1
|
Wu S, Yan M, Zhong Y, Cheng J, Zhao W. COF nanotubes/2D nanosheets heterojunction for superior photocatalytic bactericidal activity even at low concentration and weak light. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138111. [PMID: 40187243 DOI: 10.1016/j.jhazmat.2025.138111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/04/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
Microbial fouling is a huge nuisance to equipment operation and human health. Two-dimensional (2D) photocatalytic materials such as g-C3N4, WSe2, and Ti3C2Tx, show immense potential for solar-driven eradication of microbial fouling. However, limited photon absorption and rapid photogenerated electron-hole recombination curtail their photocatalytic efficiency and availability, resulting in the necessity to operate at high concentration and strong light. Herein, three kinds of covalent organic frameworks (COF) nanotubes/2D nanosheets heterojunctions (COF-x) were flexibly constructed by in-situ growing COF nanotubes on g-C3N4, WSe2, and Ti3C2Tx nanosheet substrates via one-pot method. The internal electric field at the COF-x coupling interface enhanced the separation and migration of photogenerated charge pairs, contributing to the antimicrobial reactive oxygen species (ROS) produced by COF-x, which was 2.8-270 times more efficient than those of nanosheets. The bactericidal effect enhanced from 34.13 %∼41.68 % of pure nanosheets to over 99.86 % of COF-x at an ultra-low concentration of 2 µg/mL and a weak visible light of 15 mW/cm2. At a low concentration of 20 µg/mL, the bactericidal rate of COF-x achieved nearly 100 % within 6 h. COF-x also showed exceptional environmental stability and antimicrobial properties under heat, light, acid, alkali, and aqueous conditions, offering a new perspective in photocatalytic antimicrobial/antifouling.
Collapse
Affiliation(s)
- Saijun Wu
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minglong Yan
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
| | - Yuchen Zhong
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Jianjun Cheng
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Wenjie Zhao
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
| |
Collapse
|
2
|
Gao Y, Cheng Z, Huang B, Mao Y, Hu J, Wang S, Wang Z, Wang M, Huang S, Han M. Deciphering the profiles and hosts of antibiotic resistance genes and evaluating the risk assessment of general and non-general hospital wastewater by metagenomic sequencing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126313. [PMID: 40288632 DOI: 10.1016/j.envpol.2025.126313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/28/2025] [Accepted: 04/25/2025] [Indexed: 04/29/2025]
Abstract
Hospital wastewater (HWW) is a substantial environmental reservoir of antibiotic resistance genes (ARGs) and poses risks to public health and aquatic ecosystems. However, research on the diversity, transmission mechanisms, pathogenic hosts, and risks of ARGs in different HWW types is limited. This study involved the collection of HWW samples from 15 hospitals in Hefei, China, which were subsequently categorized as general hospitals (GHs) and non-general hospitals (NGHs). A 280.28-Gbp sequencing dataset was generated using a metagenomic sequencing strategy and analyzed using metagenomic assembly and binning approaches to highlight these issues in GHs and NGHs. Results showed significant differences between GHs and NGHs in ARG distribution, microbial community composition, and hosts of ARGs. Potential pathogens such as Rhodocyclaceae bacterium ICHIAU1 and Acidovorax caeni were more abundant in GHs. Furthermore, plasmid-mediated ARGs (45.21%) were more prevalent than chromosome-mediated ARGs (25.74%) in HWW, with a significantly higher proportion of plasmid-mediated ARGs in GHs compared to NGHs. The co-occurrence of ARGs and mobile genetic elements was more frequent in GHs. Additionally, the antibiotic resistome risk index was higher in GHs (38.73 ± 12.84) than NGHs (22.53 ± 11.80), indicating a greater risk of ARG transmission in GHs. This pioneering study provides valuable insights into the transmission mechanisms and hosts of ARGs in hospital settings, emphasizing the increased risk of ARG transmission in GHs.
Collapse
Affiliation(s)
- Yue Gao
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China; Microbial Medicinal Resources Development Research Team, Anhui Provincial Institute of Translational Medicine, China
| | - Zhixiang Cheng
- Department of Blood Transfusion, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230012, China
| | - Binbin Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yujie Mao
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China
| | - Jie Hu
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Shu Wang
- The First People's Hospital of Hefei, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China
| | - Mingchao Wang
- Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Shenghai Huang
- Department of Microbiology, The Institute of Clinical Virology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Maozhen Han
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China; Microbial Medicinal Resources Development Research Team, Anhui Provincial Institute of Translational Medicine, China; Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China.
| |
Collapse
|
3
|
Ding Y, Dong S, Ding D, Chen X, Xu F, Niu H, Xu J, Fan Y, Chen R, Xia Y, Qiu X, Feng H. Overlooked risk of dissemination and mobility of antibiotic resistance genes in freshwater aquaculture of the Micropterus salmoides in Zhejiang, China. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138604. [PMID: 40378740 DOI: 10.1016/j.jhazmat.2025.138604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/17/2025] [Accepted: 05/12/2025] [Indexed: 05/19/2025]
Abstract
Residual antibiotics in aquaculture ecosystems can exert selective pressures on bacterial communities, driving bacteria to acquire antibiotic resistance genes (ARGs) through gene mutations or horizontal gene transfer (HGT). This study investigated the antibiotic resistance risk in freshwater aquaculture ecosystems of Micropterus salmoides in Zhejiang Province. The results revealed that oxytetracycline, ciprofloxacin and florfenicol were up to 300 ng/L, and the proportion of multidrug-resistant genes varied from 32.20 % to 50.70 % in the surveyed aquaculture water. Additionally, approximately 9.80 % of all annotated ARGs were identified as possessing plasmid-mediated horizontal transfer risks. The ARGs host prediction revealed that Actinobacteria carried the highest abundance of ARGs, up to 159.38 (coverage, ×/Gb). Furthermore, the abundance of Paer_emrE, ksgA, ompR and golS were positively correlated with Chlorophyll a concentration (p < 0.05), suggesting that algal blooms might facilitate the evolution and transfer of ARGs. Correlations between ARG abundances and total phosphorus, total nitrogen, pH, electrical conductivity indicated that modulating water quality parameters may serve as a viable strategy to mitigate the eco-environmental risk of ARGs in aquaculture water. This study identified antibiotic resistance characteristics in freshwater aquaculture ecosystems of Micropterus salmoides in Zhejiang Province, establishing a foundation on managing antibiotic resistance risks in such aquaculture environments.
Collapse
Affiliation(s)
- Yangcheng Ding
- Zhejiang Key Laboratory of Ecological Environmental Damage Control and Value Transformation, College of Environmental and Resources Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, PR China
| | - Shuangjing Dong
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Danna Ding
- Zhejiang Key Laboratory of Ecological Environmental Damage Control and Value Transformation, College of Environmental and Resources Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, PR China
| | - Xiaoming Chen
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, PR China
| | - Fangxi Xu
- Zhejiang Taizhou Ecological and Environmental Monitoring Center, Taizhou 318000, PR China
| | - He Niu
- Zhejiang Taizhou Ecological and Environmental Monitoring Center, Taizhou 318000, PR China
| | - Jixiao Xu
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yuhang Fan
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Ruya Chen
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yijing Xia
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Xiawen Qiu
- Zhejiang Key Laboratory of Ecological Environmental Damage Control and Value Transformation, College of Environmental and Resources Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, PR China
| | - Huajun Feng
- Zhejiang Key Laboratory of Ecological Environmental Damage Control and Value Transformation, College of Environmental and Resources Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, PR China.
| |
Collapse
|
4
|
Liu Y, Shan X, Liu C, Chen H. Microcosm experiments deciphered resistome coalescence, risks and source-sink relationship of antibiotic resistance in the soil irrigated with reclaimed water. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137398. [PMID: 39874760 DOI: 10.1016/j.jhazmat.2025.137398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/02/2025] [Accepted: 01/25/2025] [Indexed: 01/30/2025]
Abstract
Reclaimed water is widely used in agriculture irrigation to alleviate water scarcity, whereas the dissemination of antibiotic resistance genes (ARGs) in the soil it introduces has attracted widespread attention. Currently, few studies have systematically elucidated the coalescence of the resistome originating from reclaimed water with the soil's native community. Also, the effects and mechanisms of irrigation on the dissemination of ARGs in soils have yet to be demonstrated. To address this gap, microcosm experiments have been conducted in this study to decipher the resistome coalescence, risks and source-sink relationship of ARGs in soils irrigated with reclaimed water. The results show 237 ARGs, 55 mobile genetic elements (MGEs) and 28 virulence factors were identified in the irrigated soils. Irrigation increased the abundance and diversity of ARGs in the soil by introducing antibiotic-resistant bacteria, altering the microbial community and facilitating horizontal transfer of ARGs via MGEs, and ultimately exacerbated resistome risks in the environment. Relatively, a larger volume of irrigation water led to a more complex propagation network of the resistome. Source apportionment analysis suggested reclaimed water contributed less than 15 % of ARGs in the irrigated soils, whereas its contribution proportion increased with a larger volume of irrigation water.
Collapse
Affiliation(s)
- Yiyi Liu
- College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Xin Shan
- College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Chang Liu
- College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China.
| |
Collapse
|
5
|
Wang R, Chen J, Chen H. Metagenomic insights into efficiency and mechanism of antibiotic resistome reduction by electronic mediators-enhanced microbial electrochemical system. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137350. [PMID: 39874761 DOI: 10.1016/j.jhazmat.2025.137350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
Electronic mediators are an effective means of enhancing the efficiency of microbial electrochemical electron transfer; however, there are still gaps in understanding the strengthening mechanisms and the efficiency of removing antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). This study systematically elucidates the effects of various electron mediators on bioelectrochemical processes, electron transfer efficiency, and the underlying mechanisms that inhibit ARG propagation within sediment microbial fuel cell systems (SMFCs). The results indicate that the addition of electron mediators significantly increased the output voltage (33.3 %-61.1 %) and maximum power density (14 %-106 %) of SMFCs, while also reducing ARB abundance and transmission risk. The enhancement effect follows the order of biochar, nanoscale zero-valent iron, graphene, and carbon nanotubes, with biochar emerging as the most economical and efficient choice for generating electricity and removing human pathogenic bacteria carrying ARGs. Procrustes analysis revealed that electron mediators facilitated the removal of ARGs by altering the structure of the microbiome, particularly the electricity-generating microorganisms (EGMs). Voltage and mobile genetic elements were the primary drivers of ARGs in the SMFCs. The network analysis results show that multiple carbohydrate-active enzymes, cluster of orthologous groups, and EGMs were negatively correlated with ARGs, indicating that the electron mediator-enhanced SMFCs mainly inhibit the spread of ARGs by promoting cell division, carbohydrate metabolism, and electricity generation. This study provides novel insights into how electron mediators affect ARG removal in microbial electrochemistry, which can inform economically viable strategies for sustainable environmental remediation.
Collapse
Affiliation(s)
- Rui Wang
- Engineering Research Center of Groundwater Pollution Control and Remediation (Ministry of Education), College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Jinping Chen
- Engineering Research Center of Groundwater Pollution Control and Remediation (Ministry of Education), College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Haiyang Chen
- Engineering Research Center of Groundwater Pollution Control and Remediation (Ministry of Education), College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China.
| |
Collapse
|
6
|
Zhang Y, Ruan Y, Xu Q, Ling N, Shen Q. Manure application primarily drives changes in antibiotic resistome composition rather than abundance in agricultural soil profile. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125421. [PMID: 40253993 DOI: 10.1016/j.jenvman.2025.125421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/04/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
The prevalence of antibiotic resistance genes (ARGs) in soil has elicited significant concerns about food safety and agricultural sustainability. However, the impact of long-term fertilization on the soil resistome across soil profiles and their associations with both abundant and rare microbial taxa remain unknown. This study employed high-throughput quantitative polymerase chain reaction (HT-qPCR) and 16S rRNA gene sequencing to explore resistome across soil depths under different fertilization regimes (a 12-year field experiment). Compared with the control and chemical-only fertilization, manure amendment increased the ARG richness in the topsoil by 14.1-20 % but had no significant effect on the subsoil. Manure amendment resulted eight unique ARGs into topsoil: sul1, sul2, aadA, aadA2, aadA21, APHA3, ErmY and qacF_H. Compared with the control soil, the manure amendment did not increase the absolute and normalized abundance of ARGs in both top- and subsoil. In addition, abundant microbial taxa exhibited a stronger association with ARGs than rare taxa. Overall, manure amendment had strong and direct impacts on soil ARG composition and indirectly influenced ARG abundance to a limited extent through its effects on soil properties and abundant taxa. These findings strengthen our understanding of the ecological impacts of long-term fertilization and inform sustainable agricultural practices.
