1
|
Zhang L, Wang S, Jia Y, Liu Z, Yao J, Chen Y. Alterations in microbial communities and antibiotic resistance genes pre- and post-sludge bulking in a wastewater treatment plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126391. [PMID: 40339893 DOI: 10.1016/j.envpol.2025.126391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/03/2025] [Accepted: 05/06/2025] [Indexed: 05/10/2025]
Abstract
Sludge bulking is a common issue in wastewater treatment plants (WWTPs) that can disrupt microbial communities and potentially impact the abundance and spread of antibiotic resistance genes (ARGs) within treatment systems. This study employed high-throughput 16S rRNA gene sequencing and metagenomic sequencing to examine the changes in microbial communities and ARGs in a WWTP during non-bulking and bulking periods. The results indicated that bacterial diversity decreased in bulking sludge while maintaining a high removal efficiency of conventional pollutants. Significant differences were detected at the bacterial genus level between non-bulking and bulking sludge (p < 0.05). The proliferation of Candidatus_Microthrix contributed to sludge bulking, while Micropruina improved sludge settleability. When treating wastewater with the same water quality and quantity, anaerobic/anoxic/oxic (A2/O) exhibited the highest resistance to sludge bulking, followed by Bardenpho and the Carrousel oxidation ditch. The abundance of ARGs in bulking sludge (28.15-43.63 ppm) was lower than that in non-bulking sludge (51.72-59.01 ppm). The ARGs removal efficiency reached 96.24 % and 94.34 % during bulking and non-bulking periods, respectively. Network analysis revealed that Candidatus_Microthrix was positively correlated with aadS and tetX, and norank_f_Saprospiraceae exhibited positive correlations with vanRO and ANT(3″)-Iia. These findings provide valuable insights into the impacts of sludge bulking on WWTP performance and ARGs dynamics, informing evidence-based policies for sustainable wastewater treatment.
Collapse
Affiliation(s)
- Longfei Zhang
- College of Ecology and Environment, Xinjiang University, Urumqi, 830017, China
| | - Siyu Wang
- College of Ecology and Environment, Xinjiang University, Urumqi, 830017, China
| | - Yangyang Jia
- College of Ecology and Environment, Xinjiang University, Urumqi, 830017, China
| | - Ziteng Liu
- College of Ecology and Environment, Xinjiang University, Urumqi, 830017, China
| | - Junqin Yao
- College of Ecology and Environment, Xinjiang University, Urumqi, 830017, China.
| | - Yinguang Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
2
|
Li H, Zhang X, Zhaxi Y, Pan C, Zhang Z, Pan J, Shahzad K, Sun F, Zhen Y, Jinmei J, Zhao W, Song T. Integrative multi-omics analysis reveals liver-gut axis adaptation in high-altitude goats. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101422. [PMID: 39842302 DOI: 10.1016/j.cbd.2025.101422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/02/2025] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
The liver-gut axis is an important regulatory axis for the host's metabolic functions. The study of liver gene expression, changes in metabolic products and the regulation of gut microbial communities in plateau animals under harsh environments can reveal the mechanisms by which Tibetan goats adapt to the plateau environment. This study employs transcriptome, metabolome and metagenomic analyses to reveal the differences in genes, metabolism, and gut microbiota between Jianzhou big-eared goats (JBG) and Xizang cashmere goats (TCG), which is of significant importance for improving survival models of high-altitude ruminants. The results showed that there were 553 DEGs in the liver of JBG and TCG. Hepatic metabolomic analysis revealed significant differences in metabolic activity between the JBG and TCG groups, with notable increases in glycerophospholipid and retinol metabolic pathways. The gut microbiota, including Andreesenia, Dielma, Oscillibacter, Agrobacterium, Hyella and Thermosinus, interact with liver metabolites and can regulate the high-altitude adaptability of goats. This study reveals that TCG enhance immune regulation and energy utilization efficiency by regulating liver gene expression, modulating metabolic pathways, and improving gut microbiota, thereby helping TCG maintain healthy survival capabilities in hypoxic and high-radiation environments.
Collapse
Affiliation(s)
- Haiyan Li
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, China; Institute of Animal Science, Xizang Academy of Agricultural and Animal Husbandry Science, Lhasa, Xizang 850009, China
| | - Xin Zhang
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, China
| | - Yangzong Zhaxi
- Institute of Animal Science, Xizang Academy of Agricultural and Animal Husbandry Science, Lhasa, Xizang 850009, China; Key Laboratory of Animal Genetics and Breeding on Xizang Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, Xizang 850009, China
| | - Cheng Pan
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, China
| | - Zhenzhen Zhang
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, China
| | - Junru Pan
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, China
| | - Khuram Shahzad
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan
| | - Fengbo Sun
- Xizang Animal Husbandry Station, Lhasa, Xizang 850000, China
| | - Yang Zhen
- Xizang Animal Husbandry Station, Lhasa, Xizang 850000, China
| | - Jiacuo Jinmei
- Xizang Animal Husbandry Station, Lhasa, Xizang 850000, China
| | - Wangsheng Zhao
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, China.
| | - Tianzeng Song
- Institute of Animal Science, Xizang Academy of Agricultural and Animal Husbandry Science, Lhasa, Xizang 850009, China; Key Laboratory of Animal Genetics and Breeding on Xizang Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, Xizang 850009, China.
| |
Collapse
|
3
|
Xu D, Wu M, Gao Z, Zhao Y, Hu M, Wen Y, Wang L, Xu D, Chen L. Seasonal Variation in the Diversity of the Gut Microbiota of Short-Faced Moles Reveals the Associations of Climatic Factors on the Gut Microbiota of Subterranean Mammals. Ecol Evol 2025; 15:e71382. [PMID: 40342707 PMCID: PMC12058457 DOI: 10.1002/ece3.71382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 04/01/2025] [Accepted: 04/17/2025] [Indexed: 05/11/2025] Open
Abstract
The composition of animal gut microbiota is significantly affected by a variety of factors. Seasonal variation in environmental factors is believed to have a significant impact on the composition of mammalian gut microbiota. Therefore, studying the seasonal differences in gut microbiota diversity in wildlife is of great importance to explore their ecological adaptability. This study compared the diversity of gut microbiota of the short-faced moles (Scaptochirus moschatus) in spring, summer, and autumn by using 16S rRNA amplification sequencing. Our results reveal significant seasonal differences in the diversity and function of the short-faced moles gut microbiota. Compared to spring, the diversity and function of the gut microbiota in summer and autumn of short-faced moles are more similar to each other. The relative abundance of Firmicutes is higher in spring than in summer and autumn, while the relative abundance of Proteobacteria in summer and autumn is higher than that of spring. There are significant differences in carbohydrate metabolism between spring and summer, and between spring and autumn. The correlation analysis results suggest that climatic factors are strongly associated with seasonal variation in gut microbiota of the short-faced moles, especially temperature and relative humidity. The present study discusses the seasonal variations in the gut microbiota diversity of short-faced moles and the significant impact of climatic factors on gut microbiota diversity. These results will highlight the potential impact of climatic factors on the seasonal changes of the gut microbiota of subterranean mammals and provide a new view for comprehensively understanding the ecological adaptation of subterranean mammals.
Collapse
Affiliation(s)
- Di Xu
- College of Life SciencesQufu Normal UniversityQufuChina
| | - Mengmeng Wu
- Shandong Freshwater Fisheries Research InstituteJinanChina
| | - Zenghao Gao
- College of Life SciencesQufu Normal UniversityQufuChina
| | - Yue Zhao
- College of Life SciencesQufu Normal UniversityQufuChina
| | - Meng Hu
- Forestry Protection and Development Service Center of JiningJiningChina
| | - Yang Wen
- Forestry Protection and Development Service Center of JiningJiningChina
| | - Linlin Wang
- Jining Bureau of Natural Resources and PlanningJiningChina
| | - Deli Xu
- College of Life SciencesQufu Normal UniversityQufuChina
| | - Lei Chen
- College of Life SciencesQufu Normal UniversityQufuChina
| |
Collapse
|
4
|
Wang H, Ali M, Zhu Y, Chen X, Lu D, Liu Y, Li K, Zhang C. Comparative analysis of gut microbiota in free range and house fed yaks from Linzhou County. Sci Rep 2025; 15:14317. [PMID: 40274860 PMCID: PMC12022119 DOI: 10.1038/s41598-025-95357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025] Open
Abstract
Gut microbiota variations in response to environmental and nutritional factors are of great significance as gut microbiota plays an integral role in nutrient metabolism, immunity, health, and disease conditions. In this context, limited studies investigated variations of gut microbiota in response to different feeding systems and environmental conditions. The current study obtained fresh fecal samples from house-fed (LS) and grazing yaks (LF) from Linzhou County. 16 S rRNA amplicon sequencing of the V3-V4 and internal transcribed spacer 2 (ITS2) domains generated 16,332 bacterial and 2345 fungus amplicon sequence variants (ASVs). Alpha and beta diversity indices revealed significant variations (p > 0.05) in gut microflora between the two groups. At the phylum level, Firmicutes, Actinobacteriota, Bacteroidota, and Patescibacteria regarding bacteria, and Ascomycota and Basidiomycota regarding fungi dominated. At the genus level, UCG-005, Rikenellaceae_RC9_gut_group, Clostridium_sensu_stricto_1, g__Muribaculaceae, UCG-010, [Eubacterium]_coprostanoligenes_group, Turicibacter, Alistipes, Prevotellaceae_UCG-003, UCG-009, Blautia, dgA-11_gut_group, Candidatus_Saccharimonas dominated in LS, while Anthrobacter and Terrisporobacter dominated in the LF group. Fungal genera like Myrothecium and Plectosphaerella dominated the LS group, while Neoascochyta, Paraphaeosphaeria, and Hypocreales dominated the LF group. Also, significant variations (p > 0.05) in gene expressions were found between the two groups. These findings provide insights into yak gut microbiota adaptations and metabolic changes in response to varied environmental conditions and can provide valuable information, optimizing feeding strategies after identifying specific differences between grazing and house-fed yaks, reducing environmental impacts, and improving yaks' health and productivity in specific geographical settings.
Collapse
Affiliation(s)
- Hongzhuang Wang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, 850009, China
| | - Munwar Ali
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yong Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, 850009, China
| | - Xiaoying Chen
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, 850009, China
| | - Dongyang Lu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, 850009, China
| | - Yang Liu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, 850009, China
| | - Kun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chengfu Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, 850009, China.
| |
Collapse
|
5
|
Islam T, Sagor MS, Tamanna NT, Bappy MKI, Danishuddin, Haque MA, Lackner M. Exploring the Immunological Role of the Microbial Composition of the Appendix and the Associated Risks of Appendectomies. J Pers Med 2025; 15:112. [PMID: 40137428 PMCID: PMC11943658 DOI: 10.3390/jpm15030112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
The appendix, an integral part of the large intestine, may serve two purposes. First of all, it is a concentration of lymphoid tissue that resembles Peyer's patches. It is also the main location in the body for the creation of immunoglobulin A (IgA), which is essential for controlling intestinal flora's density and quality. Second, the appendix constitutes a special place for commensal bacteria in the body because of its location and form. Inflammation of the appendix, brought on by a variety of infectious agents, including bacteria, viruses, or parasites, is known as appendicitis. According to a number of studies, the consequences of appendectomies may be more subtle, and may relate to the emergence of heart disease, inflammatory bowel disease (IBD), and Parkinson's disease (PD), among other unexpected illnesses. A poorer prognosis for recurrent Clostridium difficile infection is also predicted by the absence of an appendix. Appendectomies result in gut dysbiosis, which consequently causes different disease outcomes. In this review, we compared the compositional differences between the appendix and gut microbiome, the immunological role of appendix and appendix microbiome (AM), and discussed how appendectomy is linked to different disease consequences.
Collapse
Affiliation(s)
- Tarequl Islam
- Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh; (T.I.); (M.K.I.B.)
| | - Md Shahjalal Sagor
- Department of Microbiology, Jagannath University, Dhaka 1100, Bangladesh;
| | - Noshin Tabassum Tamanna
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh;
| | - Md Kamrul Islam Bappy
- Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh; (T.I.); (M.K.I.B.)
| | - Danishuddin
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea;
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea;
| | - Maximilian Lackner
- Department of Industrial Engineering, University of Applied Sciences Technikum Wien, Hoechstaedtplatz 6, 1200 Vienna, Austria
| |
Collapse
|
6
|
Chen X, Chen W, Guo X, Zhang S, Xu B, Wu H, Zhao D. Linking Gut Microbiota and Stereotypic Behavior of Endangered Species Under Ex Situ Conservation: First Evidence from Sun Bears. Animals (Basel) 2025; 15:435. [PMID: 39943205 PMCID: PMC11815909 DOI: 10.3390/ani15030435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/06/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Integrative conservation research on animal behavior and nutritional health can contribute to the ex situ conservation of endangered species. Stereotypic behavior, a repetitive behavior without practical function, is associated with animal welfare in its manner and frequency for captive animals. Exploring the potential relationship between stereotypic behavior and internal factors, such as intestinal flora, could improve ex situ conservation, especially for endangered species. In this study, we analyzed the typical behavior characteristics of the endangered sun bears (Helarctos malayanus) under captive conditions based on the behavior sampling method. The seasonal and annual changes in the intestinal flora of H. malayanus in captivity were studied by 16S rDNA high-throughput sequencing technology based on non-invasive fecal sample collection. This study provides the first evidence of a potential association between the gut microbiota and stereotypic behavior characteristics of captive H. malayanus. The results can significantly improve our understanding of the stereotypical behavior of H. malayanus in captivity and contribute to the captive breeding and conservation efforts of this endangered species.
Collapse
Affiliation(s)
- Xiaobing Chen
- College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Wenqi Chen
- College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Xinyu Guo
- College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | | | - Bo Xu
- Tianjin Zoo, Tianjin 300381, China
| | - Hong Wu
- College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Dapeng Zhao
- College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
7
|
Ahmed S, Mahapatra S, Mishra R, Murmu KC, Padhan P, Prasad P, Misra R. 16s RNA-based metagenomics reveal previously unreported gut microbiota associated with reactive arthritis and undifferentiated peripheral spondyloarthritis. Rheumatology (Oxford) 2025; 64:870-879. [PMID: 38490247 DOI: 10.1093/rheumatology/keae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/06/2024] [Accepted: 02/24/2024] [Indexed: 03/17/2024] Open
Abstract
OBJECTIVES Reactive arthritis (ReA) provides a unique opportunity to comprehend how a mucosal infection leads to inflammatory arthritis at a distant site without the apparent invasion of the pathogen. Unfortunately, conventional stool cultures after ReA provide limited information, and there is a dearth of metagenomic studies in ReA. The objective of this study was to identify gut microbiota associated with the development of ReA. METHODS Patients with ReA or undifferentiated peripheral spondyloarthritis (UpSpA) were included if they presented within 4 weeks of the onset of the current episode of arthritis. Metagenomic DNA was extracted from the stools of these patients and of 36 age- and sex-similar controls. Sequencing and analysis were done using a standard 16S ribosomal pipeline. RESULTS Of 55 patients, there was no difference between the gut microbiota of postdiarrheal ReA (n = 20) and of upSpA (n = 35). Comparing the gut microbiota of patients vs healthy controls, the patients had significantly higher alpha and beta diversity measures. After stringency filters, Proteobacteria had high abundance while Firmicutes had lesser as compared with the controls. Six families were overexpressed in patients, while another five were overexpressed in controls. Sixteen genera and 18 species were significantly different between patients and controls. At the species level there was strong association of Staphylococcus aureus, Clostridium septicum Klebsiella pneumoniae, Escherichia coli, Empedobacter brevis, Roseburia hominis, Bacillus velezensis and Crassaminicella with ReA. CONCLUSION The microbiota of classical gut-associated ReA and upSpA is similar. Patients have higher diversities in their gut microbiota compared with healthy controls. Both known and previously unreported species associated with ReA/upSpA were identified.
