variables of microscopic grade (P = 0.01), clinical stage (P = 0.00), and 3-year prognosis (P = 0.02). Conclusion The use of EpCAM immunohistochemical marker may help to predict the behavior of salivary gland tumors and obtain better treatment measures for patients.
Collapse
Affiliation(s)
- Laleh Maleki
- Department of Oral and Maxillofacial Pathology, Dental Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahareh Fattahi
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Mohammad Razavi
- Department of Oral and Maxillofacial Pathology, Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Shekarian
- Dental Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahnaz Eskandari
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Murtazina A, Jimenez-Martinez Y, Ruiz Alcala G, Marchal JA, Tarabayeva A, Bitanova E, Rakhimbayev I, McDougall GJ, Bishimbayeva N, Boulaiz H. In Vitro Inhibition of Colon Cancer Stem Cells by Natural Polysaccharides Obtained from Wheat Cell Culture. Polymers (Basel) 2025; 17:1048. [PMID: 40284312 PMCID: PMC12030112 DOI: 10.3390/polym17081048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/05/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Natural polysaccharides (PSs) have shown inhibitory effects on differentiated cancer cells (DCCs), but their activity against cancer stem cells (CSCs) remains poorly understood. Here, we report that PSs from wheat cell cultures (WCCPSs) inhibit the proliferation of both DCCs and CSCs derived from HCT-116 colorectal cancer cells. Among them, NA and DC fractions showed the strongest anti-CSC activity. NA, rich in xylose, was effective at lower concentrations, while DC, enriched in xylose and galacturonic acid (GalUA), exhibited higher potency, with a lower IC50 and preferential activity against CSCs at higher doses. WCCPSs reduced β-catenin levels, and some fractions also downregulated Ep-CAM, CD44, and c-Myc. Notably, DC increased caspase-3 without inducing cytochrome C and caspase-8 overexpression, suggesting a mechanism promoting CSC differentiation rather than apoptosis. Correlation analysis linked xylose content to reduced c-Myc expression, and GalUA levels to increased caspase-3. These results suggest that WCCPS bioactivity may be related to their monosaccharide composition. Overall, our findings support the potential of wheat-derived PSs as CSC-targeting agents that suppress self-renewal and promote differentiation, offering a promising approach to reduce tumor aggressiveness and recurrence.
Collapse
Affiliation(s)
- Alima Murtazina
- Department of General Immunology, Faculty of Medicine, Asfendyarov Kazakh National Medical University, Almaty 050012, Kazakhstan; (A.M.); (A.T.); (E.B.)
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain; (Y.J.-M.); (G.R.A.); (J.A.M.)
- Research Center “Bioscience Technologies”, Almaty 050057, Kazakhstan
| | - Yaiza Jimenez-Martinez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain; (Y.J.-M.); (G.R.A.); (J.A.M.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospitals of Granada-University of Granada, 18014 Granada, Spain
| | - Gloria Ruiz Alcala
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain; (Y.J.-M.); (G.R.A.); (J.A.M.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospitals of Granada-University of Granada, 18014 Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain; (Y.J.-M.); (G.R.A.); (J.A.M.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospitals of Granada-University of Granada, 18014 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
| | - Anel Tarabayeva
- Department of General Immunology, Faculty of Medicine, Asfendyarov Kazakh National Medical University, Almaty 050012, Kazakhstan; (A.M.); (A.T.); (E.B.)
| | - Elmira Bitanova
- Department of General Immunology, Faculty of Medicine, Asfendyarov Kazakh National Medical University, Almaty 050012, Kazakhstan; (A.M.); (A.T.); (E.B.)
| | | | - Gordon J. McDougall
- Plant Biochemistry and Food Quality Group, Environmental and Biochemical Sciences Department, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK;
| | - Nazira Bishimbayeva
- Research Center “Bioscience Technologies”, Almaty 050057, Kazakhstan
- Research Institute for Problems of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Houria Boulaiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain; (Y.J.-M.); (G.R.A.); (J.A.M.)
- Research Center “Bioscience Technologies”, Almaty 050057, Kazakhstan
- Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospitals of Granada-University of Granada, 18014 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|
6
|
Jasim SA, Pallathadka H, Sivaprasad GV, Kumar A, Mustafa YF, Mohammed JS, Eldesoqui M, Pramanik A, Abdukarimovna RK, Zwamel AH. New approaches of chimeric antigen receptor (CAR)-immune cell-based therapy in gastric cancer; highlight CAR-T and CAR-NK. Funct Integr Genomics 2025; 25:72. [PMID: 40133688 DOI: 10.1007/s10142-025-01584-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/14/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
One characteristic that makes gastric cancer (GC) against other cancers is the intricate immune system's reaction, particularly to tenacious inflammation. Consequently, the immunological function is essential to the growth of this malignancy. Tumor immunotherapy has yielded several encouraging outcomes, but despite this, different patients continue to not respond to treatment, and a far larger number become resistant to it. Also, activated CAR-T cells express a majority of immunological checkpoint factors, containing PD1, CTLA4, and LAG3, which counteracts the anti-tumor actions of CAR-T cells. Moreover, cytokine release syndrome is one of the possible adverse responses of CAR-T cell therapy. Therefore, producing universal allogeneic T lymphocytes with potent anti-tumor activity is essential. This study demonstrates current research on this cutting-edge technology, including the composition and mode of action of CAR-NK and CAR-T cells in GC. Also, in this study, we examined recent studies about various specific GC biomarkers that target CAR-T cells and CAR-NK cells.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-maarif, Anbar, Iraq.
| | | | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Ashwani Kumar
- Department of Life Scienzces, School of Sciences, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul-41001, Iraq
| | | | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, Almaarefa University, 13713, DiriyahRiyadh, Saudi Arabia.
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University Dehradun, Dehradun, Uttarakhand, India
| | - Rakhimova Khusnidakhon Abdukarimovna
- Department of Folk Medicine and Pharmacology, Fergana Public Health Medical Institute, Fergana, Uzbekistan
- Western Caspian University, Scientific Researcher, Baku, Azerbaijan
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
7
|
Manu DR, Bǎlaşa R, Pruteanu LL, Curean V, Barbu-Tudoran L, Şerban GM, Chinezu R, Bǎlaşa A. Identification of distinct profiles of glioblastoma through the immunocapture of extracellular vesicles from patient plasma. PLoS One 2025; 20:e0315890. [PMID: 40106404 PMCID: PMC11922215 DOI: 10.1371/journal.pone.0315890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/03/2024] [Indexed: 03/22/2025] Open
Abstract
Glioblastoma (GBM), a primary brain tumor, exhibits intratumoral heterogeneity and dynamic spatial-temporal changes. GBM-derived extracellular vesicles (EVs), reflecting tumor characteristics, present potential as liquid-biopsy markers for early diagnosis and monitoring. This study aims to evaluate molecular signatures of plasma-derived EVs from GBM patients using a conventional flow cytometer. EVs have been isolated from glioma patients and healthy controls (HCs) plasma using density gradient ultracentrifugation (DGU). EVs were evaluated by bead-based multiplex analysis in a conventional flow cytometer. Principal component analysis (PCA), hierarchical clustering, and correlation analysis provided comprehensive insights into EV characteristics. EVs successfully isolated were visualized in transmission and scanning electron microscopy (STEM). Bead-based multiplex analysis in flow cytometer detected the level of 37 EV surface markers, including tumor-related, cancer stem cell, endothelial cell, and immune cell- specific antigens. PCA identified the EV surface markers that are most significant for differentiating the subjects, and hierarchical clustering revealed four distinct clusters based on EV surface marker levels. EV molecular signature demonstrated considerable heterogeneity across patient clusters. The presence of CD29 emerged not only as a defining factor for a cluster of patients, but also served as a marker to differentiate patients from HCs.
Collapse
Affiliation(s)
- Doina Ramona Manu
- Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, Targu Mures, Romania,
| | - Rodica Bǎlaşa
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, Targu Mures, Romania
- 1st Neurology Clinic, Emergency Clinical County Hospital of Targu Mures, Targu Mures, Romania
| | - Lavinia-Lorena Pruteanu
- Department of Chemistry and Biology, North University Center at Baia Mare, Technical University of Cluj-Napoca, Baia Mare, Romania
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Victor Curean
- Doctoral School, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- Department of Molecular Biology and Biotechnology, Electron Microscopy Laboratory, Biology and Geology Faculty, Babes-Bolyai University, Cluj-Napoca, Romania
- Electron Microscopy Integrated Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Georgiana-Mihaela Şerban
- Doctoral School, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, Targu Mures, Romania
| | - Rareş Chinezu
- Department of Neurosurgery, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, Romania
- Neurosurgery Clinic, Emergency Clinical County Hospital of Targu Mures, Targu Mures, Romania
| | - Adrian Bǎlaşa
- Department of Neurosurgery, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, Romania
- Neurosurgery Clinic, Emergency Clinical County Hospital of Targu Mures, Targu Mures, Romania
| |
Collapse
|
8
|
Liu P, Zhang Q, Liu F. Biological roles and clinical applications of EpCAM in HCC. Discov Oncol 2025; 16:319. [PMID: 40087210 PMCID: PMC11909382 DOI: 10.1007/s12672-025-02095-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/07/2025] [Indexed: 03/17/2025] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is an important biomarker in tumors. In hepatocellular carcinoma (HCC), EpCAM + cells exhibit high invasiveness, tumorigenic ability, therapeutic resistance, and self-renewal ability, often identified as liver cancer stem cells (CSCs). Detecting EpCAM + cells in tumor lesions and circulation is valuable for predicting patient prognosis and monitoring therapeutic outcomes, emphasizing its clinical significance. Given its broad expression in HCC, especially in CSCs and circulating tumor cells (CTCs), EpCAM-targeting agents have garnered substantial research interest. However, the role of EpCAM in HCC progression and its regulatory mechanisms remains poorly understood. Furthermore, clinical applications of EpCAM, such as liquid biopsy and targeted therapies, are still controversial. This review summarizes the biological properties of EpCAM + HCC cells, explores the regulatory mechanisms governing EpCAM expression, and discusses its clinical significance of using EpCAM as a prognostic marker and therapeutic target.
Collapse
Affiliation(s)
- Peng Liu
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qun Zhang
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fengchao Liu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
9
|
Zhuang W, Pan K, Wu J, Liu L, Lv S, Hu J, Shi F, Zhao W, Yu D. Harnessing the power of traceable system C-GAP: homologous-targeting to fire up T-cell immune responses with low-dose irradiation. J Nanobiotechnology 2025; 23:207. [PMID: 40075499 PMCID: PMC11905511 DOI: 10.1186/s12951-025-03281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
While radiotherapy-induced immunogenic cell death (ICD) holds potential for enhancing cancer immunotherapy, the conventional high-dose irradiation often leads to an immunosuppressive microenvironment and systemic toxicity. Therefore, a biomimetic nanoplatform cell membrane coated-nitrogen-doped graphene quantum dots combined with Au nanoparticles (C-GAP) was developed in this study. Firstly, homologous and traceable targeting features of C-GAP enables tumor-selective accumulation, providing reference for the selection of the timing of radiotherapy. Secondly, radiosensitization by C-GAP with Low-dose irradiation (LDI) amplifies reactive oxygen species (ROS) generation to trigger potent ICD. Thirdly, remarkable immune remodeling induced by C-GAP enhances CD8+ T cell infiltration and effector function. Single-cell RNA sequencing revealed that C-GAP-LDI combination upregulates TNF and CCL signaling pathway expression in tumor-infiltrating CD8+ T cells which potentiates tumor eradication. Our findings present a novel approach for safe and effective radioimmunotherapy, where C-GAP sensitized LDI achieves therapeutic enhancement through precise ICD induction and systemic immune activation.
