1
|
Zhang H, Li Z, Li X, Peng X, Zhang X, Zhang S, Ge F, Zhang L, Wu Z, Liu B. Host Selection and Nutrient Status Jointly Drive Algal and Bacterial Interactions in Epiphytic Biofilms of Submerged Macrophytes: Structural and Functional Insights. ENVIRONMENTAL RESEARCH 2025:121743. [PMID: 40311900 DOI: 10.1016/j.envres.2025.121743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/03/2025]
Abstract
Epiphytic biofilms play a crucial role in aquatic biogeochemical cycles but are simultaneously influenced by host selection and eutrophication. However, the compositional structure and interaction mechanisms of these factors on algal and bacterial communities remain poorly understood. In this study, we employed Confocal Laser Scanning Microscopy (CLSM), Scanning Electron Microscopy (SEM), and high-throughput sequencing to investigate the physicochemical properties, algal and bacterial diversity, and community structure of epiphytic biofilms on two submerged macrophytes - Vallisneria natans (VN) and Hydrilla verticillata (HV) - across three urban shallow lakes with varying trophic levels in the Yangtze River Basin. Our results revealed distinct algal and bacterial communities influenced by both host plants and lake nutrient conditions, with unique core species identified in VN, HV, and the surrounding water. Host-environment effects index (HEEI = 1.79) indicated that bacterial communities were predominantly shaped by host selection, exhibiting lower diversity in HV (1.66 ± 0.92) and VN (2.31 ± 1.12) biofilms compared to surrounding waters (3.80 ± 0.47). In contrast, algal communities were primarily regulated by environmental factors (HEEI = 0.43), with higher diversity in less eutrophic lakes. Algal-bacterial co-occurrence network analysis revealed greater network complexity in VN biofilms than that in HV, with predominantly synergistic interactions facilitating carbon and nitrogen cycling. Eutrophication increased biofilm thickness, nutrient content, and extracellular polymeric substance (EPS) production but reduced microbial diversity and altered community interaction patterns. This study advances our understanding of epiphytic biofilms and offers insights into optimizing host-microbe interactions for improving lake restoration strategies.
Collapse
Affiliation(s)
- Haokun Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuxi Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xia Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xue Peng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaowen Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuxian Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangjie Ge
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lu Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhenbin Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Biyun Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
2
|
Ji K, Wei Y, Wang X, Liu Y, Sun R, Li Y, Lan G. Distribution patterns of fungal community diversity in the dominant tree species Dacrydium pectinatum and Vatica mangachapoi in tropical rainforests. Microbiol Spectr 2025:e0309224. [PMID: 40243370 DOI: 10.1128/spectrum.03092-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Plant microbial communities are shaped by plant compartments, but the patterns of fungal communities in aboveground and belowground compartments, and which environmental factors can affect them, remain unknown. Here, to address this research gap, high-throughput sequencing technology was performed to investigate the diversity of fungal communities in leaves' and roots' compartments of Dacrydium pectinatum and Vatica mangachapoi from Hainan Island of China. Fungal communities in leaves and roots exhibited significant differences. Eurotiomycetes (16.57%) and Dothideomycetes (45.57%) were predominantly found in leaves, while Agaricomycetes (36.53%) dominated in roots. Compared to the roots, the leaf compartments had higher α-diversity. According to the Mantel test, soil pH mainly influenced roots, while the main driving factors for leaves were rainfall and temperature. The proportion of dispersal-limited processes in rhizoplane (76.67%) and root endosphere (73.81%) were greater than that in leaf epiphytic (62.38%) and leaf endophytic (68.1%), driven by ectomycorrhizal fungi with known dispersal limitations. In summary, the compositions of the leaf and root fungal communities of both endangered tree species differed, partly driven by environmental factors unique to each compartment. Our results provide valuable theoretical and practical insights for preserving tropical tree species. IMPORTANCE Understanding the assembly of microbial communities across different compartments is a prerequisite for harnessing them to enhance plant growth. Our findings reveal significant differences in fungal community structures between the root and leaf compartments. Compared to the roots, the leaf compartments exhibited higher α-diversity. While soil pH mainly influenced fungal communities in the roots, the primary drivers for the leaves were rainfall and temperature. The dispersal-limited processes of fungal communities in the roots were greater than those in the leaves, primarily influenced by mycorrhizal fungi. These findings demonstrate compartment-specific plant-microbe interactions and environmental responses, offering actionable insights for conserving tropical tree species through habitat optimization (e.g., soil pH management) and dispersal corridor preservation. This compartment-aware perspective enhances our ability to leverage microbial functions to improve the resilience of endangered trees in the face of climate change.
Collapse
Affiliation(s)
- Kepeng Ji
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou City, Hainan Province, China
- College of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yaqing Wei
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou City, Hainan Province, China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, China
| | - Xin Wang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou City, Hainan Province, China
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yu Liu
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Rui Sun
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou City, Hainan Province, China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, China
| | - Yuwu Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Guoyu Lan
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou City, Hainan Province, China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, China
| |
Collapse
|
3
|
Sonam W, Liu Y, Ren L. Differentiation and Interconnection of the Bacterial Community Associated with Silene nigrescens Along the Soil-To-Plant Continuum in the Sub-Nival Belt of the Qiangyong Glacier. PLANTS (BASEL, SWITZERLAND) 2025; 14:1190. [PMID: 40284077 PMCID: PMC12030249 DOI: 10.3390/plants14081190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
Plant microbiomes provide significant fitness advantages to their plant hosts, especially in the sub-nival belt. Studies to date have primarily focused on belowground communities in this region. Here, we utilized high-throughput DNA sequencing to quantify bacterial communities in the rhizosphere soil as well as in the root and leaf endosphere compartments of Silene nigrescens to uncover the differentiation and interconnections of these bacterial communities along the soil-to-plant continuum. Our findings reveal that the bacterial communities exhibit notable variation across different plant compartment niches: the rhizosphere soil, root endosphere, and leaf endosphere. There was a progressive decline in diversity, network complexity, network modularity, and niche breadth from the rhizosphere soil to the root endosphere, and further to the leaf endosphere. Conversely, both the host plant selection effect and the stability of these communities showed an increasing trend. Total nitrogen and total potassium emerged as crucial factors accounting for the observed differences in diversity and composition, respectively. Additionally, 3.6% of the total amplicon sequence variants (ASVs) were shared across the rhizosphere soil, root endosphere, and leaf endosphere. Source-tracking analysis further revealed bacterial community migration among these compartments. The genera Pseudomonas, IMCC26256, Mycobacterium, Phyllobacterium, and Sphingomonas constituted the core of the bacterial microbiome. These taxa are shared across all three compartment niches and function as key connector species. Notably, Pseudomonas stands out as the predominant taxon among these bacteria, with nitrogen being the most significant factor influencing its relative abundance. These findings deepen our understanding of the assembly principles and ecological dynamics of the plant microbiome in the sub-nival belt, offering an integrated framework for its study.
Collapse
Affiliation(s)
- Wangchen Sonam
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Luming Ren
- Nanning Garden Expo Park Management Center, Nanning Institute of Tropical Botany, Nanning 530299, China;
| |
Collapse
|
4
|
Zeng Q, Hu HW, Ge AH, Xiong C, Zhai CC, Duan GL, Han LL, Huang SY, Zhang LM. Plant-microbiome interactions and their impacts on plant adaptation to climate change. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:826-844. [PMID: 39981843 DOI: 10.1111/jipb.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/22/2025]
Abstract
Plants have co-evolved with a wide range of microbial communities over hundreds of millions of years, this has drastically influenced their adaptation to biotic and abiotic stress. The rapid development of multi-omics approaches has greatly improved our understanding of the diversity, composition, and functions of plant microbiomes, but how global climate change affects the assembly of plant microbiomes and their roles in regulating host plant adaptation to changing environmental conditions is not fully known. In this review, we summarize recent advancements in the community assembly of plant microbiomes, and their responses to climate change factors such as elevated CO2 levels, warming, and drought. We further delineate the research trends and hotspots in plant-microbiome interactions in the context of climate change, and summarize the key mechanisms by which plant microbiomes influence plant adaptation to the changing climate. We propose that future research is urgently needed to unravel the impact of key plant genes and signal molecules modulated by climate change on microbial communities, to elucidate the evolutionary response of plant-microbe interactions at the community level, and to engineer synthetic microbial communities to mitigate the effects of climate change on plant fitness.
