1
|
Hu J, Hu J, Han D. Causal relationships between gut microbiota, plasma metabolites, and HIV infection: insights from Mendelian randomization and mediation analysis. Virol J 2024; 21:204. [PMID: 39215321 PMCID: PMC11365174 DOI: 10.1186/s12985-024-02480-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE Gut dysbiosis and metabolic abnormalities have been implicated in HIV infection. However, the exact causal relationships among the gut microbiota, metabolites, and HIV infection remain poorly understood. Our study involving Mendelian randomization (MR) and mediation analysis aims to unveil these causalities. METHODS Genetic instrumental variables for the gut microbiota were retrieved from MiBioGen consortium (n = 18,340). Metabolism-related genetic variants were sourced from the CLSA cohort (n = 8299). GWAS summary statistics for symptomatic HIV infection were derived from the FinnGen study (n = 309,154), and the UK Biobank (n = 208,808). We performed the bidirectional two-sample MR to assess causalities with the inverse-variance weighted (IVW) method as the primary analysis. Moreover, we executed a mediation analysis using two-step MR methods. RESULTS Compared to the causal effects of HIV infection on gut microbiota (or metabolites), those of gut microbiota (or plasma metabolites) on the risk of HIV infection were more substantial. Phylum Proteobacteria (OR: 2.114, 95% CI 1.042-4.288, P = 0.038), and genus Ruminococcaceae UCG013 (OR: 2.127, 95% CI 1.080-4.191, P = 0.029) exhibited an adverse causal effect on HIV infection, whereas genus Clostridium sensu stricto 1(OR: 0.491, 95% CI 0.252-0.956, P = 0.036) and family Erysipelotrichaceae (OR: 0.399, 95% CI 0.193-0.827, P = 0.013) acted as significant protective factors for HIV. The salicyluric glucuronide level (OR = 2.233, 95% CI 1.120-4.453, P = 0.023) exhibited a considerably adverse causal effect on HIV infection. Conversely, the salicylate-to-citrate ratio (OR: 0.417, 95% CI 0.253-0.688, P = 0.001) was identified as a protective factor for HIV. We identified only one bidirectional causality between 1-palmitoyl-GPI and HIV infection. Mechanistically, genus Haemophilus mediated the causal effects of three phospholipids on HIV infection risk: 1-palmitoyl-GPI (mediation proportion = 33.7%, P = 0.018), 1-palmitoyl-2-arachidonoyl-GPI (mediation proportion = 18.3%, P = 0.019), and 1-linoleoyl-2-linolenoyl-GPC (mediation proportion = 20.3%, P = 0.0216). Additionally, 5-Dodecenoylcarnitine (C12:1) mediated the causal effect of genus Sellimonas on the risk of HIV infection (mediation proportion = 13.7%, P = 0.0348). CONCLUSION Our study revealed that gut microbiota and metabolites causally influence HIV infection risk more substantially than the reverse. We identified the bidirectional causality between 1-palmitoyl-GPI (16:0) and HIV infection, and elucidated four mediation relationships. These findings provide genetic insights into prediction, prevention, and personalized medicine of HIV infection.
Collapse
Affiliation(s)
- Jiapeng Hu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jinxin Hu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dan Han
- Department of Neonatology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Wang H, Wang Y. What Makes the Gut-Lung Axis Working? From the Perspective of Microbiota and Traditional Chinese Medicine. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:8640014. [PMID: 38274122 PMCID: PMC10810697 DOI: 10.1155/2024/8640014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
Background An increasing number of studies have proved that gut microbiota is involved in the occurrence and development of various lung diseases and can interact with the diseased lung. The concept of the gut-lung axis (GLA) provides a new idea for the subsequent clinical treatment of lung diseases through human microbiota. This review aims to summarize the microbiota in the lung and gut and the interaction between them from the perspectives of traditional Chinese medicine and modern medicine. Method We conducted a literature search by using the search terms "GLA," "gut microbiota," "spleen," and "Chinese medicine" in the databases PubMed, Web of Science, and CNKI. We then explored the mechanism of action of the gut-lung axis from traditional Chinese medicine and modern medicine. Results The lung and gut microbiota enable the GLA to function through immune regulation, while metabolites of the gut microbiota also play an important role. The spleen can improve the gut microbiota to achieve the regulation of the GLA. Conclusion Improving the gut microbiota through qi supplementation and spleen fortification provides a new approach to the clinical treatment of lung diseases by regulating the GLA. Currently, our understanding of the GLA is limited, and more research is needed to explain its working principle.
Collapse
Affiliation(s)
- Hui Wang
- Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Ying Wang
- Zhejiang Chinese Medical University, Hangzhou 310000, China
| |
Collapse
|
3
|
Li S, Su B, Wu H, He Q, Zhang T. Integrated analysis of gut and oral microbiome in men who have sex with men with HIV Infection. Microbiol Spectr 2023; 11:e0106423. [PMID: 37850756 PMCID: PMC10714972 DOI: 10.1128/spectrum.01064-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
IMPORTANCE Our longitudinal integrated study has shown the marked alterations in the gut and oral microbiome resulting from acute and chronic HIV infection and from antiretroviral therapy. Importantly, the relationship between oral and gut microbiomes in people living with acute and chronic HIV infection and "healthy" controls has also been explored. These findings might contribute to a better understanding of the interactions between the oral and gut microbiomes and its potential role in HIV disease progression.
Collapse
Affiliation(s)
- Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Qiushui He
- Institute of Biomedicine, Research Center for Infections and Immunity, University of Turku, Turku, Finland
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Pan Z, Wu N, Jin C. Intestinal Microbiota Dysbiosis Promotes Mucosal Barrier Damage and Immune Injury in HIV-Infected Patients. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:3080969. [PMID: 37927531 PMCID: PMC10625490 DOI: 10.1155/2023/3080969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/08/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
The intestinal microbiota is an "invisible organ" in the human body, with diverse components and complex interactions. Homeostasis of the intestinal microbiota plays a pivotal role in maintaining the normal physiological process and regulating immune homeostasis. By reviewing more than one hundred related studies concerning HIV infection and intestinal microbiota from 2011 to 2023, we found that human immunodeficiency virus (HIV) infection can induce intestinal microbiota dysbiosis, which not only worsens clinical symptoms but also promotes the occurrence of post-sequelae symptoms and comorbidities. In the early stage of HIV infection, the intestinal mucosal barrier is damaged and a persistent inflammatory response is induced. Mucosal barrier damage and immune injury play a pivotal role in promoting the post-sequelae symptoms caused by HIV infection. This review summarizes the relationship between dysbiosis of the intestinal microbiota and mucosal barrier damage during HIV infection and discusses the potential mechanisms of intestinal barrier damage induced by intestinal microbiota dysbiosis and inflammation. Exploring these molecular mechanisms might provide new ideas to improve the efficacy of HIV treatment and reduce the incidence of post-sequelae symptoms.
Collapse
Affiliation(s)
- Zhaoyi Pan
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Nanping Wu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Changzhong Jin
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Pheeha SM, Tamuzi JL, Chale-Matsau B, Manda S, Nyasulu PS. A Scoping Review Evaluating the Current State of Gut Microbiota Research in Africa. Microorganisms 2023; 11:2118. [PMID: 37630678 PMCID: PMC10458939 DOI: 10.3390/microorganisms11082118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The gut microbiota has emerged as a key human health and disease determinant. However, there is a significant knowledge gap regarding the composition, diversity, and function of the gut microbiota, specifically in the African population. This scoping review aims to examine the existing literature on gut microbiota research conducted in Africa, providing an overview of the current knowledge and identifying research gaps. A comprehensive search strategy was employed to identify relevant studies. Databases including MEDLINE (PubMed), African Index Medicus (AIM), CINAHL (EBSCOhost), Science Citation index (Web of Science), Embase (Ovid), Scopus (Elsevier), WHO International Clinical Trials Registry Platform (ICTRP), and Google Scholar were searched for relevant articles. Studies investigating the gut microbiota in African populations of all age groups were included. The initial screening included a total of 2136 articles, of which 154 were included in this scoping review. The current scoping review revealed a limited number of studies investigating diseases of public health significance in relation to the gut microbiota. Among these studies, HIV (14.3%), colorectal cancer (5.2%), and diabetes mellitus (3.9%) received the most attention. The top five countries that contributed to gut microbiota research were South Africa (16.2%), Malawi (10.4%), Egypt (9.7%), Kenya (7.1%), and Nigeria (6.5%). The high number (n = 66) of studies that did not study any specific disease in relation to the gut microbiota remains a gap that needs to be filled. This scoping review brings attention to the prevalent utilization of observational study types (38.3%) in the studies analysed and emphasizes the importance of conducting more experimental studies. Furthermore, the findings reflect the need for more disease-focused, comprehensive, and population-specific gut microbiota studies across diverse African regions and ethnic groups to better understand the factors shaping gut microbiota composition and its implications for health and disease. Such knowledge has the potential to inform targeted interventions and personalized approaches for improving health outcomes in African populations.