Collapse
Affiliation(s)
- Yuntao Zhang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Ruan
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qicheng Xu
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Ning Ling
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Qirong Shen
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
7
|
Zhu C, Wu L, Ning D, Tian R, Gao S, Zhang B, Zhao J, Zhang Y, Xiao N, Wang Y, Brown MR, Tu Q, Ju F, Wells GF, Guo J, He Z, Nielsen PH, Wang A, Zhang Y, Chen T, He Q, Criddle CS, Wagner M, Tiedje JM, Curtis TP, Wen X, Yang Y, Alvarez-Cohen L, Stahl DA, Alvarez PJJ, Rittmann BE, Zhou J. Global diversity and distribution of antibiotic resistance genes in human wastewater treatment systems. Nat Commun 2025; 16:4006. [PMID: 40301344 PMCID: PMC12041579 DOI: 10.1038/s41467-025-59019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/03/2025] [Indexed: 05/01/2025] Open
Abstract
Antibiotic resistance poses a significant threat to human health, and wastewater treatment plants (WWTPs) are important reservoirs of antibiotic resistance genes (ARGs). Here, we analyze the antibiotic resistomes of 226 activated sludge samples from 142 WWTPs across six continents, using a consistent pipeline for sample collection, DNA sequencing and analysis. We find that ARGs are diverse and similarly abundant, with a core set of 20 ARGs present in all WWTPs. ARG composition differs across continents and is distinct from that of the human gut and the oceans. ARG composition strongly correlates with bacterial taxonomic composition, with Chloroflexi, Acidobacteria and Deltaproteobacteria being the major carriers. ARG abundance positively correlates with the presence of mobile genetic elements, and 57% of the 1112 recovered high-quality genomes possess putatively mobile ARGs. Resistome variations appear to be driven by a complex combination of stochastic processes and deterministic abiotic factors.
Collapse
Affiliation(s)
- Congmin Zhu
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Linwei Wu
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA.
- Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China.
| | - Daliang Ning
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Renmao Tian
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
- Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, IL, USA
| | - Shuhong Gao
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Bing Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Jianshu Zhao
- Center for Bioinformatics and Computational Biology, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ya Zhang
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Naijia Xiao
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Yajiao Wang
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Mathew R Brown
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Qichao Tu
- Institute for Marine Science and Technology, Shandong University, Qingdao, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - George F Wells
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhili He
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Per H Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Aijie Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ting Chen
- Institute for Artificial Intelligence and Department of Computer Science and Technology, Tsinghua University, Beijing, China
| | - Qiang He
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN, USA
- Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville, TN, USA
| | - Craig S Criddle
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Michael Wagner
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network 'Chemistry meets Microbiology', University of Vienna, Vienna, Austria
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, USA
| | - Thomas P Curtis
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Xianghua Wen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Lisa Alvarez-Cohen
- Department of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, CA, USA
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA.
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA.
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA.
- School of Computer Sciences, University of Oklahoma, Norman, OK, USA.
| |
Collapse
|
8
|
Guo H, Li R, Su Y, Xue S, Li N, Chen F, Zhangsun X, Zhang H, Liu X, Huang T. Deciphering the antibiotic resistome in stratified source water reservoirs in China: Distribution, risk, and ecological drive. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136734. [PMID: 39673943 DOI: 10.1016/j.jhazmat.2024.136734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/15/2024] [Accepted: 11/30/2024] [Indexed: 12/16/2024]
Abstract
The proliferation and dissemination of antibiotic resistance genes (ARGs) in source water reservoirs may pose a threat to human health. This study investigated the antibiotic resistance in stratified reservoirs in China across different seasons and spatial locations. In total, 120 ARG subtypes belonging to 15 ARG types were detected with an abundance ranging from 171.06 to 793.71 × /Gb. Multidrug, tetracycline, aminoglycoside, and bacitracin resistance genes were dominant in the reservoirs. The abundance and transfer potential of ARGs were notably higher, especially during the stratified period, with markedly elevated levels in the bottom layer compared to the surface layer. Metagenomic assembly yielded 1357 ARG-carrying contigs, belonging to 83 resistant bacterial species, of which 13 were identified as human pathogen bacteria (HPB). HPB hosts (Sphingomonas sp., Burkholderiales sp., and Ralstonia sp., etc.) were super carriers of ARGs. Genes including ompR, bacA, golS, and ugd carried on HPB plasmids exhibited higher abundance in the water, warranting attention to the risk of resistance transmission. Environmental pressures have caused a shift in the assembly mechanism of ARGs, transitioning from a random process in surface water to a deterministic process in bottom water. The results of this study will deepen people's understanding of the ARG risk in stratified reservoirs.
Collapse
Affiliation(s)
- Honghong Guo
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Rong Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuhang Su
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shuhong Xue
- Power China Northwest Engineering Corporation Limited, Xi'an 710065, China
| | - Na Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Fan Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuanzi Zhangsun
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaoyan Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
9
|
Zhao B, Zhang R, Jin B, Yu Z, Wen W, Zhao T, Quan Y, Zhou J. Sludge water: a potential pathway for the spread of antibiotic resistance and pathogenic bacteria from hospitals to the environment. Front Microbiol 2025; 16:1492128. [PMID: 40012781 PMCID: PMC11863280 DOI: 10.3389/fmicb.2025.1492128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/20/2025] [Indexed: 02/28/2025] Open
Abstract
Hospitals play an important role in the spread of antibiotic resistance genes (ARGs) and antimicrobial resistance (AMR). The ARGs present in hospital wastewater tend to accumulate in activated sludge, with different ARGs exhibiting varying migration rates. As a result, sludge water produced during the activated sludge treatment process may be a significant source of ARGs entering the environment. Despite this, research into the behavior of ARGs during sludge concentration and dewatering remains limited. This study hypothesizes that ARGs might exhibit new behaviors in sludge water during sludge concentration. Using metagenomic analysis, we explored the distribution and migration risks of ARGs and human pathogenic bacteria (HPB) in sludge water, comparing them with those in hospital wastewater. The findings reveal a strong correlation between ARGs in sludge water and hospital wastewater, with subtypes such as arlR, efpA, and tetR showing higher abundance in sludge water. Although the horizontal gene transfer potential of ARGs is greater in hospital wastewater than in sludge water, the resistance mechanisms and migration pathways are similar even when their HPB host associations differ. ARGs in both environments are primarily transmitted through coexisting mobile genetic elements (MGEs). This suggests that sludge water serves as a critical route for the release of hospital-derived ARGs into the environment, posing potential threats to public health and ecological safety.
Collapse
Affiliation(s)
- Bingxuan Zhao
- Department of Environmental Science, Yanbian University, Yanji, China
| | - Rui Zhang
- Department of Clinical Medicine, Yanbian University, Yanji, China
| | - Baolin Jin
- Agricultural College, Yanbian University, Yanji, China
| | - Zuozhou Yu
- Department of Environmental Science, Yanbian University, Yanji, China
| | - Weicheng Wen
- Department of Environmental Science, Yanbian University, Yanji, China
| | - Tong Zhao
- Department of Biotechnology, Yanbian University, Yanji, China
| | - Yue Quan
- Department of Environmental Science, Yanbian University, Yanji, China
| | - Jingya Zhou
- Department of Environmental Science, Yanbian University, Yanji, China
| |
Collapse
|
10
|
Vougat Ngom R, Laconi A, Tolosi R, Akoussa AMM, Ziebe SD, Kouyabe VM, Piccirillo A. Resistance to medically important antimicrobials in broiler and layer farms in Cameroon and its relation with biosecurity and antimicrobial use. Front Microbiol 2025; 15:1517159. [PMID: 39881983 PMCID: PMC11774882 DOI: 10.3389/fmicb.2024.1517159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/24/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Poultry production accounts for 42% of Cameroonian meat production. However, infectious diseases represent the main hindrance in this sector, resulting in overuse and misuse of antimicrobials that can contribute to the emergence and dissemination of antimicrobial resistance (AMR). This study aimed to evaluate the prevalence of antimicrobial resistance genes (ARGs) conferring resistance to carbapenems (blaVIM-2 and blaNDM ), (fluoro) quinolones (qnrS, qnrA, and qnrB), polymyxins (mcr1 to mcr5), and macrolides (ermA and ermB) in the poultry farm environment. Additionally, the study examined the relationship between these ARGs and biosecurity implementation, as well as farmers' knowledge, attitudes, and practices toward antimicrobial use (AMU) and AMR, including their perception of AMR risk. Materials and methods Fecal, drinking water, and biofilm samples from drinking water pipelines were collected from 15 poultry farms and subsequently analyzed by real-time PCR and 16S rRNA NGS. Results All samples tested positive for genes conferring resistance to (fluoro) quinolones, 97.8% to macrolides, 64.4% to polymyxins, and 11.1% to carbapenems. Of concern, more than half of the samples (64.4%) showed a multi-drug resistance (MDR) pattern (i.e., resistance to ≥3 antimicrobial classes). Drinking water and biofilm microbial communities significantly differed from the one of the fecal samples, both in term of diversity (α-diversity) and composition (β-diversity). Furthermore, opportunistic pathogens (i.e., Comamonadaceae and Sphingomonadaceae) were among the most abundant bacteria in drinking water and biofilm. The level of biosecurity implementation was intermediate, while the knowledge and attitude of poultry farmers toward AMU were insufficient and unsuitable, respectively. Good practices toward AMU were found to be correlated with a reduction in polymyxins and MDR. Discussion This study provides valuable information on resistance to medically important antimicrobials in poultry production in Cameroon and highlights their potential impact on human and environmental health.
Collapse
Affiliation(s)
- Ronald Vougat Ngom
- Department of Animal Production, School of Veterinary Medicine and Sciences, University of Ngaoundere, Ngaoundere, Cameroon
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Andrea Laconi
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Roberta Tolosi
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Adonis M. M. Akoussa
- Department of Animal Production, School of Veterinary Medicine and Sciences, University of Ngaoundere, Ngaoundere, Cameroon
| | - Stephane D. Ziebe
- Department of Animal Production, School of Veterinary Medicine and Sciences, University of Ngaoundere, Ngaoundere, Cameroon
| | | | - Alessandra Piccirillo
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| |
Collapse
|
11
|
Meng Q, Zhang Y, He D, Xia Y, Fu J, Dang C. Metagenomic perspectives on antibiotic resistance genes in tap water: The environmental characteristic, potential mobility and health threat. J Environ Sci (China) 2025; 147:582-596. [PMID: 39003073 DOI: 10.1016/j.jes.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 07/15/2024]
Abstract
As an emerging environmental contaminant, antibiotic resistance genes (ARGs) in tap water have attracted great attention. Although studies have provided ARG profiles in tap water, research on their abundance levels, composition characteristics, and potential threat is still insufficient. Here, 9 household tap water samples were collected from the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) in China. Additionally, 75 sets of environmental sample data (9 types) were downloaded from the public database. Metagenomics was then performed to explore the differences in the abundance and composition of ARGs. 221 ARG subtypes consisting of 17 types were detected in tap water. Although the ARG abundance in tap water was not significantly different from that found in drinking water plants and reservoirs, their composition varied. In tap water samples, the three most abundant classes of resistance genes were multidrug, fosfomycin and MLS (macrolide-lincosamide-streptogramin) ARGs, and their corresponding subtypes ompR, fosX and macB were also the most abundant ARG subtypes. Regarding the potential mobility, vanS had the highest abundance on plasmids and viruses, but the absence of key genes rendered resistance to vancomycin ineffective. Generally, the majority of ARGs present in tap water were those that have not been assessed and are currently not listed as high-threat level ARG families based on the World Health Organization Guideline. Although the current potential threat to human health posed by ARGs in tap water is limited, with persistent transfer and accumulation, especially in pathogens, the potential danger to human health posed by ARGs should not be ignored.
Collapse
Affiliation(s)
- Qiyue Meng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yibo Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Da He
- Key Laboratory of Ecological Impacts of Hydraulic Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430074, China
| | - Yu Xia
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jie Fu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chenyuan Dang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
12
|
Vetrova AA, Ivanova AA, Petrikov KV, Gavrichkova O, Korneykova MV, Sazonova OI. Antibiotic Resistance as a Functional Characteristic of Urban Dust Particles' Microbial Communities. BIOLOGY 2024; 13:1022. [PMID: 39765689 PMCID: PMC11672966 DOI: 10.3390/biology13121022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
Urban dust samples were collected in Moscow (Russia) in June 2021. The samples were collected in three functional zones of Moscow (traffic, residential, and recreational) and included air microparticles, leaf dust, and paved dust. Data on the taxonomic composition of bacterial communities were obtained for dust samples, and their functional characteristics were predicted using PICRUSt2 2.5.0 and FAPROTAX 1.8.0 software. The culturable part of the bacterial community was examined for the presence of antibiotic-resistant strains with respect to β-lactams, tetracyclines, amphenicols, and aminoglycosides. The presence of bacteria resistant to ceftazidime, cefepime, and tetracycline was detected in all dust samples. The presence of bacteria resistant to meropenem and amikacin was only observed in the dust collected from leaves in the residential and traffic zones. The overall abundance of cultured antibiotic-resistant bacteria from the total heterotrophs ranged from 0.03% to 1.88%, with the highest percentage observed in dust from the residential zone. Notably, strains resistant to all antibiotics tested were observed in the leaf dust bacterial community.