Collapse
Affiliation(s)
- Weijie Zhuang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China
| | - Kuangwu Pan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China
- Department of Stomatology, The Third People's Hospital of Chengdu, Sichuan, China
| | - Jie Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China
| | - Leyi Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China
| | - Shiyu Lv
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China
| | - Jiajun Hu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China
| | - Fangyang Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China
| | - Wei Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China.
| | - Dongsheng Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China.
| |
Collapse
|
10
|
Solovicová V, Ďatková A, Bertók T, Kasák P, Vikartovská A, Lorencová L, Tkac J. Advances in magnetic affinity-based isolation/detection of exosomes for robust diagnostics. Mikrochim Acta 2025; 192:206. [PMID: 40042696 PMCID: PMC11882713 DOI: 10.1007/s00604-025-07048-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/13/2025] [Indexed: 03/09/2025]
Abstract
The review article provides a short introduction to exosomes with the focus to use exosomes as disease markers itself (i.e. their concentration or presence of some specific receptors) or a source of disease biomarkers such as proteins and metabolites. In detail, we are discussing various methods of exosome isolation and the main focus of the review paper is on affinity capture of exosomes, since some of them can be applied to the isolation of specific sub-populations of exosomes produced by some specific organs. The article provides a comprehensive overview of magnetic (bio)affinity capture applied to the detection of exosomes or exosomal cargo using different (bio)affinity capture ligands such as antibodies, DNA aptamers, peptides, glycan-based recognition, transferrin-based approaches, affinity based on recognition of phospholipids of exosomes and other approaches including electrostatic interactions. The review in detail provides key analytical and clinical parameters of such approaches in a form of an extensive table summarising outcomes published in the last two years (2023-2024). Finally, the review paper also provides conclusions sections discussing pros and cons of magnetic (bio)affinity capture for exosome isolation and/or determination of exosomal content.
Collapse
Affiliation(s)
- Veronika Solovicová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 5807/9, 845 38, Bratislava, Slovak Republic
| | - Anna Ďatková
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 5807/9, 845 38, Bratislava, Slovak Republic
| | - Tomáš Bertók
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 5807/9, 845 38, Bratislava, Slovak Republic
| | - Peter Kasák
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Alica Vikartovská
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 5807/9, 845 38, Bratislava, Slovak Republic
| | - Lenka Lorencová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 5807/9, 845 38, Bratislava, Slovak Republic
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 5807/9, 845 38, Bratislava, Slovak Republic.
| |
Collapse
|
11
|
Szerenyi D, Jarvas G, Guttman A. Multifaceted Approaches in Epithelial Cell Adhesion Molecule-Mediated Circulating Tumor Cell Isolation. Molecules 2025; 30:976. [PMID: 40076201 PMCID: PMC11901967 DOI: 10.3390/molecules30050976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Circulating tumor cells (CTCs) are pivotal in cancer metastasis and serve as valuable biomarkers for diagnosis, prognosis, and treatment monitoring. Traditional CTC capture methods predominantly utilize the epithelial cell adhesion molecule (EpCAM) as a marker for isolation. However, the heterogeneity of these circulating cells and the epithelial-to-mesenchymal transition process (wherein epithelial cells acquire mesenchymal characteristics) limit the efficacy of EpCAM-based capture techniques. In this paper, we critically review the role of the EpCAM in CTC capture, explore the impact of epithelial-to-mesenchymal transition on EpCAM expression, and discuss alternative biomarkers and strategies to enhance CTC isolation. By evaluating the limitations of EpCAM-mediated capture and the challenges posed by epithelial-to-mesenchymal transition, we aim to provide insights into the development of more comprehensive liquid biopsy approaches for cancer management.
Collapse
Affiliation(s)
- Dora Szerenyi
- Research Institute of Biomolecular and Chemical Engineering, Faculty of Engineering, University of Pannonia, 8200 Veszprem, Hungary;
| | - Gabor Jarvas
- Research Institute of Biomolecular and Chemical Engineering, Faculty of Engineering, University of Pannonia, 8200 Veszprem, Hungary;
- CAPTEC Medical Ltd., 8200 Veszprem, Hungary
| | - Andras Guttman
- Research Institute of Biomolecular and Chemical Engineering, Faculty of Engineering, University of Pannonia, 8200 Veszprem, Hungary;
- CAPTEC Medical Ltd., 8200 Veszprem, Hungary
- Horváth Csaba Memorial Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
12
|
Ragab EM, Gamal DME, El-Najjar FF, Elkomy HA, Ragab MA, Elantary MA, Basyouni OM, Moustafa SM, El-Naggar SA, Elsherbiny AS. New insights into Notch signaling as a crucial pathway of pancreatic cancer stem cell behavior by chrysin-polylactic acid-based nanocomposite. Discov Oncol 2025; 16:107. [PMID: 39891818 PMCID: PMC11787125 DOI: 10.1007/s12672-025-01846-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025] Open
Abstract
Pancreatic cancer is an extremely deadly illness for which there are few reliable treatments. Recent research indicates that malignant tumors are highly variable and consist of a tiny subset of unique cancer cells, known as cancer stem cells (CSCs), which are responsible for the beginning and spread of tumors. These cells are typically identified by the expression of specific cell surface markers. A population of pancreatic cancer stem cells with aberrantly active developmental signaling pathways has been identified in recent studies of human pancreatic tumors. Among these Notch signaling pathway has been identified as a key regulator of CSCs self-renewal, making it an attractive target for therapeutic intervention. Chrysin-loaded polylactic acid (PLA) as polymeric nanoparticles systems have been growing interest in using as platforms for improved drug delivery. This review aims to explore innovative strategies for targeted therapy and optimized drug delivery in pancreatic CSCs by manipulating the Notch pathway and leveraging PLA-based drug delivery systems. Furthermore, we will assess the capability of PLA nanoparticles to enhance the bioavailability and effectiveness of gemcitabine in pancreatic cancer cells. The insights gained from this review have the potential to contribute to the development of novel treatment approaches that combine targeted therapy with advanced drug delivery utilizing biodegradable polymeric nanoparticles.
Collapse
Affiliation(s)
- Eman M Ragab
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Doaa M El Gamal
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Fares F El-Najjar
- Chemistry/Biochemistry Division, chemistry department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Hager A Elkomy
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mahmoud A Ragab
- Chemistry/Biochemistry Division, chemistry department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mariam A Elantary
- Chemistry/Biochemistry Division, chemistry department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Omar M Basyouni
- Chemistry/Zoology Division, chemistry department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sherif M Moustafa
- Chemistry/Biochemistry Division, chemistry department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Shimaa A El-Naggar
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Abeer S Elsherbiny
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
13
|
Bruno PS, Arshad A, Gogu MR, Waterman N, Flack R, Dunn K, Darie CC, Neagu AN. Post-Translational Modifications of Proteins Orchestrate All Hallmarks of Cancer. Life (Basel) 2025; 15:126. [PMID: 39860065 PMCID: PMC11766951 DOI: 10.3390/life15010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Post-translational modifications (PTMs) of proteins dynamically build the buffering and adapting interface between oncogenic mutations and environmental stressors, on the one hand, and cancer cell structure, functioning, and behavior. Aberrant PTMs can be considered as enabling characteristics of cancer as long as they orchestrate all malignant modifications and variability in the proteome of cancer cells, cancer-associated cells, and tumor microenvironment (TME). On the other hand, PTMs of proteins can enhance anticancer mechanisms in the tumoral ecosystem or sustain the beneficial effects of oncologic therapies through degradation or inactivation of carcinogenic proteins or/and activation of tumor-suppressor proteins. In this review, we summarized and analyzed a wide spectrum of PTMs of proteins involved in all regulatory mechanisms that drive tumorigenesis, genetic instability, epigenetic reprogramming, all events of the metastatic cascade, cytoskeleton and extracellular matrix (ECM) remodeling, angiogenesis, immune response, tumor-associated microbiome, and metabolism rewiring as the most important hallmarks of cancer. All cancer hallmarks develop due to PTMs of proteins, which modulate gene transcription, intracellular and extracellular signaling, protein size, activity, stability and localization, trafficking, secretion, intracellular protein degradation or half-life, and protein-protein interactions (PPIs). PTMs associated with cancer can be exploited to better understand the underlying molecular mechanisms of this heterogeneous and chameleonic disease, find new biomarkers of cancer progression and prognosis, personalize oncotherapies, and discover new targets for drug development.
Collapse
Affiliation(s)
- Pathea Shawnae Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Aneeta Arshad
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Maria-Raluca Gogu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania;
| | - Natalie Waterman
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Rylie Flack
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Kimberly Dunn
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| |
Collapse
|
14
|
Liu Y, Xia F, Zhu C, Song J, Tang B, Zhang B, Huang Z. Protein serine/threonine phosphatases in tumor microenvironment: a vital player and a promising therapeutic target. Theranostics 2025; 15:1164-1184. [PMID: 39776803 PMCID: PMC11700861 DOI: 10.7150/thno.104529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
The tumor microenvironment (TME) is involved in cancer initiation and progression. With advances in the TME field, numerous therapeutic approaches, such as antiangiogenic treatment and immune checkpoint inhibitors, have been inspired and developed. Nevertheless, the sophisticated regulatory effects on the biological balance of the TME remain unclear. Decoding the pathological features of the TME is urgently needed to understand the tumor ecosystem and develop novel antitumor treatments. Protein serine/threonine phosphatases (PSPs) are responsible for inverse protein phosphorylation processes. Aberrant expression and dysfunction of PSPs disturb cellular homeostasis, reprogram metabolic processes and reshape the immune landscape, thereby contributing to cancer progression. Some therapeutic implications, such as the use of PSPs as targets, have drawn the attention of researchers and clinicians. To date, the effects of PSP inhibitors are less satisfactory in real-world practice. With breakthroughs in sequencing technologies, scientists can decipher TME investigations via multiomics and higher resolution. These benefits provide an opportunity to explore the TME in a more comprehensive manner and inspire more findings concerning PSPs in the TME. The current review starts by introducing the canonical knowledge of PSPs, including their members, structures and posttranslational modifications for activities. We then summarize the functions of PSPs in regulating cellular homeostasis. In particular, we specified the up-to-date roles of PSPs in modulating the immune microenvironment, adopting hypoxia, reprogramming metabolic processes, and responding to extracellular matrix remodeling. Finally, we introduce preclinical PSP inhibitors with translational value and conclude with clinical trials of PSP inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Yiyang Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Xia
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bufu Tang
- Department of Radiation Oncology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; Key Laboratory of Organ Transplantation, National Health Commission; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Zhou L, Liu J, Yao P, Liu X, Chen F, Chen Y, Zhou L, Shen C, Zhou Y, Du X, Hu J. Spatial transcriptomics reveals unique metabolic profile and key oncogenic regulators of cervical squamous cell carcinoma. J Transl Med 2024; 22:1163. [PMID: 39741285 DOI: 10.1186/s12967-024-06011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND As a prevalent and deadly malignant tumor, the treatment outcomes for late-stage patients with cervical squamous cell carcinoma (CSCC) are often suboptimal. Previous studies have shown that tumor progression is closely related with tumor metabolism and microenvironment reshaping, with disruptions in energy metabolism playing a critical role in this process. To delve deeper into the understanding of CSCC development, our research focused on analyzing the tumor microenvironment and metabolic characteristics across different regions of tumor tissue. METHODS Utilizing spatial transcriptomics (ST) sequencing technology, we conducted a study on FFPE (formalin-fixed paraffin-embedded) tumor samples from CSCC patients. Coupled with single-cell RNA sequencing (scRNA-seq) data after deconvolution, we described spatial distribution maps of tumor leading edge and core regions in detail. Tumor tissues were classified into hypermetabolic and hypometabolic regions to analyze the metabolism profiles and tumor differentiation degree across different spatial areas. We also employed The Cancer Genome Atlas (TCGA) database to examine the analysis results of ST data. RESULTS Our findings indicated a more complex tumor microenvironment in hypermetabolic regions. Cell-cell communication analysis showed that various cells in tumor microenvironment were influenced by the signalling molecule APP released by cancer cells and higher expression of APP was observed in hypermetabolic regions. Furthermore, our results revealed the correlation between APP and the transcription factor TRPS1. Both APP and TRPS1 demonstrated significant effects on cancer cell proliferation, migration, and invasion, potentially contributing to tumor progression. CONCLUSIONS Utilizing ST, scRNA-seq, and TCGA database, we examined the spatial metabolic profiles of CSCC tissues, including metabolism distribution, metabolic variations, and the relationship between metabolism and tumor differentiation degree. Additionally, potential cancer-promoting factors were proposed, offering a valuable foundation for the development of more effective treatment strategies for CSCC.