Collapse
Affiliation(s)
- Sara M. Pheeha
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7500, South Africa; (S.M.P.)
- Department of Chemical Pathology, Faculty of Medicine and Health Sciences, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
- National Health Laboratory Service, Dr George Mukhari Academic Hospital, Pretoria 0208, South Africa
| | - Jacques L. Tamuzi
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7500, South Africa; (S.M.P.)
| | - Bettina Chale-Matsau
- Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
- National Health Laboratory Service, Steve Biko Academic Hospital, Pretoria 0002, South Africa
| | - Samuel Manda
- Department of Statistics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Peter S. Nyasulu
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7500, South Africa; (S.M.P.)
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
6
|
Pang R, Wang J, Xiong Y, Liu J, Ma X, Gou X, He X, Cheng C, Wang W, Zheng J, Sun M, Bai X, Bai L, Zhang A. Relationship between gut microbiota and lymphocyte subsets in Chinese Han patients with spinal cord injury. Front Microbiol 2022; 13:986480. [PMID: 36225368 PMCID: PMC9549169 DOI: 10.3389/fmicb.2022.986480] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
This study is to investigate the changes of lymphocyte subsets and the gut microbiota in Chinese Han patients with spinal cord injury (SCI). We enrolled 23 patients with SCI and 21 healthy controls. Blood and fecal samples were collected. The proportion of lymphocyte subsets was detected by flow cytometry. 16S rDNA sequencing of the V4 region was used to analyze the gut microbiota. The changes of the gut microbiota were analyzed by bioinformatics. Correlation analysis between gut microbiota and lymphocyte subsets was performed. CD4 + cells, CD4 + /CD8 + ratio and CD4 + CD8 + cells in peripheral blood of SCI patients were significantly lower than those of the control group (P < 0.05). There was no significant difference in B cells and CIK cells between the SCI group and the control group. The gut microbiota community diversity index of SCI patients was significantly higher than that of healthy controls. In SCI patients, the relative abundance of Lachnospiraceae (related to lymphocyte subset regulation), Ruminococcaceae (closely related to central nervous system diseases), and Escherichia-Shigella (closely related to intestinal infections) increased significantly, while the butyrate producing bacteria (Fusobacterium) that were beneficial to the gut were dramatically decreased. Correlation analysis showed that the five bacterial genera of SCI patients, including Lachnospiraceae UCG-008, Lachnoclostridium 12, Tyzzerella 3, Eubacterium eligens group, and Rumencocciucg-002, were correlated with T lymphocyte subsets and NK cells. In the SCI group, the flora Prevotella 9, Lachnospiraceae NC2004 group, Veillonella, and Sutterella were positively correlated with B cells. However, Fusobacterium and Akkermansia were negatively correlated with B cells. Moreover, Roseburia and Ruminococcaceae UCG-003 were positively correlated with CIK cells. Our results suggest that the gut microbiota of patients with SCI is associated with lymphocyte subsets. Therefore, it is possible to improve immune dysregulation in SCI patients by modulating gut microbiota, which may serve as a new therapeutic method for SCI.
Collapse
Affiliation(s)
- Rizhao Pang
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Junyu Wang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yisong Xiong
- Department of Laboratory Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Jiancheng Liu
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Xin Ma
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Xiang Gou
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Xin He
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Chao Cheng
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Wenchun Wang
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Jinqi Zheng
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Mengyuan Sun
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Xingang Bai
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Ling Bai
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- *Correspondence: Anren Zhang,
| |
Collapse
|
7
|
Gorgone M, Singhvi D, Nouraie SM, Finkelman M, Zhang Y, Pu J, Chandra D, Zhang Y, Kitsios GD, Morris A, Sciurba FC, Bon J. Circulating 1,3-Beta-D-Glucan is Associated with Lung Function, Respiratory Symptoms, and Mediators of Matrix Degradation in Chronic Obstructive Pulmonary Disease. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2022; 9:325-335. [PMID: 35550241 PMCID: PMC9448008 DOI: 10.15326/jcopdf.2022.0290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Introduction Factors beyond cigarette smoke likely contribute to chronic obstructive pulmonary disease (COPD) pathogenesis. Prior studies demonstrate fungal colonization of the respiratory tract and increased epithelial barrier permeability in COPD. We sought to determine whether 1,3-beta-d-glucan (BDG), a polysaccharide component of the fungal cell wall, is detectable in the plasma of individuals with COPD and associates with clinical outcomes and matrix degradation proteins. Methods BDG was measured in the plasma of current and former smokers with COPD. High BDG was defined as a value greater than the 95th percentile of BDG in smokers without airflow obstruction. Pulmonary function, emphysema, and symptoms were compared between COPD participants with high versus low BDG. The relationship between plasma BDG, matrix metalloproteinases (MMP) 1, 7, and 9, and tissue inhibitor of matrix metalloproteinases (TIMP) 1, 2, and 4 was assessed adjusting for age, sex, and smoking status. Results COPD participants with high BDG plasma levels (19.8%) had lower forced expiratory volume in 1 second to forced vital capacity ratios (median 31.9 versus 39.3, p=0.025), higher St George's Respiratory Questionnaire symptom scores (median 63.6 versus 57.4, p=0.016), and greater prevalence of sputum production (69.4% versus 52.0%) and exacerbations (69.4% versus 48%) compared to COPD participants with low BDG. BDG levels directly correlated with MMP1 (r=0.27, p<0.001) and TIMP1 (r=0.16, p=0.022) in unadjusted and adjusted analyses. Conclusions Elevated plasma BDG levels correlate with worse lung function, greater respiratory morbidity, and circulating markers of matrix degradation in COPD. These findings suggest that targeting dysbiosis or enhancing epithelial barrier integrity may have disease-modifying effects in COPD.
Collapse
Affiliation(s)
- Matthew Gorgone
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- *Authors contributed equally
| | - Deepti Singhvi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- *Authors contributed equally
| | - Seyed Mehdi Nouraie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Malcolm Finkelman
- Associates of Cape Cod Incorporated, East Falmouth, Massachusetts, United States
| | - Yonglong Zhang
- Associates of Cape Cod Incorporated, East Falmouth, Massachusetts, United States
| | - Jiantao Pu
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Divay Chandra
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Georgios D. Kitsios
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Frank C. Sciurba
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jessica Bon
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
8
|
McCauley KE, Flynn K, Calatroni A, DiMassa V, LaMere B, Fadrosh DW, Lynch KV, Gill MA, Pongracic JA, Khurana Hershey GK, Kercsmar CM, Liu AH, Johnson CC, Kim H, Kattan M, O'Connor GT, Bacharier LB, Teach SJ, Gergen PJ, Wheatley LM, Togias A, LeBeau P, Presnell S, Boushey HA, Busse WW, Gern JE, Jackson DJ, Altman MC, Lynch SV. Seasonal airway microbiome and transcriptome interactions promote childhood asthma exacerbations. J Allergy Clin Immunol 2022; 150:204-213. [PMID: 35149044 DOI: 10.1016/j.jaci.2022.01.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/07/2022] [Accepted: 01/27/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Seasonal variation in respiratory illnesses and exacerbations in pediatric populations with asthma is well described, though whether upper airway microbes play season-specific roles in these events is unknown. OBJECTIVE We hypothesized that nasal microbiota composition is seasonally dynamic and that discrete microbe-host interactions modify risk of asthma exacerbation in a season-specific manner. METHODS Repeated nasal samples from children with exacerbation-prone asthma collected during periods of respiratory health (baseline; n = 181 samples) or first captured respiratory illness (n = 97) across all seasons, underwent bacterial (16S ribosomal RNA gene) and fungal (internal transcribed spacer region 2) biomarker sequencing. Virus detection was performed by multiplex PCR. Paired nasal transcriptome data were examined for seasonal dynamics and integrative analyses. RESULTS Upper airway bacterial and fungal microbiota and rhinovirus detection exhibited significant seasonal dynamics. In seasonally adjusted analysis, variation in both baseline and respiratory illness microbiota related to subsequent exacerbation. Specifically, in the fall, when respiratory illness and exacerbation events were most frequent, several Moraxella and Haemophilus members were enriched both in virus-positive respiratory illnesses and those that progressed to exacerbations. The abundance of 2 discrete bacterial networks, characteristically comprising either Streptococcus or Staphylococcus, exhibited opposing interactions with an exacerbation-associated SMAD3 nasal epithelial transcriptional module to significantly increase the odds of subsequent exacerbation (odds ratio = 14.7, 95% confidence interval = 1.50-144, P = .02; odds ratio = 39.17, 95% confidence interval = 2.44-626, P = .008, respectively). CONCLUSIONS Upper airway microbiomes covary with season and with seasonal trends in respiratory illnesses and asthma exacerbations. Seasonally adjusted analyses reveal specific bacteria-host interactions that significantly increase risk of asthma exacerbation in these children.
