1
|
Liu J, Wang Q, Ma R, Du Q, Ni N, Zhao S, Sun C, Zhao Q, Lai Y, Liu G. Alterations in scalp microorganisms after Er: YAG laser treatment for Shanghai androgenetic alopecia patients. Lasers Med Sci 2025; 40:216. [PMID: 40346418 DOI: 10.1007/s10103-025-04469-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 04/29/2025] [Indexed: 05/11/2025]
Abstract
Androgenetic alopecia (AGA) is associated with the scalp microbiota, but the role of microflora during hair loss has not been fully characterized. Erbium: yttrium aluminum garnet (Er: Yag) is a microablative laser treatment for hair regeneration that can cause minimal damage to the skin surface. This investigation aimed to evaluate the effects of microtrauma caused by the Er: Yag laser of AGA on scalp microorganisms. Thirteen AGA patients in this study received Er: Yag laser treatment (3.3 Hz frequency and 7.00 J/cm2 pulse fluence). Scanning electron microscope (SEM) was used to observe the scalp bacteria. Before treatment, microflora samples were collected 2 hours and 48 hours after shampooing. Samples were also collected on the third, seventh, and fourteenth days following laser treatment. Scalp microorganisms coding the 16S ribosomal RNA V3/V4 region were analysed by high-throughput DNA sequencing. Globular bacteria were detected through the SEM images on the epidermis at the junction of the hair shaft and hair follicle. The results of the 16S sequencing revealed that the most abundant genera observed across all samples prior to laser treatment were Cutibacterium species (spp.) (53%) and Staphylococcus spp. (13%) in 13 AGA patients. Three days after laser treatment, Firmicutes, Staphylococcus spp., and Staphylococcus capitis were significantly more abundant at the phylum, genus, and species levels than before, respectively. These data suggest that the presence of Staphylococcus spp. significantly increased after microtrauma caused by Er: Yag laser treatment, indicating that the Er: Yag laser might play an essential role in modulating and restoring the balance of scalp microbiota.
Collapse
Affiliation(s)
- Jinfang Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Qingliang Wang
- Center of Trichomed, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Rong Ma
- School of Life Sciences, Northwest University, Xi'an, Shanghai, 710069, China
| | - Qian Du
- Department of Dermatologic Surgery, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Na Ni
- Department of Dermatologic Surgery, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Sijia Zhao
- Department of Dermatologic Surgery, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Caihong Sun
- Center of Trichomed, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Qian Zhao
- Center of Trichomed, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yongxian Lai
- Department of Dermatologic Surgery, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
- Department of Dermatology, Shanghai City Qingpu District of Zhujiajiao people's Hospital, Shanghai, 201713, China.
| | - Guangpeng Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
2
|
Addissouky TA. Advancing frontiers in skin offensive odor management: from innovative diagnostics to cutting-edge treatments and emerging technologies. Arch Dermatol Res 2025; 317:539. [PMID: 40056222 DOI: 10.1007/s00403-025-03929-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 03/10/2025]
Abstract
Skin bromhidrosis, commonly referred to as body odor, is caused by the microbial breakdown of sweat, leading to the formation of volatile organic compounds (VOCs) that result in unpleasant odors. While body odor is a natural consequence of sweat production, excessive or persistent odor can significantly affect quality of life, causing social stigma and psychological distress. Traditional approaches to managing body odor, such as antiperspirants and deodorants, have limitations, necessitating the development of more advanced diagnostic tools and treatments. This review aims to explore recent advancements in the diagnosis and treatment of skin offensive odor, focusing on cutting-edge technologies and novel approaches. It highlights the interplay of the skin microbiome, sweat gland activity, and external factors in odor formation and investigates innovative solutions for long-term odor management. Emerging diagnostic techniques, such as electronic nose (E-nose) technology, gas chromatography-mass spectrometry (GC-MS), and next-generation sequencing (NGS), enable precise detection and analysis of odor-causing VOCs and microbial profiles. These tools facilitate a deeper understanding of the pathophysiology of odor production. Treatment innovations include nanotechnology-based antimicrobials (e.g., silver and zinc oxide nanoparticles), probiotic formulations for microbiome modulation, and odor-neutralizing compounds such as cyclodextrins and enzymatic neutralizers. Advanced delivery systems, including microneedle patches and nanoencapsulation, enable targeted, sustained release of active ingredients. Additionally, systemic approaches like oral probiotics and dietary interventions offer complementary strategies for managing body odor. The integration of novel diagnostics with innovative topical and systemic treatments offers promising avenues for more effective and personalized management of skin offensive odor. These advancements pave the way for improved quality of life for individuals affected by bromhidrosis, with potential for widespread application in personal care and medical contexts. Clinical trial number: Not applicable.
Collapse
Affiliation(s)
- Tamer A Addissouky
- Medical Laboratories Techniques Department, College of Technology and Health Sciences, AL-Mustaqbal University, Hillah, Babylon, 51001, Iraq.
- Department of Biochemistry, Science Faculty, Menoufia University, Menoufia, Egypt.
- New Burg El-Arab Hospital, Ministry of Health, Alexandria, Egypt.
- American Society for Clinical Pathology (ASCP), Chicago, USA.
| |
Collapse
|
3
|
Stevens BR, Roesch LFW. Interplay of human ABCC11 transporter gene variants with axillary skin microbiome functional genomics. Sci Rep 2024; 14:28037. [PMID: 39543265 PMCID: PMC11564711 DOI: 10.1038/s41598-024-78711-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
The human armpit microbiome is metabolically entangled with skin cell physiology. This "meta-organism" symbiotic mutualism results in sweat either with or without odor (osmidrosis), depending on host ABCC11 gene haplotypes. Apocrine metabolism produces odorless S-glutathione conjugate that is transferred by ABCC11 transporters into secretory vesicles, deglutamylated to S-Cys-Gly-3M3SH thiol, and exuded to skin surface. An anthropogenic clade of skin bacteria then takes up the thiol and bioconverts it to malodorous 3-methyl-3-sulfanylhexan-1-ol (3M3SH). We hypothesized a familial meta-organism association of human ABCC11 gene non-synonymous SNP rs17822931 interplaying with skin microbiome 3M3SH biosynthesis. Subjects were genotyped for ABCC11 SNPs, and their haplotypes were correlated with axilla microbiome DNA sequencing profiles and predicted metagenome functions. A multigeneration family pedigree revealed a Mendelian autosomal recessive pattern: the C allele of ABCC11 correlated with bacterial Cys-S-conjugate β-lyase (PatB) gene known for Staphylococcus hominis biosynthesis of 3M3SH from human precursor; PatB was rescinded in hosts with homozygous TT alleles encoding ABCC11 loss-of-function mutation. We posit that a C allele encoding functional ABCC11 is key to delivering host conjugate precursors that shape heritable skin niche conditions favorable to harboring Staphylococcus having genomics of odor thiol production. This provides existential insights into human evolution and global regional population ancestries.
Collapse
Affiliation(s)
- Bruce R Stevens
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| | - Luiz F W Roesch
- Department of Microbiology and Cell Science, College of Agriculture and Life Sciences, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
4
|
Hara S, Kusunoki T, Nakagawa H, Kamiya K, Toyoda Y, Takata Y, Anzai T, Furukawa M, Okada H, Nakayama T, Ikeda K, Matsumoto F. Impact of Reduced Acidic Earwax pH and Earwax-Determinant Genotypes in Acquired Middle Ear Cholesteatoma. Otolaryngol Head Neck Surg 2024; 171:1511-1517. [PMID: 38953179 DOI: 10.1002/ohn.888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/16/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
OBJECTIVE The development of acquired middle ear cholesteatoma is associated with a single nucleotide polymorphism, 538G>A, in the human adenosine triphosphate-binding cassette transporter C11 (ABCC11) gene, which is a determinant of the earwax morphotype, such as wet- and dry-type earwax; however, the mechanism underlying this association is unclear. We focused on the earwax pH and aimed to elucidate the mechanism between ABCC11 genotypes and acquired middle ear cholesteatoma. STUDY DESIGN Prospective observational study. SETTING Single-center, academic hospital. METHODS We recruited 40 patients with acquired middle ear cholesteatoma who underwent surgery and 115 controls with no history of middle ear cholesteatoma. We assessed the earwax pH and ABCC11 genotypes in all participants. Clinical information was collected from the patients with cholesteatoma. RESULTS The earwax pH was significantly less acidic in patients with cholesteatoma and those carrying wet earwax genotypes (ABCC11 538G/G or 538G/A) than in the controls and those carrying the dry earwax genotype (ABCC11 538A/A), respectively. Furthermore, earwax pH was significantly positively correlated with high preoperative cholesteatoma stages in the patients with cholesteatoma. CONCLUSION Our results show that the less acidic earwax pH was significantly related to the development and progression of acquired middle ear cholesteatoma. The less acidic earwax pH may play an important role in the mechanism underlying the association between acquired middle ear cholesteatoma and the ABCC11 gene at site 538.