Collapse
Affiliation(s)
- Qing Zeng
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang-Wei Hu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - An-Hui Ge
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chao Xiong
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Chang-Chun Zhai
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Gui-Lan Duan
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Li-Li Han
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Si-Yun Huang
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Mei Zhang
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Li J, Li XC, Gan HY, Zhang Y, Guo ZX, Liu YX, Lin YQ, Guo LD. Plant diversity increases diversity and network complexity rather than alters community assembly processes of leaf-associated fungi in a subtropical forest. SCIENCE CHINA. LIFE SCIENCES 2025; 68:846-858. [PMID: 39432205 DOI: 10.1007/s11427-024-2630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/23/2024] [Indexed: 10/22/2024]
Abstract
Plant diversity significantly impacts ecosystem processes and functions, yet its influence on the community assembly of leaf fungi remains poorly understood. In this study, we investigated leaf epiphytic and endophytic fungal communities in a Chinese subtropical tree species richness experiment, ranging from 1 to 16 species, using amplicon sequencing to target the internal transcribed spacer 1 region of the rDNA. We found that the community assembly of epiphytic and endophytic fungi was predominantly governed by stochastic processes, with a higher contribution of dispersal limitation on epiphytic than on endophytic fungal communities but a higher contribution of selection on endophytic than on epiphytic fungal communities. The plant-epiphytic fungus interaction network was more complex (e.g., more highly connected and strongly nested but less specialized and modularized) than the plant-endophytic fungus interaction network. Additionally, tree species richness was positively correlated with the network complexity and diversity of epiphytic (α-, β- and γ-diversity) and endophytic (β- and γ-diversity) fungi, but was not associated with the contribution of the stochastic and deterministic processes on the community assembly of epiphytic and endophytic fungi. This study highlights that tree species diversity enhances the diversity and network complexity, rather than alters the ecological processes in community assembly of leaf-associated fungi.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xing-Chun Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Yun Gan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi-Xuan Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Xuan Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong-Qing Lin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Adouane E, Hubas C, Leblanc C, Lami R, Prado S. Multi-omics analysis of the correlation between surface microbiome and metabolome in Saccharina latissima (Laminariales, Phaeophyceae). FEMS Microbiol Ecol 2025; 101:fiae160. [PMID: 39984283 DOI: 10.1093/femsec/fiae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/06/2024] [Accepted: 02/20/2025] [Indexed: 02/23/2025] Open
Abstract
The microbiome of Saccharina latissima, an important brown macroalgal species in Europe, significantly influences its health, fitness, and pathogen resistance. Yet, comprehensive studies on the diversity and function of microbial communities (bacteria, eukaryotes, and fungi) associated with this species are lacking. Using metabarcoding, we investigated the epimicrobiota of S. latissima and correlated microbial diversity with metabolomic patterns (liquid chromatography coupled to tandem mass spectrometry). Specific epibacterial and eukaryotic communities inhabit the S. latissima surface, alongside a core microbiota, while fungal communities show lower and more heterogeneous diversity. Metabolomic analysis revealed a large diversity of mass features, including putatively annotated fatty acids, amino derivatives, amino acids, and naphthofurans. Multiple-factor analysis linked microbial diversity with surface metabolome variations, driven mainly by fungi and bacteria. Two taxa groups were identified: one associated with bacterial consortia and the other with fungal consortia, each correlated with specific metabolites. This study demonstrated a core bacterial and eukaryotic microbiota associated with a core metabolome and highlighted interindividual variations. Annotating the surface metabolome using Natural Products databases suggested numerous metabolites potentially involved in interspecies chemical interactions. Our findings establish a link between microbial community structure and function, identifying two microbial consortia potentially involved in the chemical defense of S. latissima.
Collapse
Affiliation(s)
- Emilie Adouane
- Muséum National d'Histoire Naturelle, Unité Molécules de Communication et Adaptation des Micro-Organismes, UMR 7245, CNRS, Sorbonne Université, 75005 Paris, France
- Laboratoire de Biodiversité et Biotechnologie Microbienne (LBBM), Sorbonne Université, CNRS, UAR 3579, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Cédric Hubas
- Muséum National d'Histoire Naturelle, Laboratoire Biologie des Organismes et Écosystème Aquatiques (UMR 8067 BOREA), Sorbonne Université, CNRS, IRD, Université de Caen Normandie, Université des Antilles, Station Marine de Concarneau, Quai de la croix, 29900 Concarneau, France
| | - Catherine Leblanc
- Biologie Intégrative des Modèles Marins, LBI2M (Sorbonne Université/CNRS), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Raphaël Lami
- Laboratoire de Biodiversité et Biotechnologie Microbienne (LBBM), Sorbonne Université, CNRS, UAR 3579, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Soizic Prado
- Muséum National d'Histoire Naturelle, Unité Molécules de Communication et Adaptation des Micro-Organismes, UMR 7245, CNRS, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
7
|
Sundararajan P, Ghosh S, Kelbessa BG, Whisson SC, Dubey M, Chawade A, Vetukuri RR. The impact of spray-induced gene silencing on cereal phyllosphere microbiota. ENVIRONMENTAL MICROBIOME 2025; 20:1. [PMID: 39780216 PMCID: PMC11716504 DOI: 10.1186/s40793-024-00660-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Fusarium head blight (FHB) is a major disease affecting cereal crops including wheat, barley, rye, oats and maize. Its predominant causal agent is the ascomycete fungus Fusarium graminearum, which infects the spikes and thereby reduces grain yield and quality. The frequency and severity of FHB epidemics has increased in recent years, threatening global food security. Spray-induced gene silencing (SIGS) is an alternative technique for tackling this devastating disease through foliar spraying with exogenous double-stranded RNA (dsRNA) to silence specific pathogen genes via RNA interference. This has the advantage of avoiding transgenic approaches, but several aspects of the technology require further development to make it a viable field-level management tool. One such existing knowledge gap is how dsRNA spraying affects the microbiota of the host plants. RESULTS We found that the diversity, structure and composition of the bacterial microbiota are subject to changes depending on dsRNA targeted and host studied, while the fungal microbiota in the phyllosphere remained relatively unchanged upon spraying with dsRNA. Analyses of fungal co-occurrence patterns also showed that F. graminearum established itself among the fungal communities through negative interactions with neighbouring fungi. Through these analyses, we have also found bacterial and fungal genera ubiquitous in the phyllosphere, irrespective of dsRNA treatment. These results suggest that although rarer and less abundant microbial species change upon dsRNA spray, the ubiquitous bacterial and fungal components of the phyllosphere in wheat and barley remain unchanged. CONCLUSION We show for the first time the effects of exogenous dsRNA spraying on bacterial and fungal communities in the wheat and barley phyllospheres using a high-throughput amplicon sequencing approach. The results obtained further validate the safety and target-specificity of SIGS and emphasize its potential as an environmentally friendly option for managing Fusarium head blight in wheat and barley.
Collapse
Affiliation(s)
- Poorva Sundararajan
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Samrat Ghosh
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Bekele Gelena Kelbessa
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Stephen C Whisson
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, UK
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Ramesh Raju Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| |
Collapse
|
8
|
Chen D, Yang J, Wang S, Lan S, Wang Y, Liu ZJ, Qian X. Comparative analysis of community composition and network structure between phyllosphere endophytic and epiphytic fungal communities of Mussaenda pubescens. Microbiol Spectr 2025; 13:e0101924. [PMID: 39625383 PMCID: PMC11705847 DOI: 10.1128/spectrum.01019-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/23/2024] [Indexed: 01/11/2025] Open
Abstract
The phyllosphere constitutes a critical habitat for microorganisms, exerting profound influences on host vitality, developmental dynamics, reproductive functions, and stress resilience. However, the diversity and network structure of endophytic and epiphytic fungal communities within this microecosystem have not been thoroughly explored. In this investigation, high-throughput sequencing technologies were employed to assess the diversity, community composition, and network structure of endophytic and epiphytic fungal communities associated with Mussaenda pubescens across six geographically distinct locations in Southeast China. The results revealed significant differences in community composition and diversity between endophytic and epiphytic fungi, with pronounced geographical variation observed within these phyllosphere fungal communities. Network analysis indicated that epiphytic fungal networks possess enhanced complexity compared with their endophytic counterparts, although the latter exhibit greater network stability. Moreover, stochastic processes were identified as pivotal in shaping the composition of these fungal communities. This research substantially enriches our comprehension of the diversity and organizational mechanisms of phyllosphere fungal communities, providing novel insights into the modalities of species coexistence and the stability of community equilibrium within ecosystems.IMPORTANCEThis study employs high-throughput sequencing technologies to explore the fungal communities within the phyllosphere of Mussaenda pubescens across Southeast China, offering significant insights into plant mycobiome. It demonstrates geographical variations in these fungal communities, with epiphytic fungi exhibiting more complex interaction networks compared with the endophytic fungi. Crucially, the research indicates that stochastic processes play a substantial role in the composition of fungal communities. These findings enhance our comprehension of plant-associated microecosystems and underscore the intricate interplay of randomness in maintaining ecosystem stability and diversity.