Collapse
Affiliation(s)
- Sakir Ahmed
- Department of Clinical Immunology and Rheumatology, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, India
| | | | | | | | - Prasanta Padhan
- Department of Clinical Immunology and Rheumatology, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, India
| | | | - Ramnath Misra
- Department of Clinical Immunology and Rheumatology, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, India
| |
Collapse
|
8
|
Wang G, Li Y, Liu H, Yu X. Gut microbiota in patients with sarcopenia: a systematic review and meta-analysis. Front Microbiol 2025; 16:1513253. [PMID: 39911254 PMCID: PMC11794218 DOI: 10.3389/fmicb.2025.1513253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/10/2025] [Indexed: 02/07/2025] Open
Abstract
Background Intestinal dysbiosis was considered a pivotal pathological mechanism underlying sarcopenia. Despite the fervor surrounding research in this domain, substantial controversy persists regarding the obtained outcomes. Objective To systematically summarized the disparities in gut microbiota composition between the group afflicted by sarcopenia and non-sarcopenia controls. Methods PubMed, Medline, CINAHL, EMBASE, Scopus, Web of Science and Google Scholer, Cochrane Library and gray literature sources were systematically searched for in randomized controlled trials. Meta-analysis and random-effects meta-regression were conducted using Rev. Man 5.3. Overall effect was measured using Hedges's g and determined using Z-statistics. Cochran's Q test and I 2 were used to investigate heterogeneity. The Newcastle-Ottawa Scale was used to assess overall quality of evidence. Results Ten studies, including 421 cases of sarcopenia and 1,642 cases of controls, were included in the meta-analysis. Patients with sarcopenia showed significantly reduced gut microbiota in α diversity, and β diversity was significantly different in 8/9 of included studies. We also found more abundance of phylum Proteobacteria and genus Escherichia-Shigella, and less abundance of phylum Firmicutes and genus Faecalibacterium, Prevotella 9, Blautia in the sarcopenia group. Conclusion The gut microbiota composition in patients with sarcopenia has undergone alterations, serving as a fundamental reference for further investigation into the potential pathogenic mechanisms and treatment strategies for sarcopenia.
Collapse
Affiliation(s)
- Guangning Wang
- Department of Critical Care Medicine, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yujie Li
- Reproductive Medicine Center, Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Huisong Liu
- Department of Nursing, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Xinjuan Yu
- Department of Clinical Research Center, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
9
|
Ali Z, Khan I, Iqbal MS, Shi H, Ding L, Hong M. Impact of copper stress in the intestinal barriers and gut microbiota of Chinese stripe-necked turtle (Mauremys sinensis). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117723. [PMID: 39827614 DOI: 10.1016/j.ecoenv.2025.117723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Copper is used to treat algal blooms, macrophyte infestations and other environmental issues, but its rising ambient levels harm aquatic animals, especially their intestines. However, its impact on turtles' digestive health is not well understood, and the risks are unclear. This study investigates the effects of copper on the intestinal health of Chinese stripe-necked turtle, focusing on histomorphology, mucosal barrier function, gene expression, and gut microbiota. Copper stress caused intestinal damage, characterized by shortened villi, inflammatory cell infiltration, and reduced epithelial layer thickness, as well as decreased acidic mucins, increased villi edema and inflammation. The mRNA expression level of bacteriostatic enzymes significantly reduced. Furthermore, This study found that copper exposure increases gut permeability by suppressing tight junction genes and triggers an inflammatory response in the gut, as indicated by elevated inflammatory cytokines. At the phylum level, Firmicutes exhibited a significant decrease, whereas Bacteroidota displayed a notable increase, and Fusobacteriota showed a substantial reduction in relative abundance in copper-treated groups. Similarly, at genus level Romboutsia, Cetobacterium decreased, while Turicibacter and Sarcina significantly increases in copper-treated groups compared to the control. This indicating the unique properties of copper including its essentiality, reactivity, and accumulation enables it to profoundly impact gut bacteria, altering both their composition and function. Copper's dual role as a nutrient and toxicant uniquely impacts gut microbes. Our findings suggest that copper stress compromises the intestinal physical, immune, chemical, and microbial barrier in M. sinensis, all of which contribute to the turtle's poor health.
Collapse
Affiliation(s)
- Zeeshan Ali
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Ijaz Khan
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Muhammad Shahid Iqbal
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
10
|
Tyagi A, Choi YY, Shan L, Vinothkanna A, Lee ES, Chelliah R, Barathikannan K, Raman ST, Park SJ, Jia AQ, Choi GP, Oh DH. Limosilactobacillus reuteri fermented brown rice alleviates anxiety improves cognition and modulates gut microbiota in stressed mice. NPJ Sci Food 2025; 9:5. [PMID: 39799113 PMCID: PMC11724862 DOI: 10.1038/s41538-025-00369-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/01/2025] [Indexed: 01/15/2025] Open
Abstract
Chronic stress disrupts gut microbiota homeostasis, contributing to anxiety and depression. This study explored the effects of Limosilactobacillus reuteri fermented brown rice (FBR) on anxiety using an ICR mouse chronic mild stress (CMS) model. Anxiety was assessed through body weight, corticosterone levels, neurotransmitter profiles, and behavioral tests. A four-week FBR regimen reduced corticosterone, restored neurotransmitters like gamma-aminobutyric acid (GABA) and serotonin, and improved anxiety-related behaviors. Metagenomic (16S rRNA) and metabolomic analyses revealed enhanced amino acid metabolism, energy metabolism, and short-chain fatty acid (SCFA) production in FBR-treated mice. FBR-enriched beneficial gut bacteria, aligning the microbiota profile with that of non-stressed mice. FBR also modulated GABA receptor-related gene expression, promoting relaxation. Network pharmacology identified quercetin, GABA, glutamic acid, phenylalanine, and ferulic acid as bioactive compounds with neuroprotective potential. These findings highlight FBR's potential as a gut-brain axis-targeted therapeutic for anxiety and stress-related disorders.
Collapse
Affiliation(s)
- Akanksha Tyagi
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, Purdue, IN, USA
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Yu-Yeong Choi
- Department of Natural Resources and Environmental Science, Kangwon National University, Chuncheon, South Korea
| | - Lingyue Shan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Annadurai Vinothkanna
- School of Chemistry and Chemical Engineering and Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou, China
| | - Eun-Seok Lee
- Department of Natural Resources and Environmental Science, Kangwon National University, Chuncheon, South Korea
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
- Saveetha School of Engineering, Saveetha University, Chennai, Tamil Nadu, India
| | | | - Sivakumar Thasma Raman
- School of Food and Biological Engineering, Jiangsu University, Jiangsu, Zhenjiang, PR China
| | - Se Jin Park
- Department of Natural Resources and Environmental Science, Kangwon National University, Chuncheon, South Korea
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Geun Pyo Choi
- Department of Barista and Bakery, Gangwon State University, Gangneung, South Korea
| | - Deog Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea.
| |
Collapse
|
11
|
Gao FZ, Jia WL, Li B, Zhang M, He LY, Bai H, Liu YS, Ying GG. Contaminant-degrading bacteria are super carriers of antibiotic resistance genes in municipal landfills: A metagenomics-based study. ENVIRONMENT INTERNATIONAL 2025; 195:109239. [PMID: 39729867 DOI: 10.1016/j.envint.2024.109239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/12/2024] [Accepted: 12/22/2024] [Indexed: 12/29/2024]
Abstract
Municipal landfills are hotspot sources of antimicrobial resistance (AMR) and are also important habitats of contaminant-degrading bacteria. However, high diversity of antibiotic resistance genes (ARGs) in landfills hinders assessing AMR risks in the affected environment. More concerned, whether there is co-selection or enrichment of antibiotic-resistant bacteria and contaminant-degrading bacteria in these extremely polluted environments is far less understood. Here, we collected metagenomic datasets of 32 raw leachate and 45 solid waste samples in 22 municipal landfills of China. The antibiotic resistome, antibiotic-resistant bacteria and contaminant-degrading bacteria were explored, and were then compared with other environmental types. Results showed that the antibiotic resistome in landfills contained 1,403 ARG subtypes, with the total abundance over the levels in natural environments and reaching the levels in human feces and sewage. Therein, 49 subtypes were listed as top priority ARGs for future surveillance based on the criteria of enrichment in landfills, mobilizable and present in pathogens. By comparing to those in less contaminated river environments, we elucidated an enrichment of antibiotic-resistant bacteria with contaminant-degrading potentials in landfills. Bacteria in Pseudomonadaceae, Moraxellaceae, Xanthomonadaceae and Enterobacteriaceae deserved the most concerns since 72.2 % of ARG hosts were classified to them. Klebsiella pneumoniae, Acinetobacter nosocomialis and Escherichia coli were abundant multidrug-resistant pathogenic species in raw leachate (∼10.2 % of total microbiomes), but they rarely carried contaminant-degradation genes. Notably, several bacterial genera belonging to Pseudomonadaceae had the most antibiotic-resistant, pathogenic, and contaminant-degrading potentials than other bacteria. Overall, the findings highlight environmental selection for contaminant-degrading antibiotic-resistant pathogens, and provide significant insights into AMR risks in municipal landfills.
Collapse
Affiliation(s)
- Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - Wei-Li Jia
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - Bing Li
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Min Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China; Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - Hong Bai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China.
| |
Collapse
|
12
|
Nascimento ML, Serrano I, Cunha E, Lopes F, Pascoal P, Pereira M, Nunes M, Tavares L, Dias R, Oliveira M. Exploring the Gastrointestinal Microbiome of Eurasian Griffon Vultures ( Gyps fulvus) Under Rehabilitation in Portugal and Their Potential Role as Reservoirs of Human and Animal Pathogens. Vet Sci 2024; 11:622. [PMID: 39728962 DOI: 10.3390/vetsci11120622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
The Eurasian griffon vulture (Gyps fulvus), a widely distributed scavenger, plays a crucial role in ecosystem health by consuming decomposing carcasses. Scavengers have adapted to avoid disease from the rotting carrion they feed on, probably through a specialized gut microbiome. This study aimed to characterize the gut microbiome of G. fulvus (n = 8) present in two rehabilitation centers in mainland Portugal and evaluate their potential as reservoirs of pathogens. Samples were studied through high-throughput 16S rDNA amplicon sequencing of the hypervariable V3-V4 regions and further analyzed using the Qiime2 bioinformatics platform. Our results showed that factors such as sex, location, and time of sampling did not significantly affect the gut microbiome of the griffon vulture. Its composition was highly similar to that of phylogenetically closed animals. However, several potential human and veterinary pathogens were identified. In conclusion, the gut microbiome of Gyps fulvus in rehabilitation centers is not significantly altered by stress associated with captivity. Its composition is similar to that of other vultures and scavengers due to their identic diet and needs, suggesting a well-conserved functional gut microbiome, which seems to be influenced by season. The potential risks posed by the identified pathogens to humans and other animals should be further investigated.
Collapse
Affiliation(s)
- Mariana Limede Nascimento
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Isa Serrano
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Eva Cunha
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Filipa Lopes
- CERAS-Wildlife Study and Rehabilitation Centre, Quercus ANCN, Rua Tenente Valadim 19, 6000-284 Castelo Branco, Portugal
| | - Pedro Pascoal
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Marcelo Pereira
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Mónica Nunes
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Luís Tavares
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ricardo Dias
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Manuela Oliveira
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
13
|
Wang Z, Sun Y, Zhang D, Wang Y, Zhou D, Li W, Yan J, Chen Y, Luo S, Qian Z, Li Z, Huang G. Gut microbiota and inflammation analyses reveal the protective effect of medium-chain triglycerides combined with docosahexaenoic acid on cognitive function in APP/PS1 and SAMP8 mice. Nutr Res 2024; 132:27-39. [PMID: 39437526 DOI: 10.1016/j.nutres.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/13/2024] [Accepted: 09/22/2024] [Indexed: 10/25/2024]
Abstract
Accumulating evidence has demonstrated that medium-chain triglycerides (MCTs) and docosahexaenoic acid (DHA) positively affect cognitive function. However, it remains unclear whether the improvement is related to the alterations of gut microbiota and inflammation and the impact of the combined intervention. In this study, we hypothesized that the supplementation of MCTs combined with DHA could modulate gut microbiota, inflammation, and improve cognitive function in APPswe/PS1De9 model mice and senescence-accelerated mouse-prone-8, which are two different mouse models used in neurodegeneration research. The mice were divided into four groups: Control group, MCTs group, DHA group, and MCTs + DHA group. The study assessed cognitive function, inflammatory cytokines, and gut microbiota composition. The results showed that supplementation of MCTs + DHA improved spatial learning ability, memory capacity, exploratory behavior; decreased the relative abundance of Proteobacteria; reduced the ratio of Firmicutes/Bacteroidetes; decreased the concentrations of serum interleukin (IL)-2, IL-6, monocyte chemotactic protein-1, tumor necrosis factor-alpha, while increasing the concentration of IL-10. Furthermore, supplementation with MCTs + DHA exhibited significantly superior effects compared to MCTs or DHA alone in reducing inflammation, optimizing gut microbiota composition, and improving cognitive function. In conclusion, supplementation with MCTs + DHA improved cognition function, accompanied with favorable alterations in gut microbiota and inflammation in APPswe/PS1De9 and senescence-accelerated mouse-prone-8 mice.