Collapse
Affiliation(s)
- Satoshi Hara
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- International Collaborative Research Administration, Juntendo University, Tokyo, Japan
| | - Takeshi Kusunoki
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Hiroshi Nakagawa
- Department of Applied Biological Chemistry, Graduate School of Bioscience and Biotechnology, Chubu University, Aichi, Japan
| | - Kazusaku Kamiya
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Yusuke Takata
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Takashi Anzai
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Masayuki Furukawa
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Hiroko Okada
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Takumi Nakayama
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Katsuhisa Ikeda
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Fumihiko Matsumoto
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Borrego-Ruiz A, Borrego JJ. Microbial Dysbiosis in the Skin Microbiome and Its Psychological Consequences. Microorganisms 2024; 12:1908. [PMID: 39338582 PMCID: PMC11433878 DOI: 10.3390/microorganisms12091908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
The homeostasis of the skin microbiome can be disrupted by both extrinsic and intrinsic factors, leading to a state of dysbiosis. This imbalance has been observed at the onset of persistent skin diseases that are closely linked to mental health conditions like anxiety and depression. This narrative review explores recent findings on the relationship between the skin microbiome and the pathophysiology of specific skin disorders, including acne vulgaris, atopic dermatitis, psoriasis, and wound infections. Additionally, it examines the psychological impact of these skin disorders, emphasizing their effect on patients' quality of life and their association with significant psychological consequences, such as anxiety, depression, stress, and suicidal ideation in the most severe cases.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain
| | - Juan J Borrego
- Departamento de Microbiología, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
6
|
Jeong JH, Park C. Comparative Study of 1444 nm Laser Monotherapy versus Integrated Liposuction in the Treatment of Axillary Osmidrosis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1151. [PMID: 39064579 PMCID: PMC11278600 DOI: 10.3390/medicina60071151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: The 1444 nm wavelength Neodymium:Yttrium-Aluminum-Garnet (Nd:YAG) laser treatment is an efficient method for treating axillary osmidrosis (AO); however, it has a relatively low treatment persistence. To address this issue, we performed integrated liposuction surgery with a laser to treat AO and compared the results with those of a group treated only with a laser. Materials and Methods: This study compared the outcomes of AO treatment between the two groups up to six months postoperatively. The first group of 18 patients underwent laser treatment alone, and the second group of 12 patients underwent integrated liposuction surgery in addition to laser treatment. Outcomes were assessed using the following variables: degree of malodor (DOM), sweating area, patient satisfaction, pain levels, and complications, such as burns, swelling, and contractures. Results: Compared to the laser-only group, the integrated liposuction group demonstrated significantly superior outcomes in terms of DOM (p = 0.002) and patient satisfaction (p = 0.006), as well as a reduction in the sweating area (p = 0.012). The pain rating was higher in the liposuction group, but the difference was not statistically significant (p = 0.054). Compared with the patients in the integrated liposuction treatment group, those in the laser treatment group exhibited a significantly higher number of burns under the axillae (p = 0.025). However, no significant differences were observed in the swelling or contracture between the groups. Conclusions: Integrated liposuction with laser therapy significantly improved treatment outcomes, including malodor, patient satisfaction, sweat test results, and decreased complication rates.
Collapse
Affiliation(s)
- Jae Hoon Jeong
- Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si 13620, Republic of Korea;
| | - Chongsoo Park
- Department of Plastic and Reconstructive Surgery, Inje University College of Medicine, Inje University Busan Paik Hospital, Busan 47392, Republic of Korea
| |
Collapse
|
7
|
Mahmoud MAA, Zhang Y. Enhancing Odor Analysis with Gas Chromatography-Olfactometry (GC-O): Recent Breakthroughs and Challenges. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9523-9554. [PMID: 38640191 DOI: 10.1021/acs.jafc.3c08129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Gas chromatography-olfactometry (GC-O) has made significant advancements in recent years, with breakthroughs in its applications and the identification of its limitations. This technology is widely used for analyzing complex odor patterns. The review begins by explaining the principles of GC-O, including sample preparation, separation methods, and olfactory evaluation techniques. It then explores the diverse range of applications where GC-O has found success, such as food and beverage industries, environmental monitoring, perfume and aroma development, and forensic analysis. One of the major breakthroughs in GC-O analysis is the improvement in separation power and resolution of odorants. Techniques like rapid GC, comprehensive two-dimensional GC, and multidimensional GC have enhanced the identification and quantification of odor-active chemicals. However, GC-O also has limitations. These include the challenges in detecting and quantifying trace odorants, dealing with matrix effects, and ensuring the repeatability and consistency of results across laboratories. The review examines these limitations closely and discusses potential solutions and future directions for improvement in GC-O analysis. Overall, this review presents a comprehensive overview of the recent advances in GC-O, covering breakthroughs, applications, and limitations. It aims to promote the wider usage of GC-O analysis in odor analysis and related industries. Researchers, practitioners, and anyone interested in leveraging the capabilities of GC-O in analyzing complex odor patterns will find this review a valuable resource. The article highlights the potential of GC-O and encourages further research and development in the field.
Collapse
Affiliation(s)
- Mohamed A A Mahmoud
- Department of Agricultural Biochemistry, Faculty of Agriculture, Ain Shams University, Hadayek Shobra, Cairo 11241, Egypt
| | - Yanyan Zhang
- Department of Flavor Chemistry, Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstraße 12, Stuttgart 70599, Germany
| |
Collapse
|
8
|
Owsienko D, Goppelt L, Hierl K, Schäfer L, Croy I, Loos HM. Body odor samples from infants and post-pubertal children differ in their volatile profiles. Commun Chem 2024; 7:53. [PMID: 38514840 PMCID: PMC10957943 DOI: 10.1038/s42004-024-01131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2024] Open
Abstract
Body odors change during development, and this change influences the interpersonal communication between parents and their children. The molecular basis for this chemical communication has not been elucidated yet. Here, we show by combining instrumental and sensory analyses that the qualitative odorant composition of body odor samples is similar in infants (0-3 years) and post-pubertal children (14-18 years). The post-pubertal samples are characterized by higher odor dilution factors for carboxylic acids and by the presence of 5α-androst-16-en-3-one and 5α-androst-16-en-3α-ol. In addition to the olfaction-guided approach, the compounds 6-methylhept-5-en-2-one (6MHO), geranyl acetone (GA) and squalene (SQ) were quantified. Both age groups have similar concentrations of 6MHO and GA, whereas post-pubertal children tend to have higher concentration of SQ. In conclusion, sexual maturation coincides with changes to body odor chemical composition. Whether those changes explain differences in parental olfactory perception needs to be determined in future studies with model odors.
Collapse
Affiliation(s)
- Diana Owsienko
- Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lisa Goppelt
- Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Katharina Hierl
- Department of Psychotherapy and Psychosomatics, Technical University of Dresden, Dresden, Germany
| | - Laura Schäfer
- Department of Psychotherapy and Psychosomatics, Technical University of Dresden, Dresden, Germany
| | - Ilona Croy
- Department of Psychotherapy and Psychosomatics, Technical University of Dresden, Dresden, Germany
- Department of Clinical Psychology, Friedrich-Schiller-University of Jena, Jena, Germany
| | - Helene M Loos
- Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany.
| |
Collapse
|
9
|
Hui X, Yang J, Sun J, Liu F, Pan W. MCSS: microbial community simulator based on structure. Front Microbiol 2024; 15:1358257. [PMID: 38516019 PMCID: PMC10956353 DOI: 10.3389/fmicb.2024.1358257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2024] Open
Abstract
De novo assembly plays a pivotal role in metagenomic analysis, and the incorporation of third-generation sequencing technology can significantly improve the integrity and accuracy of assembly results. Recently, with advancements in sequencing technology (Hi-Fi, ultra-long), several long-read-based bioinformatic tools have been developed. However, the validation of the performance and reliability of these tools is a crucial concern. To address this gap, we present MCSS (microbial community simulator based on structure), which has the capability to generate simulated microbial community and sequencing datasets based on the structure attributes of real microbiome communities. The evaluation results indicate that it can generate simulated communities that exhibit both diversity and similarity to actual community structures. Additionally, MCSS generates synthetic PacBio Hi-Fi and Oxford Nanopore Technologies (ONT) long reads for the species within the simulated community. This innovative tool provides a valuable resource for benchmarking and refining metagenomic analysis methods. Code available at: https://github.com/panlab-bio/mcss.
Collapse
Affiliation(s)
- Xingqi Hui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences (ICR, CAAS), Shenzhen, China
| | - Jinbao Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences (ICR, CAAS), Shenzhen, China
- College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Jinhuan Sun
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Fang Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, China
| | - Weihua Pan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences (ICR, CAAS), Shenzhen, China
| |
Collapse
|
10
|
Di Cicco F, Evans RL, James AG, Weddell I, Chopra A, Smeets MAM. Intrinsic and extrinsic factors affecting axillary odor variation. A comprehensive review. Physiol Behav 2023; 270:114307. [PMID: 37516230 DOI: 10.1016/j.physbeh.2023.114307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 07/31/2023]
Abstract
Humans produce odorous secretions from multiple body sites according to the microbiomic profile of each area and the types of secretory glands present. Because the axilla is an active, odor-producing region that mediates social communication via the sense of smell, this article focuses on the biological mechanisms underlying the creation of axillary odor, as well as the intrinsic and extrinsic factors likely to impact the odor and determine individual differences. The list of intrinsic factors discussed includes sex, age, ethnicity, emotions, and personality, and extrinsic factors include dietary choices, diseases, climate, and hygienic habits. In addition, we also draw attention to gaps in our understanding of each factor, including, for example, topical areas such as the effect of climate on body odor variation. Fundamental challenges and emerging research opportunities are further outlined in the discussion. Finally, we suggest guidelines and best practices based on the factors reviewed herein for preparatory protocols of sweat collection, data analysis, and interpretation.
Collapse
Affiliation(s)
- Francesca Di Cicco
- Faculty of Social and Behavioural Sciences, Utrecht University, Heidelberglaan 1, Utrecht, CS 3584, the Netherlands.
| | - Richard L Evans
- Unilever Research & Development, Port Sunlight Laboratory, Bebington, UK
| | - A Gordon James
- Unilever Research & Development, Colworth House, Sharnbrook, UK
| | - Iain Weddell
- Unilever Research & Development, Port Sunlight Laboratory, Bebington, UK
| | - Anita Chopra
- Unilever Research & Development, Port Sunlight Laboratory, Bebington, UK
| | - Monique A M Smeets
- Faculty of Social and Behavioural Sciences, Utrecht University, Heidelberglaan 1, Utrecht, CS 3584, the Netherlands; Unilever Research & Development, Rotterdam, the Netherlands
| |
Collapse
|
11
|
Schäfer L, Croy I. An integrative review: Human chemosensory communication in the parent-child relationship. Neurosci Biobehav Rev 2023; 153:105336. [PMID: 37527693 DOI: 10.1016/j.neubiorev.2023.105336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Abstract
Body odors serve as signals of kinship, with parents exhibiting a preference for the scent of their infants, and vice versa. The reciprocal perception of body odors can promote bonding through two mechanisms. Firstly, as an indirect pathway, through associative chemosensory learning, which leads to changes in proximity-seeking behaviors. Secondly, as a direct pathway, by eliciting the display of positive emotions, thereby reinforcing the mutual bond. Both mechanisms weaken as the child undergoes development due to changes in body odor expression and perception. This comprehensive review provides an overview of the current literature on chemosignals in the parent-child relationship, highlighting their significance in facilitating dyadic communication throughout the developmental span. Furthermore, future research perspectives are outlined to gain a better understanding of these benefits and, on the long run, derive potential interventions to strengthen parent child attachment.