Collapse
Affiliation(s)
- Deqiang Chen
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Juanjuan Yang
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shunfen Wang
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siren Lan
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Zhong-Jian Liu
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Qian
- Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
9
|
Yang X, Yuan R, Yang S, Dai Z, Di N, Yang H, He Z, Wei M. A salt-tolerant growth-promoting phyllosphere microbial combination from mangrove plants and its mechanism for promoting salt tolerance in rice. MICROBIOME 2024; 12:270. [PMID: 39707568 DOI: 10.1186/s40168-024-01969-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 11/05/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Mangrove plants growing in the high salt environment of coastal intertidal zones colonize a variety of microorganisms in the phyllosphere, which have potential salt-tolerant and growth-promoting effects. However, the characteristics of microbial communities in the phyllosphere of mangrove species with and without salt glands and the differences between them remain unknown, and the exploration and the agricultural utilization of functional microbial resources from the leaves of mangrove plants are insufficient. RESULTS In this study, we examined six typical mangrove species to unravel the differences in the diversity and structure of phyllosphere microbial communities between mangrove species with or without salt glands. Our results showed that a combination of salt-tolerant growth-promoting strains of Pantoea stewartii A and Bacillus marisflavi Y25 (A + Y25) was constructed from the phyllosphere of mangrove plants, which demonstrated an ability to modulate osmotic substances in rice and regulate the expression of salt-resistance-associated genes. Further metagenomic analysis revealed that exogenous inoculation with A + Y25 increased the rice rhizosphere's specific microbial taxon Chloroflexi, thereby elevating microbial community quorum sensing and ultimately enhancing ionic balance and overall microbial community function to aid salt resistance in rice. CONCLUSIONS This study advances our understanding of the mutualistic and symbiotic relationships between mangrove species and their phyllosphere microbial communities. It offers a paradigm for exploring agricultural beneficial microbial resources from mangrove leaves and providing the potential for applying the salt-tolerant bacterial consortium to enhance crop adaptability in saline-alkaline land. Video Abstract.
Collapse
Affiliation(s)
- Xiangxia Yang
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Rongwei Yuan
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Shuangyu Yang
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zhian Dai
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Na Di
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Haijun Yang
- Center for Basic Experiment and Practice Training, South China Agricultural University, Guangzhou, 510462, China
| | - Zhili He
- The Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China
| | - Mi Wei
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000, China.
| |
Collapse
|
10
|
Boisseaux M, Troispoux V, Bordes A, Cazal J, Cazal SO, Coste S, Stahl C, Schimann H. Are plant traits drivers of endophytic communities in seasonally flooded tropical forests? AMERICAN JOURNAL OF BOTANY 2024; 111:e16366. [PMID: 39010811 DOI: 10.1002/ajb2.16366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 07/17/2024]
Abstract
PREMISE In the Amazon basin, seasonally flooded (SF) forests offer varying water constraints, providing an excellent way to investigate the role of habitat selection on microbial communities within plants. However, variations in the microbial community among host plants cannot solely be attributed to environmental factors, and how plant traits contribute to microbial assemblages remains an open question. METHODS We described leaf- and root-associated microbial communities using ITS2 and 16 S high-throughput sequencing and investigated the stochastic-deterministic balance shaping these community assemblies using two null models. Plant ecophysiological functioning was evaluated by focusing on 10 leaf and root traits in 72 seedlings, belonging to seven tropical SF tree species in French Guiana. We then analyzed how root and leaf traits drove the assembly of endophytic communities. RESULTS While both stochastic and deterministic processes governed the endophyte assembly in the leaves and roots, stochasticity prevailed. Discrepancies were found between fungi and bacteria, highlighting that these microorganisms have distinct ecological strategies within plants. Traits, especially leaf traits, host species and spatial predictors better explained diversity than composition, but they were modest predictors overall. CONCLUSIONS This study widens our knowledge about tree species in SF forests, a habitat sensitive to climate change, through the combined analyses of their associated microbial communities with functional traits. We emphasize the need to investigate other plant traits to better disentangle the drivers of the relationship between seedlings and their associated microbiomes, ultimately enhancing their adaptive capacities to climate change.
Collapse
Affiliation(s)
- Marion Boisseaux
- UMR EcoFoG, Agroparistech, Cirad, CNRS, INRAE, Université des Antilles, Université de la Guyane. Campus Agronomique, Kourou, 97310, France
| | - Valérie Troispoux
- UMR EcoFoG, Agroparistech, Cirad, CNRS, INRAE, Université des Antilles, Université de la Guyane. Campus Agronomique, Kourou, 97310, France
| | - Alice Bordes
- Université Grenoble Alpes, INRAE, URLESSEM, Saint-Martin-d'Hères, France, Grenoble, France
| | - Jocelyn Cazal
- UMR EcoFoG, Agroparistech, Cirad, CNRS, INRAE, Université des Antilles, Université de la Guyane. Campus Agronomique, Kourou, 97310, France
| | - Saint-Omer Cazal
- UMR EcoFoG, Agroparistech, Cirad, CNRS, INRAE, Université des Antilles, Université de la Guyane. Campus Agronomique, Kourou, 97310, France
| | - Sabrina Coste
- UMR EcoFoG, Agroparistech, Cirad, CNRS, INRAE, Université des Antilles, Université de la Guyane. Campus Agronomique, Kourou, 97310, France
| | - Clément Stahl
- UMR EcoFoG, Agroparistech, Cirad, CNRS, INRAE, Université des Antilles, Université de la Guyane. Campus Agronomique, Kourou, 97310, France
| | - Heidy Schimann
- INRAE, Université de Bordeaux, BIOGECO, Cestas, 33610, France
| |
Collapse
|
11
|
Schweitzer M, Kögl I, Wassermann B, Abdelfattah A, Wicaksono WA, Berg G. Urban air quality affects the apple microbiome assembly. ENVIRONMENTAL RESEARCH 2024; 262:119858. [PMID: 39197489 DOI: 10.1016/j.envres.2024.119858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/01/2024]
Abstract
Exposure to air pollution affects health of all organisms on earth but the impact on the plant microbiome is less understood. Here, we link the Air Quality Index with the dust and apple epiphytic and endophytic microbiome across the city of Graz (Austria). The microbiome of the apple episphere, peel endosphere and pulp endosphere, and surrounding dust was analyzed. Our results show that the fungal communities were more influenced by air quality than bacterial communities. Bacterial communities, instead, were more specific for the individual sample types, especially noticeable in the pulp endosphere. The microbiome of each sample type was comprised of distinct microbial communities. Overall, the bacterial communities were highly dominated by Proteobacteria followed by Bacteroidota and Actinobacteriota, and the fungal communities were dominated by Ascomycota followed by Basidiomycota. With lower air quality, the relative abundance of the fungal orders Hypocreales and Pleosporales decreased in the apple episphere and the peel endosphere, respectively. Interestingly, an unexpectedly high level of similarity was observed between the bacterial communities of dust and peel endosphere, while the epiphytic bacterial community was significantly different compared to the other samples. We suggested that dust served as a potential microbial colonization route for the fruit microbiome as most bacteria (55%) colonizing the peel endosphere originated from dust. In conclusion, air quality affects the microbiome of edible plants, which can cause health consequences in humans. Therefore, this knowledge should be considered in urban and horticultural farming strategies.
Collapse
Affiliation(s)
- Matthias Schweitzer
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Isabella Kögl
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria; Austrian Centre of Industrial Biotechnology (ACIB GmbH), Krenngasse 37, 8010, Graz, Austria
| | - Birgit Wassermann
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Ahmed Abdelfattah
- Leibniz-Institute for Agricultural Engineering and Bioeconomy Potsdam (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany; Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Wisnu Adi Wicaksono
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria.
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria; Leibniz-Institute for Agricultural Engineering and Bioeconomy Potsdam (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany; Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
12
|
Dos Reis JBA, Bezerra JDP, do Vale HMM. Diversity of cultivable endophytic fungi in a decumbent subshrub endemic of the Brazilian tropical savanna. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01226-4. [PMID: 39560704 DOI: 10.1007/s12223-024-01226-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024]
Abstract
The diversity of cultivable endophytic fungi in native subshrubs of the Brazilian Cerrado is largely unknown. This study investigated the cultivable endophytic mycobiome of stems, leaves, and flowers of Peltaea polymorpha (Malvaceae). In total, 208 endophytic fungi were isolated, 95 from stems, 65 from leaves, and 48 from flowers. The isolates were classified as ascomycetes belonging to three classes, eight orders, ten families, 12 genera, and 31 species. Diaporthe, Nigrospora, and Colletotrichum were the dominant genera in the three analyzed organs. The richness estimators suggested that the number of species might be slightly higher than observed. The highest values for the Shannon and Simpson diversity indices were observed in stems. Beta diversity showed overlapping of fungal communities in different organs, with a high rate of sharing of taxa. Furthermore, the dominant primary fungal lifestyles were plant pathogens and saprobes. Our findings show that the cultivable endophytic fungal community of P. polymorpha is species-rich and that communities in different organs share genera and species.