Collapse
Affiliation(s)
- Zehao Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yue Sun
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Dalong Zhang
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Yue Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Dezheng Zhou
- Department of Public Health, School of Medicine, Ningbo University, Zhejiang, China
| | - Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China; Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jing Yan
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China; Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, School of Public Health, Tianjin Medical University, Tianjin, China; Department of Social Medicine and Health Administration, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yongjie Chen
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China; Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, School of Public Health, Tianjin Medical University, Tianjin, China; Department of Epidemiology & Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Suhui Luo
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China; Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhiyong Qian
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Zhenshu Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China; Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China; Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, School of Public Health, Tianjin Medical University, Tianjin, China; Department of Critical Care Medicine and Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
14
|
Ning Y, Yang A, Liu L, Li Y, Chen Z, Ge P, Zhou D. Survival strategies of Eisenia fetida in antibiotic-contaminated soil based on screening canonical correlation analysis model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117367. [PMID: 39571259 DOI: 10.1016/j.ecoenv.2024.117367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 12/09/2024]
Abstract
Soil pollution from antibiotics has become increasingly severe, posing significant environmental and human health threats. Many soil organisms can survive and sustain their roles in maintaining soil ecosystems, even in polluted conditions. Exploring the life-sustaining mechanisms of these organisms in contaminated environments is scientifically significant. This study used Eisenia fetida as the test organism and antibiotics (oxytetracycline hydrochloride) as exogenous stress substances. Oxidative stress response experiments were conducted using the artificial soil method to examine the response of earthworms to oxidative stress. Additionally, 16S rRNA technology was employed to analyze the succession of microbial community structures inside and outside the earthworms. A screening canonical correlation analysis (SCCA) model was developed to investigate the relationship between microbial communities and earthworm oxidative stress system under oxytetracycline stress, revealing survival strategies in antibiotic-contaminated soil. The results showed that Proteobacteria and Bacteriodetes were the dominant phyla of microbial communities in earthworms under oxytetracycline stress, while Proteobacteria and Firmicutes were dominant bacterial phyla in soil. Bacteriodetes and Firmicutes in earthworms worked synergistically with catalase (CAT) and glutathione peroxidase (GPX) in oxidative stress responses. In soil, Actinobacteria, Verrucomicrobia, and Spirochaeta synergistically resisted oxytetracycline stress alongside peroxidase (POD) and glutathione S-transferase (GST). Earthworm mucus played a crucial role in this synergistic resistance. These findings provide a scientific and experimental basis for assessing the ecological safety risks of antibiotic-contaminated soil.
Collapse
Affiliation(s)
- Yucui Ning
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Aoqi Yang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Lu Liu
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yuze Li
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Zhipeng Chen
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Peizhu Ge
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Dongxing Zhou
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
15
|
Rendina M, Turnbaugh PJ, Bradley PH. Human xenobiotic metabolism proteins have full-length and split homologs in the gut microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622278. [PMID: 39574613 PMCID: PMC11580864 DOI: 10.1101/2024.11.06.622278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Xenobiotics, including pharmaceutical drugs, can be metabolized by both host and microbiota, in some cases by homologous enzymes. We conducted a systematic search for all human proteins with gut microbial homologs. Because gene fusion and fission can obscure homology detection, we built a pipeline to identify not only full-length homologs, but also cases where microbial homologs were split across multiple adjacent genes in the same neighborhood or operon ("split homologs"). We found that human proteins with full-length gut microbial homologs disproportionately participate in xenobiotic metabolism. While this included many different enzyme classes, short-chain and aldo-keto reductases were the most frequently detected, especially in prevalent gut microbes, while cytochrome P450 homologs were largely restricted to lower-prevalence facultative anaerobes. In contrast, human proteins with split homologs tended to play roles in central metabolism, especially of nucleobase-containing compounds. We identify twelve specific drugs that gut microbial split homologs may metabolize; two of these, 6-mercaptopurine by xanthine dehydrogenase (XDH) and 5-fluorouracil by dihydropyrimidine dehydrogenase (DPYD), have been recently confirmed in mouse models. This work provides a comprehensive map of homology between the human and gut microbial proteomes, indicates which human xenobiotic enzyme classes are most likely to be shared by gut microorganisms, and finally demonstrates that split homology may be an underappreciated explanation for microbial contributions to drug metabolism.
Collapse
Affiliation(s)
- Matthew Rendina
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Peter J. Turnbaugh
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California 94143, USA
- Chan-Zuckerberg Biohub-San Francisco, San Francisco, CA 94158, USA
| | - Patrick H. Bradley
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
16
|
Kim YM, Choi E, Cho TJ, Rhee MS, Kim SA. Microbial profiling of oysters from a processing plant and retail products: Analysis based on culture-dependent methods and 16S rRNA gene sequencing. Food Res Int 2024; 196:115096. [PMID: 39614509 DOI: 10.1016/j.foodres.2024.115096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 12/01/2024]
Abstract
Oysters (Crassostrea gigas) are one of the most consumed shellfish globally. However, there is a lack of comprehensive microbiome studies that include the processing and distribution stages of oysters. The present study used both culture-based methods and 16S rRNA sequencing to produce comprehensive microbial profiles of oysters in two parts: (1) an oyster processing plant that processes raw and frozen oysters (n = 57) and (2) retail oyster products across two seasons (winter and spring) (n = 112). In the processing plant, shucking increased the aerobic plate count (APC) from 1.86 log CFU/g in freshly harvested oysters to 3.95 log CFU/g in shucked oysters. Controlling the washing process is important, as the APCs decreased after washing and remained level until the final products, raw and frozen oysters (2.54 and 2.34 log CFU/g, respectively). After desalting in the frozen oyster plant, the bacterial community shifted to be dominated by the family Spirochaetaceae, Mycoplasma, and Shigella taxa, indicating a need to control problematic bacteria in the desalting process. SourceTracker analysis revealed that raw materials contributed more to the microbiota of final products than environmental samples. In retail oyster products, APCs were marginally higher in spring (3.58 log CFU/g) than in winter (3.05 log CFU/g) samples. While bacterial count differences were not dramatic, the proportions of taxa in the microbial community differed by season. In winter retail products, Photobacterium (27.91 %) and Aliivibrio (20.42 %) dominated, while spring samples showed a diverse distribution of the family Vibrionaceae (19.90 %), Photobacterium (14.20 %), Psychromonas (11.84 %), and Aliivibrio (7.20 %). These findings contributed to our understanding of oyster microorganisms and identified food safety control points and cross-contamination sources. This in-depth understanding is expected to inform the development of fishery and seafood safety management measures.
Collapse
Affiliation(s)
- Yeo Min Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, South Korea
| | - Eunjin Choi
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, South Korea
| | - Tae Jin Cho
- Department of Food and Biotechnology, College of Science and Technology, Korea University, Sejong, South Korea; Department of Food Regulatory Science, College of Science and Technology, Korea University, Sejong, South Korea
| | - Min Suk Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Sun Ae Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
17
|
Mateo D, Carrión N, Cabrera C, Heredia L, Marquès M, Forcadell-Ferreres E, Pino M, Zaragoza J, Moral A, Cavallé L, González-de-Echávarri JM, Vicens P, Domingo JL, Torrente M. Gut Microbiota Alterations in Alzheimer's Disease: Relation with Cognitive Impairment and Mediterranean Lifestyle. Microorganisms 2024; 12:2046. [PMID: 39458354 PMCID: PMC11510339 DOI: 10.3390/microorganisms12102046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Recently, an association between dysbiosis of the gut microbiota (GMB) and the development of several diseases, such as Alzheimer's disease (AD), has been proposed. Dysbiosis involves changes in microbial diversity influenced by environmental factors, like diet or lifestyle. In this study, we investigated the role of GMB parameters in Spanish AD patients, assessing the impact of adherence to the Mediterranean lifestyle (ML), as well as to characterize these parameters in relation to neuropsychological, neuropsychiatric, emotional, and functionality parameters. A case-control study was conducted to investigate the association between the composition of the GMB and cognitive, emotional, neuropsychiatric, and functionality status in Spanish AD patients, along with a shotgun metagenomics approach. Richness and alpha-diversity were significantly lower in the AD group compared to the controls. PERMANOVA and ANOSIM tests of Bray-Curtis dissimilarity, Aitchison distance, and Jaccard similarity did not showed significant differences in beta-diversity between the two groups. Moreover, associations between various phyla of the AD group and orientation performance, food consumption, and activities of daily living were identified. Dysbiosis observed in Spanish AD patients is characterized by reductions in richness and alpha-diversity, alongside alterations in GMB composition, which may be linked to adherence to the ML and cognitive and functionality symptoms.
Collapse
Affiliation(s)
- David Mateo
- Laboratory of Toxicology and Environmental Health (LSTM), Centre for Environmental, Food and Toxicological Technology (TECNATOX), Universitat Rovira i Virgili, 43201 Reus, Spain; (D.M.); (N.C.); (C.C.); (L.H.); (M.M.); (P.V.); (J.L.D.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Spain
| | - Nerea Carrión
- Laboratory of Toxicology and Environmental Health (LSTM), Centre for Environmental, Food and Toxicological Technology (TECNATOX), Universitat Rovira i Virgili, 43201 Reus, Spain; (D.M.); (N.C.); (C.C.); (L.H.); (M.M.); (P.V.); (J.L.D.)
- Department of Psychology, Faculty of Education Sciences and Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Cristian Cabrera
- Laboratory of Toxicology and Environmental Health (LSTM), Centre for Environmental, Food and Toxicological Technology (TECNATOX), Universitat Rovira i Virgili, 43201 Reus, Spain; (D.M.); (N.C.); (C.C.); (L.H.); (M.M.); (P.V.); (J.L.D.)
- Department of Psychology, Faculty of Education Sciences and Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Institute Lerin Neurocognitive, Alzheimer and Other Neurocognitive Disorders Association, 43205 Reus, Spain
| | - Luis Heredia
- Laboratory of Toxicology and Environmental Health (LSTM), Centre for Environmental, Food and Toxicological Technology (TECNATOX), Universitat Rovira i Virgili, 43201 Reus, Spain; (D.M.); (N.C.); (C.C.); (L.H.); (M.M.); (P.V.); (J.L.D.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Spain
- Department of Psychology, Faculty of Education Sciences and Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Research Center for Behaviour Assessment (CRAMC), Faculty of Education Sciences and Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Department of Research Methods and Diagnosis in Education, Universidad Internacional de la Rioja, 26006 Logroño, Spain
| | - Montse Marquès
- Laboratory of Toxicology and Environmental Health (LSTM), Centre for Environmental, Food and Toxicological Technology (TECNATOX), Universitat Rovira i Virgili, 43201 Reus, Spain; (D.M.); (N.C.); (C.C.); (L.H.); (M.M.); (P.V.); (J.L.D.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Spain
| | - Eva Forcadell-Ferreres
- Neurology, Hospital Verge de la Cinta de Tortosa, 43500 Tortosa, Spain; (E.F.-F.); (J.Z.)
| | - Maria Pino
- Cognitive Impairment Unit, University Hospital Sant Joan de Reus, 43204 Reus, Spain;
| | - Josep Zaragoza
- Neurology, Hospital Verge de la Cinta de Tortosa, 43500 Tortosa, Spain; (E.F.-F.); (J.Z.)
| | - Alfons Moral
- Neurology, Xarxa Santa Tecla, 43003 Tarragona, Spain;
| | - Lluís Cavallé
- Neurology, University Hospital Joan XXIII, 43005 Tarragona, Spain; (L.C.); (J.M.G.-d.-E.)
| | | | - Paloma Vicens
- Laboratory of Toxicology and Environmental Health (LSTM), Centre for Environmental, Food and Toxicological Technology (TECNATOX), Universitat Rovira i Virgili, 43201 Reus, Spain; (D.M.); (N.C.); (C.C.); (L.H.); (M.M.); (P.V.); (J.L.D.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Spain
- Department of Psychology, Faculty of Education Sciences and Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Research Center for Behaviour Assessment (CRAMC), Faculty of Education Sciences and Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - José L. Domingo
- Laboratory of Toxicology and Environmental Health (LSTM), Centre for Environmental, Food and Toxicological Technology (TECNATOX), Universitat Rovira i Virgili, 43201 Reus, Spain; (D.M.); (N.C.); (C.C.); (L.H.); (M.M.); (P.V.); (J.L.D.)
| | - Margarita Torrente
- Laboratory of Toxicology and Environmental Health (LSTM), Centre for Environmental, Food and Toxicological Technology (TECNATOX), Universitat Rovira i Virgili, 43201 Reus, Spain; (D.M.); (N.C.); (C.C.); (L.H.); (M.M.); (P.V.); (J.L.D.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Spain
- Department of Psychology, Faculty of Education Sciences and Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Institute Lerin Neurocognitive, Alzheimer and Other Neurocognitive Disorders Association, 43205 Reus, Spain
- Research Center for Behaviour Assessment (CRAMC), Faculty of Education Sciences and Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| |
Collapse
|
18
|
Wang J, Li S, Sun Z, Lu C, Zhao R, Liu T, Wang D, Zheng X. Comparative study of immune responses and intestinal microbiota in the gut-liver axis between wild and farmed pike perch ( Sander Lucioperca). Front Immunol 2024; 15:1473686. [PMID: 39439785 PMCID: PMC11494242 DOI: 10.3389/fimmu.2024.1473686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Pike perch (Sander Lucioperca) is a predatory freshwater fish, which is highly popular amongst consumers, owing to its white flesh with a delicate structure and mild flavor. Compared to wild pike perch, the diet of farmed ones has shifted from natural food to artificial feeds. These changes would affect the gut flora of the pike perch. Endogenous metabolites of the intestinal flora are transferred through the gut-liver axis, which affects the physiological functions of the host. By studying wild and farmed individuals of the pike perch, novel insights into the stability of the intestinal flora can be provided. Methods and results In this study, we measured various immune parameters in the blood, liver and intestine of wild and farmed pike perch using enzyme activity assays and real-time fluorescence quantitative PCR. Gut microbes were also collected for 16S rRNA gene sequencing. Our results showed that the serum low-density lipoprotein cholesterol (LDL-C) levels were twice as high in the wild group as in the farmed group. Furthermore, the activities of glutamate pyruvate transaminase (GPT) and glutamate oxaloacetate transaminase (GOT) in the intestinal tissues of the wild group were 733.91 U/g and 375.35 U/g, which were significantly higher than those of the farmed group. Expression of IL10 in the liver of farmed pike perch was also 4-fold higher than that of wild pike perch. The expression of genes related to the p53-BAX/Bcl2 signaling pathway was higher in both intestinal and liver tissues of wild pike perch compared with farmed. 16S rRNA gene analysis of the gut microflora showed a high relative abundance of Cetobacterium in the gut of farmed pike perch. Conclusion As a result, our study indicates that dietary differences affect the diversity, composition and relative abundance of the gut flora of the pike perch. Meanwhile, it affects the glycolipid metabolism and immunomodulation of pike perch.