Collapse
Affiliation(s)
| | - Kaitlin Flynn
- Systems Immunology Program, Benaroya Research Institute, Seattle, Wash
| | | | - Vincent DiMassa
- Department of Medicine, University of California, San Francisco, Calif
| | - Brandon LaMere
- Department of Medicine, University of California, San Francisco, Calif
| | - Douglas W Fadrosh
- Department of Medicine, University of California, San Francisco, Calif
| | - Kole V Lynch
- Department of Medicine, University of California, San Francisco, Calif
| | - Michelle A Gill
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Tex
| | | | | | | | - Andrew H Liu
- Department of Allergy and Immunology, Children's Hospital Colorado, Unversity of Colorado School of Medicine, Aurora, Colo
| | | | | | - Meyer Kattan
- Columbia University College of Physicians and Surgeons, New York, NY
| | - George T O'Connor
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Mass
| | - Leonard B Bacharier
- Division of Allergy, Immunology, and Pulmonary Medicine, Washington University, St Louis, Mo
| | | | - Peter J Gergen
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Lisa M Wheatley
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Alkis Togias
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | | | - Scott Presnell
- Systems Immunology Program, Benaroya Research Institute, Seattle, Wash
| | - Homer A Boushey
- Department of Medicine, University of California, San Francisco, Calif
| | - William W Busse
- University of Wisconsin School of Medicine and Public Health, Madison, Wisc
| | - James E Gern
- University of Wisconsin School of Medicine and Public Health, Madison, Wisc
| | - Daniel J Jackson
- University of Wisconsin School of Medicine and Public Health, Madison, Wisc
| | - Matthew C Altman
- Systems Immunology Program, Benaroya Research Institute, Seattle, Wash; Department of Allergy and Infectious Diseases, University of Washington, Seattle, Wash.
| | - Susan V Lynch
- Department of Medicine, University of California, San Francisco, Calif.
| | | |
Collapse
|
9
|
Chen Z, Tian Y, Wang Y, Zhao H, Chen C, Zhang F. Profile of the Lower Respiratory Tract Microbiome in Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome and Lung Disease. Front Microbiol 2022; 13:888996. [PMID: 35814692 PMCID: PMC9260662 DOI: 10.3389/fmicb.2022.888996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
Once an human immunodeficiency virus (HIV)-infected individual enters the onset period, a variety of opportunistic infections may occur, affecting various systems and organs throughout the body, due to the considerable reduction in the body’s immune function. The objectives of this study were to explore the relationship between immune status and microbial communities in the lungs of individuals with HIV infection. A total of 88 patients with lung disease [80 (91%) HIV-positive and 8 (9%) HIV-negative] were enrolled in our study between January and July 2018, and 88 bronchoalveolar lavage fluid (BALF) samples were obtained during bronchoscopy. In this cross-sectional study, we investigated differences in the pulmonary microbiome of patients with HIV who had different immune statuses. The diversity of bacteria in the lungs of HIV-positive individuals was lower than that in HIV-negative individuals (p < 0.05). There was a significant difference in the composition and distribution of bacteria and fungi between the HIV-positive and HIV-negative groups (p < 0.01). The number of fungal species in the BALF of HIV-positive patients was higher than in HIV-negative patients. The diversity of bacteria and fungi in the BALF of HIV-positive patients increased with decreasing CD4 T-cell counts. Linear regression analysis showed that Pneumocystis (R2 = 6.4e−03, p < 0.05), Cryptosphaeria (R2 = 7.2e−01, p < 0.05), Candida (R2 = 3.9e−02, p < 0.05), and Trichosporon (R2 = 7.7e−01, p < 0.05) were negatively correlated with CD4 counts (F-test, p < 0.05). The samples collected from HIV-positive patients exhibited a different pattern relative to those from the HIV-negative group. Differences in host immune status cause differences in the diversity and structure of lower respiratory tract microorganisms.
Collapse
Affiliation(s)
- Zhen Chen
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Ya Tian
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Wang
- Affiliated Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongxin Zhao
- Affiliated Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Chen Chen
- Affiliated Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chen Chen,
| | - Fujie Zhang
- Affiliated Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Fujie Zhang,
| |
Collapse
|
10
|
Hertz S, Durack J, Kirk KF, Nielsen HL, Lin DL, Fadrosh D, Lynch K, Piceno Y, Thorlacius-Ussing O, Nielsen H, Lynch SV. Microscopic Colitis Patients Possess a Perturbed and Inflammatory Gut Microbiota. Dig Dis Sci 2022; 67:2433-2443. [PMID: 34059992 DOI: 10.1007/s10620-021-07045-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/08/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Microscopic colitis (MC), an inflammatory disease of the colon, is characterized by chronic non-bloody diarrhea with characteristic inflammation and for some, collagen deposits in mucosal biopsies. The etiology of MC is unclear, although previous findings implicate luminal factors and thus the gut microbiome. However, the relationships between fecal microbiota and MC are relatively unexplored. METHODS Stool microbiota of MC (n = 15) and healthy controls (HC; n = 21) were assessed by 16S rRNA V4 amplicon sequencing and analysis performed in QIIME. Gut microbiota functions were predicted using Piphillin and inflammatory potential assessed using an in vitro HT29 colonocyte cell assay. RESULTS MC patient fecal microbiota were less diverse (Faiths index; p < 0.01) and compositionally distinct (PERMANOVA, weighted UniFrac, R2 = 0.08, p = 0.02) compared with HC subjects. MC microbiota were significantly depleted of members of the Clostridiales, enriched for Prevotella and more likely to be dominated by this genus (Chi2 = 0.03). Predicted pathways enriched in MC microbiota included those related to biosynthesis of antimicrobials, and sphingolipids, to glycan degradation, host defense evasion, and Th17 cell differentiation and activation. In vitro, exposure of cultured colonocytes to cell-free products of MC patient feces indicates reduced gene expression of IL-1B and occludin and increased GPR119 and the lymphocyte chemoattractant CCL20. CONCLUSION MC gut microbiota are distinct from HC and characterized by lower bacterial diversity and Prevotella enrichment and distinct predicted functional pathways. Limited in vitro experiments indicate that compared with cell-free products from healthy fecal microbiota, MC microbiota induce distinct responses when co-cultured with epithelial cells, implicating microbiota perturbation in MC-associated mucosal dysfunction.