Collapse
Affiliation(s)
- Limin Zhou
- Tongji Medical College, Maternal and Child Health Hospital of Hubei Province, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430070, China
| | - Jiejie Liu
- State Key Laboratory of Virology, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, RNA Institute, Wuhan University, Wuhan, 430072, China
| | - Peipei Yao
- Animal Bio-Safety Level III Laboratory/Institute for Vaccine Research, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Xing Liu
- State Key Laboratory of Virology, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, RNA Institute, Wuhan University, Wuhan, 430072, China
| | - Fei Chen
- Animal Bio-Safety Level III Laboratory/Institute for Vaccine Research, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Yu Chen
- State Key Laboratory of Virology, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, RNA Institute, Wuhan University, Wuhan, 430072, China
| | - Li Zhou
- Animal Bio-Safety Level III Laboratory/Institute for Vaccine Research, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Chao Shen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei Province, 430072, China.
| | - You Zhou
- Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK.
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.
| | - Xin Du
- Tongji Medical College, Maternal and Child Health Hospital of Hubei Province, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430070, China.
| | - Junbo Hu
- Tongji Medical College, Maternal and Child Health Hospital of Hubei Province, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430070, China.
| |
Collapse
|
16
|
Yun Y, Kim S, Lee SN, Cho HY, Choi JW. Nanomaterial-based detection of circulating tumor cells and circulating cancer stem cells for cancer immunotherapy. NANO CONVERGENCE 2024; 11:56. [PMID: 39671082 PMCID: PMC11645384 DOI: 10.1186/s40580-024-00466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
Nanomaterials have emerged as transformative tools for detecting circulating tumor cells (CTCs) and circulating cancer stem cells (CCSCs), significantly enhancing cancer diagnostics and immunotherapy. Nanomaterials, including those composed of gold, magnetic materials, and silica, have enhanced the sensitivity, specificity, and efficiency of isolating these rare cells from blood. These developments are of paramount importance for the early detection of cancer and for providing real-time insights into metastasis and treatment resistance, which are essential for the development of personalized immunotherapies. The combination of nanomaterial-based platforms with phenotyping techniques, such as Raman spectroscopy and microfluidics, enables researchers to enhance immunotherapy protocols targeting specific CTC and CCSC markers. Nanomaterials also facilitate the targeted delivery of immunotherapeutic agents, including immune checkpoint inhibitors and therapeutic antibodies, directly to tumor cells. This synergistic approach has the potential to enhance therapeutic efficacy and mitigate the risk of metastasis and relapse. In conclusion, this review critically examines the use of nanomaterial-driven detection systems for detecting CTCs and CCSCs, their application in immunotherapy, and suggests future directions, highlighting their potential to transform the integration of diagnostics and treatment, thereby paving the way for more precise and personalized cancer therapies.
Collapse
Affiliation(s)
- Yeochan Yun
- Department of Bio and Fermentation Convergence Technology, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 02707, Republic of Korea
| | - Seewoo Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Sang-Nam Lee
- Uniance Gene Inc., 273, Digital-ro, Guro-gu, Seoul, 08381, Republic of Korea.
| | - Hyeon-Yeol Cho
- Department of Bio and Fermentation Convergence Technology, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 02707, Republic of Korea.
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea.
| |
Collapse
|
17
|
Wang Z, Wang M, Li Q, Wu Y, Ying T. High-Affinity Fully Human Anti-EpCAM Antibody with Biased IL-2 Exhibits Potent Antitumor Activity. Biomolecules 2024; 14:1399. [PMID: 39595576 PMCID: PMC11591715 DOI: 10.3390/biom14111399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Monoclonal antibodies (mAbs) are widely used in cancer therapy but often show limited efficacy for solid tumors. Enhancing anti-tumor activity by fusing cytokines to tumor-targeting mAbs, which specifically activate immune cells within the tumor microenvironment, represents a promising strategy. However, the optimal design and therapeutic efficacy of antibody-cytokine fusion formats remain unclear. The epithelial cell adhesion molecule (EpCAM), frequently overexpressed in a variety of carcinomas, serves as the target for immunotherapies. In this study, we identified a fully human mAb targeting EpCAM, designated as m801, from a previously constructed phage-displayed fully human antibody library. By fusing m801 with an IL-2 variant (IL-2v) in two configurations, m801.2 (2 anti-EpCAM Fab + 1 IL-2v) and m801.3 (1 anti-EpCAM Fab + 1 IL-2v), we identified m801.2 as the lead candidate due to its superior biophysical properties, including high thermal stability, homogeneity, and low aggregation. Furthermore, m801.2 showed strong binding affinity to EpCAM, with KD values of 0.6 nM, and an EpCAM-expressing tumor cell line, comparable to the original IgG m801. Additionally, m801.2 exhibited IL-2 receptor β subunit (IL-2Rβ)-biased binding activity, with a KD of 27.3 nM, resulting in superior effective T cell activation. In an SW480 xenograft mice model, m801.2 significantly inhibited tumor growth and demonstrated high tolerability. These findings suggest a valuable framework for the future design of immunocytokine therapies.
Collapse
Affiliation(s)
- Zhi Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Z.W.); (M.W.); (Q.L.)
| | - Mingkai Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Z.W.); (M.W.); (Q.L.)
| | - Quanxiao Li
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Z.W.); (M.W.); (Q.L.)
| | - Yanling Wu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Z.W.); (M.W.); (Q.L.)
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (Z.W.); (M.W.); (Q.L.)
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China
| |
Collapse
|
18
|
Schmid KF, Zeinali S, Moser SK, Dubey C, Schneider S, Deng H, Haefliger S, Marti TM, Guenat OT. Assessing the metastatic potential of circulating tumor cells using an organ-on-chip model. Front Bioeng Biotechnol 2024; 12:1457884. [PMID: 39439549 PMCID: PMC11493642 DOI: 10.3389/fbioe.2024.1457884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Metastatic lung cancer remains a leading cause of death worldwide, with its intricate metastatic cascade posing significant challenges to researchers and clinicians. Despite substantial progress in understanding this cascade, many aspects remain elusive. Microfluidic-based vasculature-on-chip models have emerged as powerful tools in cancer research, enabling the simulation of specific stages of tumor progression. In this study, we investigate the extravasation behaviors of A549 lung cancer cell subpopulations, revealing distinct differences based on their phenotypes. Our results show that holoclones, which exhibit an epithelial phenotype, do not undergo extravasation. In contrast, paraclones, characterized by a mesenchymal phenotype, demonstrate a notable capacity for extravasation. Furthermore, we observed that paraclones migrate significantly faster than holoclones within the microfluidic model. Importantly, we found that the depletion of vascular endothelial growth factor (VEGF) effectively inhibits the extravasation of paraclones. These findings highlight the utility of microfluidic-based models in replicating key aspects of the metastatic cascade. The insights gained from this study underscore the potential of these models to advance precision medicine by facilitating the assessment of patient-specific cancer cell dynamics and drug responses. This approach could lead to improved strategies for predicting metastatic risk and tailoring personalized cancer therapies, potentially involving the sampling of cancer cells from patients during tumor resection or biopsies.
Collapse
Affiliation(s)
- Karin F. Schmid
- Organs-on-chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Soheila Zeinali
- Organs-on-chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Susanne K. Moser
- Organs-on-chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Christelle Dubey
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sabine Schneider
- Organs-on-chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Haibin Deng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Simon Haefliger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas M. Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Olivier T. Guenat
- Organs-on-chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
19
|
Blobner J, Dengler L, Eberle C, Herold JJ, Xu T, Beck A, Mühlbauer A, Müller KJ, Teske N, Karschnia P, van den Heuvel D, Schallerer F, Ishikawa-Ankerhold H, Thon N, Tonn JC, Subklewe M, Kobold S, Harter PN, Buchholz VR, von Baumgarten L. PD-1 blockade does not improve efficacy of EpCAM-directed CAR T-cell in lung cancer brain metastasis. Cancer Immunol Immunother 2024; 73:255. [PMID: 39358663 PMCID: PMC11447167 DOI: 10.1007/s00262-024-03837-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Lung cancer brain metastasis has a devastating prognosis, necessitating innovative treatment strategies. While chimeric antigen receptor (CAR) T-cell show promise in hematologic malignancies, their efficacy in solid tumors, including brain metastasis, is limited by the immunosuppressive tumor environment. The PD-L1/PD-1 pathway inhibits CAR T-cell activity in the tumor microenvironment, presenting a potential target to enhance therapeutic efficacy. This study aims to evaluate the impact of anti-PD-1 antibodies on CAR T-cell in treating lung cancer brain metastasis. METHODS We utilized a murine immunocompetent, syngeneic orthotopic cerebral metastasis model for repetitive intracerebral two-photon laser scanning microscopy, enabling in vivo characterization of red fluorescent tumor cells and CAR T-cell at a single-cell level over time. Red fluorescent EpCAM-transduced Lewis lung carcinoma cells (EpCAM/tdtLL/2 cells) were implanted intracranially. Following the formation of brain metastasis, EpCAM-directed CAR T-cell were injected into adjacent brain tissue, and animals received either anti-PD-1 or an isotype control. RESULTS Compared to controls receiving T-cell lacking a CAR, mice receiving EpCAM-directed CAR T-cell showed higher intratumoral CAR T-cell densities in the beginning after intraparenchymal injection. This finding was accompanied with reduced tumor growth and translated into a survival benefit. Additional anti-PD-1 treatment, however, did not affect intratumoral CAR T-cell persistence nor tumor growth and thereby did not provide an additional therapeutic effect. CONCLUSION CAR T-cell therapy for brain malignancies appears promising. However, additional anti-PD-1 treatment did not enhance intratumoral CAR T-cell persistence or effector function, highlighting the need for novel strategies to improve CAR T-cell therapy in solid tumors.