Collapse
Affiliation(s)
- Jing Wang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Harbin, China
| | - Shaowu Li
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Harbin, China
| | - Zhipeng Sun
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
- National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Harbin, China
| | - Cuiyun Lu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
- National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Harbin, China
| | - Ran Zhao
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Harbin, China
| | - Tianqi Liu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
- National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Harbin, China
| | - Di Wang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Harbin, China
| | - Xianhu Zheng
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
- National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Harbin, China
| |
Collapse
|
19
|
He S, Yuan Z, Dai S, Wang Z, Zhao S, Zhang B, Mao H, Wu D. Exploring the Spatial Variation in the Microbiota and Bile Acid Metabolism of the Compound Stomach in Intensively Farmed Yaks. Microorganisms 2024; 12:1968. [PMID: 39458277 PMCID: PMC11509861 DOI: 10.3390/microorganisms12101968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Yaks are one of the important livestock on the Qinghai-Tibet Plateau, providing abundant dairy and meat products for the local people. The formation of these dairy and meat products mainly relies on the microbiota in their gastrointestinal tract, which digests and metabolizes plant feed. The yak's gastrointestinal microbiota is closely related to the health and production performance of the host, but the molecular mechanisms of diet-induced effects in intensively farmed yaks remain to be elucidated. In this study, 40 chyme samples were collected from the four stomach chambers of 10 intensively farmed yaks, and the bacterial diversity and bile acid changes in the rumen (SFRM), reticulum (SFRC), omasum (SFOM), and abomasum (SFAM) were systematically analyzed using 16S rRNA sequencing and bile acid metabolism. Our results showed that the gastrointestinal microbiota mainly distributes in the four-chambered stomach, with the highest microbial diversity in the reticulum. There is a highly negative correlation among the microbiota in the four chambers. The dominant bacterial phyla, Bacteroidota and Firmicutes, were identified, with Rikenellaceae_RC9_gut_group being the dominant genus, which potentially helps maintain short-chain fatty acid levels in the stomach. In contrast, the microbiome within the four stomach chambers synergistically and selectively altered the content and diversity of bile acid metabolites in response to intensive feeding. The results of this study provide new insights into the microbiota and bile acid metabolism functions in the rumen, reticulum, omasum, and abomasum of yaks. This can help uncover the role of gastrointestinal microbiota in yak growth and metabolic regulation, while also providing references for improving the production efficiency and health of ruminants.
Collapse
Affiliation(s)
- Shichun He
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.H.); (S.D.); (Z.W.); (S.Z.)
| | - Zaimei Yuan
- Kunming Animal Disease Prevention and Control Center, Kunming 650106, China;
| | - Sifan Dai
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.H.); (S.D.); (Z.W.); (S.Z.)
| | - Zibei Wang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.H.); (S.D.); (Z.W.); (S.Z.)
| | - Shusheng Zhao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.H.); (S.D.); (Z.W.); (S.Z.)
| | - Bin Zhang
- Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming 650224, China;
| | - Huaming Mao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.H.); (S.D.); (Z.W.); (S.Z.)
| | - Dongwang Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.H.); (S.D.); (Z.W.); (S.Z.)
| |
Collapse
|
20
|
Jiang H, Liu S, Chang C, Shang Y, Geng J, Chen Q. Non-invasive ventilation restores the gut microbiota in rats with acute heart failure. Heliyon 2024; 10:e35239. [PMID: 39161838 PMCID: PMC11332900 DOI: 10.1016/j.heliyon.2024.e35239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Heart failure (HF) is an increasingly prevalent disease in humans; it induces multiple symptoms and damages health. The animal gut microbiota has critical roles in host health, which might be related to HF symptoms. Currently, several options are used to treat HF, including non-invasive ventilation (NIV). However, studies on gut microbiota responses to acute HF and associated treatments effects on gut communities in patients are scarce. Here, short-term (1 week after treatments) and long-term (3 months after treatment) variations in gut microbiota variations in rats with acute HF treated were examined NIV through high-throughput sequencing of the bacterial 16S rRNA gene. Through comparison of gut microbiota alpha diversity, it was observed lower gut microbiota richness and diversity in animals with acute HF than in normal animals. Additionally, beta-diversity analysis revealed significant alterations in the gut microbiota composition induced by acute HF, as reflected by increased Firmicutes/Bacteroidetes (F/B) ratios and Proteobacteria enrichment. When network analysis results were combined with the null model, decreased stability and elevated deterministic gut microbiota assemblies were observed in animals with acute HF. Importantly, in both short- and long-term periods, NIV was found to restore gut microbiota dysbiosis to normal states in acute HF rats. Finally, it was shown that considerable gut microbiota variations existed in rats with acute HF, that underlying microbiota mechanisms regulated these changes, and confirmed that NIV is suitable for HF treatment. In future studies, these findings should be validated with different model systems or clinical samples.
Collapse
Affiliation(s)
- He Jiang
- Department of Cardiology, Clinical School of Thoracic, Tianjin Medical University, Tianjin, 300051, China
| | - Shan Liu
- Institute of Cardiology, Clinical School of Thoracic, Tianjin Medical University, Tianjin, 300222, China
| | - Chao Chang
- Department of Cardiology, Clinical School of Thoracic, Tianjin Medical University, Tianjin, 300051, China
| | - Yanwen Shang
- Department of Cardiology, Clinical School of Thoracic, Tianjin Medical University, Tianjin, 300051, China
| | - Jie Geng
- Department of Cardiology, Clinical School of Thoracic, Tianjin Medical University, Tianjin, 300051, China
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin, 300051, China
| | - Qingliang Chen
- Department of Cardiology, Clinical School of Thoracic, Tianjin Medical University, Tianjin, 300051, China
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin, 300051, China
| |
Collapse
|
21
|
Cornelius Ruhs E, McFerrin K, Jones DN, Cortes-Delgado N, Ravelomanantsoa NAF, Yeoman CJ, Plowright RK, Brook CE. Rapid GIT transit time in volant vertebrates, with implications for convergence in microbiome composition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607319. [PMID: 39211198 PMCID: PMC11360930 DOI: 10.1101/2024.08.09.607319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Flying birds and bats have simplified gastrointestinal tracts (GITs) and low intestinal mass to facilitate flight. Previous work showed reduced GIT transit times in birds relative to other vertebrates-but GIT transit has never been collectively quantified for bats. Unique among mammals, bat GIT microbiomes are dominated by Pseudomonadota bacteria (previously Proteobacteria), which also dominate the microbiomes of flying birds - we hypothesized this convergence to result from rapid GIT transit times for both volant taxa. We conducted a meta-analysis of vertebrate GIT transit times which showed that bats and flying birds have significantly faster transit times relative to nonvolant vertebrates. Additionally, within the bat order (Chiroptera), we demonstrated decreasing transit times associated with increasing body mass, a pattern contrasting other vertebrates (including volant birds) and possibly influencing GIT microbiome composition. This inverted mass-transit association is likely driven by diet as fruit- and nectar-consuming Pteropodids are the largest of all bats.
Collapse
|
22
|
Chen W, Chen X, Zhang Y, Wu H, Zhao D. Variation on gut microbiota diversity of endangered red pandas ( Ailurus fulgens) living in captivity acrosss geographical latitudes. Front Microbiol 2024; 15:1420305. [PMID: 39165571 PMCID: PMC11333448 DOI: 10.3389/fmicb.2024.1420305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024] Open
Abstract
The gut microbiome plays important roles in metabolic and immune system related to the health of host. This study applied non-invasive sampling and 16S rDNA high-throughput sequencing to study the gut microbiota structure of red pandas (Ailurus fulgens) for the first time under different geographical latitudes in captivity. The results showed that the two predominant phyla Firmicutes (59.30%) and Proteobacteria (38.58%) constituted 97.88% of the total microbiota in all the fecal samples from north group (red pandas from Tianjin Zoo and Jinan Zoo) and south group (red pandas from Nanjing Hongshan Forest Zoo). The relative abundance of Cyanobacteria in north group was significantly higher than that in south group. At the genus level, Escherichia-Shigella (24.82%) and Clostridium_sensu_stricto_1 (23.00%) were common dominant genera. The relative abundance of norank_f__norank_o__Chloroplast, Terrisporobacter and Anaeroplasma from south group was significantly higher than that of north group. Alpha and Beta analysis consistently showed significant differences between north group and south group, however, the main functions of intestinal microbiota were basically the same, which play an important role in metabolic pathways, biosynthesis of secondary metabolites, microbial metabolism in different environments, and amino acid biosynthesis. The variations in gut microbiota between the northern and southern populations of the same species, both kept in captivity, which are primarily driven by significant differences in climate and diet. These findings provide a deeper understanding of the gut microbiota in red pandas and have important implications for their conservation, particularly in optimizing diet and environmental conditions in captivity.
Collapse
Affiliation(s)
| | | | | | - Hong Wu
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Dapeng Zhao
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, China
| |
Collapse
|
23
|
Abbasi E, Akçay E. Host control and species interactions jointly determine microbiome community structure. Theor Popul Biol 2024; 158:185-194. [PMID: 38925487 DOI: 10.1016/j.tpb.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/21/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
The host microbiome can be considered an ecological community of microbes present inside a complex and dynamic host environment. The host is under selective pressure to ensure that its microbiome remains beneficial. The host can impose a range of ecological filters including the immune response that can influence the assembly and composition of the microbial community. How the host immune response interacts with the within-microbiome community dynamics to affect the assembly of the microbiome has been largely unexplored. We present here a mathematical framework to elucidate the role of host immune response and its interaction with the balance of ecological interactions types within the microbiome community. We find that highly mutualistic microbial communities characteristic of high community density are most susceptible to changes in immune control and become invasion prone as host immune control strength is increased. Whereas highly competitive communities remain relatively stable in resisting invasion to changing host immune control. Our model reveals that the host immune control can interact in unexpected ways with a microbial community depending on the prevalent ecological interactions types for that community. We stress the need to incorporate the role of host-control mechanisms to better understand microbiome community assembly and stability.
Collapse
Affiliation(s)
- Eeman Abbasi
- Department of Biology, University of Pennsylvania, 433 S University Ave, Philadelphia, PA 19104, USA.
| | - Erol Akçay
- Department of Biology, University of Pennsylvania, 433 S University Ave, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Huang L, Fu Y, Liu Y, Chen Y, Wang T, Wang M, Lin X, Feng Y. Global insights into endophytic bacterial communities of terrestrial plants: Exploring the potential applications of endophytic microbiota in sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172231. [PMID: 38608902 DOI: 10.1016/j.scitotenv.2024.172231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Endophytic microorganisms are indispensable symbionts during plant growth and development and often serve functions such as growth promotion and stress resistance in plants. Therefore, an increasing number of researchers have applied endophytes for multifaceted phytoremediation (e.g., organic pollutants and heavy metals) in recent years. With the availability of next-generation sequencing technologies, an increasing number of studies have shifted the focus from culturable bacteria to total communities. However, information on the composition, structure, and function of bacterial endophytic communities is still not widely synthesized. To explore the general patterns of variation in bacterial communities between plant niches, we reanalyzed data from 1499 samples in 30 individual studies from different continents and provided comprehensive insights. A group of bacterial genera were commonly found in most plant roots and shoots. Our analysis revealed distinct variations in the diversity, composition, structure, and function of endophytic bacterial communities between plant roots and shoots. These variations underscore the sophisticated mechanisms by which plants engage with their endophytic microbiota, optimizing these interactions to bolster growth, health, and resilience against stress. Highlighting the strategic role of endophytic bacteria in promoting sustainable agricultural practices and environmental stewardship, our study not only offers global insights into the endophytic bacterial communities of terrestrial plants but also underscores the untapped potential of these communities as invaluable resources for future research.
Collapse
Affiliation(s)
- Lukuan Huang
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingyi Fu
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yaru Liu
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yijie Chen
- IDEO Play Lab, CA 91006, United States of America
| | - Tingzhang Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310012, China
| | - Meixia Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310012, China
| | - Xianyong Lin
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Feng
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
25
|
Zhu Y, Tian J, Cidan Y, Wang H, Li K, Basang W. Influence of Varied Environment Conditions on the Gut Microbiota of Yaks. Animals (Basel) 2024; 14:1570. [PMID: 38891617 PMCID: PMC11171014 DOI: 10.3390/ani14111570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Despite the crucial role of the gut microbiota in different physiological processes occurring in the animal body, reports regarding the gut microbiota of animals residing in different environmental conditions like high altitude and different climate settings are limited. The Qinghai-Tibetan Plateau is renowned for its extreme climatic conditions that provide an ideal environment for exploring the effects of high altitude and temperature on the microbiota of animals. Yaks have unique oxygen delivery systems and genes related to hypoxic response. Damxung, Nyêmo, and Linzhou counties in Tibet have variable altitudes and temperatures that offer distinct settings for studying yak adaptation to elevated terrains. The results of our study suggest that amplicon sequencing of V3-V4 and internal transcribed spacer 2 (ITS2) regions yielded 13,683 bacterial and 1912 fungal amplicon sequence variants (ASVs). Alpha and beta diversity indicated distinct microbial structures. Dominant bacterial phyla were Firmicutes, Bacteroidota, and Actinobacteriota. Genera UCG-005, Christensenellaceae_R-7_group, and Rikenellaceae_RC9_gut_group were dominant in confined yaks living in Damxung county (DXS) and yaks living in Linzhou county (LZS), whereas UCG-005 prevailed in confined yaks living in Nyêmo county (NMS). The linear discriminant analysis effect size (LEfSe) analysis highlighted genus-level differences. Meta-stat analysis revealed significant shifts in bacterial and fungal community composition in yaks at different high altitudes and temperatures. Bacterial taxonomic analysis revealed that two phyla and 32 genera differed significantly (p < 0.05). Fungal taxonomic analysis revealed that three phyla and four genera differed significantly (p < 0.05). Functional predictions indicated altered metabolic functions, especially in the digestive system of yaks living in NMS. This study reveals significant shifts in yak gut microbiota in response to varying environmental factors, such as altitude and temperature, shedding light on previously unexplored aspects of yak physiology in extreme environments.
Collapse
Affiliation(s)
- Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.); (H.W.)
- Linzhou Animal Husbandry and Veterinary Station, Lhasa 850009, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiayi Tian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yangji Cidan
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.); (H.W.)
| | - Hongzhuang Wang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.); (H.W.)
| | - Kun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.); (H.W.)
| |
Collapse
|
26
|
Pieczyńska-Zając JM, Malinowska A, Łagowska K, Leciejewska N, Bajerska J. The effects of time-restricted eating and Ramadan fasting on gut microbiota composition: a systematic review of human and animal studies. Nutr Rev 2024; 82:777-793. [PMID: 37528052 PMCID: PMC11082590 DOI: 10.1093/nutrit/nuad093] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
CONTEXT It is well known that the microbiome undergoes cyclical diurnal rhythms. It has thus been hypothesized that meal timing may affect gut microbial composition, function, and host health. OBJECTIVE This review aims to examine the effects of time-restricted eating (TRE) and Ramadan fasting (RF) on the composition of the gut microbiota in animal and human studies. The associations between composition of microbiota and host metabolic parameters are also examined. DATA SOURCES A search was performed on the PubMed, Cochrane, Scopus, and Web of Science databases up to December 31, 2022. The search strategy was performed using the Medical Subject Heading (MeSH) terms "intermittent fasting" and "gastrointestinal microbiome" and the key words "Ramadan fasting" and "microbes." DATA EXTRACTION Seven human studies (4 TRE and 3 RF) and 9 animal studies (7 TRE, 2 RF-like) were retrieved. DATA ANALYSIS TRE and RF in human studies lead to an increase in gut microbial community alpha-diversity. In animal studies (both TRE and RF-like), fasting is not associated with improved alpha-diversity, but enhancement of microbial fluctuation is observed, compared with high-fat diet ad libitum groups. Within Firmicutes and Bacteroidetes phyla, no specific direction of changes resulting from fasting are observed in both animals and human. After TRE or RF, a greater abundance of the Faecalibacterium genus is observed in human studies; changes in Lactobacillus abundance are found in animal studies; and increases in Akkermansia are seen both in humans and in animals fed a feed-pellet diet. Only 2 human studies show a beneficial correlation between microbiota changes and host metabolic (HDL cholesterol) or anthropometric parameters (body mass index). CONCLUSIONS These findings support the importance of both regimens in improving the gut microbiota composition. However, based on results of animal studies, it can be suggested that diet remains the essential factor in forming the microbiota's environment. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42021278918.