Collapse
Affiliation(s)
- Sandra Hertz
- Department of Medicine, University of California San Francisco, 513 Parnassus Ave, S357D, Box 0538, San Francisco, CA, 94143, USA. .,Department of Infectious Diseases, Aalborg University Hospital, Mølleparkvej 4, 7th floor, east wing, 9000, Aalborg, Denmark.
| | - Juliana Durack
- Department of Medicine, University of California San Francisco, 513 Parnassus Ave, S357D, Box 0538, San Francisco, CA, 94143, USA
| | - Karina Frahm Kirk
- Department of Infectious Diseases, Aalborg University Hospital, Mølleparkvej 4, 7th floor, east wing, 9000, Aalborg, Denmark
| | - Hans Linde Nielsen
- Department of Clinical Microbiology, Aalborg University Hospital, Mølleparkvej 10, 6th floor, 9000, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Din L Lin
- Department of Medicine, University of California San Francisco, 513 Parnassus Ave, S357D, Box 0538, San Francisco, CA, 94143, USA
| | - Douglas Fadrosh
- Department of Medicine, University of California San Francisco, 513 Parnassus Ave, S357D, Box 0538, San Francisco, CA, 94143, USA
| | - Kole Lynch
- Department of Medicine, University of California San Francisco, 513 Parnassus Ave, S357D, Box 0538, San Francisco, CA, 94143, USA
| | - Yvette Piceno
- Department of Medicine, University of California San Francisco, 513 Parnassus Ave, S357D, Box 0538, San Francisco, CA, 94143, USA
| | - Ole Thorlacius-Ussing
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Mølleparkvej 4, 7th floor, east wing, 9000, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Susan V Lynch
- Department of Medicine, University of California San Francisco, 513 Parnassus Ave, S357D, Box 0538, San Francisco, CA, 94143, USA
| |
Collapse
|
11
|
Luo Z, Health SL, Li M, Yang H, Wu Y, Collins M, Deeks SG, Martin JN, Scott A, Jiang W. Variation in blood microbial lipopolysaccharide (LPS) contributes to immune reconstitution in response to suppressive antiretroviral therapy in HIV. EBioMedicine 2022; 80:104037. [PMID: 35500539 PMCID: PMC9065923 DOI: 10.1016/j.ebiom.2022.104037] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/30/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In HIV infection, even under long-term antiretroviral therapy (ART), up to 20% of HIV-infected individuals fail to restore CD4+ T cell counts to the levels similar to those of healthy controls. The mechanisms of poor CD4+ T cell reconstitution on suppressive ART are not fully understood. METHODS Here, we tested the hypothesis that lipopolysaccharide (LPS) from bacteria enriched in the plasma from immune non-responders (INRs) contributes to blunted CD4+ T cell recovery on suppressive ART in HIV. We characterized plasma microbiome in HIV INRs (aviremic, CD4+ T cell counts < 350 cells/μl), immune responders (IRs, CD4+ T cell counts > 500 cells/μl), and healthy controls. Next, we analyzed the structure of the lipid A domain of three bacterial species identified by mass spectrometry (MS) and evaluated the LPS function through LPS induced proinflammatory responses and CD4+ T cell apoptosis in PBMCs. In comparison, we also evaluated plasma levels of proinflammatory cytokine and chemokine patterns in these three groups. At last, to study the causality of microbiome-blunted CD4+ T cell recovery in HIV, B6 mice were intraperitoneally (i.p.) injected with heat-killed Burkholderia fungorum, Serratia marcescens, or Phyllobacterium myrsinacearum, twice per week for total of eight weeks. FINDINGS INRs exhibited elevated plasma levels of total microbial translocation compared to the IRs and healthy controls. The most enriched bacteria were Burkholderia and Serratia in INRs and were Phyllobacterium in IRs. Further, unlike P. myrsinacearum LPS, B. fungorum and S. marcescens LPS induced proinflammatory responses and CD4+ T cell apoptosis in PBMCs, and gene profiles of bacteria-mediated cell activation pathways in THP-1 cells in vitro. Notably, LPS structural analysis by mass spectrometry revealed that lipid A from P. myrsinacearum exhibited a divergent structure consistent with weak toll-like receptor (TLR) 4 agonism, similar to the biological profile of probiotic bacteria. In contrast, lipid A from B. fungorum and S. marcescens showed structures more consistent with canonical TLR4 agonists stemming from proinflammatory bacterial strains. Finally, intraperitoneal (i.p.) injection of inactivated B. fungorum and S. marcescens but not P. myrsinacearum resulted in cell apoptosis in mesenteric lymph nodes of C57BL/6 mice in vivo. INTERPRETATION These results suggest that the microbial products are causally associated with INR phenotype. In summary, variation in blood microbial LPS immunogenicity may contribute to immune reconstitution in response to suppressive ART. Collectively, this work is consistent with immunologically silencing microbiome being causal and targetable with therapy in HIV. FUNDING This work was supported by the National Institute of Allergy and Infectious Diseases (NIAID; R01 AI128864, Jiang) (NIAID; P30 AI027767, Saag/Health), the Medical Research Service at the Ralph H. Johnson VA Medical Center (merit grant VA CSRD MERIT I01 CX-002422, Jiang), and the National Institute of Aging (R21 AG074331, Scott). The SCOPE cohort was supported by the UCSF/Gladstone Institute of Virology & Immunology CFAR (P30 AI027763, Gandhi) and the CFAR Network of Integrated Clinical Systems (R24 AI067039, Saag). The National Center for Advancing Translational Sciences of the National Institutes of Health under Award Number UL1TR001450 (the pilot grant, Jiang). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Collapse
Affiliation(s)
- Zhenwu Luo
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Ave. Charleston, Charleston, SC 29425, USA
| | - Sonya L Health
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Min Li
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Ave. Charleston, Charleston, SC 29425, USA
| | - Hyojik Yang
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, 650 W. Baltimore St. Office 9209, Baltimore, MD 21201, USA
| | - Yongxia Wu
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Ave. Charleston, Charleston, SC 29425, USA
| | - Michael Collins
- College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Steven G Deeks
- University of California, San FranciscoDepartment of Epidemiology and Biostatistics
| | - Jeffrey N Martin
- University of California, San FranciscoDepartment of Epidemiology and Biostatistics
| | - Alison Scott
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, 650 W. Baltimore St. Office 9209, Baltimore, MD 21201, USA.
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Ave. Charleston, Charleston, SC 29425, USA; Department of Medicine, Division of Infectious Diseases, Medical University of South Carolina, Charleston, SC 29425, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA.
| |
Collapse
|
12
|
Mingjun Z, Fei M, Zhousong X, Wei X, Jian X, Yuanxue Y, Youfeng S, Zhongping C, Yiqin L, Xiaohong Z, Ying C, Zhenbing W, Zehu D, Lanjuan L. 16S rDNA sequencing analyzes differences in intestinal flora of human immunodeficiency virus (HIV) patients and association with immune activation. Bioengineered 2022; 13:4085-4099. [PMID: 35129067 PMCID: PMC8974104 DOI: 10.1080/21655979.2021.2019174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
To clarify the influence of HIV on the intestinal flora and the interrelationship with CD4 T cells, the present study collected stool specimens from 33 HIV patients and 28 healthy subjects to compare the differences in the intestinal flora and CD4 T cells in a 16S rDNA-sequencing approach. ELISA was used to detect the expressions of interleukin 2 (IL-2), IL-8, and tumor necrosis factor-α (TNF-α). Meanwhile, correlation analysis with the different bacterial populations in each group was carried out. The results revealed that Alpha diversity indices of the intestinal flora of HIV patients were markedly lower than that of the healthy group (p < 0.05). The top five bacterial species in the HIV group were Bacteroides (23.453%), Prevotella (19.237%), Fusobacterium (12.408%), Lachnospira (3.811%), and Escherichia-Shigella (3.126%). Spearman correlation analysis results indicated that Fusobacterium_mortiferum, Fusobacterium, and Gammaproteobacteria were positively correlated with TNF-α (p < 0.05), whereas Ruminococcaceae, Bacteroidales was negatively correlated with TNF-α (p < 0.05). Additionally, Agathobacter was positively correlated with contents of IL-2 and IL-8 (p < 0.05), whereas Prevotellaceae, and Prevotella were negatively correlated with IL-8 content (p < 0.05). Furthermore, the top five strains in the CD4 high group (≥350/mm3) included Bacteroides (23.286%), Prevotella (21.943%), Fusobacterium (10.479%), Lachnospira (4.465%), and un_f_Lachnospiraceae (2.786%). Taken together, the present study identified that Fusobacterium and Escherichia-Shigella were specific and highly abundant in the HIV group and a correlation between the different bacterial flora and the contents of IL-2, IL-8, and TNF-α was revealed.