Collapse
Affiliation(s)
- Laura Schäfer
- Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| | - Ilona Croy
- Department of Clinical Psychology, Institute of Psychology, Friedrich-Schiller-Universität Jena, Germany; German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany
| |
Collapse
|
12
|
Amar Y, Rogner D, Silva RL, Foesel BU, Ud-Dean M, Lagkouvardos I, Steimle-Grauer SA, Niedermeier S, Kublik S, Jargosch M, Heinig M, Thomas J, Eyerich S, Wikström JD, Schloter M, Eyerich K, Biedermann T, Köberle M. Darier's disease exhibits a unique cutaneous microbial dysbiosis associated with inflammation and body malodour. MICROBIOME 2023; 11:162. [PMID: 37496039 PMCID: PMC10369845 DOI: 10.1186/s40168-023-01587-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/01/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Darier's disease (DD) is a genodermatosis caused by mutations of the ATP2A2 gene leading to disrupted keratinocyte adhesion. Recurrent episodes of skin inflammation and infections with a typical malodour in DD indicate a role for microbial dysbiosis. Here, for the first time, we investigated the DD skin microbiome using a metabarcoding approach of 115 skin swabs from 14 patients and 14 healthy volunteers. Furthermore, we analyzed its changes in the context of DD malodour and the cutaneous DD transcriptome. RESULTS We identified a disease-specific cutaneous microbiome with a loss of microbial diversity and of potentially beneficial commensals. Expansion of inflammation-associated microbes such as Staphylococcus aureus and Staphylococcus warneri strongly correlated with disease severity. DD dysbiosis was further characterized by abundant species belonging to Corynebacteria, Staphylococci and Streptococci groups displaying strong associations with malodour intensity. Transcriptome analyses showed marked upregulation of epidermal repair, inflammatory and immune defence pathways reflecting epithelial and immune response mechanisms to DD dysbiotic microbiome. In contrast, barrier genes including claudin-4 and cadherin-4 were downregulated. CONCLUSIONS These findings allow a better understanding of Darier exacerbations, highlighting the role of cutaneous dysbiosis in DD inflammation and associated malodour. Our data also suggest potential biomarkers and targets of intervention for DD. Video Abstract.
Collapse
Affiliation(s)
- Yacine Amar
- Department of Dermatology and Allergy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Danielle Rogner
- Department of Dermatology and Allergy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Rafaela L Silva
- Department of Dermatology and Allergy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Bärbel U Foesel
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt (GmbH), 85764, Neuherberg, Germany
| | - Minhaz Ud-Dean
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Ilias Lagkouvardos
- Core Facility Microbiome, Technical University of Munich, 85354, Freising, Germany
| | - Susanne A Steimle-Grauer
- Department of Dermatology and Allergy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Sebastian Niedermeier
- Department of Dermatology and Allergy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Susanne Kublik
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt (GmbH), 85764, Neuherberg, Germany
| | - Manja Jargosch
- Department of Dermatology and Allergy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Matthias Heinig
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Jenny Thomas
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Stefanie Eyerich
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Jakob D Wikström
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Michael Schloter
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt (GmbH), 85764, Neuherberg, Germany
| | - Kilian Eyerich
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Dermatology and Venereology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy, Technical University of Munich, School of Medicine, Munich, Germany.
| | - Martin Köberle
- Department of Dermatology and Allergy, Technical University of Munich, School of Medicine, Munich, Germany
| |
Collapse
|
13
|
Sekine Y, Oikawa D, Todaka M. Human skin gas profile of individuals with the people allergic to me phenomenon. Sci Rep 2023; 13:9471. [PMID: 37301918 PMCID: PMC10257688 DOI: 10.1038/s41598-023-36615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023] Open
Abstract
Recent studies have shown that some people claim that their skin gases provoke allergy-like reactions in people in their near vicinity. Such a phenomenon or symptom is called 'people allergic to me (PATM)'. Although numerous people suffer from PATM, the actual conditions are unknown. The aim of this study was to investigate the characteristics of human skin profiles in patients with PATM by measuring the dermal emission fluxes of 75 skin gases using passive flux sampler and gas chromatography/mass spectrometry. We found common features in the human skin gas profiles of 20 subjects with PATM, with a significant difference from those of 24 non-PATM subjects: greater emissions of petrochemicals, organosulfur compounds, and some aldehydes and lower emissions of aroma compounds and others. The ratio of toluene to benzaldehyde is considered a vital sign that suggests the fundamental of PATM. These findings indicate that PATM is a medically unexplained phenomenon or symptom worthy of further research, which requires an interdisciplinary approach.
Collapse
Affiliation(s)
- Yoshika Sekine
- Department of Chemistry, School of Science, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan.
| | - Daisuke Oikawa
- AIREX Inc., R&D Laboratory, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Michihito Todaka
- AIREX Inc., R&D Laboratory, Hiratsuka, Kanagawa, 259-1292, Japan
| |
Collapse
|
14
|
The dynamic balance of the skin microbiome across the lifespan. Biochem Soc Trans 2023; 51:71-86. [PMID: 36606709 PMCID: PMC9988004 DOI: 10.1042/bst20220216] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
For decades research has centered on identifying the ideal balanced skin microbiome that prevents disease and on developing therapeutics to foster this balance. However, this single idealized balance may not exist. The skin microbiome changes across the lifespan. This is reflected in the dynamic shifts of the skin microbiome's diverse, inter-connected community of microorganisms with age. While there are core skin microbial taxa, the precise community composition for any individual person is determined by local skin physiology, genetics, microbe-host interactions, and microbe-microbe interactions. As a key interface with the environment, the skin surface and its appendages are also constantly exchanging microbes with close personal contacts and the environment. Hormone fluctuations and immune system maturation also drive age-dependent changes in skin physiology that support different microbial community structures over time. Here, we review recent insights into the factors that shape the skin microbiome throughout life. Collectively, the works summarized within this review highlight how, depending on where we are in lifespan, our skin supports robust microbial communities, while still maintaining microbial features unique to us. This review will also highlight how disruptions to this dynamic microbial balance can influence risk for dermatological diseases as well as impact lifelong health.
Collapse
|
15
|
Swaney MH, Nelsen A, Sandstrom S, Kalan LR. Sweat and Sebum Preferences of the Human Skin Microbiota. Microbiol Spectr 2023; 11:e0418022. [PMID: 36602383 PMCID: PMC9927561 DOI: 10.1128/spectrum.04180-22] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
The microorganisms inhabiting human skin must overcome numerous challenges that typically impede microbial growth, including low pH, osmotic pressure, and low nutrient availability. Yet the skin microbiota thrive on the skin and have adapted to these stressful conditions. The limited nutrients available for microbial use in this unique niche include those from host-derived sweat, sebum, and corneocytes. Here, we have developed physiologically relevant, synthetic skin-like growth media composed of compounds present in sweat and sebum. We find that skin-associated bacterial species exhibit unique growth profiles at different concentrations of artificial sweat and sebum. Most strains evaluated demonstrate a preference for high sweat concentrations, while the sebum preference is highly variable, suggesting that the capacity for sebum utilization may be a driver of the skin microbial community structure. In particular, the prominent skin commensal Staphylococcus epidermidis exhibits the strongest preference for sweat while growing equally well across sebum concentrations. Conversely, the growth of Corynebacterium kefirresidentii, another dominant skin microbiome member, is dependent on increasing concentrations of both sweat and sebum but only when sebum is available, suggesting a lipid requirement of this species. Furthermore, we observe that strains with similar growth profiles in the artificial media cluster by phylum, suggesting that phylogeny is a key factor in sweat and sebum use. Importantly, these findings provide an experimental rationale for why different skin microenvironments harbor distinct microbiome communities. In all, our study further emphasizes the importance of studying microorganisms in an ecologically relevant context, which is critical for our understanding of their physiology, ecology, and function on the skin. IMPORTANCE The human skin microbiome is adapted to survive and thrive in the harsh environment of the skin, which is low in nutrient availability. To study skin microorganisms in a system that mimics the natural skin environment, we developed and tested a physiologically relevant, synthetic skin-like growth medium that is composed of compounds found in the human skin secretions sweat and sebum. We find that most skin-associated bacterial species tested prefer high concentrations of artificial sweat but that artificial sebum concentration preference varies from species to species, suggesting that sebum utilization may be an important contributor to skin microbiome composition. This study demonstrates the utility of a skin-like growth medium, which can be applied to diverse microbiological systems, and underscores the importance of studying microorganisms in an ecologically relevant context.