Collapse
Affiliation(s)
| | - Anna Malinowska
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Karolina Łagowska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| | - Natalia Leciejewska
- Department of Physiology, Biochemistry, and Biostructure of Animals, Poznań University of Life Sciences, Poznań, Poland
| | - Joanna Bajerska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
27
|
Dai W, Leng H, Li J, Li A, Li Z, Zhu Y, Li X, Jin L, Sun K, Feng J. The role of host traits and geography in shaping the gut microbiome of insectivorous bats. mSphere 2024; 9:e0008724. [PMID: 38509042 PMCID: PMC11036801 DOI: 10.1128/msphere.00087-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
The gut microbiome is a symbiotic microbial community associated with the host and plays multiple important roles in host physiology, nutrition, and health. A number of factors have been shown to influence the gut microbiome, among which diet is considered to be one of the most important; however, the relationship between diet composition and gut microbiota in wild mammals is still not well recognized. Herein, we characterized the gut microbiota of bats and examined the effects of diet, host taxa, body size, gender, elevation, and latitude on the gut microbiota. The cytochrome C oxidase subunit I (COI) gene and 16S rRNA gene amplicons were sequenced from the feces of eight insectivorous bat species in southern China, including Miniopterus fuliginosus, Aselliscus stoliczkanus, Myotis laniger, Rhinolophus episcopus, Rhinolophus osgoodi, Rhinolophus ferrumequinum, Rhinolophus affinis, and Rhinolophus pusillus. The results showed that the composition of gut microbiome and diet exhibited significant differences among bat species. Diet composition and gut microbiota were significantly correlated at the order, family, genus, and operational taxonomic unit levels, while certain insects had a marked effect on the gut microbiome at specific taxonomic levels. In addition, elevation, latitude, body weight of bats, and host species had significant effects on the gut microbiome, but phylosymbiosis between host phylogeny and gut microbiome was lacking. These findings clarify the relationship between gut microbiome and diet and contribute to improving our understanding of host ecology and the evolution of the gut microbiome in wild mammals. IMPORTANCE The gut microbiome is critical for the adaptation of wildlife to the dynamic environment. Bats are the second-largest group of mammals with short intestinal tract, yet their gut microbiome is still poorly studied. Herein, we explored the relationships between gut microbiome and food composition, host taxa, body size, gender, elevation, and latitude. We found a significant association between diet composition and gut microbiome in insectivorous bats, with certain insect species having major impacts on gut microbiome. Factors like species taxa, body weight, elevation, and latitude also affected the gut microbiome, but we failed to detect phylosymbiosis between the host phylogeny and the gut microbiome. Overall, our study presents novel insights into how multiple factors shape the bat's gut microbiome together and provides a study case on host-microbe interactions in wildlife.
Collapse
Affiliation(s)
- Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Jun Li
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Aoqiang Li
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zhongle Li
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Yue Zhu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Xiaolin Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- College of Life Science, Jilin Agricultural University, Changchun, China
| |
Collapse
|
28
|
Luo Z, Du Z, Huang Y, Zhou T, Wu D, Yao X, Shen L, Yu S, Yong K, Wang B, Cao S. Alterations in the gut microbiota and its metabolites contribute to metabolic maladaptation in dairy cows during the development of hyperketonemia. mSystems 2024; 9:e0002324. [PMID: 38501812 PMCID: PMC11019918 DOI: 10.1128/msystems.00023-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Metabolic maladaptation in dairy cows after calving can lead to long-term elevation of ketones, such as β-hydroxybutyrate (BHB), representing the condition known as hyperketonemia, which greatly influences the health and production performance of cows during the lactation period. Although the gut microbiota is known to alter in dairy cows with hyperketonemia, the association of microbial metabolites with development of hyperketonemia remains unknown. In this study, we performed a multi-omics analysis to investigate the associations between fecal microbial community, fecal/plasma metabolites, and serum markers in hyperketonemic dairy cows during the transition period. Dynamic changes in the abundance of the phyla Verrucomicrobiota and Proteobacteria were detected in the gut microbiota of dairy cows, representing an adaptation to enhanced lipolysis and abnormal glucose metabolism after calving. Random forest and univariate analyses indicated that Frisingicoccus is a key bacterial genus in the gut of cows during the development of hyperketonemia, and its abundance was positively correlated with circulating branched-chain amino acid levels and the ketogenesis pathway. Taurodeoxycholic acid, belonging to the microbial metabolite, was strongly correlated with an increase in blood BHB level, and the levels of other secondary bile acid in the feces and plasma were altered in dairy cows prior to the diagnosis of hyperketonemia, which link the gut microbiota and hyperketonemia. Our results suggest that alterations in the gut microbiota and its metabolites contribute to excessive lipolysis and insulin insensitivity during the development of hyperketonemia, providing fundamental knowledge about manipulation of gut microbiome to improve metabolic adaptability in transition dairy cows.IMPORTANCEAccumulating evidence is pointing to an important association between gut microbiota-derived metabolites and metabolic disorders in humans and animals; however, this association in dairy cows from late gestation to early lactation is poorly understood. To address this gap, we integrated longitudinal gut microbial (feces) and metabolic (feces and plasma) profiles to characterize the phenotypic differences between healthy and hyperketonemic dairy cows from late gestation to early lactation. Our results demonstrate that cows underwent excessive lipid mobilization and insulin insensitivity before hyperketonemia was evident. The bile acids are functional readouts that link gut microbiota and host phenotypes in the development of hyperketonemia. Thus, this work provides new insight into the mechanisms involved in metabolic adaptation during the transition period to adjust to the high energy and metabolic demands after calving and during lactation, which can offer new strategies for livestock management involving intervention of the gut microbiome to facilitate metabolic adaptation.
Collapse
Affiliation(s)
- Zhengzhong Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhenlong Du
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yixin Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tao Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dan Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueping Yao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liuhong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shumin Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Kang Yong
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, China
| | - Baoning Wang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Suizhong Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
29
|
Tian Y, Xie Y, Hong X, Guo Z, Yu Q. 17β-Estradiol protects female rats from bilateral oophorectomy-induced nonalcoholic fatty liver disease induced by improving linoleic acid metabolism alteration and gut microbiota disturbance. Heliyon 2024; 10:e29013. [PMID: 38601573 PMCID: PMC11004821 DOI: 10.1016/j.heliyon.2024.e29013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
After surgical or natural menopause, women face a high risk of nonalcoholic fatty liver disease (NAFLD), which can be diminished by hormone replacement therapy (HRT). The gut microbiota is subject to modulation by various physiological changes and the progression of diseases. This microbial ecosystem coexists symbiotically with the host, playing pivotal roles in immune maturation, microbial defense mechanisms, and metabolic functions essential for nutritional and hormone homeostasis. E2 supplementation effectively prevented the development of NAFLD after bilateral oophorectomy (OVX) in female rats. The changes in the gut microbiota such as abnormal biosynthetic metabolism of fatty acids caused by OVX were partially restored by E2 supplementation. The combination of liver transcriptomics and metabolomics analysis revealed that linoleic acid (LA) metabolism, a pivotal pathway in fatty acids metabolism was mainly manipulated during the induction and treatment of NAFLD. Further correlation analysis indicated that the gut microbes were associated with abnormal serum indicators and different LA metabolites. These metabolites are also closely related to serum indicators of NAFLD. An in vitro study verified that LA is an inducer of hepatic steatosis. The changes in transcription in the LA metabolism pathway could be normalized by E2 treatment. The metabolic perturbations of LA may directly and secondhand impact the development of NAFLD in postmenopausal individuals. This research focused on the sex-specific pathophysiology and treatment of NAFLD, providing more evidence for HRT and calling for the multitiered management of NAFLD.
Collapse
Affiliation(s)
| | | | - Xinyu Hong
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Zaixin Guo
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Qi Yu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| |
Collapse
|
30
|
Zhou X, Shen X, Johnson JS, Spakowicz DJ, Agnello M, Zhou W, Avina M, Honkala A, Chleilat F, Chen SJ, Cha K, Leopold S, Zhu C, Chen L, Lyu L, Hornburg D, Wu S, Zhang X, Jiang C, Jiang L, Jiang L, Jian R, Brooks AW, Wang M, Contrepois K, Gao P, Rose SMSF, Tran TDB, Nguyen H, Celli A, Hong BY, Bautista EJ, Dorsett Y, Kavathas PB, Zhou Y, Sodergren E, Weinstock GM, Snyder MP. Longitudinal profiling of the microbiome at four body sites reveals core stability and individualized dynamics during health and disease. Cell Host Microbe 2024; 32:506-526.e9. [PMID: 38479397 PMCID: PMC11022754 DOI: 10.1016/j.chom.2024.02.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/23/2024] [Accepted: 02/20/2024] [Indexed: 03/26/2024]
Abstract
To understand the dynamic interplay between the human microbiome and host during health and disease, we analyzed the microbial composition, temporal dynamics, and associations with host multi-omics, immune, and clinical markers of microbiomes from four body sites in 86 participants over 6 years. We found that microbiome stability and individuality are body-site specific and heavily influenced by the host. The stool and oral microbiome are more stable than the skin and nasal microbiomes, possibly due to their interaction with the host and environment. We identify individual-specific and commonly shared bacterial taxa, with individualized taxa showing greater stability. Interestingly, microbiome dynamics correlate across body sites, suggesting systemic dynamics influenced by host-microbial-environment interactions. Notably, insulin-resistant individuals show altered microbial stability and associations among microbiome, molecular markers, and clinical features, suggesting their disrupted interaction in metabolic disease. Our study offers comprehensive views of multi-site microbial dynamics and their relationship with host health and disease.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Center for Genomics and Personalized Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford, CA 94305, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Xiaotao Shen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Center for Genomics and Personalized Medicine, Stanford, CA 94305, USA
| | - Jethro S Johnson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, UK
| | - Daniel J Spakowicz
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Division of Medical Oncology, Ohio State University Wexner Medical Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | | | - Wenyu Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Center for Genomics and Personalized Medicine, Stanford, CA 94305, USA
| | - Monica Avina
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexander Honkala
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Healthcare Innovation Labs, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Faye Chleilat
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shirley Jingyi Chen
- Stanford Healthcare Innovation Labs, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kexin Cha
- Stanford Healthcare Innovation Labs, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shana Leopold
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Chenchen Zhu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lei Chen
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai 200240, PRC
| | - Lin Lyu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai 200240, PRC
| | - Daniel Hornburg
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Si Wu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xinyue Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chao Jiang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, PRC
| | - Liuyiqi Jiang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, PRC
| | - Lihua Jiang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruiqi Jian
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew W Brooks
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Meng Wang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kévin Contrepois
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peng Gao
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | - Hoan Nguyen
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Alessandra Celli
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bo-Young Hong
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Woody L Hunt School of Dental Medicine, Texas Tech University Health Science Center, El Paso, TX 79905, USA
| | - Eddy J Bautista
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Headquarters-Mosquera, Cundinamarca 250047, Colombia
| | - Yair Dorsett
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Medicine, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Paula B Kavathas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yanjiao Zhou
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Medicine, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Erica Sodergren
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | | | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Center for Genomics and Personalized Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford, CA 94305, USA; Stanford Healthcare Innovation Labs, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
31
|
Zhang Z, Zhang HL, Yang DH, Hao Q, Yang HW, Meng DL, Meindert de Vos W, Guan LL, Liu SB, Teame T, Gao CC, Ran C, Yang YL, Yao YY, Ding QW, Zhou ZG. Lactobacillus rhamnosus GG triggers intestinal epithelium injury in zebrafish revealing host dependent beneficial effects. IMETA 2024; 3:e181. [PMID: 38882496 PMCID: PMC11170971 DOI: 10.1002/imt2.181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 06/18/2024]
Abstract
Lactobacillus rhamnosus GG (LGG), the well-characterized human-derived probiotic strain, possesses excellent properties in the maintenance of intestinal homeostasis, immunoregulation and defense against gastrointestinal pathogens in mammals. Here, we demonstrate that the SpaC pilin of LGG causes intestinal epithelium injury by inducing cell pyroptosis and gut microbial dysbiosis in zebrafish. Dietary SpaC activates Caspase-3-GSDMEa pathways in the intestinal epithelium, promotes intestinal pyroptosis and increases lipopolysaccharide (LPS)-producing gut microbes in zebrafish. The increased LPS subsequently activates Gaspy2-GSDMEb pyroptosis pathway. Further analysis reveals the Caspase-3-GSDMEa pyroptosis is initiated by the species-specific recognition of SpaC by TLR4ba, which accounts for the species-specificity of the SpaC-inducing intestinal pyroptosis in zebrafish. The observed pyroptosis-driven gut injury and microbial dysbiosis by LGG in zebrafish suggest that host-specific beneficial/harmful mechanisms are critical safety issues when applying probiotics derived from other host species and need more attention.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
- Faculty of Land and Food Systems The University of British Columbia Vancouver Canada
| | - Hong-Ling Zhang
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Da-Hai Yang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Qiang Hao
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Hong-Wei Yang
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - De-Long Meng
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Willem Meindert de Vos
- Laboratory of Microbiology Wageningen University and Research Wageningen Netherlands
- Human Microbiome Research Program, Faculty of Medicine University of Helsinki Helsinki Finland
| | - Le-Luo Guan
- Faculty of Land and Food Systems The University of British Columbia Vancouver Canada
| | - Shu-Bin Liu
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Tsegay Teame
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
- Tigray Agricultural Research Institute Mekelle Ethiopia
| | - Chen-Chen Gao
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Ya-Lin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Yuan-Yuan Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Qian-Wen Ding
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Zhi-Gang Zhou
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
32
|
Kemp KM, Orihuela CA, Morrow CD, Judd SE, Evans RR, Mrug S. Associations between dietary habits, socio-demographics and gut microbial composition in adolescents. Br J Nutr 2024; 131:809-820. [PMID: 37850446 PMCID: PMC10864997 DOI: 10.1017/s0007114523002271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/20/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023]
Abstract
The relationship between dietary habits and microbiota composition during adolescence has not been well examined. This is a crucial knowledge gap to fill considering that diet-microbiota interactions influence neurodevelopment, immune system maturation and metabolic regulation. This study examined the associations between diet and the gut microbiota in a school-based sample of 136 adolescents (Mage = 12·1 years; age range 11-13 years; 48 % female; 47 % Black, 38 % non-Hispanic White, 15 % Hispanic or other minorities) from urban, suburban and rural areas in the Southeast USA. Adolescents completed the Rapid Eating Assessment for Participants and provided stool samples for 16S ribosomal RNA gene sequencing. Parents reported their child and family socio-demographic characteristics. The associations between diet and socio-demographics with gut microbiota diversity and abundance were analysed using multivariable regression models. Child race and ethnicity, sex, socio-economic status and geographic locale contributed to variation within microbiota composition (β-diversity). Greater consumption of processed meat was associated with a lower microbial α-diversity after adjusting for socio-demographic variables. Multi-adjusted models showed that frequent consumption of nutrient-poor, energy-dense foods (e.g. sugar-sweetened beverages, fried foods, sweets) was negatively associated with abundances of genera in the family Lachnospiraceae (Anaerostipes, Fusicatenibacter and Roseburia), which are thought to play a beneficial role in host health through their production of short-chain fatty acids (SCFAs). These results provide new insights into the complex relationships among socio-demographic factors, diet and gut microbiota during adolescence. Adolescence may represent a critical window of opportunity to promote healthy eating practices that shape a homoeostatic gut microbiota with life-long benefits.