Collapse
Affiliation(s)
- Zhang Mingjun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Laboratory Medicine, People's Hospital of Jiulongpo District, Chongqing, China
| | - Mo Fei
- Department of Laboratory Medicine, People's Hospital of Jiulongpo District, Chongqing, China
| | - Xu Zhousong
- Department of Laboratory Medicine, People's Hospital of Jiulongpo District, Chongqing, China
| | - Xu Wei
- Department of Laboratory Medicine, Hangzhou Shulan Hospital, Zhejiang University, Hangzhou, China.,Department of Laboratory Medicine, Hangzhou Tongchuang Medical Laboratory Co. LTD, Hangzhou, China
| | - Xu Jian
- Department of Laboratory Medicine, Chongqing Precision Medical Industry Technology Research Institute, Chongqing, China
| | - Yi Yuanxue
- Department of Laboratory Medicine, Chongqing Precision Medical Industry Technology Research Institute, Chongqing, China.,Department of Laboratory Medicine, Chongqing D.A. Medical Laboratory, Chongqing, China
| | - Shen Youfeng
- Department of Laboratory Medicine, Chongqing Precision Medical Industry Technology Research Institute, Chongqing, China.,Department of Laboratory Medicine, Chongqing D.A. Medical Laboratory, Chongqing, China
| | - Chen Zhongping
- Department of Laboratory Medicine, People's Hospital of Jiulongpo District, Chongqing, China
| | - Long Yiqin
- Department of Laboratory Medicine, People's Hospital of Jiulongpo District, Chongqing, China
| | - Zhao Xiaohong
- Department of Laboratory Medicine, People's Hospital of Jiulongpo District, Chongqing, China
| | - Cheng Ying
- Department of Laboratory Medicine, Hangzhou Shulan Hospital, Zhejiang University, Hangzhou, China
| | - Wang Zhenbing
- Department of Laboratory Medicine, Chongqing Precision Medical Industry Technology Research Institute, Chongqing, China.,Department of Laboratory Medicine, Chongqing D.A. Medical Laboratory, Chongqing, China
| | - Deng Zehu
- Department of Laboratory Medicine, People's Hospital of Jiulongpo District, Chongqing, China
| | - Li Lanjuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Wang WW, Mao B, Liu Y, Gu SY, Lu HW, Bai JW, Liang S, Yang JW, Li JX, Su X, Hu HY, Wang C, Xu JF. Altered fecal microbiome and metabolome in adult patients with non-cystic fibrosis bronchiectasis. Respir Res 2022; 23:317. [PMCID: PMC9675243 DOI: 10.1186/s12931-022-02229-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/30/2022] [Indexed: 11/21/2022] Open
Abstract
Background Emerging experimental and epidemiological evidence highlights a crucial cross-talk between the intestinal flora and the lungs, termed the “gut-lung axis”. However, the function of the gut microbiota in bronchiectasis remains undefined. In this study, we aimed to perform a multi-omics-based approach to identify the gut microbiome and metabolic profiles in patients with bronchiectasis. Methods Fecal samples collected from non-CF bronchiectasis patients (BE group, n = 61) and healthy volunteers (HC group, n = 37) were analyzed by 16 S ribosomal RNA (rRNA) sequencing. The BE group was divided into two groups based on their clinical status: acute exacerbation (AE group, n = 31) and stable phase (SP group, n = 30). Further, metabolome (lipid chromatography-mass spectrometry, LC-MS) analyses were conducted in randomly selected patients (n = 29) and healthy volunteers (n = 31). Results Decreased fecal microbial diversity and differential microbial and metabolic compositions were observed in bronchiectasis patients. Correlation analyses indicated associations between the differential genera and clinical parameters such as bronchiectasis severity index (BSI). Disease-associated gut microbiota was screened out, with eight genera exhibited high accuracy in distinguishing SP patients from HCs in the discovery cohort and validation cohort using a random forest model. Further correlation networks were applied to illustrate the relations connecting disease-associated genera and metabolites. Conclusion The study uncovered the relationships among the decreased fecal microbial diversity, differential microbial and metabolic compositions in bronchiectasis patients by performing a multi-omics-based approach. It is the first study to characterize the gut microbiome and metabolome in bronchiectasis, and to uncover the gut microbiota’s potentiality as biomarkers for bronchiectasis. Trial registration: This study is registered with ClinicalTrials.gov, number NCT04490447. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02229-w.
Collapse
Affiliation(s)
- Wen-Wen Wang
- grid.24516.340000000123704535Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, Tongji University School of Medicine, 200433 Shanghai, China
| | - Bei Mao
- grid.24516.340000000123704535Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, Tongji University School of Medicine, 200433 Shanghai, China
| | - Yang Liu
- grid.24516.340000000123704535Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, Tongji University School of Medicine, 200433 Shanghai, China
| | - Shu-Yi Gu
- grid.24516.340000000123704535Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, Tongji University School of Medicine, 200433 Shanghai, China
| | - Hai-Wen Lu
- grid.24516.340000000123704535Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, Tongji University School of Medicine, 200433 Shanghai, China
| | - Jiu-Wu Bai
- grid.24516.340000000123704535Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, Tongji University School of Medicine, 200433 Shanghai, China
| | - Shuo Liang
- grid.24516.340000000123704535Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, Tongji University School of Medicine, 200433 Shanghai, China
| | - Jia-Wei Yang
- grid.24516.340000000123704535Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, Tongji University School of Medicine, 200433 Shanghai, China
| | - Jian-Xiong Li
- grid.24516.340000000123704535Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, Tongji University School of Medicine, 200433 Shanghai, China
| | - Xiao Su
- grid.429007.80000 0004 0627 2381Unit of Respiratory Infection and Immunity, Institute Pasteur of Shanghai, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Hai-Yang Hu
- grid.254147.10000 0000 9776 7793State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 211198 Nanjing, China
| | - Chen Wang
- grid.254147.10000 0000 9776 7793State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 211198 Nanjing, China
| | - Jin-Fu Xu
- grid.24516.340000000123704535Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, Tongji University School of Medicine, 200433 Shanghai, China
| |
Collapse
|
14
|
Zhu M, Liu S, Zhao C, Shi J, Li C, Ling S, Cheng J, Dong W, Xu J. Alterations in the gut microbiota of AIDS patients with pneumocystis pneumonia and correlations with the lung microbiota. Front Cell Infect Microbiol 2022; 12:1033427. [PMID: 36339339 PMCID: PMC9634167 DOI: 10.3389/fcimb.2022.1033427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/05/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Due to the inability to be cultured in vitro, the biological characteristics and pathogenicity of Pneumocystis jirovecii remain unclear. Intestinal microflora disorder is related to the occurrence and development of various pulmonary diseases. This work explores the pathogenesis of pneumocystis pneumonia (PCP) in acquired immune deficiency syndrome (AIDS) patients from a microbiome perspective, to provide better strategies for the diagnosis, treatment, and prevention of PCP. METHODS Subjects were divided into three groups: human immunodeficiency virus (HIV)-infected patients combined with PCP, HIV-infected patients without PCP, and HIV-negative. Stool and bronchoalveolar lavage fluid (BALF) samples were collected, total DNA was extracted, and 16S rRNA high-throughput sequencing was performed using an Illumina MiSeq platform. PICRUSt and BugBase were used to predict microflora functions, and correlation analysis of intestinal and lung bacterial flora was conducted. RESULTS Compared with the HIV- group, prevotella and another 21 genera in the intestinal microbiome were statistically different in the HIV+ group; 25 genera including Escherichia-Shigella from HIV+PCP+ group were statistically different from HIV+PCP- group. The abundance of Genera such as Porphyromonas was positively or negatively correlated with CD16/CD56+ (μL). Compared with the HIV- group, identification efficiency based on area under the curve (AUC) >0.7 for the HIV+ group identified seven genera in the gut microbiota, including Enterococcus (total AUC = 0.9519). Compared with the HIV+PCP- group, there were no bacteria with AUC >0.7 in the lung or intestine of the HIV+PCP+ group. The number of shared bacteria between BALF and fecal samples was eight species in the HIV- group, 109 species in PCP- patients, and 228 species in PCP+ patients, according to Venn diagram analysis. Changes in various clinical indicators and blood parameters were also closely related to the increase or decrease in the abundance of intestinal and pulmonary bacteria, respectively. CONCLUSIONS HIV infection and PCP significantly altered the species composition of lung and intestinal microbiomes, HIV infection also significantly affected intestinal microbiome gene functions, and PCP exacerbated the changes. The classification model can be used to distinguish HIV+ from HIV- patients, but the efficiency of bacterial classification was poor between PCP+ and PCP- groups. The microbiomes in the lung and gut were correlated to some extent, providing evidence for the existence of a lung-gut axis, revealing a potential therapeutic target in patients with HIV and PCP.