Collapse
Affiliation(s)
| | - Jadson Diogo Pereira Bezerra
- Universidade Federal de Goiás (UFG), Instituto de Patologia Tropical e Saúde Pública (IPTSP), Laboratório de Micologia (LabMicol), Goiânia, GO, Brazil
| | - Helson Mario Martins do Vale
- University of Brasília (UnB), Institute of Biological Sciences, Department of Phytopathology, Brasília, DF, Brazil
| |
Collapse
|
13
|
Tang Y, Tian C, Yao D, Yang S, Shi L, Yi L, Peng Q. Community assembly and potential function analysis of the endophyte in Eucommia ulmoides. BMC Microbiol 2024; 24:460. [PMID: 39511491 PMCID: PMC11542450 DOI: 10.1186/s12866-024-03601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
Endophytes play a pivotal role in protecting host plants from both biotic and abiotic stresses, promoting the production of active components (AC) and plant growth. However, the succession of the endophyte community in Eucommia ulmoides (E. ulmoides), particularly the community assembly and function, has not been extensively investigated. In this study, we employed high-throughput sequencing and bioinformatics tools to analyze endophyte diversity across different tree ages, parts, and periods. We examined the population differences, correlations, community assembly mechanisms, and functional roles of these endophytes. Functional predictions via PICRUSt2 revealed that most endophytic fungal functions were linked to biosynthesis, with significant differences in biosynthetic functional abundance across parts and periods. In contrast, the metabolic activity of endophytic bacteria remained stable across different periods and parts. Correlation analysis further confirmed a strong positive relationship between ACs and certain endophytic fungi. Among them, the fungal phyla Ascomycota and Basidiomycota were identified as key contributors to the metabolism of chlorogenic acid (CA), while Aucubin was significantly positively correlated with several endophytic bacteria. These findings provide valuable insights into the functional roles and community assembly mechanism of E. ulmoides endophytes, as well as their symbiotic relationships.
Collapse
Affiliation(s)
- Yunzhe Tang
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China
| | - Chunlian Tian
- Hunan Provincial Key Laboratory of Forestry and Chemical Engineering, Jishou University, Jishou, Hunan, China
| | - Di Yao
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China
| | - Shuai Yang
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China
| | - Linfang Shi
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China
| | - Langbo Yi
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China.
- Key Laboratory of Ecological Conservation and Sustainable Utilization of Resources in Wuling Mountain Area, Hunan Province, Jishou University, Jishou, Hunan, China.
| | - Qingzhong Peng
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China.
- Key Laboratory of Ecological Conservation and Sustainable Utilization of Resources in Wuling Mountain Area, Hunan Province, Jishou University, Jishou, Hunan, China.
| |
Collapse
|
14
|
Wang K, Wang Q, Hong L, Liu Y, Yang J, Asiegbu FO, Wu P, Huang L, Ma X. Distribution and characterization of endophytic and rhizosphere bacteriome of below-ground tissues in Chinese fir plantation. TREE PHYSIOLOGY 2024; 44:tpae137. [PMID: 39423250 DOI: 10.1093/treephys/tpae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Plantations of Chinese fir, a popular woody tree species, face sustainable issues, such as nutrient deficiency and increasing disease threat. Rhizosphere and endophytic bacteria play important roles in plants' nutrient absorption and stress alleviation. Our understanding of the microbiome structure and functions is proceeding rapidly in model plants and some crop species. Yet, the spatial distribution and functional patterns of the bacteriome for the woody trees remain largely unexplored. In this study, we collected rhizosphere soil, non-rhizosphere soil, fine root, thick root and primary root samples of Chinese fir and investigated the structure and distribution of bacteriome, as well as the beneficial effects of endophytic bacterial isolates. We discovered that Burkholderia and Paraburkholderia genera were overwhelmingly enriched in rhizosphere soil, and the abundance of Pseudomonas genus was significantly enhanced in fine root. By isolating and testing the nutrient absorption and pathogen antagonism functions of representative endophytic bacteria species in Pseudomonas and Burkholderia, we noticed that phosphorus-solubilizing functional isolates were enriched in fine root, while pathogen antagonism isolates were enriched in thick root. As a conclusion, our study revealed that the endophytic and rhizosphere environments of Chinese fir hold distinct structure and abundance of bacteriomes, with potential specific functional enrichment of some bacterial clades. These findings assist us to further study the potential regulation mechanism of endophytic functional bacteria by the host tree, which will contribute to beneficial microbe application in forestry plantations and sustainable development.
Collapse
Affiliation(s)
- Kai Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou, 350002, China
| | - Qingao Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou, 350002, China
| | - Liang Hong
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou, 350002, China
| | - Yuxin Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou, 350002, China
| | - Jiyun Yang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Fred O Asiegbu
- Department of Forest Sciences, University of Helsinki, PO Box 27, FIN-00014 Helsinki, Finland
| | - Pengfei Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou, 350002, China
| | - Lin Huang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiangqing Ma
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou, 350002, China
| |
Collapse
|
15
|
Li H, Man H, Han J, Jia X, Wang L, Yang H, Shi G. Soil Microorganism Interactions under Biological Fumigations Compared with Chemical Fumigation. Microorganisms 2024; 12:2044. [PMID: 39458353 PMCID: PMC11509853 DOI: 10.3390/microorganisms12102044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Biological fumigation, a potential alternative to chemical fumigation, shows a wide range of prospective applications. In this study, we carried out biological fumigation experiments to evaluate its effect on alleviating consecutive cropping problems (CRPs) when compared with chemical fumigation. METHODS We designed five treatments, namely, CR (no treatment), LN (chemical fumigation with lime nitrogen), Ta (fumigation with marigold), Ra (fumigation with radish), and Br (fumigation with mustard), for soils for replanting eggplant and measured the crop's growth status, soil bacterial and fungal communities, and soil physicochemical properties. RESULTS The results showed that the Br and Ra treatments formed similar microbial communities, while the Ta treatment formed unique microbial communities. The genera Olpidiomycota and Rozellomycota could be used as indicator species for the transformation process of soil microbial communities after the Br and Ta treatments, respectively. When compared with the CR and LN treatments, the soil's physicochemical properties were optimized under the Br treatment, and the soil organic matter content increased by 64.26% and 79.22%, respectively. Moreover, under the Br treatment, the soil's biological properties enhanced the bacterial and fungal alpha diversity, and the saprotrophic fungi increased with the depletion of pathotrophic fungi, while some specific probiotic microorganisms (such as Olpidiomycota, Microascales, Bacillus, etc.) were significantly enriched. In contrast, under the Ta treatment, soil nutrient levels decreased and the soil's biological indices deteriorated, whereas the bacterial diversity decreased and the pathogenic fungi increased. CONCLUSIONS Among these three biological fumigation methods, the Br pre-treatment was the best way to alleviate the crop's CRPs and may be a good substitute for chemical fumigation in some situations. However, the Ta treatment also had some risks, such as the loss of land quality and reduced productivity.
Collapse
Affiliation(s)
- Hui Li
- College of Horticulture, Gansu Agricultural University, Silver Beach Road Street, Lanzhou 730070, China; (H.L.); (H.M.); (J.H.); (L.W.); (H.Y.)
| | - Huali Man
- College of Horticulture, Gansu Agricultural University, Silver Beach Road Street, Lanzhou 730070, China; (H.L.); (H.M.); (J.H.); (L.W.); (H.Y.)
| | - Jia Han
- College of Horticulture, Gansu Agricultural University, Silver Beach Road Street, Lanzhou 730070, China; (H.L.); (H.M.); (J.H.); (L.W.); (H.Y.)
| | - Xixia Jia
- Lanzhou New District Modern Agricultural Development Research Institute Co., Lanzhou 730070, China;
| | - Li Wang
- College of Horticulture, Gansu Agricultural University, Silver Beach Road Street, Lanzhou 730070, China; (H.L.); (H.M.); (J.H.); (L.W.); (H.Y.)
| | - Hongyu Yang
- College of Horticulture, Gansu Agricultural University, Silver Beach Road Street, Lanzhou 730070, China; (H.L.); (H.M.); (J.H.); (L.W.); (H.Y.)
| | - Guiying Shi
- College of Horticulture, Gansu Agricultural University, Silver Beach Road Street, Lanzhou 730070, China; (H.L.); (H.M.); (J.H.); (L.W.); (H.Y.)
| |
Collapse
|
16
|
Lan G, Wei Y, Zhang X, Wu Z, Ji K, Xu H, Chen B, He F. Assembly and maintenance of phyllosphere microbial diversity during rubber tree leaf senescence. Commun Biol 2024; 7:1192. [PMID: 39333257 PMCID: PMC11437020 DOI: 10.1038/s42003-024-06907-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Phyllosphere microorganisms execute important ecological functions including supporting host plant growth, enhancing host resistance to abiotic stresses, and promoting plant diversity. How leaf developmental stages affect plant-microbiome interactions and phyllosphere microbial community assembly and diversity is poorly understood. In this study, we utilized amplicon sequencing of 16S rRNA and ITS genes to investigate the composition and diversity of microbial communities across different leaf developmental stages of rubber trees. Our findings reveal that endophytic microbial communities, particularly bacterial communities, are more influenced by leaf senescence than by epiphytic communities. The high abundance of metabolism genes in the endosphere of yellow leaves contributes to the degradation and nutrient relocation processes. Nutrient loss leads to a higher abundance of α-Proteobacteria (r-selected microorganisms) in the yellow leaf endosphere, thereby promoting stochastic community assembly. As leaves age, the proportion of microorganisms entering the inner layer of leaves increases, consequently enhancing the diversity of microorganisms in the inner layer of leaves. These results offer insights into the mechanisms governing community assembly and diversity of leaf bacteria and fungi, thereby advancing our understanding of the evolving functions of microbial communities during leaf senescence in general, and for an important tropical crop species in particular.