Collapse
Affiliation(s)
- Keri M. Kemp
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL35294, USA
| | - Catheryn A. Orihuela
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Casey D. Morrow
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Suzanne E. Judd
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Retta R. Evans
- Department of Human Studies, School of Education, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sylvie Mrug
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
33
|
Moreira de Gouveia MI, Bernalier-Donadille A, Jubelin G. Enterobacteriaceae in the Human Gut: Dynamics and Ecological Roles in Health and Disease. BIOLOGY 2024; 13:142. [PMID: 38534413 DOI: 10.3390/biology13030142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024]
Abstract
The human gut microbiota plays a crucial role in maintaining host health. Our review explores the prevalence and dynamics of Enterobacteriaceae, a bacterial family within the Proteobacteria phylum, in the human gut which represents a small fraction of the gut microbiota in healthy conditions. Even though their roles are not yet fully understood, Enterobacteriaceae and especially Escherichia coli (E. coli) play a part in creating an anaerobic environment, producing vitamins and protecting against pathogenic infections. The composition and residency of E. coli strains in the gut fluctuate among individuals and is influenced by many factors such as geography, diet and health. Dysbiosis, characterized by alterations in the microbial composition of the gut microbiota, is associated with various diseases, including obesity, inflammatory bowel diseases and metabolic disorders. A consistent pattern in dysbiosis is the expansion of Proteobacteria, particularly Enterobacteriaceae, which has been proposed as a potential marker for intestinal and extra-intestinal inflammatory diseases. Here we develop the potential mechanisms contributing to Enterobacteriaceae proliferation during dysbiosis, including changes in oxygen levels, alterations in mucosal substrates and dietary factors. Better knowledge of these mechanisms is important for developing strategies to restore a balanced gut microbiota and reduce the negative consequences of the Enterobacteriaceae bloom.
Collapse
Affiliation(s)
| | | | - Gregory Jubelin
- Université Clermont Auvergne, INRAE, MEDIS UMR454, F-63000 Clermont-Ferrand, France
| |
Collapse
|
34
|
Han Z, Fan Y, Wu Q, Guo F, Li S, Hu X, Zuo YG. Comparison of gut microbiota dysbiosis between pemphigus vulgaris and bullous pemphigoid. Int Immunopharmacol 2024; 128:111470. [PMID: 38185033 DOI: 10.1016/j.intimp.2023.111470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVE Pemphigus vulgaris (PV) and bullous pemphigoid (BP) are two prevalent bullous diseases. Previous studies found that the antibodies of BP could be expressed in the intestinal epithelium and BP was tightly related to inflammatory bowel disease. Therefore, gut microbiota might also play an important role in bullous disease. However, the specific relationship between gut microbiota and bullous diseases remains unknown. Our study aimed to investigate the potential role of gut microbiota in the development and progression of different bullous diseases. METHODS We conducted a prospective and observational cohort study at Peking Union Medical College Hospital. Untreated BP and PV patients were recruited, along with healthy controls (HC) who were spouses or caregivers of these patients. Fecal samples were collected, followed by 16S rRNA gene sequencing. Bioinformatics analyses were performed to assess the composition and function of gut microbiota. RESULTS A total of 38 HC, 32 BP, and 19 PV patients were enrolled in this study. Compared to HC, BP, and PV exhibited a distinct gut microbiota composition, especially BP. The gut microbiota changes were mainly observed in the phylum Bacteroidetes, Firmicutes, and Proteobacteria. The ratio of Faecalibacterium to Escherichia-Shigella (F/E ratio) had a considerable predictive value (AUC: 0.705) for recognizing BP from PV. The levels of Faecalibacterium and Enterobacter were correlated to the anti-BP 180 and anti-desmoglein 3. Microbial functional prediction revealed elevated activity in pathways related to gut microbiota translocation significantly increased in BP patients, indicating a potential pathogenetic role in BP. CONCLUSIONS Our study suggests that the composition of gut microbiota is specific in different bullous diseases and the role of gut microbiota differs. Gut microbiota could help distinguish BP and PV, and might play a role in the pathogenesis of different bullous diseases.
Collapse
Affiliation(s)
- Ziying Han
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China; Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yue Fan
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Qingyang Wu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Feng Guo
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Sizhe Li
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Xiaomin Hu
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| | - Ya-Gang Zuo
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China.
| |
Collapse
|
35
|
Patangia DV, Grimaud G, O'Shea CA, Ryan CA, Dempsey E, Stanton C, Ross RP. Early life exposure of infants to benzylpenicillin and gentamicin is associated with a persistent amplification of the gut resistome. MICROBIOME 2024; 12:19. [PMID: 38310316 PMCID: PMC10837951 DOI: 10.1186/s40168-023-01732-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/24/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND Infant gut microbiota is highly malleable, but the long-term longitudinal impact of antibiotic exposure in early life, together with the mode of delivery on infant gut microbiota and resistome, is not extensively studied. METHODS Two hundred and eight samples from 45 infants collected from birth until 2 years of age over five time points (week 1, 4, 8, 24, year 2) were analysed. Based on shotgun metagenomics, the gut microbial composition and resistome profile were compared in the early life of infants divided into three groups: vaginal delivery/no-antibiotic in the first 4 days of life, C-section/no-antibiotic in the first 4 days of life, and C-section/antibiotic exposed in first 4 days of life. Gentamycin and benzylpenicillin were the most commonly administered antibiotics during this cohort's first week of life. RESULTS Newborn gut microbial composition differed in all three groups, with higher diversity and stable composition seen at 2 years of age, compared to week 1. An increase in microbial diversity from week 1 to week 4 only in the C-section/antibiotic-exposed group reflects the effect of antibiotic use in the first 4 days of life, with a gradual increase thereafter. Overall, a relative abundance of Actinobacteria and Bacteroides was significantly higher in vaginal delivery/no-antibiotic while Proteobacteria was higher in C-section/antibiotic-exposed infants. Strains from species belonging to Bifidobacterium and Bacteroidetes were generally persistent colonisers, with Bifidobacterium breve and Bifidobacterium bifidum species being the major persistent colonisers in all three groups. Bacteroides persistence was dominant in the vaginal delivery/no-antibiotic group, with species Bacteroides ovatus and Phocaeicola vulgatus found to be persistent colonisers in the no-antibiotic groups. Most strains carrying antibiotic-resistance genes belonged to phyla Proteobacteria and Firmicutes, with the C-section/antibiotic-exposed group presenting a higher frequency of antibiotic-resistance genes (ARGs). CONCLUSION These data show that antibiotic exposure has an immediate and persistent effect on the gut microbiome in early life. As such, the two antibiotics used in the study selected for strains (mainly Proteobacteria) which were multiple drug-resistant (MDR), presumably a reflection of their evolutionary lineage of historical exposures-leading to what can be an extensive and diverse resistome. Video Abstract.
Collapse
Affiliation(s)
- Dhrati V Patangia
- School of Microbiology, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy Co., Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Ghjuvan Grimaud
- Teagasc Food Research Centre, Moorepark, Fermoy Co., Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | | | - C A Ryan
- APC Microbiome Ireland, Cork, Ireland
| | - Eugene Dempsey
- APC Microbiome Ireland, Cork, Ireland
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
- Infant Research Centre, University College Cork, Cork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy Co., Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - R Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland.
- APC Microbiome Ireland, Cork, Ireland.
| |
Collapse
|
36
|
Zhou X, Shen X, Johnson JS, Spakowicz DJ, Agnello M, Zhou W, Avina M, Honkala A, Chleilat F, Chen SJ, Cha K, Leopold S, Zhu C, Chen L, Lyu L, Hornburg D, Wu S, Zhang X, Jiang C, Jiang L, Jiang L, Jian R, Brooks AW, Wang M, Contrepois K, Gao P, Schüssler-Fiorenza Rose SM, Binh Tran TD, Nguyen H, Celli A, Hong BY, Bautista EJ, Dorsett Y, Kavathas P, Zhou Y, Sodergren E, Weinstock GM, Snyder MP. Longitudinal profiling of the microbiome at four body sites reveals core stability and individualized dynamics during health and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.577565. [PMID: 38352363 PMCID: PMC10862915 DOI: 10.1101/2024.02.01.577565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
To understand dynamic interplay between the human microbiome and host during health and disease, we analyzed the microbial composition, temporal dynamics, and associations with host multi-omics, immune and clinical markers of microbiomes from four body sites in 86 participants over six years. We found that microbiome stability and individuality are body-site-specific and heavily influenced by the host. The stool and oral microbiome were more stable than the skin and nasal microbiomes, possibly due to their interaction with the host and environment. Also, we identified individual-specific and commonly shared bacterial taxa, with individualized taxa showing greater stability. Interestingly, microbiome dynamics correlated across body sites, suggesting systemic coordination influenced by host-microbial-environment interactions. Notably, insulin-resistant individuals showed altered microbial stability and associations between microbiome, molecular markers, and clinical features, suggesting their disrupted interaction in metabolic disease. Our study offers comprehensive views of multi-site microbial dynamics and their relationship with host health and disease. Study Highlights The stability of the human microbiome varies among individuals and body sites.Highly individualized microbial genera are more stable over time.At each of the four body sites, systematic interactions between the environment, the host and bacteria can be detected.Individuals with insulin resistance have lower microbiome stability, a more diversified skin microbiome, and significantly altered host-microbiome interactions.
Collapse
|
37
|
Kim Y, Ban GH, Hong YW, Jeong KC, Bae D, Kim SA. Bacterial profile of pork from production to retail based on high-throughput sequencing. Food Res Int 2024; 176:113745. [PMID: 38163697 DOI: 10.1016/j.foodres.2023.113745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
Pork is a common vehicle for foodborne pathogens, including Salmonella spp. and Yersinia enterocolitica. Cross-contamination can occur at any stage of the pork production chain, from farm to market. In the present study, high-throughput sequencing was used to characterize bacterial profiles and track their changes along the whole supply chain. Tracked meat samples (pig on the farm, carcass in the slaughterhouse, unprocessed carcass and processed meat in the processing plant, and fresh pork at the local retail stores) and their associated environmental samples (e.g., water, floor, feed, feces, and workers' gloves) were collected from sequential stages (n = 96) and subjected to 16S rRNA metataxonomic analyses. At the farm, a total of 652 genera and 146 exclusive genera were identified in animal and environmental samples (pig, drain, floor, fan, and feces). Based on beta diversity analysis, it was demonstrated that the microbial composition of animal samples collected at the same processing step is similar to that of environmental samples (e.g., drain, fan, feces, feed, floor, gloves, knives, tables, and water). All animal and environmental samples from the slaughterhouse were dominated by Acinetobacter (55.37 %). At the processing plant, belly meat and neck meat samples were dominated by Psychrobacter (55.49 %). At the retail level, key bacterial players, which are potential problematic bacteria and important members with a high relative abundance in the samples, included Acinetobacter (8.13 %), Pseudomonas (6.27 %), and Staphylococcus (2.13 %). In addition, the number of confirmed genera varied by more than twice that identified in the processing plant. Source tracking was performed to identify bacterial contamination routes in pork processing. Animal samples, including the processing plant's carcass, the pig from the farm, and the unwashed carcass from the slaughterhouse (77.45 %), along with the processing plant's gloves (5.71 %), were the primary bacterial sources in the final product. The present study provides in-depth knowledge about the bacterial players and contamination points within the pork production chain. Effective control measures are needed to control pathogens and major pollutants at each stage of pork production to improve food safety.
Collapse
Affiliation(s)
- Yejin Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, South Korea
| | - Ga-Hee Ban
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, South Korea
| | - Ye Won Hong
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, South Korea
| | | | - Dongryeoul Bae
- Division of Research and Development, TracoWorld Ltd., Gwangmyeong, South Korea
| | - Sun Ae Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
38
|
Chai L, Song Y, Chen A, Jiang L, Deng H. Gut microbiota perturbations during larval stages in Bufo gargarizans tadpoles after Cu exposure with or without the presence of Pb. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122774. [PMID: 37871736 DOI: 10.1016/j.envpol.2023.122774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Cu and Pb are ubiquitous environmental contaminants, but there is limited information on their potential impacts on gut microbiota profile in anuran amphibians at different developmental stages during metamorphosis. In this study, Bufo gargarizans tadpoles were chronically exposed to Cu alone or Cu combined with Pb from Gs26 throughout metamorphosis. Morphology of tadpoles, histological characteristic and bacterial community of intestines were evaluated at three developmental stages: Gs33, Gs36, and Gs42. Results showed that Cu and Cu + Pb exposure caused various degrees of morphological and histological changes in guts at tested three stages. In addition, bacterial richness and diversity in tadpoles especially at Gs33 and Gs42 were disturbed by Cu and Cu + Pb. Beta diversity demonstrated that the bacterial community structures were influenced by both heavy metals exposure and developmental stages. Alterations in taxonomic composition were characterized by increased abundance of Proteobacteria and Firmicutes, reduction of Fusobacteriota, as well as decreased Cetobacterium and increased C39 at all three stages. Overall, response of gut bacterial diversity and composition to Cu stress depends on the developmental stage, while the altered patterns of bacterial community at Cu stress could be modified further by the presence of Pb. Moreover, predicted metabolic disorders were associated with shifts in bacterial community, but needs integrated information from metagenomic and metatranscriptomic analyses. These results contribute to the growing body of research about potential ecotoxicological effects of heavy metals on amphibian gut microbiota during metamorphosis.