Collapse
Affiliation(s)
- Mingli Zhu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- Department of Microbiology, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Sai Liu
- Department of Microbiology, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenfei Zhao
- Department of Microbiology, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Department of Clinical Laboratory, The First Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinchuan Shi
- Department of Infectious Diseases, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Chaodan Li
- Department of Microbiology, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Shisheng Ling
- Research and Development Department, Assure Tech Institute of Medical Device, Hangzhou, China
| | - Jianghao Cheng
- Department of Microbiology, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenkun Dong
- Research and Development Department, Assure Tech Institute of Medical Device, Hangzhou, China
- *Correspondence: Wenkun Dong, ; Jiru Xu,
| | - Jiru Xu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Wenkun Dong, ; Jiru Xu,
| |
Collapse
|
15
|
Allali I, Abotsi RE, Tow LA, Thabane L, Zar HJ, Mulder NM, Nicol MP. Human microbiota research in Africa: a systematic review reveals gaps and priorities for future research. MICROBIOME 2021; 9:241. [PMID: 34911583 PMCID: PMC8672519 DOI: 10.1186/s40168-021-01195-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/14/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND The role of the human microbiome in health and disease is an emerging and important area of research; however, there is a concern that African populations are under-represented in human microbiome studies. We, therefore, conducted a systematic survey of African human microbiome studies to provide an overview and identify research gaps. Our secondary objectives were: (i) to determine the number of peer-reviewed publications; (ii) to identify the extent to which the researches focused on diseases identified by the World Health Organization [WHO] State of Health in the African Region Report as being the leading causes of morbidity and mortality in 2018; (iii) to describe the extent and pattern of collaborations between researchers in Africa and the rest of the world; and (iv) to identify leadership and funders of the studies. METHODOLOGY We systematically searched Medline via PubMed, Scopus, CINAHL, Academic Search Premier, Africa-Wide Information through EBSCOhost, and Web of Science from inception through to 1st April 2020. We included studies that characterized samples from African populations using next-generation sequencing approaches. Two reviewers independently conducted the literature search, title and abstract, and full-text screening, as well as data extraction. RESULTS We included 168 studies out of 5515 records retrieved. Most studies were published in PLoS One (13%; 22/168), and samples were collected from 33 of the 54 African countries. The country where most studies were conducted was South Africa (27/168), followed by Kenya (23/168) and Uganda (18/168). 26.8% (45/168) focused on diseases of significant public health concern in Africa. Collaboration between scientists from the United States of America and Africa was most common (96/168). The first and/or last authors of 79.8% of studies were not affiliated with institutions in Africa. Major funders were the United States of America National Institutes of Health (45.2%; 76/168), Bill and Melinda Gates Foundation (17.8%; 30/168), and the European Union (11.9%; 20/168). CONCLUSIONS There are significant gaps in microbiome research in Africa, especially those focusing on diseases of public health importance. There is a need for local leadership, capacity building, intra-continental collaboration, and national government investment in microbiome research within Africa. Video Abstract.
Collapse
Affiliation(s)
- Imane Allali
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Centre of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Regina E Abotsi
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Department of Pharmaceutical Microbiology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Lemese Ah Tow
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Lehana Thabane
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Biostatistics Unit, Father Sean O'Sullivan Research Centre, St Joseph's Healthcare, Hamilton, Ontario, Canada
- Departments of Paediatrics and Anaesthesia, McMaster University, Hamilton, Ontario, Canada
- Centre for Evaluation of Medicine, St Joseph's Healthcare, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton Health Sciences, Hamilton, Ontario, Canada
- Centre for Evidence-based Health Care, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
- MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Nicola M Mulder
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mark P Nicol
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
- School of Biomedical Sciences, University of Western Australia, M504, Perth, WA, 6009, Australia.
| |
Collapse
|
16
|
Fonseca W, Malinczak CA, Fujimura K, Li D, McCauley K, Li J, Best SKK, Zhu D, Rasky AJ, Johnson CC, Bermick J, Zoratti EM, Ownby D, Lynch SV, Lukacs NW, Ptaschinski C. Maternal gut microbiome regulates immunity to RSV infection in offspring. J Exp Med 2021; 218:212680. [PMID: 34613328 PMCID: PMC8500238 DOI: 10.1084/jem.20210235] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/26/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
Development of the immune system can be influenced by diverse extrinsic and intrinsic factors that influence the risk of disease. Severe early life respiratory syncytial virus (RSV) infection is associated with persistent immune alterations. Previously, our group had shown that adult mice orally supplemented with Lactobacillus johnsonii exhibited decreased airway immunopathology following RSV infection. Here, we demonstrate that offspring of mice supplemented with L. johnsonii exhibit reduced airway mucus and Th2 cell–mediated response to RSV infection. Maternal supplementation resulted in a consistent gut microbiome in mothers and their offspring. Importantly, supplemented maternal plasma and breastmilk, and offspring plasma, exhibited decreased inflammatory metabolites. Cross-fostering studies showed that prenatal Lactobacillus exposure led to decreased Th2 cytokines and lung inflammation following RSV infection, while postnatal Lactobacillus exposure diminished goblet cell hypertrophy and mucus production in the lung in response to airway infection. These studies demonstrate that Lactobacillus modulation of the maternal microbiome and associated metabolic reprogramming enhance airway protection against RSV in neonates.
Collapse
Affiliation(s)
- Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | | | - Kei Fujimura
- Department of Medicine-Gastroenterology, University of California, San Francisco, San Francisco, CA
| | - Danny Li
- Department of Medicine-Gastroenterology, University of California, San Francisco, San Francisco, CA
| | - Kathryn McCauley
- Department of Medicine-Gastroenterology, University of California, San Francisco, San Francisco, CA
| | - Jia Li
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI
| | | | - Diana Zhu
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Andrew J Rasky
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | | | - Jennifer Bermick
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Edward M Zoratti
- Division of Allergy and Clinical Immunology, Department of Medicine, Henry Ford Health System, Detroit, MI
| | - Dennis Ownby
- Department of Pediatrics, Augusta University, Augusta, GA
| | - Susan V Lynch
- Department of Medicine-Gastroenterology, University of California, San Francisco, San Francisco, CA
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI.,Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI
| | - Catherine Ptaschinski
- Department of Pathology, University of Michigan, Ann Arbor, MI.,Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
17
|
Ji JJ, Sun QM, Nie DY, Wang Q, Zhang H, Qin FF, Wang QS, Lu SF, Pang GM, Lu ZG. Probiotics protect against RSV infection by modulating the microbiota-alveolar-macrophage axis. Acta Pharmacol Sin 2021; 42:1630-1641. [PMID: 33495515 PMCID: PMC8463687 DOI: 10.1038/s41401-020-00573-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
Abstract
Respiratory syncytial virus (RSV) is leading cause of respiratory tract infections in early childhood. Gut microbiota is closely related with the pulmonary antiviral immunity. Recent evidence shows that gut dysbiosis is involved in the pathogenesis of RSV infection. Therefore; pharmacological and therapeutic strategies aiming to readjust the gut dysbiosis are increasingly important for the treatment of RSV infection. In this study, we evaluated the therapeutic effects of a probiotic mixture on RSV-infected mice. This probiotic mixture consisted of Lactobacillus rhamnosus GG, Escherichia coli Nissle 1917 and VSL#3 was orally administered to neonatal mice on a daily basis either for 1 week in advance or for 3 days starting from the day of RSV infection. We showed that administration of the probiotics protected against RSV-induced lung pathology by suppressing RSV infection and exerting an antiviral response via alveolar macrophage (AM)-derived IFN-β. Furthermore, administration of the probiotics reversed gut dysbiosis and significantly increased the abundance of short-chain fatty acid (SCFA)-producing bacteria in RSV-infected mice, which consequently led to elevated serum SCFA levels. Moreover, administration of the probiotics restored lung microbiota in RSV-infected mice. We demonstrated that the increased production of IFN-β in AMs was attributed to the increased acetate in circulation and the levels of Corynebacterium and Lactobacillus in lungs. In conclusion, we reveal that probiotics protect against RSV infection in neonatal mice through a microbiota-AM axis, suggesting that the probiotics may be a promising candidate to prevent and treat RSV infection, and deserve more research and development in future.