Collapse
Affiliation(s)
- Anna A. Vetrova
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (A.A.I.); (K.V.P.); (O.I.S.)
| | - Anastasia A. Ivanova
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (A.A.I.); (K.V.P.); (O.I.S.)
| | - Kirill V. Petrikov
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (A.A.I.); (K.V.P.); (O.I.S.)
| | - Olga Gavrichkova
- Research Institute on Terrestrial Ecosystems, National Research Council, 05010 Porano, Italy;
| | - Maria V. Korneykova
- Agrarian and Technological Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
- Institute of North Industrial Ecology Problems Subdivision of the Federal Research Center “Kola Science Centre of Russian Academy of Science”, 184209 Apatity, Russia
| | - Olesya I. Sazonova
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (A.A.I.); (K.V.P.); (O.I.S.)
| |
Collapse
|
13
|
Huo X, Zhao F, Xu Y, Liu Q, Wang W, Yang C, Su J. Fabulous combination therapy: Synergistic antibiotic inhibition of aquatic antibiotic-resistant bacteria via membrane damage and DNA binding by novel nano antimicrobial peptide C-I20. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136225. [PMID: 39442310 DOI: 10.1016/j.jhazmat.2024.136225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/01/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Aquatic microbiota' antibiotic resistance undermines traditional treatment efficacy, posing a severe threat to sustainable water environment. Our study addresses this challenge through a fantastic approach involving novel nano antimicrobial peptide C-I20 and antibiotics. Antibacterial tests demonstrated that C-I20 effectively combated both standard and aquatic pathogenic resistant strains. C-I20 killed drug-resistant bacteria by disrupting membrane structure and binding to DNA. C-I20 bound to DNA, forming precipitates susceptible to rapid degradation by trypsin and DNase I. When combined with chloramphenicol, florfenicol, ampicillin, or enrofloxacin, C-I20 exhibited remarkably higher inhibitory rates against bacteria compared to individual use of C-I20 or antibiotics alone. Continuous passage analysis revealed that co-administration of C-I20 with chloramphenicol, florfenicol, ampicillin, and enrofloxacin delays the emergence and progression of antibiotic resistance. This combination therapy was proved to be highly effective, notably reducing tissue bacterial loads and pathological changes. Evaluation in an Aeromonas hydrophila infection model showed the lowest morbidity rate and bacterial loading in the C-I20 combined with ampicillin group. Antimicrobial susceptibility analysis confirmed that C-I20 supplementation markedly suppresses ampicillin-induced intestinal resistant bacteria. In conclusion, C-I20 in conjunction with antibiotic therapy effectively inhibits infection and drug-resistant bacterial development, offering a promising strategy for managing drug-resistant bacteria in aquatic animals.
Collapse
Affiliation(s)
- Xingchen Huo
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Fengxia Zhao
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuezong Xu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Liu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Weicheng Wang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianguo Su
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| |
Collapse
|
14
|
Jia J, Liu Q, Zhao E, Li X, Xiong X, Wu C. Biofilm formation on microplastics and interactions with antibiotics, antibiotic resistance genes and pathogens in aquatic environment. ECO-ENVIRONMENT & HEALTH 2024; 3:516-528. [PMID: 39605964 PMCID: PMC11599983 DOI: 10.1016/j.eehl.2024.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Accepted: 05/04/2024] [Indexed: 11/29/2024]
Abstract
Microplastics (MPs) in aquatic environments easily support biofilm development, which can interact with other environmental pollutants and act as harbors for microorganisms. Recently, numerous studies have investigated the fate and behavior of MP biofilms in aquatic environments, highlighting their roles in the spread of pathogens and antibiotic resistance genes (ARGs) to aquatic organisms and new habitats. The prevalence and effects of MP biofilms in aquatic environments have been extensively investigated in recent decades, and their behaviors in aquatic environments need to be synthesized systematically with updated information. This review aims to reveal the development of MP biofilm and its interactions with antibiotics, ARGs, and pathogens in aquatic environments. Recent research has shown that the adsorption capabilities of MPs to antibiotics are enhanced after the biofilm formation, and the adsorption of biofilms to antibiotics is biased towards chemisorption. ARGs and microorganisms, especially pathogens, are selectively enriched in biofilms and significantly different from those in surrounding waters. MP biofilm promotes the propagation of ARGs through horizontal gene transfer (HGT) and vertical gene transfer (VGT) and induces the emergence of antibiotic-resistant pathogens, resulting in increased threats to aquatic ecosystems and human health. Some future research needs and strategies in this review are also proposed to better understand the antibiotic resistance induced by MP biofilms in aquatic environments.
Collapse
Affiliation(s)
- Jia Jia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qian Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - E. Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xin Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiong Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chenxi Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
15
|
Niu X, Lin L, Zhang T, An X, Li Y, Yu Y, Hong M, Shi H, Ding L. Research on antibiotic resistance genes in wild and artificially bred green turtles (Chelonia mydas). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176716. [PMID: 39368512 DOI: 10.1016/j.scitotenv.2024.176716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/11/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Sea turtles, vital to marine ecosystems, face population decline. Artificial breeding is a recovery strategy, yet it risks introducing antibiotic resistance genes (ARGs) to wild populations and ecosystems. This study employed metagenomic techniques to compare the distribution characteristics of ARGs in the guts of wild and artificially bred green turtles (Chelonia mydas). The findings revealed that the total abundance of ARGs in C. mydas that have been artificially bred was significantly higher than that in wild individuals. Additionally, the abundance of mobile genetic elements (MGEs) co-occurring with ARGs in artificially bred C. mydas was significantly higher than in wild C. mydas. In the analysis of bacteria carrying ARGs, wild C. mydas exhibited greater bacterial diversity. Furthermore, in artificially bred C. mydas, we discovered 23 potential human pathogenic bacteria (HPB) that contain antibiotic resistance genes. In contrast, in wild C. mydas, only one type of HPB carrying an antibiotic resistance gene was found. The findings of this study not only enhance our understanding of the distribution and dissemination of ARGs within the gut microbial communities of C. mydas, but also provide vital information for assessing the potential impact of releasing artificially bred C. mydas on the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Xin Niu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China
| | - Liu Lin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China
| | - Ting Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China
| | - Xiaoyu An
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China
| | - Yupei Li
- Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China; Marine Protected Area Administration of Sansha City, Sansha 573199, China
| | - Yangfei Yu
- Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China; Marine Protected Area Administration of Sansha City, Sansha 573199, China
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China
| | - Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China.
| |
Collapse
|
16
|
Liu S, Cao J, Yu J, Jian M, Zou L. Microplastics exacerbate the ecological risk of antibiotic resistance genes in wetland ecosystem. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123359. [PMID: 39550955 DOI: 10.1016/j.jenvman.2024.123359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/03/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Wetlands are vital components of the global ecosystem, significantly influencing the retention and dissemination of microplastics (MPs) and antibiotic resistance genes (ARGs). However, the effects of different types of MPs on the environmental dynamics of ARGs within these ecosystems remain poorly understood. This study focused on the distribution and composition of ARGs associated with two primary types of MPs-polyethylene and polypropylene-within the Poyang Lake wetland, the largest freshwater lake in China, utilizing metagenomic analysis. The findings demonstrated that the bacterial communities and ARG profiles in the plastisphere were markedly distinct from those in the surrounding water. Specifically, thirteen opportunistic pathogens and forty subtypes of ARGs, primarily related to multidrug, bacitracin, and β-lactam resistance, were identified in the plastisphere. Notably, polyethylene exhibited four times more specific ARG subtypes than polypropylene. Procrustes analysis combined with network analysis indicated a lack of strong correlation between ARG abundance and bacterial populations, suggesting potential horizontal transfer of ARGs within the microbiota of the plastisphere. Additionally, three novel and functional β-lactamase genes were identified within this environment. This investigation highlights the role of MPs as reservoirs for ARGs, facilitating their exchange and posing risks to both ecological integrity and human health, thereby underscoring the need for increased attention in future research efforts.
Collapse
Affiliation(s)
- Shuli Liu
- College of Life Sciences, Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China
| | - Jian Cao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinli Yu
- School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, China; Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Minfei Jian
- College of Life Sciences, Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China; Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Long Zou
- College of Life Sciences, Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
17
|
Chen J, Su Z, Li F, Cao F, Xiong F, Jiang B, Xing Y, Wen D. The variation of resistome, mobilome and pathogen in domestic and industrial wastewater treatment systems. ENVIRONMENT INTERNATIONAL 2024; 193:109051. [PMID: 39418785 DOI: 10.1016/j.envint.2024.109051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
Wastewater treatment plants (WWTPs), including both domestic and industrial facilities, are key contributors to antibiotic resistance genes (ARGs) and human pathogens in the environment. However, the characteristics and dissemination mechanisms of ARGs in domestic (SD) and industrial (SI) wastewater treatment systems remain unclear, leading to uncertainties in risk assessment. Based on metagenomic analysis, we observed significant differences in the compositions of resistome (ARGs and metal resistance genes, MRGs), mobilome (mobile genetic elements, MGEs), and bacterial community between SD and SI. SI exhibited lower diversity of ARGs but higher abundance of MRGs compared to SD. The removal efficiency of resistome was lower in the SI than that in the SD. MGEs emerged as the primary driver of ARG dissemination in the WWTPs, followed by the bacterial community. Environmental conditions (physicochemical parameters, heavy metals, and antibiotics) indirectly influenced the variation of resistome. Significantly, environmental conditions and MGEs highly influenced the composition of resistome in the SI, while bacterial community more associated with resistome in the SD. Additionally, we identified 36 human bacterial pathogens as potential hosts of ARGs, MRGs, and MGEs in wastewater samples. This study provides new insights on the dissemination mechanisms and risk assessment of antimicrobial resistance in the different types of WWTPs.
Collapse
Affiliation(s)
- Jiayu Chen
- School of Energy and Environmental Engineering, University of Science and Technology, Beijing 100083, China
| | - Zhiguo Su
- School of Environment, Tsinghua University, Beijing 100084, China.
| | - Feifei Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Feng Cao
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Fuzhong Xiong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science and Technology, Beijing 100083, China.
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology, Beijing 100083, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
18
|
Yadav P, Kumari SP, Hooda S, Gupta RK, Diwan P. Comparative assessment of microbiome and resistome of influent and effluent of sewage treatment plant and common effluent treatment plant located in Delhi, India using shotgun approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122342. [PMID: 39232318 DOI: 10.1016/j.jenvman.2024.122342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/09/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Antimicrobial resistance (AMR) is a significant threat that demands surveillance to identify and analyze trends of the emerging antibiotic resistance genes (ARGs) and potential microbial carriers. The influent of the wastewater treatment plants (WWTPs) reflects the microbes derived from the population and effluent being the source of dissemination of potential pathogenic microbes and AMR. The present study aimed to monitor microbial communities and antibiotic resistance genes in WWTPs employing a whole metagenome shotgun sequencing approach. The samples were collected from a sewage treatment plant (STP) and a common effluent treatment plant (CETP) in Delhi, India. The results showed the influent of STP to be rich in Bifidobacterium, Bacteroides, Escherichia, Arcobacter, and Pseudomonas residents of gut microbiota and known to cause diseases in humans and animals; whereas the CETP sample was abundant in Aeromonas, Escherichia, and Shewanella known to be involved in the degradation of different compounds. Interestingly, the effluent samples from both STPs and CETP were rich in microbial diversity, comprising organic and xenobiotic compound degrading and disease-causing bacteria, indicating the effluent being the source of dissemination of concerning bacteria to the environment. The functional profile at both sites displayed similarity with an abundance of housekeeping function genes as analyzed by Clusters of Orthologous Genes (COG), KEGG Orthology (KO), and subsystem databases. Resistome profiling by MEGARes showed the dominance of ARGs corresponding to beta-lactams having relative abundance ranging from 16% to 34% in all the metagenome datasets, followed by tetracycline (8%-16%), aminoglycosides (7%-9%), multi-drug (5%-9%), and rifampin (3%-9%). Also, AMR genes oxa, ant3-DPRIME, and rpoB, which are of clinical importance were predominantly and most prevalently present in all the samples. The presence of AMR in effluents from both types of treatment plants indicates that wastewater from both sources contributes to the spread of pathogenic bacteria and resistance genes, increasing the environmental AMR burden and therefore requires tertiary treatment before discharge. This work will facilitate further research towards the identification of suitable biomarkers for monitoring antibiotic resistance.