Collapse
Affiliation(s)
- Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China.
| | - Yanjiao Song
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China.
| | - Aixia Chen
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Ling Jiang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Hongzhang Deng
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| |
Collapse
|
39
|
Wang J, Xin J, Xu X, Chen W, Lv Y, Wei Y, Wei X, Li Z, Ding Q, Zhao H, Wen Y, Zhang X, Fang Y, Zu X. Bacopaside I alleviates depressive-like behaviors by modulating the gut microbiome and host metabolism in CUMS-induced mice. Biomed Pharmacother 2024; 170:115679. [PMID: 38113632 DOI: 10.1016/j.biopha.2023.115679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 12/21/2023] Open
Abstract
Bacopaside I (BSI) is a natural compound that is difficult to absorb orally but has been shown to have antidepressant effects. The microbiota-gut-brain axis is involved in the development of depression through the peripheral nervous system, endocrine system, and immune system and may be a key factor in the effect of BSI. Therefore, this study aimed to investigate the potential mechanism of BSI in the treatment of depression via the microbiota-gut-brain axis and to validate it in a fecal microbiota transplantation model. The antidepressant effect of BSI was established in CUMS-induced mice using behavioral tests and measurement of changes in hypothalamicpituitaryadrenal (HPA) axis-related hormones. The improvement of stress-induced gut-brain axis damage by BSI was observed by histopathological sections and enzyme-linked immunosorbent assay (ELISA). 16 S rDNA sequencing analysis indicated that BSI could modulate the abundance of gut microbiota and increase the abundance of probiotic bacteria. We also observed an increase in short-chain fatty acids, particularly acetic acid. In addition, BSI could modulate the disruption of lipid metabolism induced by CUMS. Fecal microbiota transplantation further confirmed that disruption of the microbiota-gut-brain axis is closely associated with the development of depression, and that the microbiota regulated by BSI exerts a partial antidepressant effect. In conclusion, BSI exerts antidepressant effects by remodeling gut microbiota, specifically through the Lactobacillus and Streptococcus-acetic acid-neurotrophin signaling pathways. Furthermore, BSI can repair damage to the gut-brain axis, regulate HPA axis dysfunction, and maintain immune homeostasis.
Collapse
Affiliation(s)
- Jie Wang
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China; Department of Pharmaceutical Analysis, School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jiayun Xin
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China; Department of Pharmaceutical Analysis, School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xike Xu
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Wei Chen
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yanhui Lv
- Department of Pharmaceutical Analysis, School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yanping Wei
- Department of Pharmaceutical Analysis, School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xintong Wei
- Department of Pharmaceutical Analysis, School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhanhong Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510640, China
| | - Qianqian Ding
- Department of Natural Medicinal Chemistry, School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei 230012, China
| | - Houyu Zhao
- Department of Diving and Hyperbaric Medical Research, Naval Medical Center, Naval Medical University, Shanghai 200433, China
| | - Yukun Wen
- Department of Diving and Hyperbaric Medical Research, Naval Medical Center, Naval Medical University, Shanghai 200433, China
| | - Xiuyun Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yiqun Fang
- Department of Diving and Hyperbaric Medical Research, Naval Medical Center, Naval Medical University, Shanghai 200433, China.
| | - Xianpeng Zu
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
40
|
Sun Y, Hao Y, Zhang Q, Liu X, Wang L, Li J, Li M, Li D. Coping with extremes: Alternations in diet, gut microbiota, and hepatic metabolic functions in a highland passerine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167079. [PMID: 37714349 DOI: 10.1016/j.scitotenv.2023.167079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
In wild animals, diet and gut microbiota interactions are critical moderators of metabolic functions and are highly contingent on habitat conditions. Challenged by the extreme conditions of high-altitude environments, the strategies implemented by highland animals to adjust their diet and gut microbial composition and modulate their metabolic substrates remain largely unexplored. By employing a typical human commensal species, the Eurasian tree sparrow (Passer montanus, ETS), as a model species, we studied the differences in diet, digestive tract morphology and enzyme activity, gut microbiota, and metabolic energy profiling between highland (the Qinghai-Tibet Plateau, QTP; 3230 m) and lowland (Shijiazhuang, Hebei; 80 m) populations. Our results showed that highland ETSs had enlarged digestive organs and longer small intestinal villi, while no differences in key digestive enzyme activities were observed between the two populations. The 18S rRNA sequencing results revealed that the dietary composition of highland ETSs were more animal-based and less plant-based than those of the lowland ones. Furthermore, 16S rRNA sequencing results suggested that the intestinal microbial communities were structurally segregated between populations. PICRUSt metagenome predictions further indicated that the expression patterns of microbial genes involved in material and energy metabolism, immune system and infection, and xenobiotic biodegradation were strikingly different between the two populations. Analysis of liver metabolomics revealed significant metabolic differences between highland and lowland ETSs in terms of substrate utilization, as well as distinct sex-specific alterations in glycerophospholipids. Furthermore, the interplay between diet, liver metabolism, and gut microbiota suggests a dietary shift resulting in corresponding changes in gut microbiota and metabolic functions. Our findings indicate that highland ETSs have evolved to optimize digestion and absorption, rely on more protein-rich foods, and possess gut microbiota tailored to their dietary composition, likely adaptive physiological and ecological strategies adopted to cope with extreme highland environments.
Collapse
Affiliation(s)
- Yanfeng Sun
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Yaotong Hao
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China
| | - Qian Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xu Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Limin Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Juyong Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Mo Li
- College of Life Sciences, Cangzhou Normal University, Cangzhou 061001, China.
| | - Dongming Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
41
|
Ramos-Nascimento A, Grenga L, Haange SB, Himmelmann A, Arndt FS, Ly YT, Miotello G, Pible O, Jehmlich N, Engelmann B, von Bergen M, Mulder E, Frings-Meuthen P, Hellweg CE, Jordan J, Rolle-Kampczyk U, Armengaud J, Moeller R. Human gut microbiome and metabolite dynamics under simulated microgravity. Gut Microbes 2023; 15:2259033. [PMID: 37749878 PMCID: PMC10524775 DOI: 10.1080/19490976.2023.2259033] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023] Open
Abstract
The Artificial Gravity Bed Rest - European Space Agency (AGBRESA) study was the first joint bed rest study by ESA, DLR, and NASA that examined the effect of simulated weightlessness on the human body and assessed the potential benefits of artificial gravity as a countermeasure in an analog of long-duration spaceflight. In this study, we investigated the impact of simulated microgravity on the gut microbiome of 12 participants during a 60-day head-down tilt bed rest at the :envihab facilities. Over 60 days of simulated microgravity resulted in a mild change in the gut microbiome, with distinct microbial patterns and pathway expression in the feces of the countermeasure group compared to the microgravity simulation-only group. Additionally, we found that the countermeasure protocols selectively increased the abundance of beneficial short-chain fatty acids in the gut, such as acetate, butyrate, and propionate. Some physiological signatures also included the modulation of taxa reported to be either beneficial or opportunistic, indicating a mild adaptation in the microbiome network balance. Our results suggest that monitoring the gut microbial catalog along with pathway clustering and metabolite profiling is an informative synergistic strategy to determine health disturbances and the outcome of countermeasure protocols for future space missions.
Collapse
Affiliation(s)
- Ana Ramos-Nascimento
- Institute of Aerospace Medicine, German Aerospace Center (DLR e.V.), Cologne, Germany
| | - Lucia Grenga
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols sur Cèze, France
| | - Sven-Bastiaan Haange
- Department of Metabolomics, UFZ-Helmholtz Centre for Environmental Research Leipzig, Leipzig, Germany
| | - Alexandra Himmelmann
- Institute of Aerospace Medicine, German Aerospace Center (DLR e.V.), Cologne, Germany
| | - Franca Sabine Arndt
- Institute of Aerospace Medicine, German Aerospace Center (DLR e.V.), Cologne, Germany
| | - Yen-Tran Ly
- Institute of Aerospace Medicine, German Aerospace Center (DLR e.V.), Cologne, Germany
| | - Guylaine Miotello
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols sur Cèze, France
| | - Olivier Pible
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols sur Cèze, France
| | - Nico Jehmlich
- Department of Metabolomics, UFZ-Helmholtz Centre for Environmental Research Leipzig, Leipzig, Germany
| | - Beatrice Engelmann
- Department of Metabolomics, UFZ-Helmholtz Centre for Environmental Research Leipzig, Leipzig, Germany
| | - Martin von Bergen
- Department of Metabolomics, UFZ-Helmholtz Centre for Environmental Research Leipzig, Leipzig, Germany
| | - Edwin Mulder
- Institute of Aerospace Medicine, German Aerospace Center (DLR e.V.), Cologne, Germany
| | - Petra Frings-Meuthen
- Institute of Aerospace Medicine, German Aerospace Center (DLR e.V.), Cologne, Germany
| | | | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR e.V.), Cologne, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Metabolomics, UFZ-Helmholtz Centre for Environmental Research Leipzig, Leipzig, Germany
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols sur Cèze, France
| | - Ralf Moeller
- Institute of Aerospace Medicine, German Aerospace Center (DLR e.V.), Cologne, Germany
| |
Collapse
|
42
|
Thavamani A, Sankararaman S, Al-Shakhshir H, Retuerto M, Velayuthan S, Sferra TJ, Ghannoum M. Impact of Erythromycin as a Prokinetic on the Gut Microbiome in Children with Feeding Intolerance-A Pilot Study. Antibiotics (Basel) 2023; 12:1606. [PMID: 37998808 PMCID: PMC10668753 DOI: 10.3390/antibiotics12111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Studies have demonstrated that the gut microbiome changes upon exposure to systemic antibiotics. There is a paucity of literature regarding impact on the gut microbiome by long-term usage of erythromycin ethyl succinate (EES) when utilized as a prokinetic. METHODS Stool samples from pediatric patients with feeding intolerance who received EES (N = 8) as a prokinetic were analyzed for both bacteriome and mycobiome. Age-matched children with similar clinical characteristics but without EES therapy were included as controls (N = 20). RESULTS In both groups, Proteobacteria, Firmicutes, and Bacteroidetes were the most abundant bacterial phyla. Ascomycota was the most abundant fungal phyla, followed by Basidiomycota. There were no significant differences in richness between the groups for both bacterial and fungal microbiome. Alpha diversity (at genus and species levels) and beta diversity (at the genus level) were not significantly different between the groups for both bacterial and fungal microbiome. At the species level, there was a significant difference between the groups for fungal microbiota, with a p-value of 0.029. We also noted that many fungal microorganisms had significantly higher p-values in the EES group than controls at both genera and species levels. CONCLUSIONS In this observational case-control study, the prokinetic use of EES was associated with changes in beta diversity between the groups for mycobiome at the species level. Many fungal microorganisms were significantly higher in the EES group when compared to the controls. Confirmation of these results in larger trials will provide further evidence regarding the impact of EES on gut microbiota when utilized as a prokinetic agent.
Collapse
Affiliation(s)
- Aravind Thavamani
- Division of Pediatric Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, UH Rainbow Babies and Children’s Hospital, Cleveland, OH 44106, USA; (A.T.); (S.V.); (T.J.S.)
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Senthilkumar Sankararaman
- Division of Pediatric Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, UH Rainbow Babies and Children’s Hospital, Cleveland, OH 44106, USA; (A.T.); (S.V.); (T.J.S.)
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Hilmi Al-Shakhshir
- Department of Radiology and Imaging Sciences, Emory School of Medicine, Atlanta, GA 30307, USA;
- Department of Radiology and Imaging Sciences Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - Mauricio Retuerto
- Center for Medical Mycology, Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (M.R.); (M.G.)
| | - Sujithra Velayuthan
- Division of Pediatric Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, UH Rainbow Babies and Children’s Hospital, Cleveland, OH 44106, USA; (A.T.); (S.V.); (T.J.S.)
- Division of Pediatric Neurogastroenterology and Motility, Department of Pediatrics, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Thomas J. Sferra
- Division of Pediatric Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, UH Rainbow Babies and Children’s Hospital, Cleveland, OH 44106, USA; (A.T.); (S.V.); (T.J.S.)
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Mahmoud Ghannoum
- Center for Medical Mycology, Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (M.R.); (M.G.)
- Department of Dermatology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
43
|
Crichton M, Marshall S, Marx W, Isenring E, Vázquez-Campos X, Dawson SL, Lohning A. Effect of Ginger Root Powder on Gastrointestinal Bacteria Composition, Gastrointestinal Symptoms, Mental Health, Fatigue, and Quality of Life: A Double-Blind Placebo-Controlled Trial. J Nutr 2023; 153:3193-3206. [PMID: 37690779 DOI: 10.1016/j.tjnut.2023.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/02/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Despite compositional alterations in gastrointestinal microbiota being purported to underpin some of the therapeutic effects of ginger, the effect of a standardized ginger supplement on gut microbiota has not been tested in humans. OBJECTIVES To determine the effect of a standardized ginger (Zingiber officinale) root powder, compared to placebo, on gastrointestinal bacteria and associated outcomes in healthy adults. METHODS A randomized double-blind placebo-controlled trial allocated participants aged 18 to 30 y to ginger or microcrystalline cellulose (MCC) placebo. The intervention comprised 1.2 g/d of ginger (4 capsules per day totaling 84 mg/d of active gingerols/shogaols) for 14 d following a 1-wk run-in period. Primary outcomes were gastrointestinal community composition, alpha and beta diversity, and differential abundance, measured using 16S rRNA gene sequencing of fecal samples. Secondary outcomes were gastrointestinal symptoms, bowel function, depression, anxiety, stress, fatigue, quality of life, and adverse events. RESULTS Fifty-one participants were enrolled and analyzed (71% female; mean age 25 ± 3 y; ginger: n = 29, placebo: n = 22). There was a greater increase in relative abundance of phylum, Actinobacteria, observed following ginger supplementation compared to placebo (U: 145.0; z: -2.1; P = 0.033). Ginger was associated with a greater abundance of the genera Parabacteroides, Bacillus, Ruminococcaceae incertae sedis, unclassified Bacilli, families Defluviitaleaceae, Morganellaceae, and Bacillaceae as well as lower abundance of the genus Blautia and family Sphingomonadaceae (P < 0.05). An improvement in indigestion symptoms was observed with ginger supplementation (U: 196.0; z: -2.4; P = 0.015). No differences between ginger and placebo groups were found for alpha and beta diversity or other secondary outcomes. No moderate or severe adverse events were reported. CONCLUSIONS Supplementation with ginger root powder was safe and altered aspects of gastrointestinal bacteria composition; however, it did not change alpha- or beta diversity, bowel function, gastrointestinal symptoms, mood, or quality of life in healthy adults. These results provide further understanding regarding the mechanisms of action of ginger supplementation. This trial was registered in the Australia New Zealand Clinical Trials Registry as ACTRN12620000302954p and the Therapeutic Goods Administration as CT-2020-CTN-00380-1.