Collapse
Affiliation(s)
- Jens Blobner
- Department of Neurosurgery, LMU University Hospital, Ludwig Maximilians University (LMU), 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
- Division of Neuro-Oncology, Department of Neurosurgery, Ludwig Maximilians University School of Medicine, Marchioninistrasse 15, 81377, Munich, Germany
| | - Laura Dengler
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Constantin Eberle
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Julika J Herold
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Tao Xu
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
- Department of Neurology, LMU University Hospital, Ludwig Maximilians University (LMU), 81377, Munich, Germany
| | - Alexander Beck
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
- Center for Neuropathology and Prion Research, Faculty of Medicine LMU Munich, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Anton Mühlbauer
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, 81675, Munich, Germany
| | - Katharina J Müller
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
- Department of Neurology, LMU University Hospital, Ludwig Maximilians University (LMU), 81377, Munich, Germany
| | - Nico Teske
- Department of Neurosurgery, LMU University Hospital, Ludwig Maximilians University (LMU), 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Philipp Karschnia
- Department of Neurosurgery, LMU University Hospital, Ludwig Maximilians University (LMU), 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Dominic van den Heuvel
- Department of Medicine I, Ludwig-Maximilians-University School of Medicine, Munich, Germany
| | - Ferdinand Schallerer
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | | | - Niklas Thon
- Department of Neurosurgery, LMU University Hospital, Ludwig Maximilians University (LMU), 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
- Division of Neuro-Oncology, Department of Neurosurgery, Ludwig Maximilians University School of Medicine, Marchioninistrasse 15, 81377, Munich, Germany
| | - Joerg-Christian Tonn
- Department of Neurosurgery, LMU University Hospital, Ludwig Maximilians University (LMU), 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Marion Subklewe
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
- Department of Medicine III, Ludwig-Maximilians-University School of Medicine, Munich, Germany
- Bavarian Cancer Research Center (BZKF), 91054, Erlangen, Germany
| | - Sebastian Kobold
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
- Department of Medicine IV, Division of Clinical Pharmacology, LMU University Hospital Munich, Munich, Germany
| | - Patrick N Harter
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
- Center for Neuropathology and Prion Research, Faculty of Medicine LMU Munich, Ludwig-Maximilians-University (LMU), Munich, Germany
- Bavarian Cancer Research Center (BZKF), 91054, Erlangen, Germany
| | - Veit R Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, 81675, Munich, Germany
| | - Louisa von Baumgarten
- Department of Neurosurgery, LMU University Hospital, Ludwig Maximilians University (LMU), 81377, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany.
- Department of Neurology, LMU University Hospital, Ludwig Maximilians University (LMU), 81377, Munich, Germany.
- Bavarian Cancer Research Center (BZKF), 91054, Erlangen, Germany.
- Division of Neuro-Oncology, Department of Neurosurgery, Ludwig Maximilians University School of Medicine, Marchioninistrasse 15, 81377, Munich, Germany.
| |
Collapse
|
20
|
Stachowicz-Suhs M, Łabędź N, Milczarek M, Kłopotowska D, Filip-Psurska B, Maciejczyk A, Matkowski R, Wietrzyk J. Vitamin D 3 reduces the expression of M1 and M2 macrophage markers in breast cancer patients. Sci Rep 2024; 14:22126. [PMID: 39333342 PMCID: PMC11437092 DOI: 10.1038/s41598-024-73152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
Vitamin D3 (VD) is known for its immunomodulatory and anticancer effects. This study aimed to characterize tumor-associated macrophages (TAMs) in breast cancer (BC) and assess the influence of VD and its active metabolite, calcitriol, on their polarization. TAMs were isolated from BC patients and characterized. Monocytes were differentiated into macrophage classes (M0, M1, M2a, M2c) and treated ex vivo with calcitriol. The expression of VD-related proteins in tumor tissue was correlated with TAMs and monocyte-derived macrophages (MDMs) characteristics. TAM expression of CD200R, CD204, CD80, HLA-DR, and CD44 was negatively correlated with CYP27B1 in selected patient groups. Patients with high CYP27B1 tumor expression showed significantly lower CD200R, CD204, and CD44 expression. In patients with normal VD levels and premenopausal, CD80 expression in M2a and M2c MDMs (control, untreated ex vivo with calcitriol) was negatively correlated with plasma VD. Calcitriol reduced HLA-DR during MDM differentiation in all patients; CD80 decrease significantly except in patients with normal VD levels or metastasis. Calcitriol also decreased CD163 expression. The decrease in both M1 and M2 macrophage markers by calcitriol or their negative correlation with CYP27B1 indicate the modulatory, but rather anticancer activity of VD. The intensity of these effects was the strongest in postmenopausal patients and those without metastases.
Collapse
Affiliation(s)
- Martyna Stachowicz-Suhs
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Natalia Łabędź
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Magdalena Milczarek
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Dagmara Kłopotowska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Beata Filip-Psurska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Adam Maciejczyk
- Department of Oncology, Wroclaw Medical University, Wrocław, Poland
- Lower Silesian Oncology, Pulmonology and Hematology Center, Wrocław, Poland
| | - Rafał Matkowski
- Department of Oncology, Wroclaw Medical University, Wrocław, Poland
- Lower Silesian Oncology, Pulmonology and Hematology Center, Wrocław, Poland
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland.
| |
Collapse
|
21
|
Portella L, Bertolini G, Guardascione G, Di Febbraro DG, Ieranò C, D'Alterio C, Rea G, Napolitano M, Santagata S, Trotta AM, Camerlingo R, Scarpa E, Cecere SC, Ottaiano A, Palumbo G, Morabito A, Somma T, De Rosa G, Mayol L, Pacelli R, Pignata S, Scala S. CXCL12-loaded-hydrogel (CLG): A new device for metastatic circulating tumor cells (CTCs) capturing and characterization. Heliyon 2024; 10:e35524. [PMID: 39170328 PMCID: PMC11336720 DOI: 10.1016/j.heliyon.2024.e35524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Background Circulating Tumor Cells (CTCs) represent a small, heterogeneous population that comprise the minority of cells able to develop metastasis. To trap and characterize CTCs with metastatic attitude, a CXCL12-loaded hyaluronic-gel (CLG) was developed. CXCR4+cells with invasive capability would infiltrate CLG. Methods Human colon, renal, lung and ovarian cancer cells (HT29, A498, H460 and OVCAR8 respectively) were seeded on 150 μl Empty Gels (EG) or 300 ng/ml CXCL12 loaded gel (CLG) and allowed to infiltrate for 16 h. Gels were then digested and fixed with 2 % FA-HAse for human cancer cell enumeration or digested with HAse and cancer cells recovered. CLG-recovered cells migrated toward CXCL12 and were tested for colonies/spheres formation. Moreover, CXCR4, E-Cadherin and Vimentin expression was assessed through flow cytometry and RT-PCR. The clinical trial "TRAP4MET" recruited 48 metastatic/advanced cancer patients (8 OC, 8 LC, 8 GBM, 8 EC, 8 RCC and 8 EC). 10 cc whole blood were devoted to PBMCs extraction (7 cc) and ScreenCell™ filters (3 cc) CTCs evaluation. Ficoll-isolated patient's PBMCs were seeded over CLG and allowed to infiltrate for 16 h; gels were digested and fixed with 2 % FA-HAse, cells stained and DAPI+/CD45-/pan-CK + cells enumerated as CTCs. Results Human cancer cells infiltrate CLG more efficiently than EG (CLG/EG ratio 1.25 for HT29/1.58 for A498/1.71 for H460 and 2.83 for OVCAR8). CLG-recovered HT29 cells display hybrid-mesenchymal features [low E-cadherin (40 %) and high vimentin (235 %) as compared to HT29], CXCR4 two-fold higher than HT29, efficiently migrate toward CXCL12 (two-fold higher than HT29) and developed higher number of colonies (171 ± 21 for HT29-CLG vs 131 ± 8 colonies for HT29)/larger spheres (spheroid area: 26561 ± 6142 μm2 for HT29-CLG vs 20297 ± 7238 for HT29). In TRAP4MET clinical trial, CLG-CTCs were isolated in 8/8 patients with OC, 6/8 with LC, 6/8 with CRC, 8/8 with EC, 8/8 with RCC cancer and 5/8 with GBM. Interestingly, in OC, LC and GBM, CLG isolated higher number of CTCs as compared to the conventional ScreenCell™ (CLG/SC ratio = 1.88 for OC, 2.47 for LC and 11.89 for GBM). Bland and Altman blot analysis and Passing and Bablok regression analysis showed concordance between the methodological approaches but indicate that SC and CLG are not superimposable suggesting that the two systems select cells with different features. Conclusion CLG might represent a new and easy tool to isolate invasive CTCs in multiple cancers such as OC, LC and GBM at today orphan of reliable methods to consistently detect CTCs.
Collapse
Affiliation(s)
- Luigi Portella
- Microenvironment Molecular Targets, Istituto Nazionale Tumori IRCCS - Fondazione G Pascale, Napoli, Italy
| | - Giulia Bertolini
- Tumor Genomic Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Giuseppe Guardascione
- Microenvironment Molecular Targets, Istituto Nazionale Tumori IRCCS - Fondazione G Pascale, Napoli, Italy
| | - Dario Guido Di Febbraro
- Microenvironment Molecular Targets, Istituto Nazionale Tumori IRCCS - Fondazione G Pascale, Napoli, Italy
| | - Caterina Ieranò
- Microenvironment Molecular Targets, Istituto Nazionale Tumori IRCCS - Fondazione G Pascale, Napoli, Italy
| | - Crescenzo D'Alterio
- Microenvironment Molecular Targets, Istituto Nazionale Tumori IRCCS - Fondazione G Pascale, Napoli, Italy
| | - Giuseppina Rea
- Microenvironment Molecular Targets, Istituto Nazionale Tumori IRCCS - Fondazione G Pascale, Napoli, Italy
| | - Maria Napolitano
- Microenvironment Molecular Targets, Istituto Nazionale Tumori IRCCS - Fondazione G Pascale, Napoli, Italy
| | - Sara Santagata
- Microenvironment Molecular Targets, Istituto Nazionale Tumori IRCCS - Fondazione G Pascale, Napoli, Italy
| | - Anna Maria Trotta
- Microenvironment Molecular Targets, Istituto Nazionale Tumori IRCCS - Fondazione G Pascale, Napoli, Italy
| | - Rosa Camerlingo
- Cell Biology and Biotherapy, Istituto Nazionale Tumori IRCCS - Fondazione G Pascale, Napoli, Italy
| | - Emilia Scarpa
- Gynecology Oncology, Istituto Nazionale Tumori IRCCS - Fondazione G Pascale, Napoli, Italy
| | - Sabrina Chiara Cecere
- Gynecology Oncology, Istituto Nazionale Tumori IRCCS - Fondazione G Pascale, Napoli, Italy
| | - Alessandro Ottaiano
- Abdominal Oncology, Istituto Nazionale Tumori IRCCS - Fondazione G Pascale, Napoli, Italy
| | - Giuliano Palumbo
- Thoracic Medical Oncology, Istituto Nazionale Tumori IRCCS - Fondazione G Pascale, Napoli, Italy
| | - Alessandro Morabito
- Thoracic Medical Oncology, Istituto Nazionale Tumori IRCCS - Fondazione G Pascale, Napoli, Italy
| | - Teresa Somma
- Department of Neurosciences, University of Naples Federico II, Italy
| | | | - Laura Mayol
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Italy
| | - Roberto Pacelli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Italy
| | - Sandro Pignata
- Gynecology Oncology, Istituto Nazionale Tumori IRCCS - Fondazione G Pascale, Napoli, Italy
| | - Stefania Scala
- Microenvironment Molecular Targets, Istituto Nazionale Tumori IRCCS - Fondazione G Pascale, Napoli, Italy
| |
Collapse
|
22
|
Ho HY, Chung KS(K, Kan CM, Wong SC(C. Liquid Biopsy in the Clinical Management of Cancers. Int J Mol Sci 2024; 25:8594. [PMID: 39201281 PMCID: PMC11354853 DOI: 10.3390/ijms25168594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Liquid biopsy, a noninvasive diagnosis that examines circulating tumor components in body fluids, is increasingly used in cancer management. An overview of relevant literature emphasizes the current state of liquid biopsy applications in cancer care. Biomarkers in liquid biopsy, particularly circulating tumor DNA (ctDNA), circulating tumor RNAs (ctRNA), circulating tumor cells (CTCs), extracellular vesicles (EVs), and other components, offer promising opportunities for early cancer diagnosis, treatment selection, monitoring, and disease assessment. The implementation of liquid biopsy in precision medicine has shown significant potential in various cancer types, including lung cancer, colorectal cancer, breast cancer, and prostate cancer. Advances in genomic and molecular technologies such as next-generation sequencing (NGS) and digital polymerase chain reaction (dPCR) have expanded the utility of liquid biopsy, enabling the detection of somatic variants and actionable genomic alterations in tumors. Liquid biopsy has also demonstrated utility in predicting treatment responses, monitoring minimal residual disease (MRD), and assessing tumor heterogeneity. Nevertheless, standardizing liquid biopsy techniques, interpreting results, and integrating them into the clinical routine remain as challenges. Despite these challenges, liquid biopsy has significant clinical implications in cancer management, offering a dynamic and noninvasive approach to understanding tumor biology and guiding personalized treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Sze-Chuen (Cesar) Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China; (H.-Y.H.); (K.-S.C.); (C.-M.K.)