Collapse
Affiliation(s)
- Mary Hannah Swaney
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin, Madison, Wisconsin, USA
| | - Amanda Nelsen
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Shelby Sandstrom
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Lindsay R. Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medicine, Division of Infectious Disease, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- M. G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
16
|
Antimicrobial Effects of Tetraspanin CD9 Peptide against Microbiota Causing Armpit Malodour. Antibiotics (Basel) 2023; 12:antibiotics12020271. [PMID: 36830182 PMCID: PMC9952088 DOI: 10.3390/antibiotics12020271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Synthetic peptides, including tetraspanin CD9 peptides, are increasingly coming into focus as new treatment strategies against various organisms, including bacteria, that cause underarm odour. The use of deodorants and antiperspirants is associated with side effects. Therefore, it is critical to find an alternative therapeutic approach to combat underarm odour. The aim of this study is to investigate the antibacterial effect of tetraspanin CD9 peptides against the skin microbiota that cause malodour in the underarms. The antimicrobial activity of CD9 peptides against Micrococcus luteus (M. luteus), Bacillus subtilis (B. subtilis), Staphylococcus epidermidis (S. epidermidis), and Corynebacterium xerosis (C. xerosis) was investigated by the disc diffusion method. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined by broth microdilution assays using CD9 peptide concentrations ranging from 1 mg/mL to 0.0078 mg/mL. In addition, the anti-biofilm activity of the CD9 peptides was determined. The CD9 peptides showed different antibacterial activity with an inhibition zone of 7.67, 9.67, 7.00, and 6.00 mm for S. epidermidis, M. luteus, C. xerosis, and B. subtilis, respectively. All bacteria had the same MBC value of 1 mg/mL. A high MIC of CD9 peptides was observed for S. epidermidis and M. luteus at 0.5 mg/mL. The MIC values of B. subtilis and C. xerosis were 0.125 mg/mL and 0.25 mg/mL, respectively. CD9 peptides significantly inhibited biofilm development of S. epidermidis, B. subtilis, and C. xerosis isolates. The CD9 tetraspanin peptide has excellent antibacterial activity against bacteria that cause underarm odour. Therefore, the CD9 tetraspanin peptide is a promising alternative to deodorants and antiperspirants to combat commensal bacteria of the skin that cause underarm odour.
Collapse
|
17
|
Haertl T, Owsienko D, Schwinn L, Hirsch C, Eskofier BM, Lang R, Wirtz S, Loos HM. Exploring the interrelationship between the skin microbiome and skin volatiles: A pilot study. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1107463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Unravelling the interplay between a human’s microbiome and physiology is a relevant task for understanding the principles underlying human health and disease. With regard to human chemical communication, it is of interest to elucidate the role of the microbiome in shaping or generating volatiles emitted from the human body. In this study, we characterized the microbiome and volatile organic compounds (VOCs) sampled from the neck and axilla of ten participants (five male, five female) on two sampling days, by applying different methodological approaches. Volatiles emitted from the respective skin site were collected for 20 min using textile sampling material and analyzed on two analytical columns with varying polarity of the stationary phase. Microbiome samples were analyzed by a culture approach coupled with MALDI-TOF-MS analysis and a 16S ribosomal RNA gene (16S RNA) sequencing approach. Statistical and advanced data analysis methods revealed that classification of body sites was possible by using VOC and microbiome data sets. Higher classification accuracy was achieved by combination of both data pools. Cutibacterium, Staphylococcus, Micrococcus, Streptococcus, Lawsonella, Anaerococcus, and Corynebacterium species were found to contribute to classification of the body sites by the microbiome. Alkanes, esters, ethers, ketones, aldehydes and cyclic structures were used by the classifier when VOC data were considered. The interdisciplinary methodological platform developed here will enable further investigations of skin microbiome and skin VOCs alterations in physiological and pathological conditions.
Collapse
|
18
|
Essential Oils Encapsulated in Zeolite Structures as Delivery Systems (EODS): An Overview. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238525. [PMID: 36500617 PMCID: PMC9740572 DOI: 10.3390/molecules27238525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Essential oils (EO) obtained from plants have proven industrial applications in the manufacturing of perfumes and cosmetics, in the production and flavoring of foods and beverages, as therapeutic agents in aromatherapy, and as the active principles or excipients of medicines and pharmaceutics due to their olfactory, physical-chemical, and biological characteristics. On behalf of the new paradigm of a more natural and sustainable lifestyle, EO are rather appealing due to their physical, chemical, and physiological actions in human beings. However, EO are unstable and susceptible to degradation or loss. To tackle this aspect, the encapsulation of EO in microporous structures as zeolites is an attractive solution, since these host materials are cheap and non-toxic to biological environments. This overview provides basic information regarding essential oils, including their recognized benefits and functional properties. Current progress regarding EO encapsulation in zeolite structures is also discussed, highlighting some representative examples of essential oil delivery systems (EODS) based on zeolites for healthcare applications or aromatherapy.
Collapse
|
19
|
Chen H, Zhao Q, Zhong Q, Duan C, Krutmann J, Wang J, Xia J. Skin Microbiome, Metabolome and Skin Phenome, from the Perspectives of Skin as an Ecosystem. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:363-382. [PMID: 36939800 PMCID: PMC9712873 DOI: 10.1007/s43657-022-00073-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 11/07/2022]
Abstract
Skin is a complex ecosystem colonized by millions of microorganisms, including bacteria, fungi, and viruses. Skin microbiota is believed to exert critical functions in maintaining host skin health. Profiling the structure of skin microbial community is the first step to overview the ecosystem. However, the community composition is highly individualized and extremely complex. To explore the fundamental factors driving the complexity of the ecosystem, namely the selection pressures, we review the present studies on skin microbiome from the perspectives of ecology. This review summarizes the following: (1) the composition of substances/nutrients in the cutaneous ecological environment that are derived from the host and the environment, highlighting their proposed function on skin microbiota; (2) the features of dominant skin commensals to occupy ecological niches, through self-adaptation and microbe-microbe interactions; (3) how skin microbes, by their structures or bioactive molecules, reshape host skin phenotypes, including skin immunity, maintenance of skin physiology such as pH and hydration, ultraviolet (UV) protection, odor production, and wound healing. This review aims to re-examine the host-microbe interactions from the ecological perspectives and hopefully to give new inspiration to this field.
Collapse
Affiliation(s)
- Huizhen Chen
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Qi Zhao
- grid.27255.370000 0004 1761 1174Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
- grid.435557.50000 0004 0518 6318IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, D-40225 Germany
| | - Qian Zhong
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Cheng Duan
- grid.8547.e0000 0001 0125 2443Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511458 China
| | - Jean Krutmann
- grid.435557.50000 0004 0518 6318IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, D-40225 Germany
| | - Jiucun Wang
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
- grid.506261.60000 0001 0706 7839Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, 200438 China
| | - Jingjing Xia
- grid.8547.e0000 0001 0125 2443Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511458 China
| |
Collapse
|
20
|
Objective Odor Assessment in Patients with Osmidrosis. Plast Reconstr Surg Glob Open 2022; 10:e4622. [PMID: 36299814 PMCID: PMC9592423 DOI: 10.1097/gox.0000000000004622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022]
Abstract
UNLABELLED No standards for the assessment of axillary odor intensity and the effects of therapy for osmidrosis have been established. This study presents an objective method for assessing odor severity in patients with osmidrosis and investigates the volatile odorants and skin flora. METHODS The odor intensity was measured pre- and postoperatively using an industrial odor sensor in 79 patients with osmidrosis. Cultures of the axillary skin were obtained during skin flap surgery. Volatile odorants of the patients were assessed using an odor-sensor gas chromatograph mass spectrometer, and samples collected from clothing worn by the patients before and after surgery. The skin pH of the axilla was measured before and after surgery. The locations of odorants and bacteria in the skin were observed using electron microscopy. RESULTS The mean patient age was 28.8 years, and the male-to-female ratio was 4:3. The odor significantly decreased from 52.6 preoperatively to 20.5 postoperatively (P < 0.001). The bacterial flora on the skin included mostly Staphylococcus. Multiple causative substances (volatile proteins) were identified on gas chromatography. The mean preoperative axillary skin pH was 6.21, which was significantly different than that of patients without osmidrosis (5.92; P < 0.01). CONCLUSIONS An odor sensor accurately assesses odor intensity in patients with osmidrosis. The neutralization of axillary pH may promote the production of odorants by creating the optimal pH for bacterial growth. Odor sensor and pH values can be used pre- and postoperatively as objective assessment measurements for patients with osmidrosis.
Collapse
|
21
|
Ito Y, Amagai M. Controlling skin microbiome as a new bacteriotherapy for inflammatory skin diseases. Inflamm Regen 2022; 42:26. [PMID: 36045395 PMCID: PMC9434865 DOI: 10.1186/s41232-022-00212-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/10/2022] [Indexed: 11/12/2022] Open
Abstract
The skin serves as the interface between the human body and the environment and interacts with the microbial community. The skin microbiota consists of microorganisms, such as bacteria, fungi, mites, and viruses, and they fluctuate depending on the microenvironment defined by anatomical location and physiological function. The balance of interactions between the host and microbiota plays a pivotal role in the orchestration of skin homeostasis; however, the disturbance of the balance due to an alteration in the microbial communities, namely, dysbiosis, leads to various skin disorders. Recent developments in sequencing technology have provided new insights into the structure and function of skin microbial communities. Based on high-throughput sequencing analysis, a growing body of evidence indicates that a new treatment using live bacteria, termed bacteriotherapy, is a feasible therapeutic option for cutaneous diseases caused by dysbiosis. In particular, the administration of specific bacterial strains has been investigated as an exclusionary treatment strategy against pathogens associated with chronic skin disorders, whereas the safety, efficacy, and sustainability of this therapeutic approach using isolated live bacteria need to be further explored. In this review, we summarize our current understanding of the skin microbiota, as well as therapeutic strategies using characterized strains of live bacteria for skin inflammatory diseases. The ecosystem formed by interactions between the host and skin microbial consortium is still largely unexplored; however, advances in our understanding of the function of the skin microbiota at the strain level will lead to the development of new therapeutic methods.
Collapse
Affiliation(s)
- Yoshihiro Ito
- Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
22
|
Qiu Z, Zhu Z, Liu X, Chen B, Yin H, Gu C, Fang X, Zhu R, Yu T, Mi W, Zhou H, Zhou Y, Yao X, Li W. A dysregulated sebum-microbial metabolite-IL-33 axis initiates skin inflammation in atopic dermatitis. J Exp Med 2022; 219:213396. [PMID: 35977109 PMCID: PMC9375142 DOI: 10.1084/jem.20212397] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/12/2022] [Accepted: 07/07/2022] [Indexed: 11/04/2022] Open
Abstract
Microbial dysbiosis in the skin has been implicated in the pathogenesis of atopic dermatitis (AD); however, whether and how changes in the skin microbiome initiate skin inflammation, or vice versa, remains poorly understood. Here, we report that the levels of sebum and its microbial metabolite, propionate, were lower on the skin surface of AD patients compared with those of healthy individuals. Topical propionate application attenuated skin inflammation in mice with MC903-induced AD-like dermatitis by inhibiting IL-33 production in keratinocytes, an effect that was mediated through inhibition of HDAC and regulation of the AhR signaling pathway. Mice lacking sebum spontaneously developed AD-like dermatitis, which was improved by topical propionate application. A proof-of-concept clinical study further demonstrated the beneficial therapeutic effects of topical propionate application in AD patients. In summary, we have uncovered that the dysregulated sebum-microbial metabolite-IL-33 axis might play an initiating role in AD-related skin inflammation, thereby highlighting novel therapeutic strategies for the treatment of AD.