Collapse
Affiliation(s)
- Jian-Jian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qin-Mei Sun
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Deng-Yun Nie
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qian Wang
- International Education College, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Han Zhang
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fen-Fen Qin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qi-Sheng Wang
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Sheng-Feng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guo-Ming Pang
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, 475000, China.
| | - Zhi-Gang Lu
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- International Education College, Nanjing University of Chinese Medicine, Nanjing, 210000, China.
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, 475000, China.
| |
Collapse
|
18
|
Liu X, Cheng Y, Zang D, Zhang M, Li X, Liu D, Gao B, Zhou H, Sun J, Han X, Lin M, Chen J. The Role of Gut Microbiota in Lung Cancer: From Carcinogenesis to Immunotherapy. Front Oncol 2021; 11:720842. [PMID: 34490119 PMCID: PMC8417127 DOI: 10.3389/fonc.2021.720842] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
The influence of microbiota on host health and disease has attracted adequate attention, and gut microbiota components and microbiota-derived metabolites affect host immune homeostasis locally and systematically. Some studies have found that gut dysbiosis, disturbance of the structure and function of the gut microbiome, disrupts pulmonary immune homeostasis, thus leading to increased disease susceptibility; the gut-lung axis is the primary cross-talk for this communication. Gut dysbiosis is involved in carcinogenesis and the progression of lung cancer through genotoxicity, systemic inflammation, and defective immunosurveillance. In addition, the gut microbiome harbors the potential to be a novel biomarker for predicting sensitivity and adverse reactions to immunotherapy in patients with lung cancer. Probiotics and fecal microbiota transplantation (FMT) can enhance the efficacy and depress the toxicity of immune checkpoint inhibitors by regulating the gut microbiota. Although current studies have found that gut microbiota closely participates in the development and immunotherapy of lung cancer, the mechanisms require further investigation. Therefore, this review aims to discuss the underlying mechanisms of gut microbiota influencing carcinogenesis and immunotherapy in lung cancer and to provide new strategies for governing gut microbiota to enhance the prevention and treatment of lung cancer.
Collapse
Affiliation(s)
- Xiangjun Liu
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Ye Cheng
- Department of Oncology, The Third Hospital of Dalian Medical University, Dalian, China
| | - Dan Zang
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Min Zhang
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Xiuhua Li
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Dan Liu
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Bing Gao
- Department of Oncology, The Third Hospital of Dalian Medical University, Dalian, China
| | - Huan Zhou
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Jinzhe Sun
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Xu Han
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Lin
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Jun Chen
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
19
|
Liu J, Wang L, Hou Y, Zhao Y, Dou Z, Ma Y, Zhang D, Wu Y, Zhao D, Liu Z, Zhang F, Jin L, Zhang JY, Xu R, Shi M, Huang L, Wu Z, Han M, Gao GF, Wang FS. Immune restoration in HIV-1-infected patients after 12 years of antiretroviral therapy: a real-world observational study. Emerg Microbes Infect 2021; 9:2550-2561. [PMID: 33131455 PMCID: PMC7733958 DOI: 10.1080/22221751.2020.1840928] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Using normalization of CD4 counts as the main evaluation parameter of complete immune restoration for HIV-1 patients under antiretroviral therapy (ART) might be not enough. A comprehensive evaluation system more accurately reflecting immune restoration are urgently needed. Totally, 91,805 HIV-1 patients from 17 tertiary hospitals in China during 2005–2018 were included in this study. Immune restoration and mortality were assessed. Patients initiated ART with baseline CD4 counts <50, 50–199, 200–349, 350–499, and ≥500 cells/μL, and results showed an increase in the median CD4 counts to 445 (12-year), 467 (12-year), 581 (11-year), 644 (7-year), and 768 cells/µL (5-year), as well as the CD4/CD8 ratio to 0.59 (12-year), 0.65 (12-year), 0.79 (11-year), 0.82 (7-year), 0.9 (5-year), respectively. The median CD8 count was relatively high (median range 732–845 cells/μL), regardless of the baseline CD4 counts. Furthermore, the probabilities of death in patients achieving CD4 counts ≥500 cells/μL and CD4/CD8 ratio ≥0.8 simultaneously were significantly lower than those in patients achieving either CD4 counts ≥500 cells/μL (2.77% vs 3.50%, p=0.02) or CD4/CD8 ≥ 0.8 (2.77% vs 4.28%, p<0.001) after 12-year of ART. In this study, a new binary-indicator would accurately assess immune restoration in the era of “treat all.”
Collapse
Affiliation(s)
- Jiaye Liu
- National Center for AIDS/STD Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China.,Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, People's Republic of China.,Department of liver disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen, People's Republic of China
| | - Lifeng Wang
- National Center for AIDS/STD Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China.,Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Yuying Hou
- National Center for AIDS/STD Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China.,Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Yan Zhao
- National Center for AIDS/STD Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Zhihui Dou
- National Center for AIDS/STD Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Ye Ma
- National Center for AIDS/STD Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Dawei Zhang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Yasong Wu
- National Center for AIDS/STD Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Decai Zhao
- National Center for AIDS/STD Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Zhongfu Liu
- National Center for AIDS/STD Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Fujie Zhang
- National Center for AIDS/STD Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Lei Jin
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Ji-Yuan Zhang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, People's Republic of China.,Department of liver disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen, People's Republic of China
| | - Ruonan Xu
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Ming Shi
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Lei Huang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Zunyou Wu
- National Center for AIDS/STD Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Mengjie Han
- National Center for AIDS/STD Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - George F Gao
- National Center for AIDS/STD Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Fu-Sheng Wang
- National Center for AIDS/STD Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China.,Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, People's Republic of China.,Department of liver disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen, People's Republic of China
| |
Collapse
|
20
|
Ribes I, Reus S, Asensio S, García-Ródenas M, León R, Portilla-Tamarit I, Giner L, Portilla J. Inflammatory biomarkers in the pathogenesis of respiratory dysfunction in people living with HIV. Curr HIV Res 2021; 19:384-390. [PMID: 34109914 DOI: 10.2174/1570162x19666210607103157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although the association between HIV infection and airway obstruction is well known, its etiopathogenesis is not clear. OBJECTIVES Our aim was to analyze the association between biomarkers of systemic inflammation and bacterial translocation and pulmonary function tests in HIV-infected patients and compare the results between smokers and non-smokers. METHOD It was a cross-sectional, observational study. The inclusion criterion of the study was people living with HIV with undetectable plasma viral load. The exclusion criterion was other comorbidities associated with systemic inflammation. Outcome variables were spirometry and diffusing capacity for carbon monoxide; explanatory variables were inflammatory biomarkers (interleukin-6, tumor necrosis factor-alpha), bacterial translocation (soluble CD14 [sCD14] and bacterial 16S rDNA), and variables related to HIV infection. Associations were tested using the Pearson/Spearman correlation tests, the Student t-test, and multivariable linear regression. RESULTS We included 71 patients (54.9% smokers). We did not observe significant differences in pulmonary function tests according to biomarkers of inflammation or bacterial translocation. In non-smokers (n=32), sCD14 was negatively correlated with forced expiratory volume in 1 second (R = -0.35, P = 0.048) and forced vital capacity (R= -0.40, P=0.023). Age, time since HIV diagnosis, and CD4+ nadir were associated with alterations in PFTs. In smokers, the only association observed was between the pack-years and pulmonary obstruction. CONCLUSION In non-smokers, HIV patients' lung dysfunction can be, at least partially, related to bacterial translocation (sCD14), CD4+ nadir, and time since HIV diagnosis.