Collapse
Affiliation(s)
- Prerna Yadav
- Department of Microbiology, Ram Lal Anand College, University of Delhi, South Campus, New Delhi, 110021, India
| | - Shashi Prabha Kumari
- Department of Microbiology, Ram Lal Anand College, University of Delhi, South Campus, New Delhi, 110021, India
| | - Sunila Hooda
- Department of Microbiology, Ram Lal Anand College, University of Delhi, South Campus, New Delhi, 110021, India
| | - Rakesh Kumar Gupta
- Department of Microbiology, Ram Lal Anand College, University of Delhi, South Campus, New Delhi, 110021, India
| | - Prerna Diwan
- Department of Microbiology, Ram Lal Anand College, University of Delhi, South Campus, New Delhi, 110021, India.
| |
Collapse
|
19
|
You R, Yu Y, Shen M, Zhang Y, Hong J, Kang Y. Applications of different forms of nitrogen fertilizers affect soil bacterial community but not core ARGs profile. Front Microbiol 2024; 15:1447782. [PMID: 39417080 PMCID: PMC11480956 DOI: 10.3389/fmicb.2024.1447782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
The objective of this study was to investigate the impact of various chemical nitrogen fertilizers on the profile of antibiotic resistance genes (ARGs) in soil. A microcosm experiment was conducted with four treatments, including CK (control with no nitrogen), AN (ammonium nitrogen), NN (nitrate nitrogen), and ON (urea nitrogen), and the abundance of ARGs was assessed over a 30-day period using a metagenomic sequencing approach. The levels of core ARGs varied between 0.16 and 0.22 copies per cell across different treatments over time. The abundance of core ARGs in the ON treatment closely resembled that of the CK treatment, suggesting that environmentally friendly nitrogen fertilizers, particularly those in controlled release formulations, may be preferable. The core ARG abundance in the AN and NN treatments exhibited noticeable fluctuations over time. Overall, chemical nitrogen fertilizers had minimal effects on the core ARG profile as determined by principal component analysis and clustering analyses. Conversely, distinct and significant changes in bacterial communities were observed with the use of different nitrogen fertilizers. However, the influence of nitrogen fertilizers on the core ARGs is limited due to the unaffected potential bacterial hosts. Nitrogen-cycling-related genes (NCRGs), such as those involved in nitrogen-fixing (nifK, nifD, nifH) and denitrification (narG, napA, nirK, norB, nosZ) processes, exhibit a positive correlation with ARGs (rosA, mexF, bacA, vanS), indicating a potential risk of ARG proliferation during intense denitrification activities. This study indicates that the application of chemical nitrogen has a minimal effect on the abundance of ARGs in soil, thereby alleviating concerns regarding the potential accumulation of ARGs due to the use of chemical nitrogen fertilizers.
Collapse
Affiliation(s)
- Ruiqiang You
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, Jiangsu, China
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, China
| | - Yang Yu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, Jiangsu, China
| | - Min Shen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, Jiangsu, China
| | - Yanzhou Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, Jiangsu, China
| | - Jian Hong
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, Jiangsu, China
| | - Yijun Kang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, Jiangsu, China
| |
Collapse
|
20
|
Yang J, Zhang X, Xu Z, Wang X. Prevalence of antibiotic resistance genes in different drinking water treatment processes in a northwest Chinese city. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:436. [PMID: 39316241 DOI: 10.1007/s10653-024-02212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 09/02/2024] [Indexed: 09/25/2024]
Abstract
Antibiotic resistance genes (ARGs) are an emerging issue which are receiving increasing concerns in drinking water safety. However, the factors (e.g. treatment processes and water quality) affecting the removal efficiency of ARGs in the drinking water treatment plants (DWTPs) is still unclear. This work investigated the ARG profiles in each treatment process of two DWTPs located in a northwest Chinese city. The results showed that tetracycline and sulfonamide resistance genes were predominant among the 14 targeted ARGs. After the treatment, the Z water treatment plant which demonstrated a higher removal rate of ARGs (ranging from 50 to 80%), compared to the S plant (50-75%). And the average removal rate of tetracycline resistance genes (tetA, tetG, tetQ, tetX) was about 49.18% (S plant) and 67.50% (Z plant), as well as the removal rate of 64.2% and 72.9% for sulfonamide resistance (sul1 and sul2) at S and Z water plants, respectively. It was found that the relative abundance of main microbial communities (such as Bacteroidota, Actinobacteria, Verrucomicrobiota, Roseomonas), α-diversity index, as well as the abundance of pathogenic bacteria were all significantly reduced after different treatment processes. Network co-occurrence analysis revealed that Methylocystis possibly was the potential host for most ARGs, and sul1 was found across a broad spectrum of microorganisms in the drinking water environment. Adonis analysis showed that heavy metals and microbial communities explain solely 44.1% and 35.7% of variances of ARGs within DWTPs. This study provides insights into the contamination status and removal efficiencies of ARGs in DWTPs, offering valuable references for future studies on ARG removal, propagation, and diffusion patterns in drinking water treatment.
Collapse
Affiliation(s)
- Jing Yang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China.
| | - Xuan Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Zekun Xu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Xueyan Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| |
Collapse
|
21
|
Li B, Chang C, Sun C, Zhao D, Hu E, Li M. Multi-habitat distribution and coalescence of resistomes at the watershed scale based on metagenomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135349. [PMID: 39068887 DOI: 10.1016/j.jhazmat.2024.135349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
The characteristics of the resistome distribution in rivers have been extensively studied. However, the distribution patterns of resistomes in multiple habitats and contributions of upstream habitats to the resistome profile in water bodies remains unclear. The current study explored the distribution and coalescence of antibiotic resistance genes (ARGs), metal resistance genes (MRGs), and mobile genetic elements (MGEs) in four habitats (including water bodies, sediments, biofilms, and riparian soils) within the Shichuan River watershed. The results revealed significant variations in the abundances and diversity of resistomes across the four habitats and two seasons. Assembly processes of resistomes were predominated by stochastic processes in summer but deterministic processes in winter. The main source of the resistome in summer water bodies was the movement of genes from upstream water bodies. However, the main sources of resistome in downstream water bodies in winter were the movement of resistomes in upstream sediments and the input of external pollution. The physicochemical properties of winter water bodies significantly influenced the movement of the resistomes across habitats. The current study elucidated the multi-habitat distribution pattern and migration mechanism of the resistome in the river system, providing new insights for effectively monitoring and controlling bacterial resistance.
Collapse
Affiliation(s)
- Bingcong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Chao Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Changshun Sun
- Shaanxi Provincial Academy of Environmental Science, Xi'an 710061, PR China.
| | - Dan Zhao
- Shaanxi Provincial Academy of Environmental Science, Xi'an 710061, PR China
| | - En Hu
- Shaanxi Provincial Academy of Environmental Science, Xi'an 710061, PR China
| | - Ming Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| |
Collapse
|
22
|
Keck JM, Viteri A, Schultz J, Fong R, Whitman C, Poush M, Martin M. New Agents Are Coming, and So Is the Resistance. Antibiotics (Basel) 2024; 13:648. [PMID: 39061330 PMCID: PMC11273847 DOI: 10.3390/antibiotics13070648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance is a global threat that requires urgent attention to slow the spread of resistant pathogens. The United States Centers for Disease Control and Prevention (CDC) has emphasized clinician-driven antimicrobial stewardship approaches including the reporting and proper documentation of antimicrobial usage and resistance. Additional efforts have targeted the development of new antimicrobial agents, but narrow profit margins have hindered manufacturers from investing in novel antimicrobials for clinical use and therefore the production of new antibiotics has decreased. In order to combat this, both antimicrobial drug discovery processes and healthcare reimbursement programs must be improved. Without action, this poses a high probability to culminate in a deadly post-antibiotic era. This review will highlight some of the global health challenges faced both today and in the future. Furthermore, the new Infectious Diseases Society of America (IDSA) guidelines for resistant Gram-negative pathogens will be discussed. This includes new antimicrobial agents which have gained or are likely to gain FDA approval. Emphasis will be placed on which human pathogens each of these agents cover, as well as how these new agents could be utilized in clinical practice.
Collapse
Affiliation(s)
- J. Myles Keck
- Department of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alina Viteri
- Department of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | - Rebecca Fong
- Department of Pharmacy, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Charles Whitman
- Department of Pharmacy, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Madeline Poush
- Department of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Marlee Martin
- Department of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
23
|
Zhao X, Niu Z, Ma Y, Zhang Y, Li Y, Zhang R. Exploring the dynamics of antibiotic resistome on plastic debris traveling from the river to the sea along a representative estuary based on field sequential transfer incubations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171464. [PMID: 38447722 DOI: 10.1016/j.scitotenv.2024.171464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
The environmental risks arising from ubiquitous microplastics or plastic debris (PD) acting as carriers of antibiotic resistance genes (ARGs) have attracted widespread attention. Enormous amounts of plastic waste are transported by rivers and traverse estuaries into the sea every year. However, changes in the antibiotic resistome within the plastisphere (the biofilms formed on PD) as PD travels through estuaries are largely unknown. In this study, we performed sequential migration incubations for PD along Haihe Estuary to simulate the natural process of PD floating from rivers to the ocean. Metagenomic sequencing and analysis techniques were used to track microbial communities and antibiotic resistome on migrating PD and in seawater representing the marine environment. The total relative gene copies of ARGs on traveling PD remained stable. As migration between greatly varied waters, additional ARG subtypes were recruited to the plastisphere. Above 80 % ARG subtypes identified in the plastisphere were persistent throughout the migration, and over 30 % of these persistent ARGs were undetected in seawater. The bacterial hosts composition of ARGs on PD progressively altered as transported downstream. Human pathogenic bacteria carrying ARGs (HPBs-ARG) exhibited decreasing trends in abundance and species number during transfer. Individual HPBs-ARG persisted on transferred PD and were absent in seawater samples, comprising Enterobacter cloacae, Klebsiella pneumoniae, Mycobacterium tuberculosis, and Vibrio parahaemolyticus. Based on all detected ARGs and HPBs-ARG, the Projection Pursuit model was applied to synthetically evaluate the potential risks of antibiotic resistance on migrating PD. Diminished risks on PD were observed upon the river-to-sea journey but consistently remained significantly higher than in seawater. The potential risks posed to marine environments by drifting PD as dispersal vectors for antibiotic resistance deserve greater attention. Our results provide initial insights into the dynamics or stability of antibiotic resistome on PD crossing distinct aquatic systems in field estuaries.
Collapse
Affiliation(s)
- Xinhai Zhao
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Zhiguang Niu
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China; The International Joint Institute of Tianjin University, Fuzhou 350207, China.
| | - Yongzheng Ma
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yuna Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Rixin Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
24
|
Wang Y, Zhang S, Yang L, Yang K, Liu Y, Zhu H, Lai B, Li L, Hua L. Spatiotemporal distribution, interactions and toxic effect of microorganisms and ARGs/MGEs from the bioreaction tank in hospital sewage treatment facility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171481. [PMID: 38458442 DOI: 10.1016/j.scitotenv.2024.171481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/31/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Antibiotic resistance genes (ARGs) can be emitted from wastewater to ambient air and impose unignorable inhalable hazards, which could be exacerbated in antibiotic-concentrated hospital sewage. However, whether the ARG-carrying pathogens are more likely to infect cells remains largely unknown. Here, this study investigated and analyzed the spatiotemporal distribution, interaction, and toxicity of airborne microorganisms and their hosting ARGs in a hospital sewage treatment facility. The average concentration of ARGs/MGEs in sewage of bioreaction tank (BRT-W) was 2.27 × 104 gene copies/L. In the air of bioreaction tank (BRT-A), the average concentration of ARGs/MGEs was 15.86 gene copies/m3. In the four seasons, the ARGs concentration of sewage gradually decreased over time; The concentration of ARGs in the air first decreased and then increased. In spring, the concentration of ARGs/MGEs (qacedelta1-01) in BRT-W was highest (1.05 × 105 gene copies/L); The concentration of ARGs/MGEs (strB) in BRT-A in winter was higher than other seasons (26.18 gene copies/m3). Different from the past, this study also paid attention to the pathogenic potential of ARGs/MGEs in the air. The results of cell experiments showed that the cytotoxicity of drug-resistant Escherichia coli could reach Grade V. This suggested that the longer the drug-resistant E. coli were exposed to cells, the greater the cytotoxicity. Moreover, the cytotoxicity of bacteria increased with the increase in exposure time. In spring, the toxic effect of ARGs/MGEs in sewage of BRT-W was highest. Traceability analysis proved that BRT-W was an essential source of microorganisms and ARGs/MGEs in BRT-A. Furthermore, the combined risk of people exposed to the air of BRT in spring was higher than that in other seasons.