Collapse
Affiliation(s)
- Zhuoqiong Qiu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Zhenlai Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, PR China
| | - Xiaochun Liu
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China
| | - Baichao Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, PR China,Department of Dermatology, Kaifeng People’s Hospital, Kaifeng, PR China
| | - Huibin Yin
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Chaoying Gu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Xiaokai Fang
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China
| | - Ronghui Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Tianze Yu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Hong Zhou
- Department of Cell Biology, School of Life Science, Anhui Medical University, Hefei, PR China
| | - Yufeng Zhou
- Children’s Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, PR China
| | - Xu Yao
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China,Xu Yao:
| | - Wei Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China,Correspondence to Wei Li:
| |
Collapse
|
23
|
Huang TY, Lim HL. Electrogenic Staphylococcus warneri in lactate-rich skin. Biochem Biophys Res Commun 2022; 618:67-72. [PMID: 35716597 DOI: 10.1016/j.bbrc.2022.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022]
Abstract
The electrogenicity of environmental bacteria has been thoroughly explored and has been known to have the unique capability of decomposing hazardous chemicals for environmental remediation. However, electrogenic bacteria in human skin in regards to their electrical properties and locations have not yet been determined. Here, electrodermal activities and metabolite compositions at different locations of arm skin were assessed. Compared to the uppermost part of arm, we found that the forearm elicited high electrodermal activity and carried abundant lactate and alpha-ketoglutarate, two components commonly present in sweat. Upon culturing bacteria from the forearm, an iron-resistant strain of Staphylococcus warneri (S. warneri) was identified through 16S ribosomal RNA sequencing. Voltage changes induced by S. warneri in the presence of glucose were detected by two voltmeters of different electrode materials, demonstrating the electrogenicity of skin bacteria. Furthermore, we discovered that S. warneri has the ability to metabolize lactate to generate electricity. The results of this study reveal changes in skin conductance caused by bacterial electricity that are mediated by skin endogenous molecules and may provide a novel method of monitoring environmental skin insults.
Collapse
|
24
|
Kong HH, Oh J. State of Residency: Microbial Strain Diversity in the Skin. J Invest Dermatol 2022; 142:1260-1264. [PMID: 34688614 PMCID: PMC9021319 DOI: 10.1016/j.jid.2021.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 12/31/2022]
Abstract
Human skin hosts a diversity of microbiota. Advances in sequencing and analytical methods have increasingly illuminated the importance of the finest resolution in understanding the genetic diversity of the skin microbiota, highlighting strain-level differences and their functional implications. Such genetic diversity, which exists within an individual and is strongly individual specific underscores the difficulty in elucidating functionality. Integrated investigations of the microbial strain diversity through sequencing and culture-based approaches with host immunology and physiology will be critical in expanding our understanding of the roles of the skin microbiome.
Collapse
Affiliation(s)
- Heidi H Kong
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Julia Oh
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.
| |
Collapse
|
25
|
Cotton and Flax Textiles Leachables Impact Differently Cutaneous Staphylococcus aureus and Staphylococcus epidermidis Biofilm Formation and Cytotoxicity. Life (Basel) 2022; 12:life12040535. [PMID: 35455029 PMCID: PMC9032481 DOI: 10.3390/life12040535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 11/17/2022] Open
Abstract
Bacteria can bind on clothes, but the impacts of textiles leachables on cutaneous bacteria remain unknown. Here, we studied for the first time the effects of cotton and flax obtained through classical and soft ecological agriculture on the representatives S. aureus and S. epidermidis bacteria of the cutaneous microbiota. Crude flax showed an inhibitory potential on S. epidermidis bacterial lawns whereas cotton had no effect. Textile fiber leachables were produced in bacterial culture media, and these extracts were tested on S. aureus and S. epidermidis. Bacterial growth was not impacted, but investigation by the crystal violet technique and confocal microscopy showed that all extracts affected biofilm formation by the two staphylococci species. An influence of cotton and flax culture conditions was clearly observed. Flax extracts had strong inhibitory impacts and induced the formation of mushroom-like defense structures by S. aureus. Conversely, production of biosurfactant by bacteria and their surface properties were not modified. Resistance to antibiotics also remained unchanged. All textile extracts, and particularly soft organic flax, showed strong inhibitory effects on S. aureus and S. epidermidis cytotoxicity on HaCaT keratinocytes. Analysis of flax leachables showed the presence of benzyl alcohol that could partly explain the effects of flax extracts.
Collapse
|
26
|
Using AnnoTree to Get More Assignments, Faster, in DIAMOND+MEGAN Microbiome Analysis. mSystems 2022; 7:e0140821. [PMID: 35191776 PMCID: PMC8862659 DOI: 10.1128/msystems.01408-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In microbiome analysis, one main approach is to align metagenomic sequencing reads against a protein reference database, such as NCBI-nr, and then to perform taxonomic and functional binning based on the alignments. This approach is embodied, for example, in the standard DIAMOND+MEGAN analysis pipeline, which first aligns reads against NCBI-nr using DIAMOND and then performs taxonomic and functional binning using MEGAN. Here, we propose the use of the AnnoTree protein database, rather than NCBI-nr, in such alignment-based analyses to determine the prokaryotic content of metagenomic samples. We demonstrate a 2-fold speedup over the usage of the prokaryotic part of NCBI-nr and increased assignment rates, in particular assigning twice as many reads to KEGG. In addition to binning to the NCBI taxonomy, MEGAN now also bins to the GTDB taxonomy. IMPORTANCE The NCBI-nr database is not explicitly designed for the purpose of microbiome analysis, and its increasing size makes its unwieldy and computationally expensive for this purpose. The AnnoTree protein database is only one-quarter the size of the full NCBI-nr database and is explicitly designed for metagenomic analysis, so it should be supported by alignment-based pipelines.
Collapse
|
27
|
Rapid assembly of colorless antimicrobial and anti-odor coatings from polyphenols and silver. Sci Rep 2022; 12:2071. [PMID: 35136104 PMCID: PMC8826873 DOI: 10.1038/s41598-022-05553-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/13/2022] [Indexed: 11/08/2022] Open
Abstract
The development of antimicrobial fabrics and textiles that can sustainably inhibit a broad spectrum of microbes is crucial for protecting against pathogens in various environments. However, engineering antimicrobial textiles is challenging due to issues with discoloration and inhibited breathability, the use of harmful or harsh reagents and synthesis conditions, and complex and/or time-consuming processing. Herein, we develop a facile and rapid approach to deposit antimicrobial coatings using universally adherent plant polyphenols and antimicrobial silver ions. Importantly, the coatings are colorless, thin (< 10 nm), rapidly assembled (< 20 min), and can be deposited via immersion or spraying. We demonstrate that these metal-phenolic coatings on textiles can inhibit lipid-enveloped viruses over one thousand times more efficiently than coatings composed of other metal ions, while maintaining their efficacy even after 5 washes. Moreover, the coatings also inhibit Gram positive and negative bacteria, and fungi, and can prevent odors on clothes for at least 10 washes. Collectively, the ease of synthesis, use of simple and safe precursors, and amenability to at-home and industrial application suggests that the coatings will find practical application in various settings.
Collapse
|
28
|
Sun Z, Huang S, Zhu P, Tzehau L, Zhao H, Lv J, Zhang R, Zhou L, Niu Q, Wang X, Zhang M, Jing G, Bao Z, Liu J, Wang S, Xu J. Species-resolved sequencing of low-biomass or degraded microbiomes using 2bRAD-M. Genome Biol 2022; 23:36. [PMID: 35078506 PMCID: PMC8789378 DOI: 10.1186/s13059-021-02576-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
AbstractMicrobiome samples with low microbial biomass or severe DNA degradation remain challenging for amplicon-based or whole-metagenome sequencing approaches. Here, we introduce 2bRAD-M, a highly reduced and cost-effective strategy which only sequences ~ 1% of metagenome and can simultaneously produce species-level bacterial, archaeal, and fungal profiles. 2bRAD-M can accurately generate species-level taxonomic profiles for otherwise hard-to-sequence samples with merely 1 pg of total DNA, high host DNA contamination, or severely fragmented DNA from degraded samples. Tests of 2bRAD-M on various stool, skin, environmental, and clinical FFPE samples suggest a successful reconstruction of comprehensive, high-resolution microbial profiles.
Collapse
|
29
|
Schlatterer K, Peschel A, Kretschmer D. Short-Chain Fatty Acid and FFAR2 Activation - A New Option for Treating Infections? Front Cell Infect Microbiol 2021; 11:785833. [PMID: 34926327 PMCID: PMC8674814 DOI: 10.3389/fcimb.2021.785833] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/09/2021] [Indexed: 01/05/2023] Open
Abstract
The human innate immune system is equipped with multiple mechanisms to detect microbe-associated molecular patterns (MAMPs) to fight bacterial infections. The metabolite short-chain fatty acids (SCFAs) acetate, propionate and butyrate are released by multiple bacteria or are food ingredients. SCFA production, especially acetate production, is usually essential for bacteria, and knockout of pathways involved in acetate production strongly impairs bacterial fitness. Because host organisms use SCFAs as MAMPs and alter immune reactions in response to SCFAs, interventions that modulate SCFA levels can be a new strategy for infection control. The interaction between SCFAs and host cells has been primarily investigated in the intestinal lumen because of the high local levels of SCFAs released by bacterial microbiome members. However, members of not only the intestinal microbiome but also the skin microbiome produce SCFAs, which are known ligands of the seven-transmembrane G-protein-coupled receptor FFAR2. In addition to enterocytes, FFAR2 is expressed on other human cell types, including leukocytes, especially neutrophils. This finding is in line with other research that determined that targeted activation of FFAR2 diminishes susceptibility toward various types of infection by bacteria such as Klebsiella pneumonia, Citrobacter rodentium, and Staphylococcus aureus but also by viruses such as respiratory syncytial and influenza viruses. Thus, our immune system appears to be able to use FFAR2-dependent detection of SCFAs for perceiving and even averting severe infections. We summarize recent advances in understanding the role of SCFAs and FFAR2 in various infection types and propose the manipulation of this receptor as an additional therapeutic strategy to fight infections.