Collapse
Affiliation(s)
- Guoyu Lan
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road, Haikou City, Hainan Province, 571101, China.
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, 571737, China.
| | - Yaqing Wei
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road, Haikou City, Hainan Province, 571101, China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, 571737, China
| | - Xicai Zhang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road, Haikou City, Hainan Province, 571101, China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, 571737, China
| | - Zhixiang Wu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road, Haikou City, Hainan Province, 571101, China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, 571737, China
| | - Kepeng Ji
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road, Haikou City, Hainan Province, 571101, China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, 571737, China
| | - Han Xu
- Research, Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong Province, 510520, China
| | - Bangqian Chen
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road, Haikou City, Hainan Province, 571101, China
- Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou City, Hainan Province, 571737, China
| | - Fangliang He
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2H1, Canada.
| |
Collapse
|
17
|
Pang S, Zhao W, Zhang Q, Tian Z, Wu D, Deng S, Zhang P, Li Z, Liu S, Yang B, Huang G, Zhou Z. Aromatic components and endophytic fungi during the formation of agarwood in Aquilaria sinensis were induced by exogenous substances. Front Microbiol 2024; 15:1446583. [PMID: 39234541 PMCID: PMC11371604 DOI: 10.3389/fmicb.2024.1446583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024] Open
Abstract
The process of formation of aromatic components for agarwood in Aquilaria sinensis is closely related to endophytic fungi and the result of complex multiple long-term joint interactions with them. However, the interactions between the aromatic components and endophytic fungi remain unclear during the formation of agarwood. In this study, precise mixed solution of hormones, inorganic salts, and fungi was used to induce its formation in A. sinensis, and sample blocks of wood were collected at different times after inoculation. This study showed that the aromatic compounds found in the three treatments of A. sinensis were primarily chromones (31.70-33.65%), terpenes (16.68-27.10%), alkanes (15.99-23.83%), and aromatics (3.13-5.07%). Chromones and terpenes were the primary components that characterized the aroma. The different sampling times had a more pronounced impact on the richness and diversity of endophytic fungal communities in the A. sinensis xylem than the induction treatments. The species annotation of the operational taxonomic units (OTUs) demonstrated that the endophytic fungi were primarily composed of 18 dominant families and 20 dominant genera. A linear regression analysis of the network topology properties with induction time showed that the interactions among the fungal species continued to strengthen, and the network structure tended to become more complex. The terpenes significantly negatively correlated with the Pielou evenness index (p < 0.05), while the chromones significantly positively correlated with the OTUs and Shannon indices.
Collapse
Affiliation(s)
- Shengjiang Pang
- Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang, China
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Weiwei Zhao
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | | | - Zuwei Tian
- Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang, China
| | - Dan Wu
- Guangxi International Zhuang Medical Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Shuokun Deng
- Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang, China
| | - Pei Zhang
- Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang, China
| | - Zhongguo Li
- Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang, China
| | - Shiling Liu
- Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang, China
| | - Baoguo Yang
- Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang, China
| | - Guihua Huang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Zaizhi Zhou
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| |
Collapse
|
18
|
Chen J, Peng L, Zhou C, Li L, Ge Q, Shi C, Guo W, Guo T, Jiang L, Zhang Z, Fan G, Zhang W, Kristiansen K, Jia Y. Datasets of fungal diversity and pseudo-chromosomal genomes of mangrove rhizosphere soil in China. Sci Data 2024; 11:901. [PMID: 39164251 PMCID: PMC11336097 DOI: 10.1038/s41597-024-03748-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024] Open
Abstract
With climate change and anthropic influence on the coastal ecosystems, mangrove ecosystems are disappearing at an alarming rate. Accordingly, it becomes important to track, study, record and store the mangrove microbial community considering their ecological importance and potential for biotechnological applications. Here, we provide information on mangrove fungal community composition and diversity in mangrove ecosystems with different plant species and from various locations differing in relation to anthropic influences. We describe twelve newly assembled genomes, including four chromosomal-level genomes of fungal isolates from the mangrove ecosystems coupled with functional annotations. We envisage that these data will be of value for future studies including comparative genome analysis and large-scale temporal and/or spatial research to elucidate the potential mechanisms by which mangrove fungal communities assemble and evolve. We further anticipate that the genomes represent valuable resources for bioprospecting related to industrial or clinical uses.
Collapse
Affiliation(s)
- Jianwei Chen
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, 266555, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Ling Peng
- BGI Research, Qingdao, 266555, China
| | - Changhao Zhou
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, 266555, China
| | | | - Qijin Ge
- BGI Research, Qingdao, 266555, China
| | | | | | | | - Ling Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhidong Zhang
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Guangyi Fan
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, 266555, China
- BGI Research, Shenzhen, 518083, China
| | | | - Karsten Kristiansen
- Qingdao Key Laboratory of Marine Genomics, and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, 266555, China.
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark.
- BGI Research, Shenzhen, 518083, China.
| | | |
Collapse
|
19
|
Awais M, Xiang Y, Yang D, Lai Y, Cai F, Shah N, Khan M, Li H. The Mechanisms of Cadmium Stress Mitigation by Fungal Endophytes from Maize Grains. J Fungi (Basel) 2024; 10:581. [PMID: 39194906 DOI: 10.3390/jof10080581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Maize is a crucial staple crop that ensures global food security by supplying essential nutrients. However, heavy metal (HM) contamination inhibits maize growth, reduces output, and affects food security. Some endophytic fungi (EFs) in maize seeds have the potential to enhance growth and increase dry biomass, offering a solution to mitigate the negative effect of HM contamination. Using these functional EFs could help maintain crop production and ensure food safety in HM-contaminated areas. In the present study, the diversity of EFs in corn grains from various HM-contaminated areas in China was studied through culture-dependent and culture-independent methods. We tested the plant growth-promoting (PGP) traits of several dominant culturable isolates and evaluated the growth-promoting effects of these twenty-one isolates through pot experiments. Both studies showed that HM contamination increased the diversity and richness of corn grain EFs and affected the most dominant endophytes. Nigrospora and Fusarium were the most prevalent culturable endophytes in HM-contaminated areas. Conversely, Cladosporium spp. were the most isolated endophytes in non-contaminated areas. Different from this, Saccharomycopsis and Fusarium were the dominant EFs in HM-contaminated sites, while Neofusicoccum and Sarocladium were dominant in non-contaminated sites, according to a culture-independent analysis. PGP trait tests indicated that 70% of the tested isolates (forty-two) exhibited phosphorus solubilization, IAA production, or siderophore production activity. Specifically, 90% of the tested isolates from HM-contaminated sites showed better PGP results than 45% of the isolates from non-contaminated sites. The benefit of the twenty-one isolates on host plant growth was further studied through pot experiments, which showed that all the isolates could improve host plant growth. Among them, strains derived from HM-contaminated sites, including AK18 (Nigrospora), AK32 (Beauveria), SD93 (Gibberellia), and SD64 (Fusarium), had notable effects on enhancing the dry biomass of shoots and roots of maize under Cd stress. We speculate that the higher ratio of PGP EFs in corn grains from HM-contaminated areas may explain their competitiveness in such extreme environments. Fusarium and Cladosporium isolates show high PGP properties, but they can also be phytopathogenic. Therefore, it is essential to evaluate their pathogenic properties and safety for crops before considering their practical use in agriculture.
Collapse
Affiliation(s)
- Muhammad Awais
- Faculty of Environmental Science and Engineering, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Yingying Xiang
- The Affiliated Yanan Hospital of Kunming Medical University, Kunming 650051, China
| | - Dian Yang
- Faculty of Environmental Science and Engineering, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Yibin Lai
- Faculty of Environmental Science and Engineering, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Fenglian Cai
- Faculty of Environmental Science and Engineering, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Naila Shah
- Department of Botany, Gardan Campus, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Majid Khan
- Institute of Cotton Research, Chinese Academy of Agriculture Sciences, Anyang 455000, China
| | - Haiyan Li
- Faculty of Environmental Science and Engineering, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
20
|
Wang X, Pecoraro L, Chen J, Tang Y, Lee S, Chen S, Liu H. Halophilomyces hongkongensis, a Novel Species and Genus in the Lulworthiaceae with Antibacterial Potential, Colonizing the Roots and Rhizomes of the Seagrass Halophila ovalis. J Fungi (Basel) 2024; 10:474. [PMID: 39057359 PMCID: PMC11278098 DOI: 10.3390/jof10070474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Seagrass serves as a quintessential reservoir for obligate marine Lulworthiaceae fungi. Our current knowledge of the mycological diversity associated with seagrass in Hong Kong remains poor. We analyzed the diversity of fungi associated with the most widely distributed seagrass species in Hong Kong Halophila ovalis (Hydrocharitaceae), using a combination of culture-based methods and high-throughput amplicon sequencing. Halophilomyces hongkongensis, a novel fungal species in a newly proposed genus within the Lulworthiaceae family, was isolated from H. ovalis roots and rhizomes. The novel fungus showed distinct morphological characteristics, while both combined 18S-28S and internal transcribed spacer (ITS) phylogenetic trees based on maximum likelihood and Bayesian methods supported its discrimination from other existing Lulworthiaceae members. The ITS2 region in the Illumina sequencing results of multiple H. ovalis compartments, water, and adjacent non-seagrass sediments revealed continuous recruitment of H. hongkongensis by H. ovalis throughout the year despite dramatically fluctuating environmental conditions, with remarkably high proportions of this taxon found in root and rhizome internal tissues, possibly indicating a strong and specialized relationship established between the Lulworthiaceae fungal partner and its seagrass host. The inhibitory abilities exhibited by H. hongkongensis against Staphylococcus aureus SA29213 and ATCC 43300 (methicillin-resistant) may imply its capacity in producing (novel) antibacterial compounds. The discovery of H. hongkongensis as the first novel Lulworthiaceae taxon in Hong Kong, along with its distributional pattern in the seagrass meadow, provides valuable insights into the systematics and ecology of this strictly marine fungal family.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong; (X.W.)