Collapse
Affiliation(s)
- Yanjie Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Lancaster Environment Center, Lancaster University, United Kingdom.
| | - Song Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Liying Yang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Kai Yang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Yang Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Haoran Zhu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Bisheng Lai
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Linlin Hua
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Advanced Medical Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, PR China.
| |
Collapse
|
25
|
Liu Q, Jia J, Hu H, Li X, Zhao Y, Wu C. Nitrogen and phosphorus limitations promoted bacterial nitrate metabolism and propagation of antibiotic resistome in the phycosphere of Auxenochlorella pyrenoidosa. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133786. [PMID: 38367442 DOI: 10.1016/j.jhazmat.2024.133786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/26/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Despite that nitrogen (N) and phosphorus (P) play critical roles in the lifecycle of microalgae, how N and P further affect the distribution of bacteria and antibiotic resistance genes (ARGs) in the phycosphere is still poorly understood. In this study, the effects of N and P on the distribution of ARGs in the phycosphere of Auxenochlorella pyrenoidosa were investigated. Results showed that the growth and chlorophyll synthesis of microalgae were inhibited when N or P was limited, regardless of the N/P ratios, but the extracellular polymeric substances content and nitrate assimilation efficiency were enhanced in contrast. Metagenomic sequencing revealed that N or P limitation resulted in the recruitment of specific bacteria that highly contribute to the nitrate metabolism in the phycosphere. Besides, N or P limitation promoted the propagation of phycosphere ARGs, primarily through horizontal gene transfer mediated by mobile genetic elements. The enrichment of specific bacteria induced by changes in the algal physiology also contributed to the ARGs proliferation under nutrient limitation. Our results demonstrated that the reduction of algal cells caused by nutrient limitation could promote the propagation of ARGs, which provides new insights into the occurrence and spread of ARGs in the phycosphere.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jia Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Hongjuan Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yanhui Zhao
- Ecology and Environment Monitoring and Scientific Research Center, Yangtze Basin Ecology and Environment Administration, Ministry of Ecological and Environment, Wuhan 430010, China
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
26
|
Wang S, Zhuang Y, Gao L, Huang H, Zhang X, Jia S, Shi P, Zhang XX. Deciphering the dynamics and driving mechanisms of high-risk antibiotic resistome in size-fractionated bacterial community during drinking water chlorination via metagenomic analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133572. [PMID: 38280321 DOI: 10.1016/j.jhazmat.2024.133572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 01/29/2024]
Abstract
To reveal the impact of chlorination on the high-risk resistome in size-fractionated bacterial community, we employed metagenomic approaches to decipher dynamics of high-risk antibiotic resistance genes (ARGs) and driving mechanisms in the free-living and particle-associated fractions within a full-scale drinking water treatment system. Our results revealed that chlorination significantly increased the relative abundance of high-risk ARGs in the free-living fraction to 0.33 ± 0.005 copies/cell (cpc), bacitracin and chloramphenicol resistance types were major contributors. Furthermore, chlorination significantly increased the relative abundance of mobile genetic elements (MGEs) in the free-living fraction, while decreasing it in the particle-associated fraction. During chlorination, size-fractionated bacterial communities varied considerably. Multiple statistical analyses highlighted the pivotal role of the bacterial community in altering high-risk ARGs in both the free-living and particle-associated fractions, while MGEs had a more pronounced impact on high-risk ARGs in the free-living fraction. Specifically, the enrichment of pathogenic hosts, such as Comamonas and Pseudomonas, led to an increase in the abundance of high-risk ARGs. Concurrently, MGEs exhibited significant correlations with high-risk ARGs, indicating the potential of horizontal transfer of high-risk ARGs. These findings provide novel insights for mitigating antibiotic resistance risk by considering different bacterial fractions and respective risk ranks in drinking water.
Collapse
Affiliation(s)
- Shuya Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Zhuang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Linjun Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongbin Huang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xian Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuyu Jia
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
27
|
Jiang Q, Feng L, Luo J, Wu Y, Dong H, Mustafa AM, Su Y, Zhao Y, Chen Y. Simultaneous volatile fatty acids promotion and antibiotic resistance genes reduction in fluoranthene-induced sludge alkaline fermentation: Regulation of microbial consortia and cell functions. BIORESOURCE TECHNOLOGY 2024; 395:130367. [PMID: 38266788 DOI: 10.1016/j.biortech.2024.130367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/20/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
The impact and mechanism of fluoranthene (Flr), a typical polycyclic aromatic hydrocarbon highly detected in sludge, on alkaline fermentation for volatile fatty acids (VFAs) recovery and antibiotic resistance genes (ARGs) transfer were studied. The results demonstrated that VFAs production increased from 2189 to 4272 mg COD/L with a simultaneous reduction of ARGs with Flr. The hydrolytic enzymes and genes related to glucose and amino acid metabolism were provoked. Also, Flr benefited for the enrichment of hydrolytic-acidifying consortia (i.e., Parabacteroides and Alkalibaculum) while reduced VFAs consumers (i.e., Rubrivivax) and ARGs potential hosts (i.e., Rubrivivax and Pseudomonas). Metagenomic analysis indicated that the genes related to cell wall synthesis, biofilm formation and substrate transporters to maintain high VFAs-producer activities were upregulated. Moreover, cell functions of efflux pump and Type IV secretion system were suppressed to inhibit ARGs proliferation. This study provided intrinsic mechanisms of Flr-induced VFAs promotion and ARGs reduction during alkaline fermentation.
Collapse
Affiliation(s)
- Qingyang Jiang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Haiqing Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, School of Medicine, Tongji Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University, 389 Xincun Road, Shanghai 200065, China
| | - Ahmed M Mustafa
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Department of Agricultural Engineering, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Yu Su
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Yuxiao Zhao
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Biomass Gasification Technology, Jinan 250014, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
28
|
Zhang L, Cui W, Zhai H, Cheng S, Wu W. Performance of public drinking water purifiers in control of trihalomethanes, antibiotics and antibiotic resistance genes. CHEMOSPHERE 2024; 352:141459. [PMID: 38360417 DOI: 10.1016/j.chemosphere.2024.141459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Point-of-use water purifiers are widely applied as a terminal treatment device to produce drinking water with high quality. However, concerns are raised regarding low efficiency in eliminating emerging organic pollutants. To enhance our understanding of the reliability and potential risks of water purifiers, the removal of trihalomethanes, antibiotics, and antibiotic resistance genes (ARGs) in four public water purifiers was investigated. In the four public water purifiers in October and November, the removal efficiencies of trichloromethane (TCM) and bromodichloromethane (BDCM) were 15%-69% (averagely 37%) and 6%-44% (averagely 23%). The levels of TCM and BDCM were lowered by all water purifiers in October and November, but accelerated in effluent compared to the influent in one public water purifier in December. The removal efficiencies of twelve antibiotics greatly varied with species and time. Out of twelve sampling cases, the removal efficiencies of total antibiotics were 25%-75% in ten cases. In the other two cases, very low removal efficiency (6%) or higher levels of antibiotics present in effluent compared to the influent were observed. Two public water purifiers effectively remove ARGs from water, with log removal rates of 0.45 log-3.89 log. However, in the other two public water purifiers, the ARG abundance accidently increased in the effluents. Overall, public water purifiers were more effective in removing antibiotics and ARGs compared to household water purifiers, but less or equally effective in removing trihalomethanes. Both public and household water purifiers could be contaminated and release the accumulated micro-pollutants or biofilm-related pollutants into effluent. The production frequency and standing time of water within water purifiers can impact the internal contamination and purification efficacy.
Collapse
Affiliation(s)
- Liangyu Zhang
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Wenjie Cui
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Hongyan Zhai
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China.
| | - Shengzi Cheng
- Tianjin LVYIN Landscape & Ecology Construction Co. Ltd., Kaihua Road 20, Hi-Tech, Tianjin, 300110, China
| | - Wenling Wu
- China Construction Industrial Engineering and Technology Research Academy Co. Ltd., Beijing, 101399, China
| |
Collapse
|
29
|
Li LJ, Xu F, Xu JX, Yan Y, Su JQ, Zhu YG, Li H. Spatiotemporal Changes of Antibiotic Resistance, Potential Pathogens, and Health Risk in Kindergarten Dust. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3919-3930. [PMID: 38353611 DOI: 10.1021/acs.est.3c07935] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The microorganisms present in kindergartens are extremely important for children's health during their three-year preschool education. To assess the risk of outdoor dust in kindergartens, the antibiotic resistome and potential pathogens were investigated in dust samples collected from 59 kindergartens in Xiamen, southeast China in both the winter and summer. Both high-throughput quantitative PCR and metagenome analysis revealed a higher richness and abundance of antibiotic resistance genes (ARGs) in winter (P < 0.05). Besides, the bloom of ARGs and potential pathogens was evident in the urban kindergartens. The co-occurrence patterns among ARGs, mobile genetic elements (MGEs), and potential pathogens suggested some bacterial pathogens were potential hosts of ARGs and MGEs. We found a large number of high-risk ARGs in the dust; the richness and abundance of high-risk ARGs were higher in winter and urban kindergartens compared to in summer and peri-urban kindergartens, respectively. The results of the co-occurrence patterns and high-risk ARGs jointly reveal that urbanization will significantly increase the threat of urban dust to human beings and their risks will be higher in winter. This study unveils the close association between ARGs/mobile ARGs and potential pathogens and emphasizes that we should pay more attention to the health risks induced by their combination.
Collapse
Affiliation(s)
- Li-Juan Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Fei Xu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jian-Xin Xu
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Yu Yan
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
30
|
Liu H, Jiao P, Guan L, Wang C, Zhang XX, Ma L. Functional traits and health implications of the global household drinking-water microbiome retrieved using an integrative genome-centric approach. WATER RESEARCH 2024; 250:121094. [PMID: 38183799 DOI: 10.1016/j.watres.2023.121094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/15/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
The biological safety of drinking water plays a crucial role in public health protection. However, research on the drinking water microbiome remains in its infancy, especially little is known about the potentially pathogenic bacteria in and functional characteristics of the microbiome in household tap water that people are directly exposed to. In this study, we used a genomic-centric approach to construct a genetic catalogue of the drinking water microbiome by analysing 116 metagenomic datasets of household tap water worldwide, spanning nine countries/regions on five continents. We reconstructed 859 high-quality metagenome-assembled genomes (MAGs) spanning 27 bacterial and 2 archaeal phyla, and found that the core MAGs belonging to the phylum Proteobacteria encoded the highest metabolic functional diversity of the 33 key complete metabolic modules. In particular, we found that two core MAGs of Brevibacillus and Methylomona encoded genes for methane metabolism, which may support the growth of heterotrophic organisms observed in the oligotrophic ecosystem. Four MAGs of complete ammonia oxidation (comammox) Nitrospira were identified and functional metabolic analysis suggested these may enable mixotrophic growth and encode genes for reactive oxygen stress defence and arsenite reduction that could aid survival in the environment of oligotrophic drinking water systems. Four MAGs were annotated as potentially pathogenic bacteria (PPB) and thus represented a possible public health concern. They belonged to the genera Acinetobacter (n = 3) and Mycobacterium (n = 1), with a total relative abundance of 1.06 % in all samples. The genomes of PPB A. junii and A. ursingii were discovered to contain antibiotic resistance genes and mobile genetic elements that could contribute to antimicrobial dissemination in drinking water. Further network analysis suggested that symbiotic microbes which support the growth of pathogenic bacteria can be targets for future surveillance and removal.