Collapse
Affiliation(s)
- Isabel Ribes
- Infectious Diseases Unit, General University Hospital of Alicante, Alicante, Spain
| | - Sergio Reus
- Infectious Diseases Unit, General University Hospital of Alicante, Alicante, Spain
| | - Santos Asensio
- Pneumonology Department, General University Hospital of Alicante, Alicante, Spain
| | - Mar García-Ródenas
- Pneumonology Department, General University Hospital of Alicante, Alicante, Spain
| | - Rafael León
- Infectious Diseases Unit, General University Hospital of Alicante, Alicante, Spain
| | | | - Livia Giner
- Infectious Diseases Unit, General University Hospital of Alicante, Alicante, Spain
| | - Joaquín Portilla
- Infectious Diseases Unit, General University Hospital of Alicante, Alicante, Spain
| |
Collapse
|
21
|
Parbie PK, Mizutani T, Ishizaka A, Kawana-Tachikawa A, Runtuwene LR, Seki S, Abana CZY, Kushitor D, Bonney EY, Ofori SB, Uematsu S, Imoto S, Kimura Y, Kiyono H, Ishikawa K, Ampofo WK, Matano T. Dysbiotic Fecal Microbiome in HIV-1 Infected Individuals in Ghana. Front Cell Infect Microbiol 2021; 11:646467. [PMID: 34084754 PMCID: PMC8168436 DOI: 10.3389/fcimb.2021.646467] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
HIV-1 infected individuals under antiretroviral therapy can control viremia but often develop non-AIDS diseases such as cardiovascular and metabolic disorders. Gut microbiome dysbiosis has been indicated to be associated with progression of these diseases. Analyses of gut/fecal microbiome in individual regions are important for our understanding of pathogenesis in HIV-1 infections. However, data on gut/fecal microbiome has not yet been accumulated in West Africa. In the present study, we examined fecal microbiome compositions in HIV-1 infected adults in Ghana, where approximately two-thirds of infected adults are females. In a cross-sectional case-control study, age- and gender-matched HIV-1 infected adults (HIV+; n = 55) and seronegative controls (HIV-; n = 55) were enrolled. Alpha diversity of fecal microbiome in HIV+ was significantly reduced compared to HIV- and associated with CD4 counts. HIV+ showed reduction in varieties of bacteria including Faecalibacterium, the most abundant in seronegative controls, but enrichment of Proteobacteria. Ghanaian HIV+ exhibited enrichment of Dorea and Blautia; bacteria groups whose depletion has been reported in HIV-1 infected individuals in several other cohorts. Furthermore, HIV+ in our cohort exhibited a depletion of Prevotella, a genus whose enrichment has recently been shown in men having sex with men (MSM) regardless of HIV-1 status. The present study revealed the characteristics of dysbiotic fecal microbiome in HIV-1 infected adults in Ghana, a representative of West African populations.
Collapse
Affiliation(s)
- Prince Kofi Parbie
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | | | - Aya Ishizaka
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Sayuri Seki
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Dennis Kushitor
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Evelyn Yayra Bonney
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Sampson Badu Ofori
- Department of Internal Medicine, Regional Hospital Koforidua, Ghana Health Service, Koforidua, Ghana
| | - Satoshi Uematsu
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Immunology and Genomics, Osaka City University Graduate School of Medicine, Osaka, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Seiya Imoto
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Yasumasa Kimura
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kiyono
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Institute for Global Prominent Research, Graduate School of Medicine, Chiba University, Chiba, Japan
- Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccines (cMAV), Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - Koichi Ishikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
22
|
Tamalet C, Devaux C, Dubourg G, Colson P. Resistance to human immunodeficiency virus infection: a rare but neglected state. Ann N Y Acad Sci 2020; 1485:22-42. [PMID: 33009659 DOI: 10.1111/nyas.14452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/25/2020] [Accepted: 07/07/2020] [Indexed: 11/29/2022]
Abstract
The natural history of human immunodeficiency virus (HIV) infection is well understood. In most individuals sexually exposed to HIV, the risk of becoming infected depends on the viral load and on sexual practices and gender. However, a low percentage of individuals who practice frequent unprotected sexual intercourse with HIV-infected partners remain uninfected. Although the systematic study of these individuals has made it possible to identify HIV resistance factors including protective genetic patterns, such epidemiological situations remain paradoxical and not fully understood. In vitro experiments have demonstrated that peripheral blood mononuclear cells (PBMCs) from HIV-free, unexposed blood donors are not equally susceptible to HIV infection; in addition, PBMCs from highly exposed seronegative individuals are generally resistant to infection by primary HIV clinical isolates. We review the literature on permissiveness of PBMCs from healthy blood donors and uninfected hyperexposed individuals to sustained infection and replication of HIV-1 in vitro. In addition, we focus on recent evidence indicating that the gut microbiota may either contribute to natural resistance to or delay replication of HIV infected individuals.
Collapse
Affiliation(s)
- Catherine Tamalet
- IHU Méditerranée Infection and Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Christian Devaux
- IHU Méditerranée Infection and Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Gregory Dubourg
- IHU Méditerranée Infection and Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Philippe Colson
- IHU Méditerranée Infection and Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| |
Collapse
|
23
|
Affiliation(s)
- Sophia Häfner
- University of Copenhagen, BRIC Biotech, Research & Innovation Centre, Lund Group, 2200, Copenhagen, Denmark.
| |
Collapse
|
24
|
Abstract
Recent studies have raised interest in the possibility that dysbiosis of the gut microbiome (i.e., the communities of bacteria residing in the intestine) in HIV-infected patients could contribute to chronic immune activation, and, thus, to elevated mortality and increased risk of inflammation-related clinical diseases (e.g., stroke, cardiovascular disease, cancer, long-bone fractures, and renal dysfunction) found even in those on effective antiretroviral therapy. Yet, to date, a consistent pattern of HIV-associated dysbiosis has not been identified. What is becoming clear, however, is that status as a man who has sex with men (MSM) may profoundly impact the structure of the gut microbiota, and that this factor likely confounded many HIV-related intestinal microbiome studies. However, what factor associated with MSM status drives these gut microbiota-related changes is unclear, and what impact, if any, these changes may have on the health of MSM is unknown. In this review, we outline available data on changes in the structure of the gut microbiome in HIV, based on studies that controlled for MSM status. We then examine what is known regarding the gut microbiota in MSM, and consider possible implications for research and the health of this population. Lastly, we discuss knowledge gaps and needed future studies.
Collapse
Affiliation(s)
- Susan Tuddenham
- Division of Infectious Diseases, Johns Hopkins School of
Medicine, Baltimore, MD
| | - Wei Li Koay
- Department of Infectious Disease, Children’s
National Hospital, Washington, D.C.;,School of Medicine and Health Sciences, George Washington
University, Washington, D.C
| | - Cynthia Sears
- Division of Infectious Diseases, Johns Hopkins School of
Medicine, Baltimore, MD
| |
Collapse
|
25
|
Altered gut microbiota by azithromycin attenuates airway inflammation in allergic asthma. J Allergy Clin Immunol 2020; 145:1466-1469.e8. [PMID: 32035985 DOI: 10.1016/j.jaci.2020.01.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 12/14/2022]
|
26
|
Evren E, Ringqvist E, Willinger T. Origin and ontogeny of lung macrophages: from mice to humans. Immunology 2019; 160:126-138. [PMID: 31715003 DOI: 10.1111/imm.13154] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022] Open
Abstract
Macrophages are tissue-resident myeloid cells with essential roles in host defense, tissue repair, and organ homeostasis. The lung harbors a large number of macrophages that reside in alveoli. As a result of their strategic location, alveolar macrophages are critical sentinels of healthy lung function and barrier immunity. They phagocytose inhaled material and initiate protective immune responses to pathogens, while preventing excessive inflammatory responses and tissue damage. Apart from alveolar macrophages, other macrophage populations are found in the lung and recent single-cell RNA-sequencing studies indicate that lung macrophage heterogeneity is greater than previously appreciated. The cellular origin and development of mouse lung macrophages has been extensively studied, but little is known about the ontogeny of their human counterparts, despite the importance of macrophages for lung health. In this context, humanized mice (mice with a human immune system) can give new insights into the biology of human lung macrophages by allowing in vivo studies that are not possible in humans. In particular, we have created humanized mouse models that support the development of human lung macrophages in vivo. In this review, we will discuss the heterogeneity, development, and homeostasis of lung macrophages. Moreover, we will highlight the impact of age, the microbiota, and pathogen exposure on lung macrophage function. Altered macrophage function has been implicated in respiratory infections as well as in common allergic and inflammatory lung diseases. Therefore, understanding the functional heterogeneity and ontogeny of lung macrophages should help to develop future macrophage-based therapies for important lung diseases in humans.
Collapse
Affiliation(s)
- Elza Evren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Emma Ringqvist
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tim Willinger
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|