Collapse
Affiliation(s)
- Megan Crichton
- Bond University Nutrition and Dietetics Research Group, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia; Cancer and Palliative Care Outcomes Centre, Centre for Healthcare Transformation, School of Nursing, Faculty of Health, Kelvin Grove, Queensland, Australia.
| | - Skye Marshall
- Bond University Nutrition and Dietetics Research Group, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia; Research Institute for Future Health, Gold Coast, Queensland, Australia
| | - Wolfgang Marx
- Bond University Nutrition and Dietetics Research Group, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia; Deakin University, Food & Mood Centre, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Geelong, Victoria, Australia
| | - Elizabeth Isenring
- Bond University Nutrition and Dietetics Research Group, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Xabier Vázquez-Campos
- NSW Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Kensington, New South Wales, Australia
| | - Samantha L Dawson
- Deakin University, Food & Mood Centre, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Geelong, Victoria, Australia
| | - Anna Lohning
- Bond University Nutrition and Dietetics Research Group, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| |
Collapse
|
44
|
Xu Q, Qin X, Zhang Y, Xu K, Li Y, Li Y, Qi B, Li Y, Yang X, Wang X. Plant miRNA bol-miR159 Regulates Gut Microbiota Composition in Mice: In Vivo Evidence of the Crosstalk between Plant miRNAs and Intestinal Microbes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16160-16173. [PMID: 37862127 DOI: 10.1021/acs.jafc.3c06104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
New evidence reveals that bol-miR159, an miRNA rich in fruits and vegetables, cross-kingdomly functions in mammalian bodies. However, whether the miRNA could regulate gut microbiota remains unclear. Here, the effect of miR159 on mouse intestinal microbes was comprehensively examined. The results showed that supplementation of miR159 to the chow diet significantly enhanced the diversity of mouse gut microbiota without causing pathological lesions or inflammatory responses on the intestines. At the phylum level, miR159 increased the abundance of Proteobacteria and decreased the Firmicute-to-Bacteroidetes (F/B) ratio. miR159 had prebiotic-like effects on mouse gut microbiota, as it promoted the growth of the bacteria that is beneficial for maintaining gut health. The miRNA can target bacteria genes and get into the bacteria cells. The data provide direct in vivo evidence on the crosstalk between plant miRNAs and intestinal microbes, highlighting the potential for miRNA-based strategies that modulate gut microbes to improve host health.
Collapse
Affiliation(s)
- Qin Xu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Xinshu Qin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Yi Zhang
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ke Xu
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Ying Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Yinglei Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Bangran Qi
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Yan Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Xingyu Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| |
Collapse
|
45
|
Talavera-Marcos S, Parras-Moltó M, Aguirre de Cárcer D. Leveraging phylogenetic signal to unravel microbiome function and assembly rules. Comput Struct Biotechnol J 2023; 21:5165-5173. [PMID: 37920817 PMCID: PMC10618112 DOI: 10.1016/j.csbj.2023.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023] Open
Abstract
Clarifying the general rules behind microbial community assembly will foster the development of microbiome-based technological solutions. Here, we study microbial community assembly through a computational analysis of phylogenetic core groups (PCGs): discrete portions of the bacterial phylogeny with high prevalence in the ecosystem under study. We first show that the existence of PCGs was a predominant feature of the varied set of microbial ecosystems studied. Then, we re-analyzed an in vitro experimental dataset using a PCG-based approach, drawing only from its community composition data and from publicly available genomic databases. Using mainly genome scale metabolic models and population dynamics modeling, we obtained ecological insights on metabolic niche structure and population dynamics comparable to those gained after canonical experimentation. Thus, leveraging phylogenetic signal to help unravel microbiome function and assembly rules offers a potential avenue to gain further insight on Earth's microbial ecosystems.
Collapse
|
46
|
Li X, Xie H, Chao JJ, Jia YH, Zuo J, An YP, Bao YR, Jiang X, Ying H. Profiles and integration of the gut microbiome and fecal metabolites in severe intrahepatic cholestasis of pregnancy. BMC Microbiol 2023; 23:282. [PMID: 37784030 PMCID: PMC10546765 DOI: 10.1186/s12866-023-02983-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/17/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND The pathogenesis of intrahepatic cholestasis of pregnancy (ICP) remains unknown. The gut microbiome and its metabolites play important roles in bile acid metabolism, and previous studies have indicated the association of the gut microbiome with ICP. METHODS We recruited a cohort of 5100 participants, and 20 participants were enrolled in the severe ICP group, matched with 20 participants in the mild ICP group and 20 controls. 16S rRNA sequencing and nontargeting metabolomics were adapted to explore the gut microbiome and fecal metabolites. RESULTS An increase in richness and a dramatic deviation in composition were found in the gut microbiome in ICP. Decreased Firmicutes and Bacteroidetes abundances and increased Proteobacteria abundances were found in women with severe but not mild ICP compared to healthy pregnant women. Escherichia-Shigella and Lachnoclostridium abundances increased, whereas Ruminococcaceae abundance decreased in ICP group, especially in severe ICP group. The fecal metabolite composition and diversity presented typical variation in severe ICP. A significant increase in bile acid, formate and succinate levels and a decrease in butyrate and hypoxanthine levels were found in women with severe ICP. The MIMOSA model indicated that genera Ruminococcus gnavus group, Lachnospiraceae FCS020 group, and Lachnospiraceae NK4A136 group contributed significantly to the metabolism of hypoxanthine, which was significantly depleted in subjects with severe ICP. Genus Acinetobacter contributed significantly to formate metabolism, which was significantly enriched in subjects with severe ICP. CONCLUSIONS Women with severe but not mild ICP harbored a unique gut microbiome and fecal metabolites compared to healthy controls. Based on these profiles, we hypothesized that the gut microbiome was involved in bile acid metabolism through metabolites, affecting ICP pathogenesis and development, especially severe ICP.
Collapse
Affiliation(s)
- Xiang Li
- Shanghai Key Laboratory of Maternal Fetal Medicine Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, 200040, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 2699, West Gaoke Road, Shanghai, 200040, People's Republic of China
| | - Han Xie
- Shanghai Key Laboratory of Maternal Fetal Medicine Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, 200040, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 2699, West Gaoke Road, Shanghai, 200040, People's Republic of China
| | - Jia-Jing Chao
- Shanghai Key Laboratory of Maternal Fetal Medicine Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, 200040, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 2699, West Gaoke Road, Shanghai, 200040, People's Republic of China
| | - Yuan-Hui Jia
- Shanghai Key Laboratory of Maternal Fetal Medicine Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, 200040, China
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Jia Zuo
- Shanghai Key Laboratory of Maternal Fetal Medicine Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, 200040, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 2699, West Gaoke Road, Shanghai, 200040, People's Republic of China
| | - Yan-Peng An
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yi-Rong Bao
- Shanghai Key Laboratory of Maternal Fetal Medicine Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, 200040, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 2699, West Gaoke Road, Shanghai, 200040, People's Republic of China
| | - Xiang Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, 200040, China.
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 2699, West Gaoke Road, Shanghai, 200040, People's Republic of China.
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China.
| | - Hao Ying
- Shanghai Key Laboratory of Maternal Fetal Medicine Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, 200040, China.
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 2699, West Gaoke Road, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
47
|
Wen J, Chen SL, Xu WY, Zheng GD, Zou SM. Effects of high NaHCO 3 alkalinity on growth, tissue structure, digestive enzyme activity, and gut microflora of grass carp juvenile. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85223-85236. [PMID: 37386223 DOI: 10.1007/s11356-023-28083-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/31/2023] [Indexed: 07/01/2023]
Abstract
With the gradual decrease in freshwater resources, the available space for freshwater aquaculture is diminishing. As a result, saline-alkaline water aquaculture has emerged as a crucial method to fulfill the increasing demand. This study investigates the impact of alkaline water on the growth performance, tissues (gill, liver, and kidney), digestive enzyme activity, and intestinal microbiology in grass carp (Ctenopharyngodon idella). The aquarium conditions were set with sodium bicarbonate (18 mmol/L (LAW), 32 mmol/L (HAW)) to simulate the alkaline water environment. A freshwater group was the control (FW). The experimental fish were cultured for 60 days. The findings revealed that NaHCO3 alkaline stress significantly reduced growth performance, caused alterations in the structural morphology of gill lamellae, liver, and kidney tissues, and led to decreased activity of intestinal trypsin and lipase amylase (P < 0.05). Analysis of 16S rRNA sequences demonstrated that alkalinity influenced the abundance of dominant bacterial phyla and genera. Proteobacteria showed a significant decrease under alkaline conditions, while Firmicutes exhibited a significant increase (P < 0.05). Furthermore, alkalinity conditions significantly reduced the abundance of bacteria involved in protein, amino acid, and carbohydrate metabolism, cell transport, cell decomposition, and environmental information processing. Conversely, the abundance of bacteria associated with lipid metabolism, energy metabolism, organic systems, and disease functional flora increased significantly under alkalinity conditions (P < 0.05). In conclusion, this comprehensive study indicates that alkalinity stress adversely affected the growth performance of juvenile grass carp, likely due to tissue damage, reduced activity of intestinal digestive enzymes, and alterations in intestinal microorganisms.
Collapse
Affiliation(s)
- Jian Wen
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Song-Lin Chen
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wen-Ya Xu
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Guo-Dong Zheng
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Shu-Ming Zou
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China.
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China.
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
48
|
Hernández M, Roy S, Keevil CW, Dumont MG. Identification of diverse antibiotic resistant bacteria in agricultural soil with H 218O stable isotope probing combined with high-throughput sequencing. ENVIRONMENTAL MICROBIOME 2023; 18:34. [PMID: 37072776 PMCID: PMC10111737 DOI: 10.1186/s40793-023-00489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND We aimed to identify bacteria able to grow in the presence of several antibiotics including the ultra-broad-spectrum antibiotic meropenem in a British agricultural soil by combining DNA stable isotope probing (SIP) with high throughput sequencing. Soil was incubated with cefotaxime, meropenem, ciprofloxacin and trimethoprim in 18O-water. Metagenomes and the V4 region of the 16S rRNA gene from the labelled "heavy" and the unlabelled "light" SIP fractions were sequenced. RESULTS An increase of the 16S rRNA copy numbers in the "heavy" fractions of the treatments with 18O-water compared with their controls was detected. The treatments resulted in differences in the community composition of bacteria. Members of the phyla Acidobacteriota (formally Acidobacteria) were highly abundant after two days of incubation with antibiotics. Pseudomonadota (formally Proteobacteria) including Stenotrophomonas were prominent after four days of incubation. Furthermore, a metagenome-assembled genome (MAG-1) from the genus Stenotrophomonas (90.7% complete) was retrieved from the heavy fraction. Finally, 11 antimicrobial resistance genes (ARGs) were identified in the unbinned-assembled heavy fractions, and 10 ARGs were identified in MAG-1. In comparison, only two ARGs from the unbinned-assembled light fractions were identified. CONCLUSIONS The results indicate that both non-pathogenic soil-dwelling bacteria as well as potential clinical pathogens are present in this agricultural soil and several ARGs were identified from the labelled communities, but it is still unclear if horizontal gene transfer between these groups can occur.
Collapse
Affiliation(s)
- Marcela Hernández
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Shamik Roy
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - C William Keevil
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Marc G Dumont
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
49
|
Randall DW, Kieswich J, Hoyles L, McCafferty K, Curtis M, Yaqoob MM. Gut Dysbiosis in Experimental Kidney Disease: A Meta-Analysis of Rodent Repository Data. J Am Soc Nephrol 2023; 34:533-553. [PMID: 36846952 PMCID: PMC10103368 DOI: 10.1681/asn.0000000000000071] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/05/2022] [Indexed: 02/05/2023] Open
Abstract
SIGNIFICANCE STATEMENT Alterations in gut microbiota contribute to the pathophysiology of a diverse range of diseases, leading to suggestions that chronic uremia may cause intestinal dysbiosis that contributes to the pathophysiology of CKD. Various small, single-cohort rodent studies have supported this hypothesis. In this meta-analysis of publicly available repository data from studies of models of kidney disease in rodents, cohort variation far outweighed any effect of experimental kidney disease on the gut microbiota. No reproducible changes in animals with kidney disease were seen across all cohorts, although a few trends observed in most experiments may be attributable to kidney disease. The findings suggest that rodent studies do not provide evidence for the existence of "uremic dysbiosis" and that single-cohort studies are unsuitable for producing generalizable results in microbiome research. BACKGROUND Rodent studies have popularized the notion that uremia may induce pathological changes in the gut microbiota that contribute to kidney disease progression. Although single-cohort rodent studies have yielded insights into host-microbiota relationships in various disease processes, their relevance is limited by cohort and other effects. We previously reported finding metabolomic evidence that batch-to-batch variations in the microbiome of experimental animals are significant confounders in an experimental study. METHODS To attempt to identify common microbial signatures that transcend batch variability and that may be attributed to the effect of kidney disease, we downloaded all data describing the molecular characterization of the gut microbiota in rodents with and without experimental kidney disease from two online repositories comprising 127 rodents across ten experimental cohorts. We reanalyzed these data using the DADA2 and Phyloseq packages in R, a statistical computing and graphics system, and analyzed data both in a combined dataset of all samples and at the level of individual experimental cohorts. RESULTS Cohort effects accounted for 69% of total sample variance ( P <0.001), substantially outweighing the effect of kidney disease (1.9% of variance, P =0.026). We found no universal trends in microbial population dynamics in animals with kidney disease, but observed some differences (increased alpha diversity, a measure of within-sample bacterial diversity; relative decreases in Lachnospiraceae and Lactobacillus ; and increases in some Clostridia and opportunistic taxa) in many cohorts that might represent effects of kidney disease on the gut microbiota . CONCLUSIONS These findings suggest that current evidence that kidney disease causes reproducible patterns of dysbiosis is inadequate. We advocate meta-analysis of repository data as a way of identifying broad themes that transcend experimental variation.
Collapse
Affiliation(s)
- David W. Randall
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Julius Kieswich
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Lesley Hoyles
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, United Kingdom
| | - Kieran McCafferty
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Michael Curtis
- Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Guy's Tower Wing, Great Maze Pond, United Kingdom
| | - Muhammed M. Yaqoob
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
50
|
Hernández-Pérez A, Söderhäll I. Intestinal microbiome in crayfish: Its role upon growth and disease presentation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104703. [PMID: 37004928 DOI: 10.1016/j.dci.2023.104703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/31/2023] [Accepted: 03/29/2023] [Indexed: 05/20/2023]
Abstract
The intestine-associated microbiota in crustaceans are considered a key element for maintaining homeostasis and health within the organisms. Recently, efforts have been made to characterize bacterial communities of freshwater crustaceans, including crayfish, and their interplay with the host's physiology and the aquatic environments. As a result, it has become evident that crayfish intestinal microbial communities display high plasticity, which is strongly influenced by both the diet, especially in aquaculture, and the environment. Moreover, studies regarding the characterization and distribution of the microbiota along the gut portions led to the discovery of bacteria with probiotic potential. The addition of these microorganisms to their food has shown a limited positive correlation with the growth and development of crayfish freshwater species. Finally, there is evidence that infections, particularly those from viral etiology, lead to low diversity and abundance of the intestinal microbial communities. In the present article, we have reviewed data on the crayfish' intestinal microbiota, highlighting the most frequently observed taxa and emphasizing the dominance of phylum within this community. In addition, we have also searched for evidence of microbiome manipulation and its potential impact on productive parameters, and discussed the role of the microbiome in the regulation of diseases presentation, and environmental perturbations.
Collapse
Affiliation(s)
- Ariadne Hernández-Pérez
- Departamento de Medicina y Zootecnia de Abejas, Conejos y Organismos Acuáticos. Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, 04510, Ciudad Universitaria, México.
| | - Irene Söderhäll
- Department of Organismal Biology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden
| |
Collapse
|