Collapse
Affiliation(s)
- Katja Schlatterer
- Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence Cluster of Excellence (EXC) 2124 Controlling Microbes to Fight Infections, University of Tuebingen, Tübingen, Germany
| | - Andreas Peschel
- Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence Cluster of Excellence (EXC) 2124 Controlling Microbes to Fight Infections, University of Tuebingen, Tübingen, Germany
| | - Dorothee Kretschmer
- Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence Cluster of Excellence (EXC) 2124 Controlling Microbes to Fight Infections, University of Tuebingen, Tübingen, Germany
| |
Collapse
|
30
|
Bowen M, Miles C, Hegseth R, Anderson CM, Brandon CS, Langford ML, Wolovich CK. The potential interplay between the glandular microbiome and scent marking behavior in owl monkeys (Aotus nancymaae). Am J Primatol 2021; 83:e23324. [PMID: 34492124 DOI: 10.1002/ajp.23324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 11/12/2022]
Abstract
In mammals, scent marking behavior is a pervasive form of chemical communication that regulates social interactions within and between groups. Glandular microbiota consist of bacterial communities capable of producing chemical cues used in olfactory communication. Despite countless studies on scent marking in primates, few have examined the microbiota associated with glandular secretions. Nancy Ma's owl monkeys (Aotus nancymaae) are nocturnal, socially monogamous primates that frequently scent mark using their subcaudal glands. Previous analyses revealed that unique chemical signatures of Aotus may convey information about sex and age. We used positive reinforcement to sample the subcaudal glands of 23 captive owl monkeys to describe their glandular microbiomes and examine how patterns in these bacterial communities vary with age, sex, rearing environment and/or social group (pair identity). We coupled these analyses with behavioral observations to examine patterns in their scent marking behavior. We isolated 31 bacterial species from Phyla Firmicutes, Proteobacteria, and Actinobacteria, consistent with the dermal and glandular microbiomes of other primates. Several bacterial taxa we identified produce volatile organic compounds, which may contribute to olfactory communication. These bacterial communities are best predicted by an interaction between sex, rearing environment and pair identity rather than any of these variables alone. Within mated pairs of A. nancymaae, males and females scent mark their nest boxes at similar frequencies. In some pairs, rates of scent marking by males and females fluctuated over time in a similar manner. Pairs that had been together longer tended to exhibit the greatest similarities in their rates of scent marking. Together, these findings suggest that scent marking behavior and close social interactions with pair mates in Aotus may influence bacterial transmission and their glandular microbiomes. Chemical communication, including coordinated scent marking, may play a role in strengthening pair bonds, signaling pair status and/or in mate guarding in this socially monogamous primate.
Collapse
Affiliation(s)
- Malique Bowen
- Department of Biology, Florida Southern College, Lakeland, Florida, USA
| | - Carly Miles
- Department of Biology, Florida Southern College, Lakeland, Florida, USA
| | - Ryan Hegseth
- Department of Biology, Florida Southern College, Lakeland, Florida, USA
| | | | | | | | | |
Collapse
|
31
|
Cui X, Zhang L, Su G, Kijlstra A, Yang P. Specific sweat metabolite profile in ocular Behcet's disease. Int Immunopharmacol 2021; 97:107812. [PMID: 34091113 DOI: 10.1016/j.intimp.2021.107812] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Behcet's disease (BD) is an autoimmune disorder with the serious possibility of blindness, calling for further research on its pathogenesis. Our aim was to study the metabolite composition of sweat in BD and to identify possible biomarkers. METHODS Metabolomics analysis was performed on sweat samples from 20 BD patients and 18 normal controls by liquid chromatography tandem mass spectrometry. RESULTS A significantly different metabolic profile of sweat was observed when BD patients were compared with healthy controls. The result of the orthogonal partial least squared-discrimination analysis (OPLS-DA) showed that these two comparison groups could be separated with a relatively satisfactory fitting degree (R2Y = 0.995 and Q2 = 0.817 in positive ion mode; R2Y = 0.991 and Q2 = 0.721 in negative ion mode). Based on OPLS-DA, a panel of metabolites was selected as candidate biomarkers, including l-citrulline, l-pyroglutamic acid, urocanic acid, 2-oxoadipic acid, cholesterol 3-sulfate, and pentadecanoic acid. CONCLUSION This is the first report on the metabolite profile of sweat in BD. Our results demonstrated a significantly different metabolite composition of sweat in BD compared to that of healthy controls.
Collapse
Affiliation(s)
- Xiaoxiao Cui
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing 400016, People's Republic of China
| | - Liming Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing 400016, People's Republic of China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing 400016, People's Republic of China
| | - Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht 6211, the Netherlands
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing 400016, People's Republic of China.
| |
Collapse
|
32
|
Kim MJ, Tagele SB, Jo H, Kim MC, Jung Y, Park YJ, So JH, Kim HJ, Kim HJ, Lee DG, Kang S, Shin JH. Effect of a bioconverted product of Lotus corniculatus seed on the axillary microbiome and body odor. Sci Rep 2021; 11:10138. [PMID: 33980951 PMCID: PMC8115508 DOI: 10.1038/s41598-021-89606-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/07/2021] [Indexed: 02/01/2023] Open
Abstract
The skin microbiome, especially the axillary microbiome, consists of odor-causing bacteria that decompose odorless sweat into malodor compounds, which contributes to the formation of body odor. Plant-derived products are a cheap source of bioactive compounds that are common ingredients in cosmetics. Microbial bioconversion of natural products is an ecofriendly and economical method for production of new or improved biologically active compounds. Therefore, in this study, we tested the potential of a Lactobacillus acidophilus KNU-02-mediated bioconverted product (BLC) of Lotus corniculatus seed to reduce axillary malodor and its effect on the associated axillary microbiota. A chemical profile analysis revealed that benzoic acid was the most abundant chemical compound in BLC, which increased following bioconversion. Moreover, BLC treatment was found to reduce the intensity of axillary malodor. We tested the axillary microbiome of 18 study participants, divided equally into BLC and placebo groups, and revealed through 16S rRNA gene sequencing that Staphylococcus, Corynebacterium, and Anaerococcus were the dominant taxa, and some of these taxa were significantly associated with axillary malodor. After one week of BLC treatment, the abundance of Corynebacterium and Anaerococcus, which are associated with well-known odor-related genes that produce volatile fatty acids, had significantly reduced. Likewise, the identified odor-related genes decreased after the application of BLC. BLC treatment enhanced the richness and network density of the axillary microbial community. The placebo group, on the other hand, showed no difference in the microbial richness, odor associated taxa, and predicted functional genes after a week. The results demonstrated that BLC has the potential to reduce the axillary malodor and the associated odor-causing bacteria, which makes BLC a viable deodorant material in cosmetic products.
Collapse
Affiliation(s)
- Min-Ji Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Setu Bazie Tagele
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - HyungWoo Jo
- R&I Center, COSMAX BTI, Seongnam, 13486, Republic of Korea
| | - Min-Chul Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - YeonGyun Jung
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yeong-Jun Park
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jai-Hyun So
- National Development Institute of Korean Medicine, 94, Hwarang-ro, Gyeongsan, Gyeongsangbuk-do, 38540, Republic of Korea
| | - Hae Jin Kim
- Experiment Research Institute, National Agricultural Products Quality Management Service, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Ho Jin Kim
- Experiment Research Institute, National Agricultural Products Quality Management Service, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Dong-Geol Lee
- R&I Center, COSMAX BTI, Seongnam, 13486, Republic of Korea
| | - Seunghyun Kang
- R&I Center, COSMAX BTI, Seongnam, 13486, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
33
|
Willems MET, Todaka M, Banic M, Cook MD, Sekine Y. Intake of New Zealand Blackcurrant Powder Affects Skin-Borne Volatile Organic Compounds in Middle-Aged and Older Adults. J Diet Suppl 2021; 19:603-620. [PMID: 33860732 DOI: 10.1080/19390211.2021.1908479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Skin volatile organic compounds (VOCs) can cause body odor or reveal human disease and may result from lipid peroxidation or activity by skin bacteria. We examined the effect of intake of New Zealand blackcurrant (NZBC) powder for 77 skin VOCs in middle-aged and older adults in a crossover design. Fourteen adults (nine males, age: 55 ± 5 yrs) consumed NZBC powder for 7 days (6 g·day-1 with 138.6 mg anthocyanins). Two hours after the last intake, a passive flux sampler with trapping media was applied in the base of the neck for 1 hour. Gas chromatography-mass spectrometry was used for media analysis. Habitual anthocyanin intake was quantified using a food frequency questionnaire. Compared to control (i.e., no intake of NZBC powder), emission of six skin VOCs (i.e., 2-nonenal, acetic acid, 2-hexanone, 6-methyl-5-hepten-2-one, benzaldehyde, allyl methyl sulfide) were lower by more than 25%. Increases were observed for γ-octanolactone (+184%) and γ-decanolactone (+89%). A trend for a decrease for isovaleraldehyde, hexanal, and 2-pentanone, and an increase for heptanoic acid and γ-nonanolactone was observed. There was a significant correlation with daily habitual dietary anthocyanin intake for control values of hexanal and percentage change of γ-octanolactone. NZBC powder can change emanation of some VOCs in human skin. Analysis of skin VOCs following specific polyphenol intake may address the impact of dietary components to affect internal metabolic processes, body odor, and health.