| | - Lorenzo Pecoraro
- College of Pharmaceutical Science & Moganshan Research Institute at Deqing County, Zhejiang University of Technology, Hangzhou 310014, China
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Jiawei Chen
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong; (X.W.)
| | - Yang Tang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong
| | - Sangwook Lee
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong; (X.W.)
| | - Sheng Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong; (X.W.)
| |
Collapse
|
21
|
Li L, Zheng R, Wang Z, Li H, Shi Y, Pan Z, Liu M. Leaf Health Status Regulates Endophytic Microbial Community Structure, Network Complexity, and Assembly Processes in the Leaves of the Rare and Endangered Plant Species Abies fanjingshanensis. Microorganisms 2024; 12:1254. [PMID: 39065023 PMCID: PMC11279022 DOI: 10.3390/microorganisms12071254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
The rare and endangered plant species Abies fanjingshanensis, which has a limited habitat, a limited distribution area, and a small population, is under severe threat, particularly due to poor leaf health. The plant endophytic microbiome is an integral part of the host, and increasing evidence indicates that the interplay between plants and endophytic microbes is a key determinant for sustaining plant fitness. However, little attention has been given to the differences in the endophytic microbial community structure, network complexity, and assembly processes in leaves with different leaf health statuses. Here, we investigated the endophytic bacterial and fungal communities in healthy leaves (HLs) and non-healthy leaves (NLs) of A. fanjingshanensis using 16S rRNA gene and internal transcribed spacer sequencing and evaluated how leaf health status affects the co-occurrence patterns and assembly processes of leaf endophytic microbial communities based on the co-occurrence networks, the niche breadth index, a neutral community model, and C-score metrics. HLs had significantly greater endophytic bacterial and fungal abundance and diversity than NLs, and there were significant differences in the endophytic microbial communities between HLs and NLs. Leaf-health-sensitive endophytic microbes were taxonomically diverse and were mainly grouped into four ecological clusters according to leaf health status. Poor leaf health reduced the complexity of the endophytic bacterial and fungal community networks, as reflected by a decrease in network nodes and edges and an increase in degrees of betweenness and assortativity. The stochastic processes of endophytic bacterial and fungal community assembly were weakened, and the deterministic processes became more important with declining leaf health. These results have important implications for understanding the ecological patterns and interactions of endophytic microbial communities in response to changing leaf health status and provide opportunities for further studies on exploiting plant endophytic microbes to conserve this endangered Abies species.
Collapse
Affiliation(s)
- Long Li
- School of Data Science, Tongren University, Tongren 554300, China;
| | - Rong Zheng
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China;
| | - Zuhua Wang
- College of A&F Engineering and Planning, Tongren University, Tongren 554300, China; (Z.W.); (Y.S.); (Z.P.)
| | - Haibo Li
- National Nature Reserve Administration of Fanjing Mountain, Tongren 554400, China;
| | - Yongjia Shi
- College of A&F Engineering and Planning, Tongren University, Tongren 554300, China; (Z.W.); (Y.S.); (Z.P.)
| | - Zhongjie Pan
- College of A&F Engineering and Planning, Tongren University, Tongren 554300, China; (Z.W.); (Y.S.); (Z.P.)
| | - Min Liu
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China;
| |
Collapse
|
22
|
Wu WF, Li XY, Chen SC, Jin BJ, Wu CY, Li G, Sun CL, Zhu YG, Lin XY. Nitrogen fertilization modulates rice phyllosphere functional genes and pathogens through fungal communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172622. [PMID: 38642761 DOI: 10.1016/j.scitotenv.2024.172622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
The phyllosphere is a vital yet often neglected habitat hosting diverse microorganisms with various functions. However, studies regarding how the composition and functions of the phyllosphere microbiome respond to agricultural practices, like nitrogen fertilization, are limited. This study investigated the effects of long-term nitrogen fertilization with different levels (CK, N90, N210, N330) on the functional genes and pathogens of the rice phyllosphere microbiome. Results showed that the relative abundance of many microbial functional genes in the rice phyllosphere was significantly affected by nitrogen fertilization, especially those involved in C fixation and denitrification genes. Different nitrogen fertilization levels have greater effects on fungal communities than bacteria communities in the rice phyllosphere, and network analysis and structural equation models further elucidate that fungal communities not only changed bacterial-fungal inter-kingdom interactions in the phyllosphere but also contributed to the variation of biogeochemical cycle potential. Besides, the moderate nitrogen fertilization level (N210) was associated with an enrichment of beneficial microbes in the phyllosphere, while also resulting in the lowest abundance of pathogenic fungi (1.14 %). In contrast, the highest abundance of pathogenic fungi (1.64 %) was observed in the highest nitrogen fertilization level (N330). This enrichment of pathogen due to high nitrogen level was also regulated by the fungal communities, as revealed through SEM analysis. Together, we demonstrated that the phyllosphere fungal communities were more sensitive to the nitrogen fertilization levels and played a crucial role in influencing phyllosphere functional profiles including element cycling potential and pathogen abundance. This study expands our knowledge regarding the role of phyllosphere fungal communities in modulating the element cycling and plant health in sustainable agriculture.
Collapse
Affiliation(s)
- Wei-Feng Wu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xin-Yuan Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Song-Can Chen
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
| | - Bing-Jie Jin
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| | - Chun-Yan Wu
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| | - Cheng-Liang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yong-Guan Zhu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xian-Yong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
23
|
Shi Z, Yang L, Yang M, Li K, Yang L, Han M. Temporal heterogeneity of the root microbiome in Panax ginseng soils across ecological compartments under mild soil disturbance. Front Microbiol 2024; 15:1340575. [PMID: 38919496 PMCID: PMC11196636 DOI: 10.3389/fmicb.2024.1340575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/13/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction Knowledge on spatiotemporal heterogeneity of plant root microbiomes is lacking. The diversity of the root microbiome must be revealed for understanding plant-microbe interactions and the regulation of functionally crucial microbial taxa. Methods We here investigated the dynamics of microbial group characteristics within each soil ecological compartment [rhizoplane (B), rhizosphere (J), and bulk soil (T)] across different cultivation years (year 4: F4 and year 5: F5) by using high-throughput sequencing (16S and ITS). Results According to the species diversity, microbiome diversity and the ASV (amplified sequence variant) number in the rhizoplane ecotone increased significantly with an increase in the planting years. By contrast, the microbiome diversity of the rhizosphere soil remained relatively stable. PCoA and PERMANOVA analyses revealed that microbial taxa among different planting years and ecological compartments varied significantly. Planting years exerted the least effect on the rhizosphere microbiome, but their impact on fungi in the rhizoplane and bacteria in the bulk soil was the most significant. Discussion Planting years influenced the microbial community composition in various ecological compartments of ginseng root soil. Potentially harmful fungi such as Cryptococcus (2.83%), Neonectria (0.89%), llyonectria (0.56%), Gibberella (0.41%), Piloderma (4.44%), and Plectosphaerella (3.88%) were enriched in F5B with an increase in planting years, whereas the abundance of potentially beneficial Mortierella increased. Correlation analysis indicated associations between bacterial taxa and soil pH/S-CAT, and between fungal taxa and soil moisture content/total potassium. Our study highlights the significance of changes in rhizoplane fungi and the stability of the rhizosphere microbial community in comprehending plant ecological sustainability.