| |
Collapse
|
23
|
Anurogo D, Liu CL, Chang YC, Chang YH, Qiu JT. Discovery of differentially expressed proteins for CAR-T therapy of ovarian cancers with a bioinformatics analysis. Aging (Albany NY) 2024; 16:11409-11433. [PMID: 39033780 PMCID: PMC11315388 DOI: 10.18632/aging.206024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/07/2024] [Indexed: 07/23/2024]
Abstract
Target antigens are crucial for developing chimeric antigen receptor (CAR)-T cells, but their application to ovarian cancers is limited. This study aimed to identify potential genes as CAR-T-cell antigen candidates for ovarian cancers. A differential gene expression analysis was performed on ovarian cancer samples from four datasets obtained from the GEO datasets. Functional annotation, pathway analysis, protein localization, and gene expression analysis were conducted using various datasets and tools. An oncogenicity analysis and network analysis were also performed. In total, 153 differentially expressed genes were identified in ovarian cancer samples, with 60 differentially expressed genes expressing plasma membrane proteins suitable for CAR-T-cell antigens. Among them, 21 plasma membrane proteins were predicted to be oncogenes in ovarian cancers, with nine proteins playing crucial roles in the network. Key genes identified in the oncogenic pathways of ovarian cancers included MUC1, CXCR4, EPCAM, RACGAP1, UBE2C, PRAME, SORT1, JUP, and CLDN3, suggesting them as recommended antigens for CAR-T-cell therapy for ovarian cancers. This study sheds light on potential targets for immunotherapy in ovarian cancers.
Collapse
Affiliation(s)
- Dito Anurogo
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Makassar 90221, Indonesia
| | - Chao-Lien Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Chu Chang
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Hsiang Chang
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - J. Timothy Qiu
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| |
Collapse
|
24
|
Sun W, You X, Zhao X, Zhang X, Yang C, Zhang F, Yu J, Yang K, Wang J, Xu F, Chang Y, Qu B, Zhao X, He Y, Wang Q, Chen J, Qing G. Precise Capture and Dynamic Release of Circulating Liver Cancer Cells with Dual-Histidine-Based Cell Imprinted Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402379. [PMID: 38655900 DOI: 10.1002/adma.202402379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Circulating tumor cells (CTCs) detection presents significant advantages in diagnosing liver cancer due to its noninvasiveness, real-time monitoring, and dynamic tracking. However, the clinical application of CTCs-based diagnosis is largely limited by the challenges of capturing low-abundance CTCs within a complex blood environment while ensuring them alive. Here, an ultrastrong ligand, l-histidine-l-histidine (HH), specifically targeting sialylated glycans on the surface of CTCs, is designed. Furthermore, HH is integrated into a cell-imprinted polymer, constructing a hydrogel with precise CTCs imprinting, high elasticity, satisfactory blood compatibility, and robust anti-interference capacities. These features endow the hydrogel with excellent capture efficiency (>95%) for CTCs in peripheral blood, as well as the ability to release CTCs controllably and alive. Clinical tests substantiate the accurate differentiation between liver cancer, cirrhosis, and healthy groups using this method. The remarkable diagnostic accuracy (94%), lossless release of CTCs, material reversibility, and cost-effectiveness ($6.68 per sample) make the HH-based hydrogel a potentially revolutionary technology for liver cancer diagnosis and single-cell analysis.
Collapse
Affiliation(s)
- Wenjing Sun
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P. R. China
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xin You
- Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, 116023, P. R. China
| | - Xinjia Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xiaoyu Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Chunhui Yang
- Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, 116023, P. R. China
| | - Fusheng Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Jiaqi Yu
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Kaiguang Yang
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Jixia Wang
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, P. R. China
| | - Fangfang Xu
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, P. R. China
| | - Yongxin Chang
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Boxin Qu
- Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, 116023, P. R. China
| | - Xinmiao Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, P. R. China
| | - Yuxuan He
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, P. R. China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, 116023, P. R. China
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Guangyan Qing
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| |
Collapse
|
25
|
Altriche N, Gallant S, Augustine TN, Xulu KR. Navigating the Intricacies of Tumor Heterogeneity: An Insight into Potential Prognostic Breast Cancer Biomarkers. Biomark Insights 2024; 19:11772719241256798. [PMID: 38895160 PMCID: PMC11185041 DOI: 10.1177/11772719241256798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/24/2024] [Indexed: 06/21/2024] Open
Abstract
Breast cancer is a heterogeneous disease with diverse histological and molecular subtypes. Luminal breast tumors are the most diagnosed subtype. In luminal breast cancer, hormone receptors (including ER, PR, HER2) play a diagnostic and prognostic role. Despite the effectiveness of endocrine therapy in luminal breast tumors, tumor recurrence and resistance occur, and this may highlight evolutionary strategies for survival driven by stemness. In this review we thus consider the association between estrogen signaling and stemness in mediating tumor processes. Many studies report stemness as one of the factors promoting tumor progression. Its association with estrogen signaling warrants further investigation and provides an opportunity for the identification of novel biomarkers which may be used for diagnostic, prognostic, and therapeutic purposes. Breast cancer stem cells have been characterized (CD44+ CD24-) and their role in promoting treatment resistance and tumor recurrence widely studied; however, the complexity of tumor progression which also involve microenvironmental factors suggests the existence of more varied cell phenotypes which mediate stemness and its role in tumor progression.
Collapse
Affiliation(s)
- Nastassia Altriche
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Simone Gallant
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Tanya Nadine Augustine
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Kutlwano Rekgopetswe Xulu
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| |
Collapse
|
26
|
Xiao D, Xiong M, Wang X, Lyu M, Sun H, Cui Y, Chen C, Jiang Z, Sun F. Regulation of the Function and Expression of EpCAM. Biomedicines 2024; 12:1129. [PMID: 38791091 PMCID: PMC11117676 DOI: 10.3390/biomedicines12051129] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The epithelial cell adhesion molecule (EpCAM) is a single transmembrane protein on the cell surface. Given its strong expression on epithelial cells and epithelial cell-derived tumors, EpCAM has been identified as a biomarker for circulating tumor cells (CTCs) and exosomes and a target for cancer therapy. As a cell adhesion molecule, EpCAM has a crystal structure that indicates that it forms a cis-dimer first and then probably a trans-tetramer to mediate intercellular adhesion. Through regulated intramembrane proteolysis (RIP), EpCAM and its proteolytic fragments are also able to regulate multiple signaling pathways, Wnt signaling in particular. Although great progress has been made, increasingly more findings have revealed the context-specific expression and function patterns of EpCAM and their regulation processes, which necessitates further studies to determine the structure, function, and expression of EpCAM under both physiological and pathological conditions, broadening its application in basic and translational cancer research.
Collapse
Affiliation(s)
- Di Xiao
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Mingrui Xiong
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xin Wang
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Mengqing Lyu
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Hanxiang Sun
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yeting Cui
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Chen Chen
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China;
| | - Ziyu Jiang
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China;
| | - Fan Sun
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
27
|
Bufalo AJ, Vanderbeck MM, Schmitt J, McGraw HF. EpCAM regulates hair cell development and regeneration in the zebrafish lateral line. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001219. [PMID: 38800699 PMCID: PMC11117072 DOI: 10.17912/micropub.biology.001219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
The zebrafish lateral line mechanosensory system shares considerable morphological and molecular similarities with the inner ear. In particular, mechanosensory hair cells are responsible for transducing sensory stimuli in both structures. The epithelia cell adhesion molecule (EpCAM) is expressed in the cells of the inner ear of mammals and in the lateral lines system of fish. EpCAM regulates the many cellular functions including adhesion, migration, proliferation, and differentiation. In this study, we use the epcam jh79 mutant zebrafish line to determine that EpCAM function is required for proper development and regeneration of posterior lateral line hair cells.
Collapse
Affiliation(s)
- Andrew J. Bufalo
- Division of Biology and Biomedical Systems, University of Missouri–Kansas City, Kansas City, Missouri, United States
| | - Madison M. Vanderbeck
- Division of Biological and Biomedical Systems, University of Missouri–Kansas City, Kansas City, Missouri, United States
| | - Jodie Schmitt
- Division of Biological and Biomedical Systems, University of Missouri–Kansas City, Kansas City, Missouri, United States
| | - Hillary F. McGraw
- Division of Biological and Biomedical Systems, University of Missouri–Kansas City, Kansas City, Missouri, United States
| |
Collapse
|
28
|
Singh M, De Rubis G, Kokkinis S, Paudel KR, Yeung S, Hansbro PM, Oliver BGG, Dua K. Curcumin-loaded liposomes modulating the synergistic role of EpCAM and estrogen receptor alpha in lung cancer management. Pathol Res Pract 2024; 257:155317. [PMID: 38657558 DOI: 10.1016/j.prp.2024.155317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Lung cancer (LC) remains a leading cause of cancer-related mortality worldwide, necessitating the exploration of innovative therapeutic strategies. This study delves into the in vitro potential of liposomal therapeutics utilizing Curcumin-loaded PlexoZome® (CUR-PLXZ) in targeting EpCAM/TROP1 and Estrogen Receptor Alpha (ERα) signalling pathways for LC management. The prevalence of LC, particularly non-small cell lung cancer (NSCLC), underscores the urgent need for effective treatments. Biomarkers like EpCAM/TROP1 and ERα/NR3A1 play crucial roles in guiding targeted therapies and influencing prognosis. EpCAM plays a key role in cell-cell adhesion and signalling along with ERα which is a nuclear receptor that binds estrogen and regulates gene expression in response to hormonal signals. In LC, both often get overexpressed and are associated with tumour progression, metastasis, and poor prognosis. Curcumin, a phytochemical with diverse therapeutic properties, holds promise in targeting these pathways. However, its limited solubility and bioavailability necessitate advanced formulations like CUR-PLXZ. Our study investigates the biological significance of these biomarkers in the A549 cell line and explores the therapeutic potential of CUR-PLXZ, which modulates the expression of these two markers. An in vitro analysis of the A549 human lung adenocarcinoma cell line identified that CUR-PLXZ at a dose of 5 μM effectively inhibited the expression of EpCAM and ERα. This finding paves the way for targeted intervention strategies in LC management.