Collapse
Affiliation(s)
- M E T Willems
- Institute of Sport, University of Chichester, Chichester, UK
| | - M Todaka
- Graduate School of Science, Tokai University, Hiratsuka City, Japan
| | - M Banic
- Institute of Sport, University of Chichester, Chichester, UK.,Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK
| | - M D Cook
- Institute of Sport and Exercise Science, University of Worchester, Worcester, UK
| | - Y Sekine
- Graduate School of Science, Tokai University, Hiratsuka City, Japan
| |
Collapse
|
34
|
Li Z, Xia J, Jiang L, Tan Y, An Y, Zhu X, Ruan J, Chen Z, Zhen H, Ma Y, Jie Z, Xiao L, Yang H, Wang J, Kristiansen K, Xu X, Jin L, Nie C, Krutmann J, Liu X, Wang J. Characterization of the human skin resistome and identification of two microbiota cutotypes. MICROBIOME 2021; 9:47. [PMID: 33597039 PMCID: PMC7890624 DOI: 10.1186/s40168-020-00995-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/29/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND The human skin microbiota is considered to be essential for skin homeostasis and barrier function. Comprehensive analyses of its function would substantially benefit from a catalog of reference genes derived from metagenomic sequencing. The existing catalog for the human skin microbiome is based on samples from limited individuals from a single cohort on reference genomes, which limits the coverage of global skin microbiome diversity. RESULTS In the present study, we have used shotgun metagenomics to newly sequence 822 skin samples from Han Chinese, which were subsequently combined with 538 previously sequenced North American samples to construct an integrated Human Skin Microbial Gene Catalog (iHSMGC). The iHSMGC comprised 10,930,638 genes with the detection of 4,879,024 new genes. Characterization of the human skin resistome based on iHSMGC confirmed that skin commensals, such as Staphylococcus spp, are an important reservoir of antibiotic resistance genes (ARGs). Further analyses of skin microbial ARGs detected microbe-specific and skin site-specific ARG signatures. Of note, the abundance of ARGs was significantly higher in Chinese than Americans, while multidrug-resistant bacteria ("superbugs") existed on the skin of both Americans and Chinese. A detailed analysis of microbial signatures identified Moraxella osloensis as a species specific for Chinese skin. Importantly, Moraxella osloensis proved to be a signature species for one of two robust patterns of microbial networks present on Chinese skin, with Cutibacterium acnes indicating the second one. Each of such "cutotypes" was associated with distinct patterns of data-driven marker genes, functional modules, and host skin properties. The two cutotypes markedly differed in functional modules related to their metabolic characteristics, indicating that host-dependent trophic chains might underlie their development. CONCLUSIONS The development of the iHSMGC will facilitate further studies on the human skin microbiome. In the present study, it was used to further characterize the human skin resistome. It also allowed to discover the existence of two cutotypes on the human skin. The latter finding will contribute to a better understanding of the interpersonal complexity of the skin microbiome. Video abstract.
Collapse
Affiliation(s)
- Zhiming Li
- BGI-Shenzhen, Shenzhen, China
- China National Genebank, Shenzhen, China
| | - Jingjing Xia
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Liuyiqi Jiang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yimei Tan
- Human Phenome Institute, Fudan University, Shanghai, China
- Department of Skin & Cosmetic Research, Shanghai Skin Disease Hospital, Shanghai, China
| | - Yitai An
- BGI-Shenzhen, Shenzhen, China
- China National Genebank, Shenzhen, China
| | - Xingyu Zhu
- Human Phenome Institute, Fudan University, Shanghai, China
- Institute for Six-sector Economy, Fudan University, Shanghai, China
| | - Jie Ruan
- BGI-Shenzhen, Shenzhen, China
- China National Genebank, Shenzhen, China
| | - Zhihua Chen
- BGI-Shenzhen, Shenzhen, China
- China National Genebank, Shenzhen, China
| | - Hefu Zhen
- BGI-Shenzhen, Shenzhen, China
- China National Genebank, Shenzhen, China
| | - Yanyun Ma
- Human Phenome Institute, Fudan University, Shanghai, China
- Institute for Six-sector Economy, Fudan University, Shanghai, China
| | - Zhuye Jie
- BGI-Shenzhen, Shenzhen, China
- China National Genebank, Shenzhen, China
| | - Liang Xiao
- BGI-Shenzhen, Shenzhen, China
- China National Genebank, Shenzhen, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China
- China National Genebank, Shenzhen, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, China
- China National Genebank, Shenzhen, China
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen, China
- China National Genebank, Shenzhen, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, China
- China National Genebank, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
| | - Li Jin
- Human Phenome Institute, Fudan University, Shanghai, China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, China
| | - Chao Nie
- BGI-Shenzhen, Shenzhen, China
- China National Genebank, Shenzhen, China
| | - Jean Krutmann
- Human Phenome Institute, Fudan University, Shanghai, China
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
- Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Xiao Liu
- BGI-Shenzhen, Shenzhen, China
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| |
Collapse
|
35
|
Negari IP, Keshari S, Huang CM. Probiotic Activity of Staphylococcus epidermidis Induces Collagen Type I Production through FFaR2/p-ERK Signaling. Int J Mol Sci 2021; 22:ijms22031414. [PMID: 33572500 PMCID: PMC7866835 DOI: 10.3390/ijms22031414] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/07/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
Collagen type I is a key structural component of dermis tissue and is produced by fibroblasts and the extracellular matrix. The skin aging process, which is caused by intrinsic or extrinsic factors, such as natural aging or free radical exposure, greatly reduces collagen expression, thereby leading to obstructed skin elasticity. We investigated the effective fermentation of Cetearyl isononanoate (CIN), a polyethylene glycol (PEG) analog, as a carbon source with the skin probiotic bacterium Staphylococcus epidermidis (S.epidermidis) or butyrate, as their fermentation metabolites could noticeably restore collagen expression through phosphorylated extracellular signal regulated kinase (p-ERK) activation in mouse fibroblast cells and skin. Both the in vitro and in vivo knockdown of short-chain fatty acid (SCFA) or free fatty acid receptor 2 (FFaR2) considerably blocked the probiotic effect of S. epidermidis on p-ERK-induced collagen type I induction. These results demonstrate that butyric acid (BA) in the metabolites of fermenting skin probiotic bacteria mediates FFaR2 to induce the synthesis of collagen through p-ERK activation. We hereby imply that metabolites from the probiotic S. epidermidis fermentation of CIN as a potential carbon source could restore impaired collagen in the dermal extracellular matrix (ECM), providing integrity and elasticity to skin.
Collapse
Affiliation(s)
- Indira Putri Negari
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 32001, Taiwan;
| | - Sunita Keshari
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan;
| | - Chun-Ming Huang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 32001, Taiwan;
- Correspondence: ; Tel.: +886-3-422-7151 (ext. 36101); Fax: +886-3-425-3427
| |
Collapse
|
36
|
Jaiswal SK, Agarwal SM, Thodum P, Sharma VK. SkinBug: an artificial intelligence approach to predict human skin microbiome-mediated metabolism of biotics and xenobiotics. iScience 2021; 24:101925. [PMID: 33385118 PMCID: PMC7772573 DOI: 10.1016/j.isci.2020.101925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/08/2020] [Accepted: 12/07/2020] [Indexed: 11/25/2022] Open
Abstract
In addition to being pivotal for the host health, the skin microbiome possesses a large reservoir of metabolic enzymes, which can metabolize molecules (cosmetics, medicines, pollutants, etc.) that form a major part of the skin exposome. Therefore, to predict the complete metabolism of any molecule by skin microbiome, a curated database of metabolic enzymes (1,094,153), reactions, and substrates from ∼900 bacterial species from 19 different skin sites were used to develop “SkinBug.” It integrates machine learning, neural networks, and chemoinformatics methods, and displays a multiclass multilabel accuracy of up to 82.4% and binary accuracy of up to 90.0%. SkinBug predicts all possible metabolic reactions and associated enzymes, reaction centers, skin microbiome species harboring the enzyme, and the respective skin sites. Thus, SkinBug will be an indispensable tool to predict xenobiotic/biotic metabolism by skin microbiome and will find applications in exposome and microbiome studies, dermatology, and skin cancer research. SkinBug is AI/ML-based tool to predict metabolism of molecules by Skin microbiome Database of 1,094,153 metabolic enzymes from 897 pangenomes of skin microbiome Predicts enzymes, bacterial species, and skin sites for the predicted reactions 82.4% multilabel and 90.0% binary accuracy, and validated on 28 diverse real cases
Collapse
Affiliation(s)
- Shubham K Jaiswal
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - Shitij Manojkumar Agarwal
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - Parikshit Thodum
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - Vineet K Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
37
|
Lolla VY, Shukla P, Jones SD, Boreyko JB. Evaporation-Induced Clogging of an Artificial Sweat Duct. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53403-53408. [PMID: 33191727 DOI: 10.1021/acsami.0c13493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal-based antiperspirants have been in use for centuries; however, there is an increasing consumer demand for a metal-free alternative that works effectively. Here, we develop an artificial sweat duct rig and demonstrate an alternative, metal-free approach to antiperspiration. Instead of clogging sweat ducts with metal salts, we use a hygroscopic material to induce the evaporation of sweat as it approaches the outlet (i.e. pore) of the sweat duct. As a result, the sweat dehydrates almost completely while still being inside of the duct, forming a natural gel-like salt plug that halts the flow. We show that the critical pressure gradient within the duct (∼3 kPa), beneath which clogging occurs, can be rationalized by balancing the mass flow rates of the liquid (Poiseuille's law) and the evaporative vapor (Fick's law).