Collapse
Affiliation(s)
| | | | | | | | - Li Yang
- Cultivation Base of State Key Laboratory for Ecological Restoration and Ecosystem Management, College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Mei Han
- Cultivation Base of State Key Laboratory for Ecological Restoration and Ecosystem Management, College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| |
Collapse
|
24
|
Zhao L, Zhang S, Xiao R, Zhang C, Lyu Z, Zhang F. Diversity and Functionality of Bacteria Associated with Different Tissues of Spider Heteropoda venatoria Revealed through Integration of High-Throughput Sequencing and Culturomics Approaches. MICROBIAL ECOLOGY 2024; 87:67. [PMID: 38703220 PMCID: PMC11069485 DOI: 10.1007/s00248-024-02383-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/19/2024] [Indexed: 05/06/2024]
Abstract
Spiders host a diverse range of bacteria in their guts and other tissues, which have been found to play a significant role in their fitness. This study aimed to investigate the community diversity and functional characteristics of spider-associated bacteria in four tissues of Heteropoda venatoria using HTS of the 16S rRNA gene and culturomics technologies, as well as the functional verification of the isolated strains. The results of HTS showed that the spider-associated bacteria in different tissues belonged to 34 phyla, 72 classes, 170 orders, 277 families, and 458 genera. Bacillus was found to be the most abundant bacteria in the venom gland, silk gland, and ovary, while Stenotrophomonas, Acinetobacter, and Sphingomonas were dominant in the gut microbiota. Based on the amplicon sequencing results, 21 distinct cultivation conditions were developed using culturomics to isolate bacteria from the ovary, gut, venom gland, and silk gland. A total of 119 bacterial strains, representing 4 phyla and 25 genera, with Bacillus and Serratia as the dominant genera, were isolated. Five strains exhibited high efficiency in degrading pesticides in the in vitro experiments. Out of the 119 isolates, 28 exhibited antibacterial activity against at least one of the tested bacterial strains, including the pathogenic bacteria Staphylococcus aureus, Acinetobacter baumanii, and Enterococcus faecalis. The study also identified three strains, GL312, PL211, and PL316, which exhibited significant cytotoxicity against MGC-803. The crude extract from the fermentation broth of strain PL316 was found to effectively induce apoptosis in MGC-803 cells. Overall, this study offers a comprehensive understanding of the bacterial community structure associated with H. venatoria. It also provides valuable insights into discovering novel antitumor natural products for gastric cancer and xenobiotic-degrading bacteria of spiders.
Collapse
Affiliation(s)
- Likun Zhao
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, People's Republic of China
- The Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, People's Republic of China
| | - Shanfeng Zhang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, People's Republic of China
| | - Ruoyi Xiao
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, People's Republic of China
| | - Chao Zhang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, People's Republic of China
| | - Zhitang Lyu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, People's Republic of China.
- The Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, People's Republic of China.
| | - Feng Zhang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, People's Republic of China.
- The Key Laboratory of Zoological Systematics and Application of Hebei Province, Baoding, 071002, People's Republic of China.
| |
Collapse
|
25
|
Shi Z, Yang L, Yang M, Li K, Yang L, Han M. Temporal patterns of endophytic microbial heterogeneity across distinct ecological compartments within the Panax ginseng root system following deforestation for cultivation. Front Microbiol 2024; 15:1402921. [PMID: 38756733 PMCID: PMC11097776 DOI: 10.3389/fmicb.2024.1402921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
Alterations in the microbial community significantly impact the yield and quality of ginseng. Yet, the dynamics of microbial community shifts within the root endophytes of ginseng across varying cultivation periods remain inadequately understood. This study zeroes in on the microbial community variations within the xylem (M), phloem (R), and fibrous roots (X) of ginseng during the fourth (F4) and fifth (F5) years of cultivation, aiming to bridge this research gap. We assessed soil physicochemical properties, enzyme activities, and nine individual saponins, complemented by high-throughput sequencing techniques (16S rDNA and ITS) to determine their profiles. The results showed that cultivation years mainly affected the microbial diversity of endophytic bacteria in ginseng fibrous roots compartment: the ASVs number and α-diversity Chao1 index of bacteria and fungi in F5X compartment with higher cultivation years were significantly higher than those in F4X compartment with lower cultivation years. It is speculated that the changes of fibrous roots bacterial groups may be related to the regulation of amino acid metabolic pathway. Such as D-glutamine and D-glutamate metabolism D-glutamine, cysteine and methionine metabolism regulation. The dominant bacteria in ginseng root are Proteobacteria (relative abundance 52.07-80.35%), Cyanobacteria (1.97-42.52%) and Bacteroidota (1.11-5.08%). Firmicutes (1.28-3.76%). There were two dominant phyla: Ascomycota (60.10-93.71%) and Basidiomycota (2.25-30.57%). Endophytic fungi were more closely related to soil physicochemical properties and enzyme activities. AN, TK, OP, SWC and EC were the main driving factors of endophytic flora of ginseng root. Tetracladium decreased with the increase of cultivation years, and the decrease was more significant in phloem (F4R: 33.36%, F5R: 16.48%). The relative abundance of Bradyrhizobium, Agrobacterium and Bacillus in each ecological niche increased with the increase of cultivation years. The relative abundance of Bradyrhizobium and Agrobacterium in F5X increased by 8.35 and 9.29 times, respectively, and Bacillus in F5M increased by 5.57 times. We found a variety of potential beneficial bacteria and pathogen antagonists related to ginseng biomass and saponins, such as Bradyrhizobium, Agrobacterium, Bacillus and Exophiala, which have good potential for practical application and development.
Collapse
Affiliation(s)
| | | | | | | | - Li Yang
- Cultivation Base of State Key Laboratory for Ecological Restoration and Ecosystem Management, College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Mei Han
- Cultivation Base of State Key Laboratory for Ecological Restoration and Ecosystem Management, College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| |
Collapse
|
26
|
Mizuno T, Sato H, Itioka T. Foraging ants affect community composition and diversity of phyllosphere fungi on a myrmecophilous plants, Mallotus japonicus. Ecol Evol 2024; 14:e11423. [PMID: 38751826 PMCID: PMC11094773 DOI: 10.1002/ece3.11423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/06/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
Many microorganisms inhabit the aboveground parts of plants (i.e. the phyllosphere), which mainly comprise leaves. Understanding the structure of phyllosphere microbial communities and their drivers is important because they influence host plant fitness and ecosystem functions. Despite the high prevalence of ant-plant associations, few studies have used quantitative community data to investigate the effects of ants on phyllosphere microbial communities. In the present study, we investigated the effects of ants on the phyllosphere fungal communities of Mallotus japonicus using high-throughput sequencing. Mallotus japonicus is a myrmecophilous plants that bears extrafloral nectaries, attracting several ant species, but does not provide specific ant species with nest sites like myrmecophytes do. We experimentally excluded ants with sticky resins from the target plants and collected leaf discs to extract fungal DNA. The ribosomal DNA internal transcribed spacer 1 (ITS1) regions of the phyllosphere fungi were amplified and sequenced to obtain fungal community data. Our results showed that the exclusion of ants changed the phyllosphere fungal community composition; however, the effect of ants on OTU richness was not clear. These results indicate that ants can change the community of phyllosphere fungi, even if the plant is not a myrmecophyte.
Collapse
Affiliation(s)
- Takafumi Mizuno
- Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
| | - Hirotoshi Sato
- Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
| | - Takao Itioka
- Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
| |
Collapse
|
27
|
Liu J, Ding C, Teng C, Zhang W, Su X, Zhu W. Impacts of litter microbial community on litter decomposition in the absence of soil microorganisms. Appl Environ Microbiol 2024; 90:e0023924. [PMID: 38483156 PMCID: PMC11022580 DOI: 10.1128/aem.00239-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/04/2024] [Indexed: 04/18/2024] Open
Abstract
What is the effect of phyllosphere microorganisms on litter decomposition in the absence of colonization by soil microorganisms? Here, we simulated the litter standing decomposition stage in the field to study the differences in the composition and structure of the phyllosphere microbial community after the mixed decomposition of Populus × canadensis and Pinus sylvestris var. mongolica litter. After 15 months of mixed decomposition, we discovered that litters that were not in contact with soil had an antagonistic effect (the actual decomposition rate was 18.18%, which is lower than the expected decomposition rate) and the difference between the litters themselves resulted in a negative response to litter decomposition. In addition, there was no significant difference in bacterial and fungal community diversity after litter decomposition. The litter bacterial community was negatively responsive to litter properties and positively responsive to the fungal community. Importantly, we found that bacterial communities had a greater impact on litter decomposition than fungi. This study has enriched our understanding of the decomposition of litter itself and provided a theoretical basis for further exploring the "additive and non-additive effects" of litter decomposition and the mechanism of microbial drive. IMPORTANCE The study of litter decomposition mechanism plays an important role in the material circulation of the global ecosystem. However, previous studies have often looked at contact with soil as the starting point for decomposition. But actually, standing litter is very common in forest ecosystems. Therefore, we used field simulation experiments to simulate the decomposition of litters without contact with soil for 15 months, to explore the combined and non-added benefits of the decomposition of mixed litters, and to study the influence of microbial community composition on the decomposition rate while comparing the differences of microbial communities.