Collapse
Affiliation(s)
- Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, Uttar Pradesh, India; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Sofia Kokkinis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Pharmako Biotechnologies, Sydney, NSW 2086, Australia
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Philip Michael Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Brian Gregory George Oliver
- Woolcock Institute of Medical Research, Macquarie University, New South Wales, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
29
|
Arrè V, Mastrogiacomo R, Balestra F, Serino G, Viti F, Rizzi F, Curri ML, Giannelli G, Depalo N, Scavo MP. Unveiling the Potential of Extracellular Vesicles as Biomarkers and Therapeutic Nanotools for Gastrointestinal Diseases. Pharmaceutics 2024; 16:567. [PMID: 38675228 PMCID: PMC11055174 DOI: 10.3390/pharmaceutics16040567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Extracellular vesicles (EVs), acting as inherent nanocarriers adept at transporting a range of different biological molecules such as proteins, lipids, and genetic material, exhibit diverse functions within the gastroenteric tract. In states of normal health, they participate in the upkeep of systemic and organ homeostasis. Conversely, in pathological conditions, they significantly contribute to the pathogenesis of gastrointestinal diseases (GIDs). Isolating EVs from patients' biofluids facilitates the discovery of new biomarkers that have the potential to offer a rapid, cost-effective, and non-invasive method for diagnosing and prognosing specific GIDs. Furthermore, EVs demonstrate considerable therapeutic potential as naturally targeted physiological carriers for the intercellular delivery of therapeutic cargo molecules or as nanoscale tools engineered specifically to regulate physio-pathological conditions or disease progression. Their attributes including safety, high permeability, stability, biocompatibility, low immunogenicity, and homing/tropism capabilities contribute to their promising clinical therapeutic applications. This review will delve into various examples of EVs serving as biomarkers or nanocarriers for therapeutic cargo in the context of GIDs, highlighting their clinical potential for both functional and structural gastrointestinal conditions. The versatile and advantageous properties of EVs position them as promising candidates for innovative therapeutic strategies in advancing personalized medicine approaches tailored to the gastroenteric tract, addressing both functional and structural GIDs.
Collapse
Affiliation(s)
- Valentina Arrè
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Italy; (V.A.); (F.B.); (G.S.); (G.G.)
| | - Rita Mastrogiacomo
- Department of Chemistry, University of Bari, Via Orabona 4, 70125 Bari, Italy; (R.M.); (M.L.C.)
- Institute for Chemical-Physical Processes (IPCF)-CNR SS, Via Orabona 4, 70125 Bari, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Bari Research Unit, 70126 Bari, Italy
| | - Francesco Balestra
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Italy; (V.A.); (F.B.); (G.S.); (G.G.)
| | - Grazia Serino
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Italy; (V.A.); (F.B.); (G.S.); (G.G.)
| | - Federica Viti
- Institute of Biophysics—National Research Council (IBF-CNR), Via De Marini 6, 16149 Genova, Italy;
| | - Federica Rizzi
- Institute for Chemical-Physical Processes (IPCF)-CNR SS, Via Orabona 4, 70125 Bari, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Bari Research Unit, 70126 Bari, Italy
| | - Maria Lucia Curri
- Department of Chemistry, University of Bari, Via Orabona 4, 70125 Bari, Italy; (R.M.); (M.L.C.)
- Institute for Chemical-Physical Processes (IPCF)-CNR SS, Via Orabona 4, 70125 Bari, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Bari Research Unit, 70126 Bari, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Italy; (V.A.); (F.B.); (G.S.); (G.G.)
| | - Nicoletta Depalo
- Institute for Chemical-Physical Processes (IPCF)-CNR SS, Via Orabona 4, 70125 Bari, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Bari Research Unit, 70126 Bari, Italy
| | - Maria Principia Scavo
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Italy; (V.A.); (F.B.); (G.S.); (G.G.)
| |
Collapse
|
30
|
Zhou L, Lu Y, Liu W, Wang S, Wang L, Zheng P, Zi G, Liu H, Liu W, Wei S. Drug conjugates for the treatment of lung cancer: from drug discovery to clinical practice. Exp Hematol Oncol 2024; 13:26. [PMID: 38429828 PMCID: PMC10908151 DOI: 10.1186/s40164-024-00493-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
A drug conjugate consists of a cytotoxic drug bound via a linker to a targeted ligand, allowing the targeted delivery of the drug to one or more tumor sites. This approach simultaneously reduces drug toxicity and increases efficacy, with a powerful combination of efficient killing and precise targeting. Antibody‒drug conjugates (ADCs) are the best-known type of drug conjugate, combining the specificity of antibodies with the cytotoxicity of chemotherapeutic drugs to reduce adverse reactions by preferentially targeting the payload to the tumor. The structure of ADCs has also provided inspiration for the development of additional drug conjugates. In recent years, drug conjugates such as ADCs, peptide‒drug conjugates (PDCs) and radionuclide drug conjugates (RDCs) have been approved by the Food and Drug Administration (FDA). The scope and application of drug conjugates have been expanding, including combination therapy and precise drug delivery, and a variety of new conjugation technology concepts have emerged. Additionally, new conjugation technology-based drugs have been developed in industry. In addition to chemotherapy, targeted therapy and immunotherapy, drug conjugate therapy has undergone continuous development and made significant progress in treating lung cancer in recent years, offering a promising strategy for the treatment of this disease. In this review, we discuss recent advances in the use of drug conjugates for lung cancer treatment, including structure-based drug design, mechanisms of action, clinical trials, and side effects. Furthermore, challenges, potential approaches and future prospects are presented.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Liu
- Department of Geriatrics, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shanglong Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guisha Zi
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
31
|
Zhou J, Lan F, Liu M, Wang F, Ning X, Yang H, Sun H. Hypoxia inducible factor-1ɑ as a potential therapeutic target for osteosarcoma metastasis. Front Pharmacol 2024; 15:1350187. [PMID: 38327979 PMCID: PMC10847273 DOI: 10.3389/fphar.2024.1350187] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024] Open
Abstract
Osteosarcoma (OS) is a malignant tumor originating from mesenchymal tissue. Pulmonary metastasis is usually present upon initial diagnosis, and metastasis is the primary factor affecting the poor prognosis of patients with OS. Current research shows that the ability to regulate the cellular microenvironment is essential for preventing the distant metastasis of OS, and anoxic microenvironments are important features of solid tumors. During hypoxia, hypoxia-inducible factor-1α (HIF-1α) expression levels and stability increase. Increased HIF-1α promotes tumor vascular remodeling, epithelial-mesenchymal transformation (EMT), and OS cells invasiveness; this leads to distant metastasis of OS cells. HIF-1α plays an essential role in the mechanisms of OS metastasis. In order to develop precise prognostic indicators and potential therapeutic targets for OS treatment, this review examines the molecular mechanisms of HIF-1α in the distant metastasis of OS cells; the signal transduction pathways mediated by HIF-1α are also discussed.
Collapse
Affiliation(s)
- Jianghu Zhou
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Fengjun Lan
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Miao Liu
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Fengyan Wang
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xu Ning
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hua Yang
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hong Sun
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
32
|
Chen M, Gao Y, Cao H, Wang Z, Zhang S. Comprehensive analysis reveals dual biological function roles of EpCAM in kidney renal clear cell carcinoma. Heliyon 2024; 10:e23505. [PMID: 38187284 PMCID: PMC10767389 DOI: 10.1016/j.heliyon.2023.e23505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/27/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Background Epithelial cell adhesion molecule (EpCAM), a well-established marker for circulating tumor cells, plays a crucial role in the complex process of cancer metastasis. The primary objective of this investigation is to study EpCAM expression in pan-cancer and elucidate its significance in the context of kidney renal clear cell carcinoma (KIRC). Methods Data obtained from the public database was harnessed for the comprehensive assessment of the EpCAM expression levels and prognostic and clinicopathological correlations in thirty-three types of cancer. EpCAM was validated in our own KIRC sequencing and immunohistochemical cohorts. Subsequently, an in-depth exploration was conducted to scrutinize the interrelationship between EpCAM and various facets, including immune cells, immune checkpoints, and chemotherapy drugs. We employed Cox regression analysis to identify prognostic immunomodulators associated with EpCAM, which were subsequently utilized in the development of a prognostic model. The model was validated in our own clinical cohort and public datasets, and compared with 137 published models. The role of EpCAM in KIRC was explored by biological function experiments in vitro. Results While EpCAM exhibited pronounced overexpression across a wide spectrum of cancer types, a notable reduction was observed in KIRC tissues. As grade increased, EpCAM expression decreased. EpCAM expression decreased in patients without metastasis. EpCAM mRNA and protein levels were used as independent, favorable prognostic factors in patients with KIRC in our own cohort. The expression of EpCAM exhibited strong associations with immune-related pathways, demonstrating an inverse correlation with the majority of immune cell types. Immune checkpoint inhibitors exert better therapeutic effects on patients with low EpCAM expression. In addition, EpCAM can be used as a drug resistance indicator and guide the clinical medication of patients with KIRC. A robust model, which had good predictive accuracy and applicability, showed significant superiority over other models. Importantly, EpCAM played the dual roles of promoting proliferation and resisting metastasis in KIRC. Conclusion In the context of KIRC, EpCAM assumes a surprising dual role, where it not only facilitates cell proliferation but also exerts resistance against the metastatic process. EpCAM serves as a standalone prognostic marker for patients with KIRC, and related models can also effectively predict prognosis. These discoveries offer novel perspectives on the functional significance of EpCAM in the context of KIRC.
Collapse
Affiliation(s)
- Mei Chen
- Central Laboratory, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Yuanhui Gao
- Central Laboratory, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Hui Cao
- Central Laboratory, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Zhenting Wang
- Urology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Shufang Zhang
- Central Laboratory, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| |
Collapse
|
33
|
Frey G, Cugnetti APG, Liu H, Xing C, Wheeler C, Chang HW, Boyle WJ, Short JM. A novel conditional active biologic anti-EpCAM x anti-CD3 bispecific antibody with synergistic tumor selectivity for cancer immunotherapy. MAbs 2024; 16:2322562. [PMID: 38445633 PMCID: PMC10936661 DOI: 10.1080/19420862.2024.2322562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein that plays several roles in cancer biology. EpCAM is an attractive therapeutic target because of its expression in most solid tumors. However, targeting EpCAM has been challenging because it is also highly expressed in normal epithelial tissues. Initial attempts to develop EpCAM-specific T-cell engagers were unsuccessful due to severe cytokine release effects, as well as serious on-target, off-tumor drug-related toxicities. We developed novel, conditionally active biological (CAB) bispecific antibodies that bind to both EpCAM and CD3 in an acidic tumor microenvironment. In healthy tissues, binding to EpCAM and CD3 is greatly reduced by a novel, dual CAB selection, where each binding domain is independently blocked by the presence of physiological chemicals known as Protein-associated Chemical Switches (PaCS). The CAB anti-EpCAM T-cell engagers displayed the anticipated bispecific binding properties and mediated the potent lysis of EpCAM-positive cancer cell lines through the recruitment of T cells in the tumor microenvironment. Xenograft studies showed that the efficacy of CAB bispecific antibodies is similar to that of a non-CAB anti-EpCAM bispecific antibody, but they have markedly reduced toxicity in non-human primates, indicating an unprecedentedly widened therapeutic index of over 100-fold. These preclinical results indicate that the dual CAB bispecific antibody is potentially both a powerful and safe therapeutic platform and a promising T cell-engaging treatment for patients with EpCAM-expressing tumors.