Collapse
Affiliation(s)
- Venkata Yashasvi Lolla
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Pranav Shukla
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stevan D Jones
- Procter & Gamble, Mason, Cincinnati, Ohio 45040, United States
| | - Jonathan B Boreyko
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
38
|
Gabashvili IS. Cutaneous Bacteria in the Gut Microbiome as Biomarkers of Systemic Malodor and People Are Allergic to Me (PATM) Conditions: Insights From a Virtually Conducted Clinical Trial. JMIR DERMATOLOGY 2020. [DOI: 10.2196/10508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background
The skin is a dynamic ecosystem of microbes and the source of many chemical compounds that affect human health. Skin-microbiome interactions can cause persistent, psychosocially devastating body smell despite good hygiene. Since odor production is often transient, malodors may not be perceptible during medical examinations. Therefore, having odor complaints can be diagnosed as body dysmorphic disorder and referred for psychological evaluations. Development of simple at-home tests and virtual care programs could improve the diagnosis and management of socially debilitating malodor conditions.
Objective
The aim of this study was to assess potential effectiveness of at-home gut microbiome testing in the diagnosis and management of idiopathic body and breath odor and in people are allergic to me (PATM) syndrome.
Methods
We contacted participants of prior metabolic body odor (MEBO) and PATM studies and online support groups by email or social media. Individuals who consented to participate were mailed test kits for at-home collection of gut microbiome samples. Participants completed an online survey (specially developed for this study) addressing their symptoms and other quality-of-life indicators at baseline and after sampling. Participants collected stool samples after flare-ups or symptom improvements and mailed them to the laboratory to be processed and analyzed. We evaluated between-group differences in symptom severity, as well as symptom improvement observations for the same individuals. For differential abundance testing of microbial taxa, we performed nonparametric statistical analyses using Mann-Whitney U tests for unpaired samples and Wilcoxon signed rank test for paired samples.
Results
A total of 112 individuals from 21 countries consented to participate. About half the participants had been tested for the metabolic disorder trimethylaminuria, and about half of those tested were diagnosed with the disorder. The levels of bacteria previously associated with cutaneous body odor were significantly elevated in gut samples. For the combination of species from Anaerococcus, Corynebacterium, Campylobacter, and Propionibacterium genera, the differences were P=.002 for active (73 participants, 182 samples) versus regression or remission groups (30 participants, 51 samples); P=.01 for those experiencing symptoms most or all of the time (46 participants, 88 samples) versus those who had symptoms sometimes, rarely, or never (25 participants, 74 samples); and P<.001 for improvement of symptoms in the same individuals (22 participants, 43 sets of matched samples). Changes in microbial diversity were significant for between- but not within-participant comparisons.
Conclusions
Changes in the gut microbiome composition affect MEBO and PATM severity. In particular, an increase in intestinal bacteria producing odor when in skin flexures was associated with increased intensity of self-reported symptoms. The changes were consistent in the within-group and between-group analyses. Our findings support the feasibility of remote and decentralized clinical studies of malodor conditions. Supplementary sample collection procedures may help to meet established research quality standards.
Trial Registration
ClinicalTrials.gov NCT03582826; http://clinicaltrials.gov/ct2/show/NCT03582826
International Registered Report Identifier (IRRID)
RR2-10.1101/2020.08.21.20179242
Collapse
|
39
|
Schmiedová L, Kreisinger J, Požgayová M, Honza M, Martin JF, Procházka P. Gut microbiota in a host-brood parasite system: insights from common cuckoos raised by two warbler species. FEMS Microbiol Ecol 2020; 96:5872480. [PMID: 32672792 DOI: 10.1093/femsec/fiaa143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/15/2020] [Indexed: 11/13/2022] Open
Abstract
An animal's gut microbiota (GM) is shaped by a range of environmental factors affecting the bacterial sources invading the host. At the same time, animal hosts are equipped with intrinsic mechanisms enabling regulation of GM. However, there is limited knowledge on the relative importance of these forces. To assess the significance of host-intrinsic vs environmental factors, we studied GM in nestlings of an obligate brood parasite, the common cuckoo (Cuculus canorus), raised by two foster species, great reed warblers (Acrocephalus arundinaceus) and Eurasian reed warblers (A. scirpaceus), and compared these with GM of the fosterers' own nestlings. We show that fecal GM varied between cuckoo and warbler nestlings when accounting for the effect of foster/parent species, highlighting the importance of host-intrinsic regulatory mechanisms. In addition to feces, cuckoos also expel a deterrent secretion, which provides protection against olfactory predators. We observed an increased abundance of bacterial genera capable of producing repulsive volatile molecules in the deterrent secretion. Consequently, our results support the hypothesis that microbiota play a role in this antipredator mechanism. Interestingly, fosterer/parent identity affected only cuckoo deterrent secretion and warbler feces microbiota, but not that of cuckoo feces, suggesting a strong selection of bacterial strains in the GM by cuckoo nestlings.
Collapse
Affiliation(s)
- Lucie Schmiedová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-12800 Prague, Czech Republic
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-12800 Prague, Czech Republic
| | - Milica Požgayová
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, CZ-60365 Brno, Czech Republic
| | - Marcel Honza
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, CZ-60365 Brno, Czech Republic
| | | | - Petr Procházka
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, CZ-60365 Brno, Czech Republic
| |
Collapse
|
40
|
Natsch A, Emter R. The specific biochemistry of human axilla odour formation viewed in an evolutionary context. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190269. [PMID: 32306870 PMCID: PMC7209930 DOI: 10.1098/rstb.2019.0269] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
Human body odour is dominated by the scent of specific odourants emanating from specialized glands in the axillary region. These specific odourants are produced by an intricate interplay between biochemical pathways in the host and odour-releasing enzymes present in commensal microorganisms of the axillary microbiome. Key biochemical steps for the release of highly odouriferous carboxylic acids and sulfur compounds have been elucidated over the past 15 years. Based on the profound molecular understanding and specific analytical methods developed, evolutionary questions could be asked for the first time with small population studies: (i) a genetic basis for body odour could be shown with a twin study, (ii) no effect of genes in the human leukocyte antigen complex on the pattern of odourant carboxylic acid was found, and (iii) loss of odour precursor secretion by a mutation in the ABCC11 gene could explain why a large fraction of the population in the Far East lack body odour formation. This review summarizes what is currently known at the molecular level on the biochemistry of the formation of key odourants in the human axilla. At the same time, we present for the first time the crystal structure of the Nα-acyl-aminoacylase, a key human odour-releasing enzyme, thus describing at the molecular level how bacteria on the skin surface have adapted their enzyme to the specific substrates secreted by the human host. This article is part of the Theo Murphy meeting issue 'Olfactory communication in humans'.
Collapse
Affiliation(s)
- Andreas Natsch
- Givaudan Schweiz AG, Kemptpark 50, CH-8310 Kemptthal, Switzerland
| | | |
Collapse
|
41
|
Loss of Skin Microbial Diversity and Alteration of Bacterial Metabolic Function in Hidradenitis Suppurativa. J Invest Dermatol 2020; 140:716-720. [DOI: 10.1016/j.jid.2019.06.151] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/03/2019] [Accepted: 06/27/2019] [Indexed: 11/18/2022]
|
42
|
Schneider AM, Nelson AM. Skin microbiota: Friend or foe in pediatric skin health and skin disease. Pediatr Dermatol 2019; 36:815-822. [PMID: 31588632 DOI: 10.1111/pde.13955] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The human integument and gastrointestinal tract host unique microbial ecosystems. Within the last decade, research has focused on understanding the contributions of the microbiota to human health and disease. The majority of skin microbiome studies involve adults. This review focuses on key studies conducted within the pediatric population and provides a framework for future skin microbiome work in this ever-expanding field. This article begins by exploring the skin microbiome at birth and reviews the impact of delivery mode on infant skin colonization. How skin microbial colonization evolves from infancy to adulthood and normal development impacts the abundance of skin commensals such as Streptococcus, Staphylococcus, and Cutibacterium is also highlighted. Finally, several skin microbiome research studies in common pediatric skin conditions are reviewed, including body odor, atopic dermatitis (AD), and acne. The bacteria involved in metabolizing sweat, the impact on body odor, and how this process evolves from childhood to adulthood is outlined. In AD, different bacteria genera that predominate in children and adults and the impact of current AD therapies on skin microbiota are explored. Finally, in acne, the understanding of how Cutibacterium acnes contributes to acne pathogenesis and how acne therapies impact the skin microbial communities is reviewed.
Collapse
Affiliation(s)
- Andrea M Schneider
- Department of Dermatology, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Amanda M Nelson
- Department of Dermatology, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
43
|
Kumar M, Myagmardoloonjin B, Keshari S, Negari IP, Huang CM. 5-methyl Furfural Reduces the Production of Malodors by Inhibiting Sodium l-lactate Fermentation of Staphylococcus epidermidis: Implication for Deodorants Targeting the Fermenting Skin Microbiome. Microorganisms 2019; 7:E239. [PMID: 31387211 PMCID: PMC6723266 DOI: 10.3390/microorganisms7080239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/21/2019] [Accepted: 08/01/2019] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus epidermidis (S. epidermidis) is a common bacterial colonizer on the surface of human skin. Lactate is a natural constituent of skin. Here, we reveal that S. epidermidis used sodium l-lactate as a carbon source to undergo fermentation and yield malodors detected by gas colorimetric tubes. Several furan compounds such as furfural originating from the fermentation metabolites play a role in the negative feedback regulation of the fermentation process. The 5-methyl furfural (5MF), a furfural analog, was selected as an inhibitor of sodium l-lactate fermentation of S. epidermidis via inhibition of acetolactate synthase (ALS). S. epidermidis treated with 5MF lost its ability to produce malodors, demonstrating the feasibility of using 5MF as an ingredient in deodorants targeting malodor-causing bacteria in the skin microbiome.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 320009, Taiwan
| | | | - Sunita Keshari
- Department of Life Sciences, National Central University, Taoyuan 320009, Taiwan
| | - Indira Putri Negari
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 320009, Taiwan
| | - Chun-Ming Huang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 320009, Taiwan.
- Department of Life Sciences, National Central University, Taoyuan 320009, Taiwan.
- Department of Dermatology, School of Medicine, University of California, San Diego, CA 92093, USA.
| |
Collapse
|