Collapse
Affiliation(s)
- Huafeng Liu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Pengbo Jiao
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Lei Guan
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Chen Wang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Liping Ma
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Shanghai 200062, PR China.
| |
Collapse
|
31
|
Lan W, Liu H, Weng R, Zeng Y, Lou J, Xu H, Yu Y, Jiang Y. Microbial community of municipal drinking water in Hangzhou using metagenomic sequencing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123066. [PMID: 38048871 DOI: 10.1016/j.envpol.2023.123066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
While traditional culture-dependent methods can effectively detect certain microorganisms, the comprehensive composition of the municipal drinking water (DW) microbiome, including bacteria, archaea, and viruses, remains unknown. Metagenomic sequencing has opened the door to accurately determine and analyze the entire microbial community of DW, providing a comprehensive understanding of DW species diversity, especially in the context of public health concerns during the COVID-19 era. In this study, we found that most of the culturable bacteria and some fecal indicator bacteria, such as Escherichia coli and Pseudomonas aeruginosa, were non-culturable using culture-dependent methods in all samples. However, metagenomic analysis showed that the predominant bacterial species in the DW samples belonged to the phyla Proteobacteria and Planctomycetes. Notably, the genus Methylobacterium was the most abundant in all water samples, followed by Sphingomonas, Gemmata, and Azospirilum. While low levels of virulence-associated factors, such as the Esx-5 type VII secretion system (T7SS) and DevR/S, were detected, only the erythromycin resistance gene erm(X), an rRNA methyltransferase, was identified at low abundance in one sample. Hosts corresponding to virulence and resistance genes were identified in some samples, including Mycobacterium spp. Archaeal DNA (Euryarchaeota, Crenarchaeota) was found in trace amounts in some DW samples. Viruses such as rotavirus, coxsackievirus, human enterovirus, and SARS-CoV-2 were negative in all DW samples using colloidal gold and real-time reverse transcription polymerase chain reaction (RT‒PCR) methods. However, DNA encoding a new order of reverse-transcribing viruses (Ortervirales) and Herpesvirales was found in some DW samples. The metabolic pathways of the entire microbial community involve cell‒cell communication and signal secretion, contributing to cooperation between different microbial populations in the water. This study provides insight into the microbial community and metabolic process of DW in Hangzhou, China, utilizing both culture-dependent methods and metagenomic sequencing combined with bioinformatics tools during the COVID-19 pandemic era.
Collapse
Affiliation(s)
- Wei Lan
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, 310016, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Haiyang Liu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, 310016, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Rui Weng
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, 310016, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yaxiong Zeng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 320013, China
| | - Jian Lou
- Yiwu Water Construction Group Co., Ltd., Yiwu, 322000, China
| | - Hongxin Xu
- Yiwu Water Construction Group Co., Ltd., Yiwu, 322000, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, 310016, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, 310016, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| |
Collapse
|
32
|
Jia S, Wang S, Zhuang Y, Gao L, Zhang X, Ye L, Zhang XX, Shi P. Free-living lifestyle preferences drive the antibiotic resistance promotion during drinking water chlorination. WATER RESEARCH 2024; 249:120922. [PMID: 38043346 DOI: 10.1016/j.watres.2023.120922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
The risk associated with antibiotic resistance genes (ARGs) in size-fractionated bacterial community during drinking water chlorination remains unclear, and is of paramount importance for risk mitigation through process selection and optimization. This study employed metagenomic approaches to reveal the alterations of ARGs, their potential functions and hosts within the free-living and particle-associated fractions. The total relative abundance of ARGs, mobile genetic elements (MGEs), and virulence factor genes (VFGs) significantly increased in the free-living fraction after chlorination. The contribution of the free-living fraction to the ARG relative abundance rose from 16.40 ± 1.31 % to 93.62 ± 0.47 % after chlorination. Multidrug resistance genes (e.g. mexF and mexW) were major contributors, and their co-occurrence with MGEs in the free-living fraction was enhanced after chlorination. Considering multiple perspectives, including presence, mobility, and pathogenicity, chlorination led to a significant risk of the antibiotic resistome in the free-living fraction. Moreover, potential functions of ARGs, such as cell wall/membrane/envelope biogenesis, defense mechanisms, and transcription in the free-living fraction, were intensified following chlorination. Potential pathogens, including Pseudomonas aeruginosa, Pseudomonas alcaligenes, and Acinetobacter junii, were identified as the predominant hosts of multidrug resistance genes, with their increased abundances primarily contributing to the rise of the corresponding ARGs. Overall, alterations of hosts as well as enhancing mobility and biological functions could collectively aid the proliferation and spread of ARGs in the free-living fraction after chlorination. This study provides novel insights into antibiotic resistance evolution in size-fractionated bacteria community and offers a management strategy for microbiological safety in drinking water.
Collapse
Affiliation(s)
- Shuyu Jia
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuya Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Zhuang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Linjun Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xian Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China.
| |
Collapse
|
33
|
Tian Y, Han Z, Su D, Luan X, Yu L, Tian Z, Zhang Y, Yang M. Assessing impacts of municipal wastewater treatment plant upgrades on bacterial hazard contributions to the receiving urban river using SourceTracker. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123075. [PMID: 38052339 DOI: 10.1016/j.envpol.2023.123075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
Upgrading municipal wastewater treatment plants (MWTPs) has been implemented in many megacities of China to reduce the discharges of nutrients and other pollutants and improve water quality of highly urbanized rivers. However, the contribution of MWTP discharge to bacterial hazards in the receiving rivers after upgrades has been largely unknown. In this study, high-throughput sequencing and shotgun metagenomics were applied to investigate the changes in the abundance, composition, potential risks, and contributions of bacteria and antibiotic resistance genes (ARGs) from effluent to receiving river after upgrading the third-largest MWTP in China with denitrification biofilters, ultrafiltration, ozonation, and disinfection processes. The annual loadings of total nitrogen and 27 types of pharmaceuticals were reduced by 42.4% ± 13.2% and 46.2% ± 15.4%, respectively. Bacterial biomass decreased from (3.58 ± 0.49) to (1.23 ± 0.27) × 107 16S rRNA gene copies/mL, and identified biomarkers in effluent and downstream shifted due to the adopted processes. Opportunistic pathogen bacteria downstream were also reduced. Although the relative abundance of total ARGs in MWTP effluent increased from 1.10 ± 0.02 to 2.19 ± 0.03 copies/16S rRNA gene after upgrades, that of total and high-risk ARGs downstream showed no significant difference. More importantly, the Bayesian-based SourceTracker method provided valuable insight by revealing that the contributions of MWTP discharge to downstream bacteria (from 44.2% ± 1.5%-31.4% ± 0.9%) and ARGs (from 61.2% ± 5.3%-47.6% ± 4.1%) were significantly reduced following the upgrades, indicating upgrading MWTP showed integrated benefits to the bacterial hazards in the receiving river. This study provides useful information for better control of bacterial hazard risks and operational strategy for the improvement of the urban aquatic ecosystem.
Collapse
Affiliation(s)
- Ye Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; SINOPEC Beijing Research Institute of Chemical Industry, Beijing, 100013, China
| | - Ziming Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Du Su
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Research Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Xiao Luan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lina Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhe Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
34
|
Ke Y, Sun W, Xue Y, Zhu Y, Yan S, Xie S. Effects of treatments and distribution on microbiome and antibiotic resistome from source to tap water in three Chinese geographical regions based on metagenome assembly. WATER RESEARCH 2024; 249:120894. [PMID: 38016224 DOI: 10.1016/j.watres.2023.120894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/23/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
Antibiotic resistance genes (ARGs) represent emerging environmental pollutants that present health risks. Drinking water supply systems (DWSSs), including sources to tap water, play crucial roles in the dissemination and propagation of ARGs. However, there was a paucity of knowledge on the relative abundance, diversity, mobility, and pathogenic hosts of ARGs in DWSSs from source to tap. Therefore, the effects of treatments and distributions on the microbial community and ARGs from three geographical regions (downstream areas of the Yellow, Yangtze, and Pearl Rivers) were elucidated in the present study. Treatment processes lowered the complexity of the microbial community network, whereas transportation increased it. The assembly mechanisms of the microbial community and antibiotic resistome were primarily driven by stochastic processes. Distribution greatly increased the contribution of stochastic processes. Multidrug ARGs (for example, multidrug transporter and adeJ) and bacitracin ARG (bacA) were the primary mobile ARGs in drinking water, as identified by the metagenomic assembly. Achromobacter xylosoxidans, Acinetobacter calcoaceticus, and Acinetobacter junii harbored diverse multidrug ARGs and mobile genetic elements (MGEs) (recombinases, integrases, and transposases) as potential pathogens and were abundant in the disinfected water. Environmental factors, including pH, chlorine, latitude, longitude, and temperature, influenced the ARG abundance by directly regulating the MGEs and microbial community diversity. This study provides critical information on the fate, mobility, host pathogenicity, and driving factors of ARGs in drinking water, which is conducive to ARG risk assessment and management to provide high-quality drinking water to consumers.
Collapse
Affiliation(s)
- Yanchu Ke
- School of Environment, Tsinghua University, Beijing 100084, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China.
| | - Yanei Xue
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuang Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
35
|
Zhang T, Liao P, Fang L, Zhang D. Effect of booster disinfection on the prevalence of microbial antibiotic resistance and bacterial community in a simulated drinking water distribution system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122902. [PMID: 37949160 DOI: 10.1016/j.envpol.2023.122902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Booster disinfection was often applied to control the microorganism's growth in long-distance water supply systems. The effect of booster disinfection on the changing patterns of antibiotic resistance and bacterial community was investigated by a simulated water distribution system (SWDS). The results showed that the antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) were initially removed after dosing disinfectants (chlorine and chloramine), but then increased with the increasing water age. However, the relative abundance of ARGs significantly increased after booster disinfection both in buck water and biofilm, then decreased along the pipeline. The pipe materials and disinfectant type also affected the antibiotic resistance. Chlorine was more efficient in controlling microbes and ARGs than chloramine. Compared with UPVC and PE pipes, SS pipes had the lowest total bacteria, ARB concentration, and ARB percentage, mainly due to higher disinfectant residuals and a smoother surface. The significant correlation (rs = 0.77, p < 0.001) of the 16S rRNA genes was observed between buck water and biofilm, while the correlations of targeted ARGs were found to be weak. Bray-Curtis similarity index indicated that booster disinfection significantly changed the biofilm bacterial community and the disinfectant type also had a marked impact on the bacterial community. At the genus level, the relative abundance of Pseudomonas, Sphingomonas, and Methylobacterium significantly increased after booster disinfection. Mycobacterium increased after chloramination while decreased after chlorination, indicating Mycobacterium might resist chloramine. Pseudomonas, Methylobacterium, and Phreatobacter were found to correlate well with the relative abundance of ARGs. These results highlighted antibiotic resistance shift and bacterial community alteration after booster disinfection, which may be helpful in controlling potential microbial risk in drinking water.
Collapse
Affiliation(s)
- Tuqiao Zhang
- College of Civil Engineering and Architecture Zhejiang University, Hangzhou, 310058, China; Future Water Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314000, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Hangzhou, 310058, China.
| | - Pubin Liao
- College of Civil Engineering and Architecture Zhejiang University, Hangzhou, 310058, China; Future Water Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314000, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Hangzhou, 310058, China.
| | - Lei Fang
- College of Civil Engineering and Architecture Zhejiang University, Hangzhou, 310058, China; Future Water Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314000, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Hangzhou, 310058, China.
| | - Dongyang Zhang
- College of Civil Engineering and Architecture Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Hangzhou, 310058, China.
| |
Collapse
|
36
|
Huang B, Lv X, Zheng H, Yu H, Zhang Y, Zhang C, Wang J. Microbial organic fertilizer prepared by co-composting of Trichoderma dregs mitigates dissemination of resistance, virulence genes, and bacterial pathogens in soil and rhizosphere. ENVIRONMENTAL RESEARCH 2024; 241:117718. [PMID: 37995998 DOI: 10.1016/j.envres.2023.117718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
The use of manure, mycelium dregs and other waste as organic fertilizer is the main source of antibiotic resistance genes (ARGs) and pathogens in farmland. Composting of waste may effectively remove ARGs and pathogens. However, the profiles and drivers of changes in metal resistance genes (MRGs), biocide resistance genes (BRGs), and virulence genes (VGs) in soil-crop rhizosphere systems after compost application remain largely unknown. Here, we prepared two kinds of microbial organic fertilizers (MOF) by using Trichoderma dregs (TDs) and organic fertilizer mixing method (MOF1) and TDs co-composting method (MOF2). The effects of different types and doses of MOF on resistance genes, VGs and pathogens in soil-rhizosphere system and their potential mechanisms were studied. The results showed that co-composting of TDs promoted the decomposition of organic carbon and decreased the absolute abundance of ARGs and mobile genetic elements (MGEs) by 53.4-65.0%. MOF1 application significantly increased the abundance and diversity of soil ARGs, BRGs, and VGs, while low and medium doses of MOF2 significantly decreased their abundance and diversity in soil and rhizosphere. Patterns of positive co-occurrence between MGEs and VGs/MRGs/BRGs/ARGs were observed through statistical analysis and gene arrangements. ARGs/MRGs reductions in MOF2 soil were directly driven by weakened horizontal gene transfer triggered by MGEs. Furthermore, MOF2 reduced soil BRGs/VGs levels by shifting bacterial communities (e.g., reduced bacterial host) or improving soil property. Our study provided new insights into the rational use of waste to minimize the spread of resistomes and VGs in soil.