Collapse
Affiliation(s)
- Gerhard Frey
- Research & Development, BioAtla Inc, San Diego, CA, USA
| | | | - Haizhen Liu
- Research & Development, BioAtla Inc, San Diego, CA, USA
| | - Charles Xing
- Research & Development, BioAtla Inc, San Diego, CA, USA
| | | | | | | | - Jay M. Short
- Research & Development, BioAtla Inc, San Diego, CA, USA
| |
Collapse
|
34
|
Bell D, Bell AH, Weber RS, Hanna EY. Intestinal-Type Adenocarcinoma in Head and Neck: Dissecting Oncogenic Gene Alterations Through Whole Transcriptome and Exome Analysis. Mod Pathol 2024; 37:100372. [PMID: 37914089 DOI: 10.1016/j.modpat.2023.100372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/01/2023] [Accepted: 10/08/2023] [Indexed: 11/03/2023]
Abstract
Adenocarcinomas of the nasal/paranasal sinuses are uncommon, but intestinal-type adenocarcinomas (ITACs) are important. Due to the rarity of these tumors, their molecular profile is not well known. To further investigate the molecular profile and find potential oncogenic drivers, we compared the whole transcriptome and exome of ITACs at different anatomic locations in the head and neck. Twenty-one head and neck adenocarcinomas were used in this study, divided into 10 sinonasal adenocarcinomas (SNT) and 11 extrasinonasal (T) head and neck adenocarcinomas according to anatomic location and histology. Tumor samples along with normal mucosa were microdissected from formalin-fixed, paraffin-embedded samples, and RNA and DNA were subjected to whole-transcriptome and -exome shotgun sequencing. Analysis of ITACs at sinonasal locations showed 410 subtype-specific differentially expressed (DE) genes and noncoding transcripts compared with the group of other anatomic locations, with 2909 subtype-specific DE genes. The groups shared 872 genes, with 17 highly different or opposing DE genes. Whole-exome mutation analysis revealed the gene MLL3 (KMT2C) to be exhibiting the most frequent loss-of-function mutations in all adenocarcinomas investigated. The results suggest that the head and neck ITACs investigated were mainly caused by loss-of-function mutations in MLL3 that disabled chromatin methylation and remodeling of all MLL3-targeted enhancers in the tumors. This changed the activity of multiple genes/gene clusters, supporting oncogenicity mostly via pathways of signaling, dedifferentiation, proliferation, migration, and immune and inflammatory deregulation, indicating a truly epigenetic event as the root cause for the heterogenous diversity of these enteric types of cancer. The data of this study form the basis for understanding cell fate determination and cellular homeostasis in the normal respiratory mucosa at different anatomic sites and show the contribution of different mucosal components to the etiology/molecular pathology of ITAC.
Collapse
Affiliation(s)
- Diana Bell
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, California.
| | - Achim H Bell
- Departments of Pathology Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Randal S Weber
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ehab Y Hanna
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
35
|
Uddin MH, Al‐Hallak MN, Khan HY, Aboukameel A, Li Y, Bannoura SF, Dyson G, Kim S, Mzannar Y, Azar I, Odisho T, Mohamed A, Landesman Y, Kim S, Beydoun R, Mohammad RM, Philip PA, Shields AF, Azmi AS. Molecular analysis of XPO1 inhibitor and gemcitabine-nab-paclitaxel combination in KPC pancreatic cancer mouse model. Clin Transl Med 2023; 13:e1513. [PMID: 38131168 PMCID: PMC10739156 DOI: 10.1002/ctm2.1513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/03/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND The majority of pancreatic ductal adenocarcinoma (PDAC) patients experience disease progression while on treatment with gemcitabine and nanoparticle albumin-bound (nab)-paclitaxel (GemPac) necessitating the need for a more effective treatment strategy for this refractory disease. Previously, we have demonstrated that nuclear exporter protein exportin 1 (XPO1) is a valid therapeutic target in PDAC, and the selective inhibitor of nuclear export selinexor (Sel) synergistically enhances the efficacy of GemPac in pancreatic cancer cells, spheroids and patient-derived tumours, and had promising activity in a phase I study. METHODS Here, we investigated the impact of selinexor-gemcitabine-nab-paclitaxel (Sel-GemPac) combination on LSL-KrasG12D/+ ; LSL-Trp53R172H/+ ; Pdx1-Cre (KPC) mouse model utilising digital spatial profiling (DSP) and single nuclear RNA sequencing (snRNAseq). RESULTS Sel-GemPac synergistically inhibited the growth of the KPC tumour-derived cell line. The Sel-GemPac combination reduced the 2D colony formation and 3D spheroid formation. In the KPC mouse model, at a sub-maximum tolerated dose (sub-MTD) , Sel-GemPac enhanced the survival of treated mice compared to controls (p < .05). Immunohistochemical analysis of residual KPC tumours showed re-organisation of tumour stromal architecture, suppression of proliferation and nuclear retention of tumour suppressors, such as Forkhead Box O3a (FOXO3a). DSP revealed the downregulation of tumour promoting genes such as chitinase-like protein 3 (CHIL3/CHI3L3/YM1) and multiple pathways including phosphatidylinositol 3'-kinase-Akt (PI3K-AKT) signalling. The snRNAseq demonstrated a significant loss of cellular clusters in the Sel-GemPac-treated mice tumours including the CD44+ stem cell population. CONCLUSION Taken together, these results demonstrate that the Sel-GemPac treatment caused broad perturbation of PDAC-supporting signalling networks in the KPC mouse model. HIGHLIGHTS The majority of pancreatic ductal adenocarcinoma (PDAC) patients experience disease progression while on treatment with gemcitabine and nanoparticle albumin-bound (nab)-paclitaxel (GemPac). Exporter protein exportin 1 (XPO1) inhibitor selinexor (Sel) with GemPac synergistically inhibited the growth of LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx1-Cre (KPC) mouse derived cell line and enhanced the survival of mice. Digital spatial profiling shows that Sel-GemPac causes broad perturbation of PDAC-supporting signalling in the KPC model.
Collapse
Affiliation(s)
- Md. Hafiz Uddin
- Department of OncologyKarmanos Cancer InstituteWayne State University School of MedicineDetroitMichiganUSA
| | - Mohammad Najeeb Al‐Hallak
- Department of OncologyKarmanos Cancer InstituteWayne State University School of MedicineDetroitMichiganUSA
| | - Husain Yar Khan
- Department of OncologyKarmanos Cancer InstituteWayne State University School of MedicineDetroitMichiganUSA
| | - Amro Aboukameel
- Department of OncologyKarmanos Cancer InstituteWayne State University School of MedicineDetroitMichiganUSA
| | - Yiwei Li
- Department of OncologyKarmanos Cancer InstituteWayne State University School of MedicineDetroitMichiganUSA
| | - Sahar F. Bannoura
- Department of OncologyKarmanos Cancer InstituteWayne State University School of MedicineDetroitMichiganUSA
| | - Gregory Dyson
- Department of OncologyKarmanos Cancer InstituteWayne State University School of MedicineDetroitMichiganUSA
| | - Seongho Kim
- Department of OncologyKarmanos Cancer InstituteWayne State University School of MedicineDetroitMichiganUSA
| | - Yosef Mzannar
- Department of OncologyKarmanos Cancer InstituteWayne State University School of MedicineDetroitMichiganUSA
| | - Ibrahim Azar
- Department of OncologyKarmanos Cancer InstituteWayne State University School of MedicineDetroitMichiganUSA
| | | | - Amr Mohamed
- UH Seidman Cancer CenterUniversity Hospitals, Case Western Reserve UniversityClevelandOhioUSA
| | | | - Steve Kim
- Department of OncologyKarmanos Cancer InstituteWayne State University School of MedicineDetroitMichiganUSA
| | - Rafic Beydoun
- Department of OncologyKarmanos Cancer InstituteWayne State University School of MedicineDetroitMichiganUSA
- Department of PathologyWayne State University School of MedicineDetroitMichiganUSA
| | - Ramzi M. Mohammad
- Department of OncologyKarmanos Cancer InstituteWayne State University School of MedicineDetroitMichiganUSA
| | | | - Anthony F. Shields
- Department of OncologyKarmanos Cancer InstituteWayne State University School of MedicineDetroitMichiganUSA
| | - Asfar S. Azmi
- Department of OncologyKarmanos Cancer InstituteWayne State University School of MedicineDetroitMichiganUSA
| |
Collapse
|
36
|
Götz L, Rueckschloss U, Balk G, Pfeiffer V, Ergün S, Kleefeldt F. The role of carcinoembryonic antigen-related cell adhesion molecule 1 in cancer. Front Immunol 2023; 14:1295232. [PMID: 38077351 PMCID: PMC10704240 DOI: 10.3389/fimmu.2023.1295232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
The Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), also known as CD66a, is a member of the immunoglobulin superfamily. CEACAM1 was shown to be a prognostic marker in patients suffering from cancer. In this review, we summarize pre-clinical and clinical evidence linking CEACAM1 to tumorigenicity and cancer progression. Furthermore, we discuss potential CEACAM1-based mechanisms that may affect cancer biology.
Collapse
Affiliation(s)
- Lisa Götz
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Uwe Rueckschloss
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Gözde Balk
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Verena Pfeiffer
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
37
|
Szymanowski W, Szymanowska A, Bielawska A, Lopez-Berestein G, Rodriguez-Aguayo C, Amero P. Aptamers as Potential Therapeutic Tools for Ovarian Cancer: Advancements and Challenges. Cancers (Basel) 2023; 15:5300. [PMID: 37958473 PMCID: PMC10647731 DOI: 10.3390/cancers15215300] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Ovarian cancer (OC) is the most common lethal gynecologic cause of death in women worldwide, with a high mortality rate and increasing incidence. Despite advancements in the treatment, most OC patients still die from their disease due to late-stage diagnosis, the lack of effective diagnostic methods, and relapses. Aptamers, synthetic, short single-stranded oligonucleotides, have emerged as promising anticancer therapeutics. Their ability to selectively bind to target molecules, including cancer-related proteins and receptors, has revolutionized drug discovery and biomarker identification. Aptamers offer unique insights into the molecular pathways involved in cancer development and progression. Moreover, they show immense potential as drug delivery systems, enabling targeted delivery of therapeutic agents to cancer cells while minimizing off-target effects and reducing systemic toxicity. In the context of OC, the integration of aptamers with non-coding RNAs (ncRNAs) presents an opportunity for precise and efficient gene targeting. Additionally, the conjugation of aptamers with nanoparticles allows for accurate and targeted delivery of ncRNAs to specific cells, tissues, or organs. In this review, we will summarize the potential use and challenges associated with the use of aptamers alone or aptamer-ncRNA conjugates, nanoparticles, and multivalent aptamer-based therapeutics for the treatment of OC.
Collapse
Affiliation(s)
- Wojciech Szymanowski
- Department of Biotechnology, Medical University of Bialystok, 15-222 Bialystok, Poland; (W.S.); (A.B.)
| | - Anna Szymanowska
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (G.L.-B.); (C.R.-A.)
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, 15-222 Bialystok, Poland; (W.S.); (A.B.)
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (G.L.-B.); (C.R.-A.)
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (G.L.-B.); (C.R.-A.)
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (G.L.-B.); (C.R.-A.)
| |
Collapse
|
38
|
Pan C, Xu A, Ma X, Yao Y, Zhao Y, Wang C, Chen C. Research progress of Claudin-low breast cancer. Front Oncol 2023; 13:1226118. [PMID: 37904877 PMCID: PMC10613467 DOI: 10.3389/fonc.2023.1226118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/26/2023] [Indexed: 11/01/2023] Open
Abstract
Claudin-low breast cancer (CLBC) is a subgroup of breast cancer discovered at the molecular level in 2007. Claudin is one of the primary proteins that make up tight junctions, and it plays crucial roles in anti-inflammatory and antitumor responses as well as the maintenance of water and electrolyte balance. Decreased expression of claudin results in the disruption of tight junction structures and the activation of downstream signaling pathways, which can lead to tumor formation. The origin of Claudin-low breast cancer is still in dispute. Claudin-low breast cancer is characterized by low expression of Claudin3, 4, 7, E-cadherin, and HER2 and high expression of Vimentin, Snai 1/2, Twist 1/2, Zeb 1/2, and ALDH1, as well as stem cell characteristics. The clinical onset of claudin-low breast cancer is at menopause age, and its histological grade is higher. This subtype of breast cancer is more likely to spread to lymph nodes than other subtypes. Claudin-low breast cancer is frequently accompanied by increased invasiveness and a poor prognosis. According to a clinical retrospective analysis, claudin-low breast cancer can achieve low pathological complete remission. At present, although several therapeutic targets of claudin-low breast cancer have been identified, the effective treatment remains in basic research stages, and no animal studies or clinical trials have been designed. The origin, molecular biological characteristics, pathological characteristics, treatment, and prognosis of CLBC are extensively discussed in this article. This will contribute to a comprehensive understanding of CLBC and serve as the foundation for the individualization of breast cancer treatment.