Collapse
Affiliation(s)
- Bin Huang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xiaolin Lv
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Haitao Yu
- Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Yu Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Chengsheng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Jie Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
37
|
Liu C, Shan X, Zhang Y, Song L, Chen H. Microcosm experiments revealed resistome coalescence of sewage treatment plant effluents in river environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122661. [PMID: 37778491 DOI: 10.1016/j.envpol.2023.122661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/01/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Sewage treatment plant (STP) effluents are important contributors of antibiotic resistance (AR) pollution in rivers. Effluent discharging into rivers causes resistome coalescence. However, their mechanisms and dynamic processes are poorly understood, especially for the effects of dilution, diffusion, and sunlight-induced attenuation on coalescence. In this study, we have constructed microcosmic experiments based on in-situ investigation to explore these issues. The first batch experiment revealed the effects of dilution and diffusion. The coverage of water coalesced resistomes ranged 66.26∼152.18 × /Gb and was positively correlated with effluent volume (Mann-Kendall test, p < 0.01). Principal coordinate analysis (PCoA) and source tracking analysis demonstrated that dilution and diffusion stepwise reduced AR pollution. The second batch experiment explored the temporal dynamics and sunlight attenuation on coalesced resistomes. Under natural light, the coverage and diversity of water resistomes posed decreasing trends, primarily attributed to drastic erasure of effluent traces. The proportion of effluent-specific ARGs in coalesced resistomes significantly declined over time (Spearman's r = -0.83 and -0.94 in coverage and richness). While under dark condition, the coverage and diversity increased. Sunlight radiation intensified the interactions between water and sediment resistomes, as evidenced by more shared ARGs and less dissimilarities across niches. Network analysis, metagenome-assembled genome (MAG) analysis and variation partitioning analysis (VPA) showed that microbiome controlled resistome coalescence, explaining 56.5% and 58.4% of resistomes in water and sediment, respectively. Biotic and abiotic factors synergistically explained 40% of water resistomes. This study offers a comprehensive understanding of AR transmission and provides theoretical bases for grasping AR pollution and developing effective suppression strategies.
Collapse
Affiliation(s)
- Chang Liu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Xin Shan
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Yuxin Zhang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Liuting Song
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Haiyang Chen
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing, 100875, China.
| |
Collapse
|
38
|
Yan Q, Xu Y, Zhong Z, Xu Y, Lin X, Cao Z, Feng G. Insights into antibiotic resistance-related changes in microbial communities, resistome and mobilome in paddy irrigated with reclaimed wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165672. [PMID: 37478933 DOI: 10.1016/j.scitotenv.2023.165672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Reclaimed wastewater (reclaimed wastewater, RWW) from municipal wastewater treatment plants for paddy irrigation is a well-established practice to alleviate water scarcity. However, the reuse may result in the persistent exposure of the paddy to residual antibiotics in RWW. Continuous presence of even low-level antibiotics can exert selective pressure on microbiota, resulting in the proliferation and dissemination of antibiotic resistance genes (ARGs) in paddy. In this study, metagenomic analysis was applied to firstly deciphered the effects of residual antibiotics on microbiome and resistome in constructed mesocosm-scale paddy soils. The diversity and abundance of ARG have remarkably risen with the increasing antibiotic concentration in RWW. Network analysis revealed that 28 genera belonging to six phyla were considered as the potential ARG hosts, and their abundances were enhanced with increasing antibiotic concentrations. A partial least-squares path model indicated that the microbial community was the principal direct driver of the ARG abundance and the resistome alteration in paddy soil under long-term RWW irrigation. Microbes may acquire ARGs via horizontal gene transfer. IntI1 could play an essential role in the propagation and spread of ARGs. Functional analysis suggested that enhanced SOS response and T4SSs (Type IV secretion systems) modules could stimulate horizontal transfer potential and promote the ARG abundance. The obtained results provide a scientific decision for assessing the ecological risk of RWW application.
Collapse
Affiliation(s)
- Qing Yan
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311400, China.
| | - Yufeng Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Zhengzheng Zhong
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311400, China
| | - Yuan Xu
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311400, China
| | - Xiaoyan Lin
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311400, China
| | - Zhaoyun Cao
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311400, China
| | - Guozhong Feng
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311400, China.
| |
Collapse
|
39
|
Sun H, Li H, Zhang X, Liu Y, Chen H, Zheng L, Zhai Y, Zheng H. The honeybee gut resistome and its role in antibiotic resistance dissemination. Integr Zool 2023; 18:1014-1026. [PMID: 36892101 DOI: 10.1111/1749-4877.12714] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
There is now general concern about widespread antibiotic resistance, and growing evidence indicates that gut microbiota is critical in providing antibiotic resistance. Honeybee is an important pollinator; the incidence of antibiotic resistance genes in honeybee gut causes potential risks to not only its own health but also to public and animal health, for its potential disseminator role, thus receiving more attention from the public. Recent analysis results reveal that the gut of honeybee serves as a reservoir of antibiotic resistance genes, probably due to antibiotics application history in beekeeping and horizontal gene transfer from the highly polluted environment. These antibiotic resistance genes accumulate in the honeybee gut and could be transferred to the pathogen, even having the potential to spread during pollination, tending, social interactions, etc. Newly acquired resistance traits may cause fitness reduction in bacteria whereas facilitating adaptive evolution as well. This review outlines the current knowledge about the resistome in honeybee gut and emphasizes its role in antibiotic resistance dissemination.
Collapse
Affiliation(s)
- Huihui Sun
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Hu Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Hao Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| |
Collapse
|
40
|
Wang C, Yang H, Liu H, Zhang XX, Ma L. Anthropogenic contributions to antibiotic resistance gene pollution in household drinking water revealed by machine-learning-based source-tracking. WATER RESEARCH 2023; 246:120682. [PMID: 37832249 DOI: 10.1016/j.watres.2023.120682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Although the presence of antibiotic resistance genes (ARGs) in drinking water and their potential horizontal gene transfer to pathogenic microbes are known to pose a threat to human health, their pollution levels and potential anthropogenic sources are poorly understood. In this study, broad-spectrum ARG profiling combined with machine-learning-based source classification SourceTracker was performed to investigate the pollution sources of ARGs in household drinking water collected from 95 households in 47 cities of eight countries/regions. In total, 451 ARG subtypes belonging to 19 ARG types were detected with total abundance in individual samples ranging from 1.4 × 10-4 to 1.5 × 10° copies per cell. Source tracking analysis revealed that many ARGs were highly contributed by anthropogenic sources (37.1%), mainly wastewater treatment plants. The regions with the highest detected ARG contribution from wastewater (∼84.3%) used recycled water as drinking water, indicating the need for better ARG control strategies to ensure safe water quality in these regions. Among ARG types, sulfonamide, rifamycin and tetracycline resistance genes were mostly anthropogenic in origin. The contributions of anthropogenic sources to the 20 core ARGs detected in all of the studied countries/regions varied from 36.6% to 84.1%. Moreover, the anthropogenic contribution of 17 potential mobile ARGs identified in drinking water was significantly higher than other ARGs, and metagenomic assembly revealed that these mobile ARGs were carried by diverse potential pathogens. These results indicate that human activities have exacerbated the constant input and transmission of ARGs in drinking water. Our further risk classification framework revealed three ARGs (sul1, sul2 and aadA) that pose the highest risk to public health given their high prevalence, anthropogenic sources and mobility, facilitating accurate monitoring and control of anthropogenic pollution in drinking water.
Collapse
Affiliation(s)
- Chen Wang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Huiying Yang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Huafeng Liu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Liping Ma
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
41
|
Wu D, Xie J, Liu Y, Jin L, Li G, An T. Metagenomic and Machine Learning Meta-Analyses Characterize Airborne Resistome Features and Their Hosts in China Megacities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16414-16423. [PMID: 37844141 DOI: 10.1021/acs.est.3c02593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Urban ambient air contains a cocktail of antibiotic resistance genes (ARGs) emitted from various anthropogenic sites. However, what is largely unknown is whether the airborne ARGs exhibit site-specificity or their pathogenic hosts persistently exist in the air. Here, by retrieving 1.2 Tb metagenomic sequences (n = 136), we examined the airborne ARGs from hospitals, municipal wastewater treatment plants (WWTPs) and landfills, public transit centers, and urban sites located in seven of China's megacities. As validated by the multiple machine learning-based classification and optimization, ARGs' site-specificity was found to be the most apparent in hospital air, with featured resistances to clinical-used rifamycin and (glyco)peptides, whereas the more environmentally prevalent ARGs (e.g., resistance to sulfonamide and tetracycline) were identified being more specific to the nonclinical ambient air settings. Nearly all metagenome-assembled genomes (MAGs) that possessed the site-featured resistances were identified as pathogenic taxa, which occupied the upper-representative niches in all the neutrally distributed airborne microbial community (P < 0.01, m = 0.22-0.50, R2 = 0.41-0.86). These niche-favored putative resistant pathogens highlighted the enduring antibiotic resistance hazards in the studied urban air. These findings are critical, albeit the least appreciated until our study, to gauge the airborne dimension of resistomes' features and fates in urban atmospheric environments.
Collapse
Affiliation(s)
- Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, Chongqing Institute of East China Normal University, East China Normal University, Shanghai 200241, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiawen Xie
- Department of Civil and Environmental Engineering and Research Institute for Sustainable Urban Development, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Yangying Liu
- Department of Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Ling Jin
- Department of Civil and Environmental Engineering and Research Institute for Sustainable Urban Development, The Hong Kong Polytechnic University, Kowloon, Hong Kong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
42
|
Yan Z, He X, Ayala J, Xu Q, Yu X, Hou R, Yao Y, Huang H, Wang H. The Impact of Bamboo Consumption on the Spread of Antibiotic Resistance Genes in Giant Pandas. Vet Sci 2023; 10:630. [PMID: 37999453 PMCID: PMC10675626 DOI: 10.3390/vetsci10110630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/25/2023] Open
Abstract
The spread of antibiotic resistance genes (ARGs) in the environment exacerbates the contamination of these genes; therefore, the role plants play in the transmission of resistance genes in the food chain requires further research. Giant pandas consume different bamboo parts at different times, which provides the possibility of investigating how a single food source can affect the variation in the spread of ARGs. In this study, metagenomic analysis and the Comprehensive Antibiotic Resistance Database (CARD) database were used to annotate ARGs and the differences in gut microbiota ARGs during the consumption of bamboo shoots, leaves, and culms by captive giant pandas. These ARGs were then compared to investigate the impact of bamboo part consumption on the spread of ARGs. The results showed that the number of ARGs in the gut microbiota of the subjects was highest during the consumption of bamboo leaves, while the variety of ARGs was highest during the consumption of shoots. Escherichia coli, which poses a higher risk of ARG dissemination, was significantly higher in the leaf group, while Klebsiella, Enterobacter, and Raoultella were significantly higher in the shoot group. The ARG risk brought by bamboo shoots and leaves may originate from soil and environmental pollution. It is recommended to handle the feces of giant pandas properly and regularly monitor the antimicrobial and virulence genes in their gut microbiota to mitigate the threat of antibiotic resistance.
Collapse
Affiliation(s)
- Zheng Yan
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Z.Y.); (J.A.); (Q.X.); (X.Y.); (R.H.); (Y.Y.); (H.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
- Key Laboratory for Biodiversity and Ecological Engineering of Ministry of Education, Department of Ecology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xin He
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Z.Y.); (J.A.); (Q.X.); (X.Y.); (R.H.); (Y.Y.); (H.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - James Ayala
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Z.Y.); (J.A.); (Q.X.); (X.Y.); (R.H.); (Y.Y.); (H.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Qin Xu
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Z.Y.); (J.A.); (Q.X.); (X.Y.); (R.H.); (Y.Y.); (H.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Xiaoqiang Yu
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Z.Y.); (J.A.); (Q.X.); (X.Y.); (R.H.); (Y.Y.); (H.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Z.Y.); (J.A.); (Q.X.); (X.Y.); (R.H.); (Y.Y.); (H.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Ying Yao
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Z.Y.); (J.A.); (Q.X.); (X.Y.); (R.H.); (Y.Y.); (H.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - He Huang
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Z.Y.); (J.A.); (Q.X.); (X.Y.); (R.H.); (Y.Y.); (H.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Hairui Wang
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (Z.Y.); (J.A.); (Q.X.); (X.Y.); (R.H.); (Y.Y.); (H.H.)
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| |
Collapse
|
43
|
Gu Q, Lin T, Wei X, Zhang Y, Wu S, Yang X, Zhao H, Wang C, Wang J, Ding Y, Zhang J, Wu Q. Prevalence of antimicrobial resistance in a full-scale drinking water treatment plant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118396. [PMID: 37331316 DOI: 10.1016/j.jenvman.2023.118396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/27/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Antibiotic resistance in drinking water has received increasing attention in recent years. In this study, the occurrence and abundance of antibiotic resistance genes (ARGs) in a drinking water treatment plant (DWTP) was comprehensively investigated using metagenomics. Bioinformatics analysis showed that 381 ARG subtypes belonging to 15 ARG types were detected, and bacitracin had the highest abundance (from 0.26 × 10-2 to 0.86 copies/cell), followed by multidrug (from 0.57 × 10-1 to 0.47 copies/cell) and sulfonamide (from 0.83 × 10-2 to 0.35 copies/cell). Additionally, 933 ARG-carrying contigs (ACCs) were obtained from the metagenomic data, among which 153 contigs were annotated as pathogens. The most abundant putative ARG host was Staphylococcus (7.9%), which most frequently carried multidrug ARGs (43.2%). Additionally, 38 high-quality metagenome-assembled genomes (MAGs) were recovered, one of which was identified as Staphylococcus aureus (Bin.624) and harboured the largest number of ARGs (n = 16). Using the cultivation technique, 60 isolates were obtained from DWTP samples, and Staphylococcus spp. (n = 11) were found to be dominant in all isolates, followed by Bacillus spp. (n = 17). Antimicrobial susceptibility testing showed that most Staphylococcus spp. were multidrug resistant (MDR). These results deepen our understanding of the distribution profiles of ARGs and antibiotic resistant bacteria (ARB) in DWTPs for potential health risk evaluation. Our study also highlights the need for new and efficient water purification technologies that can be introduced and applied in DWTPs.
Collapse
Affiliation(s)
- Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Tao Lin
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Xianhu Wei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Youxiong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Xiaojuan Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Hui Zhao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Chufang Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China; Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China.
| |
Collapse
|
44
|
Xu L, Canales M, Zhou Q, Karu K, Zhou X, Su J, Campos LC, Ciric L. Antibiotic resistance genes and the association with bacterial community in biofilms occurring during the drinking water granular activated carbon (GAC) sandwich biofiltration. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132511. [PMID: 37708648 DOI: 10.1016/j.jhazmat.2023.132511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
The granular activated carbon (GAC) sandwich modification to slow sand filtration could be considered as a promising technology for improved drinking water quality. Biofilms developed on sand and GAC surfaces are expected to show a functional diversity during the biofiltration. Bench-scale GAC sandwich biofilters were set-up and run continuously with and without antibiotic exposure. Surface sand (the schmutzdecke) and GAC biofilms were sampled and subject to high-throughput qPCR for antibiotic resistance gene (ARG) analysis and 16 S rRNA amplicon sequencing. Similar diversity of ARG profile was found in both types of biofilms, suggesting that all ARG categories decreased in richness along the filter bed. In general, surface sand biofilm remained the most active layer with regards to the richness and abundance of ARGs, where GAC biofilms showed slightly lower ARG risks. Network analysis suggested that 10 taxonomic genera were implicated as possible ARG hosts, among which Nitrospira, Methyloversatilis and Methylotenera showed the highest correlation. Overall, this study was the first attempt to consider the whole structure of the GAC sandwich biofilter and results from this study could help to further understand the persistence of ARGs and their association with the microbial community in drinking water biofiltration system.
Collapse
Affiliation(s)
- Like Xu
- Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, UK
| | - Melisa Canales
- Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, UK
| | - Qizhi Zhou
- Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, UK
| | - Kersti Karu
- Department of Chemistry, University College London, London WC1E 6BT, UK
| | - Xinyuan Zhou
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jianqiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Luiza C Campos
- Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, UK
| | - Lena Ciric
- Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, UK.
| |
Collapse
|
45
|
Hansen ZA, Vasco K, Rudrik JT, Scribner KT, Zhang L, Manning SD. Recovery of the gut microbiome following enteric infection and persistence of antimicrobial resistance genes in specific microbial hosts. Sci Rep 2023; 13:15524. [PMID: 37726374 PMCID: PMC10509190 DOI: 10.1038/s41598-023-42822-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023] Open
Abstract
Enteric pathogens cause widespread foodborne illness and are increasingly resistant to important antibiotics yet their ecological impact on the gut microbiome and resistome is not fully understood. Herein, shotgun metagenome sequencing was applied to stool DNA from 60 patients (cases) during an enteric bacterial infection and after recovery (follow-ups). Overall, the case samples harbored more antimicrobial resistance genes (ARGs) with greater resistome diversity than the follow-up samples (p < 0.001), while follow-ups had more diverse gut microbiota (p < 0.001). Although cases were primarily defined by genera Escherichia, Salmonella, and Shigella along with ARGs for multi-compound and multidrug resistance, follow-ups had a greater abundance of Bacteroidetes and Firmicutes phyla and resistance genes for tetracyclines, macrolides, lincosamides, and streptogramins, and aminoglycosides. A host-tracking analysis revealed that Escherichia was the primary bacterial host of ARGs in both cases and follow-ups, with a greater abundance occurring during infection. Eleven distinct extended spectrum beta-lactamase (ESBL) genes were identified during infection, with some detectable upon recovery, highlighting the potential for gene transfer within the community. Because of the increasing incidence of disease caused by foodborne pathogens and their role in harboring and transferring resistance determinants, this study enhances our understanding of how enteric infections impact human gut ecology.
Collapse
Affiliation(s)
- Zoe A Hansen
- Departments of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Karla Vasco
- Departments of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - James T Rudrik
- Bureau of Laboratories, The Michigan Department of Health and Human Services, Lansing, MI, 48906, USA
| | - Kim T Scribner
- Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| | - Lixin Zhang
- Departments of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
- Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, 48824, USA
| | - Shannon D Manning
- Departments of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
46
|
Mao C, Li Q, Komijani M, Huang J, Li T. Metagenomic analysis reveals the dissemination mechanisms and risks of resistance genes in plateau lakes. iScience 2023; 26:107508. [PMID: 37664620 PMCID: PMC10470376 DOI: 10.1016/j.isci.2023.107508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/09/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023] Open
Abstract
Antibiotic resistance genes (ARGs) are emerging as environmental pollutants that can persist and disseminate in aquatic environments. Lakes, as important sources of freshwater, also serve as potential natural reservoirs of ARGs. In this study, we analyzed the distribution and potential risks of resistance genes in five typical freshwater lakes on the Yunnan-Guizhou Plateau. Our findings revealed that multidrug and MLS ARGs dominated in the studied lakes. Notably, while Lugu Lake exhibited higher abundance of ARGs, mobile genetic elements (MGEs), and metal resistance genes (MRGs), a greater resistome risk was observed in the eutrophic Xingyun Lake. The dissemination processes of ARGs and MRGs are primarily driven by microbial communities and the horizontal gene transfer via MGEs. Limnohabitans, Flavobacterium, and Acinetobacter were identified as key players in the dissemination of ARGs. Our study highlights the persistence of ARGs and provides valuable baseline data and risk assessment of ARGs in plateau freshwater lakes.
Collapse
Affiliation(s)
- Chengzhi Mao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Donghu Experimental Station of Lake Ecosystems, Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Majid Komijani
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | - Jie Huang
- Donghu Experimental Station of Lake Ecosystems, Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Tao Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
47
|
Zhang X, Li H, Wang Y, Kang Y, Li Z. Metagenomic analysis reveals antibiotic resistance profiles in tissue samples from patients with diabetic foot infections. J Glob Antimicrob Resist 2023; 34:202-210. [PMID: 37307951 DOI: 10.1016/j.jgar.2023.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 06/14/2023] Open
Abstract
OBJECTIVES Treating patients with diabetic foot infection (DFI) is challenging because of high rates of antibiotic resistance. Therefore, to administer a suitable antibiotic treatment, it is necessary to know the antibiotic resistance patterns in DFIs. METHODS To explore this question, we selected metagenomic data of 36 tissue samples from patients with DFI in the National Center for Biotechnology Information Sequence Read Archive database. RESULTS A total of 229 antibiotic-resistant gene (ARG) subtypes belonging to 20 ARG types were detected. The antibiotic resistome of 229 different genes in the tissue samples of patients with DFI comprised 24 core and 205 accessory resistance genes. Among the core antibiotic resistome, multidrug, tetracycline, macrolide-lincosamide-streptogramin, and beta-lactam resistance genes were the dominant categories. Procrustes analysis indicated that both the microbial community composition and mobile genetic elements (MGEs) were determinants of the ARGs. In the network analysis, 29 species were speculated to be potential hosts of 28 ARGs based on the co-occurrence results. Plasmids and transposons were the most common elements that co-occurred with ARGs. CONCLUSIONS Our study provided detailed information about antibiotic resistance patterns in DFI, which has practical implications for suggesting a more specific antibiotic choice.
Collapse
Affiliation(s)
- Xiujuan Zhang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Haihui Li
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yonghui Wang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yutong Kang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhenjun Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
48
|
Ma LC, Zhao HQ, Wu LB, Cheng ZL, Liu C. Impact of the microbiome on human, animal, and environmental health from a One Health perspective. SCIENCE IN ONE HEALTH 2023; 2:100037. [PMID: 39077043 PMCID: PMC11262275 DOI: 10.1016/j.soh.2023.100037] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 08/21/2023] [Indexed: 07/31/2024]
Abstract
The microbiome encompasses the genomes of the microorganisms that inhabit specific environments. One Health is an emerging concept, recognised as a cohesive, harmonising approach aimed at sustainably improving the well-being of humans, animals, and the environment. The microbiome plays a crucial role in the One Health domain, facilitating interactions among humans, animals, and the environment, along with co-evolution, co-development, co-metabolism, and co-regulation with their associated humans and animals. In addition, the microbiome regulates environmental health through interactions with plant microbiota, which actively participate in substance cycling (particularly the carbon and nitrogen cycles) and influence the overall energy flow in the biosphere. Moreover, antibiotic resistance genes present in microbiota can lead to widespread drug resistance in both humans and animals. This review explores the impact of the microbiome on humans, animals, and the environment, highlighting the significance of focusing on this field in One Health research.
Collapse
Affiliation(s)
- Ling-chao Ma
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- One Health Centre, Shanghai Jiao Tong University and the University of Edinburgh, Shanghai, China
| | - Han-qing Zhao
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- One Health Centre, Shanghai Jiao Tong University and the University of Edinburgh, Shanghai, China
| | - Logan Blair Wu
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- One Health Centre, Shanghai Jiao Tong University and the University of Edinburgh, Shanghai, China
- Population Health & Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Zi-le Cheng
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- One Health Centre, Shanghai Jiao Tong University and the University of Edinburgh, Shanghai, China
| | - Chang Liu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
49
|
Ke Y, Sun W, Chen X, Zhu Y, Guo X, Yan W, Xie S. Seasonality Determines the Variations of Biofilm Microbiome and Antibiotic Resistome in a Pilot-Scale Chlorinated Drinking Water Distribution System Deciphered by Metagenome Assembly. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11430-11441. [PMID: 37478472 DOI: 10.1021/acs.est.3c01980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Understanding the biofilm microbiome and antibiotic resistome evolution in drinking water distribution systems (DWDSs) is crucial to ensure the safety of drinking water. We explored the 10 month evolution of the microbial community, antibiotic resistance genes (ARGs), mobile gene elements (MGEs) co-existing with ARGs and pathogenic ARG hosts, and the ARG driving factors in DWDS biofilms using metagenomics assembly. Sampling season was critical in determining the microbial community and antibiotic resistome shift. Pseudomonas was the primary biofilm colonizer, and biofilms diversified more as the formation time increased. Most genera tended to cooperate to adapt to an oligotrophic environment with disinfectant stress. Biofilm microbial community and antibiotic resistome assembly were mainly determined by stochastic processes and changed with season. Metagenome assembly provided the occurrence and fates of MGEs co-existing with ARGs and ARG hosts in DWDS biofilms. The abundance of ARG- and MGE-carrying pathogen Stenotrophomonas maltophilia was high in summer. It primarily harbored the aph(3)-IIb, multidrug transporter, smeD, and metallo-beta-lactamase ARGs, which were transferred via recombination. The microbial community was the most crucial factor driving the antibiotic resistance shift. We provide novel insights about the evolution of pathogens and ARGs and their correlations in DWDS biofilms to ensure the safety of drinking water.
Collapse
Affiliation(s)
- Yanchu Ke
- School of Environment, Tsinghua University, Beijing 100084, China
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xu Guo
- Fangshan District Water Bureau, Beijing 102445, China
| | - Weixin Yan
- Beijing BiSheng United Water Company, Beijing 102400, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
50
|
Li S, Niu Z, Zhang Y. The prevalence of extra- and intra- cellular antibiotic resistance genes and the relationship with bacterial community in different layers of biofilm in the simulated drinking water pipelines. JOURNAL OF WATER PROCESS ENGINEERING 2023; 53:103780. [DOI: 10.1016/j.jwpe.2023.103780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|