Collapse
Affiliation(s)
- Chenglong Pan
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Anqi Xu
- Kunming Medical University, Kunming, Yunnan, China
- Department of Anesthesia, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiaoling Ma
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Yanfei Yao
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Youmei Zhao
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Chunyan Wang
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ceshi Chen
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan, China
- The Third Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
39
|
Zaarour RF, Ribeiro M, Azzarone B, Kapoor S, Chouaib S. Tumor microenvironment-induced tumor cell plasticity: relationship with hypoxic stress and impact on tumor resistance. Front Oncol 2023; 13:1222575. [PMID: 37886168 PMCID: PMC10598765 DOI: 10.3389/fonc.2023.1222575] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
The role of tumor interaction with stromal components during carcinogenesis is crucial for the design of efficient cancer treatment approaches. It is widely admitted that tumor hypoxic stress is associated with tumor aggressiveness and thus impacts susceptibility and resistance to different types of treatments. Notable biological processes that hypoxia functions in include its regulation of tumor heterogeneity and plasticity. While hypoxia has been reported as a major player in tumor survival and dissemination regulation, the significance of hypoxia inducible factors in cancer stem cell development remains poorly understood. Several reports indicate that the emergence of cancer stem cells in addition to their phenotype and function within a hypoxic tumor microenvironment impacts cancer progression. In this respect, evidence showed that cancer stem cells are key elements of intratumoral heterogeneity and more importantly are responsible for tumor relapse and escape to treatments. This paper briefly reviews our current knowledge of the interaction between tumor hypoxic stress and its role in stemness acquisition and maintenance. Our review extensively covers the influence of hypoxia on the formation and maintenance of cancer stem cells and discusses the potential of targeting hypoxia-induced alterations in the expression and function of the so far known stem cell markers in cancer therapy approaches. We believe that a better and integrated understanding of the effect of hypoxia on stemness during carcinogenesis might lead to new strategies for exploiting hypoxia-associated pathways and their targeting in the clinical setting in order to overcome resistance mechanisms. More importantly, at the present time, efforts are oriented towards the design of innovative therapeutical approaches that specifically target cancer stem cells.
Collapse
Affiliation(s)
- RF. Zaarour
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - M. Ribeiro
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - B. Azzarone
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - S. Kapoor
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - S. Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, Villejuif, France
| |
Collapse
|
40
|
Varaprasad GL, Gupta VK, Prasad K, Kim E, Tej MB, Mohanty P, Verma HK, Raju GSR, Bhaskar L, Huh YS. Recent advances and future perspectives in the therapeutics of prostate cancer. Exp Hematol Oncol 2023; 12:80. [PMID: 37740236 PMCID: PMC10517568 DOI: 10.1186/s40164-023-00444-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/10/2023] [Indexed: 09/24/2023] Open
Abstract
Prostate cancer (PC) is one of the most common cancers in males and the fifth leading reason of death. Age, ethnicity, family history, and genetic defects are major factors that determine the aggressiveness and lethality of PC. The African population is at the highest risk of developing high-grade PC. It can be challenging to distinguish between low-risk and high-risk patients due to the slow progression of PC. Prostate-specific antigen (PSA) is a revolutionary discovery for the identification of PC. However, it has led to an increase in over diagnosis and over treatment of PC in the past few decades. Even if modifications are made to the standard PSA testing, the specificity has not been found to be significant. Our understanding of PC genetics and proteomics has improved due to advances in different fields. New serum, urine, and tissue biomarkers, such as PC antigen 3 (PCA3), have led to various new diagnostic tests, such as the prostate health index, 4K score, and PCA3. These tests significantly reduce the number of unnecessary and repeat biopsies performed. Chemotherapy, radiotherapy, and prostatectomy are standard treatment options. However, newer novel hormone therapy drugs with a better response have been identified. Androgen deprivation and hormonal therapy are evolving as new and better options for managing hormone-sensitive and castration-resistant PC. This review aimed to highlight and discuss epidemiology, various risk factors, and developments in PC diagnosis and treatment regimens.
Collapse
Affiliation(s)
- Ganji Lakshmi Varaprasad
- Department of Biological Sciences and Bioengineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea
| | - Vivek Kumar Gupta
- Department of Biological Sciences and Bioengineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea
| | - Kiran Prasad
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Eunsu Kim
- Department of Biological Sciences and Bioengineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea
| | - Mandava Bhuvan Tej
- Department of Health Care Informatics, Sacred Heart University, 5151 Park Avenue, Fair Fields, CT, 06825, USA
| | - Pratik Mohanty
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of Lungs Health and Immunity, Helmholtz Zentrum, 85764, Neuherberg, Munich, Germany
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| | - Lvks Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India.
| | - Yun Suk Huh
- Department of Biological Sciences and Bioengineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
41
|
Kalaitsidou I, Pasteli N, Venetis G, Poulopoulos A, Antoniades K. Immunohistochemical Expression of Epithelial Cell Adhesion Molecule (EpCAM) in Salivary Gland Cancer: Correlation with the Biological Behavior. Diagnostics (Basel) 2023; 13:2652. [PMID: 37627911 PMCID: PMC10453306 DOI: 10.3390/diagnostics13162652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Salivary gland neoplasms comprise a diverse group of tumors with different biological behaviors and clinical outcomes. Understanding the underlying molecular alterations associated with these malignancies is critical for accurate diagnosis, prognosis, and treatment strategies. Among the many biomarkers under investigation, epithelial cell adhesion molecule (EpCAM) has emerged as a promising candidate in salivary gland cancer research. This article aims to provide a comprehensive overview of the differential expression of EpCAM in salivary gland cancer and its potential correlation with the biological behavior of these tumors. The clinical characteristics of 65 patients with salivary gland malignancy of different histopathological subtypes were included. We report the differential expression of EpCAM and the relationship between the clinical and histopathologic features of these tumors. Regarding the evaluation of the effect of EpCAM expression on survival, in our study, we showed that tumors with high EpCAM expression had reduced disease-free survival (DFS) and overall survival (OS) (p < 0.001) compared to patients with cancers with low EpCAM expression. In addition, the concurrent presence of perineural invasion and positive EpCAM expression appeared to be associated with shorter disease-free survival and overall survival. In conclusion, our study confirmed the prognostic value of detecting perineural invasion and EpCAM expression.
Collapse
Affiliation(s)
- Ioanna Kalaitsidou
- Department of Oral and Maxillofacial Surgery, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.V.)
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland
| | - Nikoleta Pasteli
- Pathology Department, G. Papanikolaou Hospital, 57010 Thessaloniki, Greece
| | - Gregory Venetis
- Department of Oral and Maxillofacial Surgery, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.V.)
| | - Athanasios Poulopoulos
- Department of Oral Medicine and Maxillofacial Pathology, Aristotle University, 54124 Thessaloniki, Greece;
| | - Konstantinos Antoniades
- Department of Oral and Maxillofacial Surgery, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.V.)
| |
Collapse
|
42
|
Geng P, Chi Y, Yuan Y, Yang M, Zhao X, Liu Z, Liu G, Liu Y, Zhu L, Wang S. Novel chimeric antigen receptor T cell-based immunotherapy: a perspective for triple-negative breast cancer. Front Cell Dev Biol 2023; 11:1158539. [PMID: 37457288 PMCID: PMC10339351 DOI: 10.3389/fcell.2023.1158539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is highly aggressive and does not express estrogen receptor (ER), progesterone (PR), or human epidermal growth factor receptor 2 (HER2). It has a poor prognosis, and traditional endocrine and anti-HER2 targeted therapies have low efficacy against it. In contrast, surgery, radiotherapy, and/or systemic chemotherapy are relatively effective at controlling TNBC. The resistance of TNBC to currently available clinical therapies has had a significantly negative impact on its treatment outcomes. Hence, new therapeutic options are urgently required. Chimeric antigen receptor T cell (CAR-T) therapy is a type of immunotherapy that integrates the antigen specificity of antibodies and the tumor-killing effect of T cells. CAR-T therapy has demonstrated excellent clinical efficacy against hematological cancers. However, its efficacy against solid tumors such as TNBC is inadequate. The present review aimed to investigate various aspects of CAR-T administration as TNBC therapy. We summarized the potential therapeutic targets of CAR-T that were identified in preclinical studies and clinical trials on TNBC. We addressed the limitations of using CAR-T in the treatment of TNBC in particular and solid tumors in general and explored key strategies to overcome these impediments. Finally, we comprehensively examined the advancement of CAR-T immunotherapy as well as countermeasures that could improve its efficacy as a TNBC treatment and the prognosis of patients with this type of cancer.
Collapse
Affiliation(s)
- Peizhen Geng
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| | - Yuhua Chi
- Department of General Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yuan Yuan
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| | - Maoquan Yang
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| | - Xiaohua Zhao
- Department of Thoracic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Zhengchun Liu
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| | - Guangwei Liu
- Key Laboratory of Precision Radiation Therapy for Tumors in Weifang City, Department of Radiotherapy, School of Medical Imaging, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| | - Yihui Liu
- Key Laboratory of Precision Radiation Therapy for Tumors in Weifang City, Department of Radiotherapy, School of Medical Imaging, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| | - Liang Zhu
- Clinical Research Center, Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Shuai Wang
- Key Laboratory of Precision Radiation Therapy for Tumors in Weifang City, Department of Radiotherapy, School of Medical Imaging, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
43
|
Thüring EM, Hartmann C, Schwietzer YA, Ebnet K. TMIGD1: Emerging functions of a tumor supressor and adhesion receptor. Oncogene 2023:10.1038/s41388-023-02696-5. [PMID: 37087524 DOI: 10.1038/s41388-023-02696-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
The development of multicellular organisms depends on cell adhesion molecules (CAMs) that connect cells to build tissues. The immunoglobulin superfamily (IgSF) constitutes one of the largest families of CAMs. Members of this family regulate such diverse processes like synapse formation, spermatogenesis, leukocyte-endothelial interactions, or epithelial cell-cell adhesion. Through their extracellular domains, they undergo homophilic and heterophilic interactions in cis and trans. Their cytoplasmic domains frequently bind scaffolding proteins to assemble signaling complexes. Transmembrane and immunoglobulin domain-containing protein 1 (TMIGD1) is a IgSF member with two Ig-like domains and a short cytoplasmic tail that contains a PDZ domain-binding motif. Recent observations indicate that TMIGD1 has pleiotropic functions in epithelial cells and has a critical role in suppressing malignant cell behavior. Here, we review the molecular characteristics of TMIGD1, its interaction with cytoplasmic scaffolding proteins, the regulation of its expression, and its downregulation in colorectal and renal cancers.
Collapse
Affiliation(s)
- Eva-Maria Thüring
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Christian Hartmann
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Ysabel A Schwietzer
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Klaus Ebnet
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany.
| |
Collapse
|