Collapse
Affiliation(s)
- Jiaying Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Chao Teng
- Liaoning Non-Ferrous Geological Exploration and Research Institute Co. Ltd., Shenyang, China
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Wenxu Zhu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
28
|
Comba-González NB, Chaves-Moreno D, Santamaría-Vanegas J, Montoya-Castaño D. A pan-genomic assessment: Delving into the genome of the marine epiphyte Bacillus altitudinis strain 19_A and other very close Bacillus strains from multiple environments. Heliyon 2024; 10:e27820. [PMID: 38560215 PMCID: PMC10981035 DOI: 10.1016/j.heliyon.2024.e27820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 02/14/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Marine macroalgae are the habitat of epiphytic bacteria and provide several conditions for a beneficial biological interaction to thrive. Although Bacillus is one of the most abundant epiphytic genera, genomic information on marine macroalgae-associated Bacillus species remains scarce. In this study, we further investigated our previously published genome of the epiphytic strain Bacillus altitudinis 19_A to find features that could be translated to potential metabolites produced by this microorganism, as well as genes that play a role in its interaction with its macroalgal host. To achieve this goal, we performed a pan-genome analysis of Bacillus sp. and a codon bias assessment, including the genome of the strain Bacillus altitudinis 19_A and 29 complete genome sequences of closely related Bacillus strains isolated from soil, marine environments, plants, extreme environments, air, and food. This genomic analysis revealed that Bacillus altitudinis 19_A possessed unique genes encoding proteins involved in horizontal gene transfer, DNA repair, transcriptional regulation, and bacteriocin biosynthesis. In this comparative analysis, codon bias was not associated with the habitat of the strains studied. Some accessory genes were identified in the Bacillus altitudinis 19_A genome that could be related to its epiphytic lifestyle, as well as gene clusters for the biosynthesis of a sporulation-killing factor and a bacteriocin, showing their potential as a source of antimicrobial peptides. Our results provide a comprehensive view of the Bacillus altitudinis 19_A genome to understand its adaptation to the marine environment and its potential as a producer of bioactive compounds.
Collapse
Affiliation(s)
| | - Diego Chaves-Moreno
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Dolly Montoya-Castaño
- Bioprocesses and Bioprospecting Group, Biotechnology Institute, Universidad Nacional de Colombia, Colombia
| |
Collapse
|
29
|
Qu X, Pan Y, Wang P, Ran L, Qin G, Li Q, Kang P. Response of Phyllosphere and Rhizosphere Microbial Communities to Salt Stress of Tamarix chinensis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1091. [PMID: 38674498 PMCID: PMC11054833 DOI: 10.3390/plants13081091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
As carriers of direct contact between plants and the atmospheric environment, the microbiomes of phyllosphere microorganisms are increasingly recognized as an important area of study. Salt secretion triggered by salt-secreting halophytes elicits changes in the community structure and functions of phyllosphere microorganisms, and often provides positive feedback to the individual plant/community environment. In this study, the contents of Na+ and K+ in the rhizosphere, plant and phyllosphere of Tamarix chinensis were increased under 200 mmol/L NaCl stress. The increase in electrical conductivity, Na+ and K+ in the phyllosphere not only decreased the diversity of bacterial and fungal communities, but also decreased the relative abundance of Actinobacteriota and Basidiomycota. Influenced by electrical conductivity and Na+, the bacteria-fungus co-occurrence network under salt stress has higher complexity. Changes in the structure of the phyllosphere microbial community further resulted in a significant increase in the relative abundance of the bacterial energy source and fungal pathotrophic groups. The relative abundance of Actinobacteriota and Acidobacteriota in rhizosphere showed a decreasing trend under salt stress, while the complexity of the rhizosphere co-occurrence network was higher than that of the control. In addition, the relative abundances of functional groups of rhizosphere bacteria in the carbon cycle and phosphorus cycle increased significantly under stress, and were significantly correlated with electrical conductivity and Na+. This study investigated the effects of salinity on the structure and physicochemical properties of phyllosphere and rhizosphere microbial communities of halophytes, and highlights the role of phyllosphere microbes as ecological indicators in plant responses to stressful environments.
Collapse
Affiliation(s)
- Xuan Qu
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (X.Q.); (P.W.); (L.R.); (G.Q.); (Q.L.)
| | - Yaqing Pan
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Peiqin Wang
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (X.Q.); (P.W.); (L.R.); (G.Q.); (Q.L.)
| | - Lele Ran
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (X.Q.); (P.W.); (L.R.); (G.Q.); (Q.L.)
| | - Guifei Qin
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (X.Q.); (P.W.); (L.R.); (G.Q.); (Q.L.)
| | - Qunfang Li
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (X.Q.); (P.W.); (L.R.); (G.Q.); (Q.L.)
| | - Peng Kang
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China; (X.Q.); (P.W.); (L.R.); (G.Q.); (Q.L.)
- Innovation Team for Genetic Improvement of Economic Forests, North Minzu University, Yinchuan 750021, China
| |
Collapse
|
30
|
Li X, Fang X, Cui Z, Hong Z, Liu X, Li G, Hu H, Xu D. Anatomical, chemical and endophytic fungal diversity of a Qi-Nan clone of Aquilaria sinensis (Lour.) Spreng with different induction times. FRONTIERS IN PLANT SCIENCE 2024; 15:1320226. [PMID: 38590741 PMCID: PMC10999641 DOI: 10.3389/fpls.2024.1320226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/04/2024] [Indexed: 04/10/2024]
Abstract
Recently, some new Qi-Nan clones of Aquilaria sinensis (Lour.) Spreng which intensively produces high-quality agarwood have been identified and propagated through grafting techniques. Previous studies have primarily focused on ordinary A. sinensis and the differences in composition when compared to Qi-Nan and ordinary A. sinensis. There are few studies on the formation mechanism of Qi-Nan agarwood and the dynamic changes in components and endophytic fungi during the induction process. In this paper, the characteristics, chemical composition, and changes in endophytic fungi of Qi-Nan agarwood induced after 1 year, 2 years, and 3 years were studied, and Qi-Nan white wood was used as the control. The results showed that the yield of Qi-Nan agarwood continued to increase with the induction time over a period of 3 years, while the content of alcohol extract from Qi-Nan agarwood reached its peak at two years. During the formation of agarwood, starch and soluble sugars in xylem rays and interxylary phloem are consumed and reduced. Most of the oily substances in agarwood were filled in xylem ray cells and interxylary phloem, and a small amount was filled in xylem vessels. The main components of Qi-Nan agarwood are also chromones and sesquiterpenes. With an increasing induction time, the content of sesquiterpenes increased, while the content of chromones decreased. The most abundant chromones in Qi-Nan agarwood were 2-(2-Phenethyl) chromone, 2-[2-(3-Methoxy-4-hydroxyphenyl) ethyl] chromone, and2-[2-(4-Methoxyphenyl) ethyl] chromone. Significant differences were observed in the species of the endophytic fungi found in Qi-Nan agarwood at different induction times. A total of 4 phyla, 73 orders, and 448 genera were found in Qi-Nan agarwood dominated by Ascomycota and Basidiomycota. Different induction times had a significant effect on the diversity of the endophytic fungal community in Qi-Nan. After the induction of agarwood formation, the diversity of Qi-Nan endophytic fungi decreased. Correlation analysis showed that there was a significant positive correlation between endophytic fungi and the yield, alcohol extract content, sesquiterpene content, and chromone content of Qi-Nan agarwood, which indicated that endophytic fungi play a role in promoting the formation of Qi-Nan agarwood. Qi-Nan agarwood produced at different induction times exhibited strong antioxidant capacity. DPPH free radical scavenging activity and reactive oxygen species clearance activity were significantly positively correlated with the content of sesquiterpenes and chromones in Qi-Nan agarwood.
Collapse
Affiliation(s)
- Xiaofei Li
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Xiaoying Fang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
| | - Zhiyi Cui
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
| | - Zhou Hong
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
| | - Xiaojin Liu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
| | - Gaiyun Li
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China
| | - Houzhen Hu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
| | - Daping Xu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
| |
Collapse
|
31
|
Fuentes-Quiroz A, Herrera H, Alvarado R, Rabert C, Arriagada C, Valadares RBDS. Functional differences of cultivable leaf-associated microorganisms in the native Andean tree Gevuina avellana Mol. (Proteaceae) exposed to atmospheric contamination. J Appl Microbiol 2024; 135:lxae041. [PMID: 38364303 DOI: 10.1093/jambio/lxae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
AIMS This study aimed to evaluate and describe the functional differences of cultivable bacteria and fungi inhabiting the leaves of Gevuina avellana Mol. (Proteaceae) in an urban area with high levels of air pollution and in a native forest in the southern Andes. METHODS AND RESULTS Phyllosphere microorganisms were isolated from the leaves of G. avellana, their plant growth-promoting capabilities were estimated along with their biocontrol potential and tolerance to metal(loid)s. Notably, plants from the urban area showed contrasting culturable leaf-associated microorganisms compared to those from the native area. The tolerance to metal(loid)s in bacteria range from 15 to 450 mg l-1 of metal(loid)s, while fungal strains showed tolerance from 15 to 625 mg l-1, being especially higher in the isolates from the urban area. Notably, the bacterial strain Curtobacterium flaccumfaciens and the fungal strain Cladosporium sp. exhibited several plant-growth-promoting properties along with the ability to inhibit the growth of phytopathogenic fungi. CONCLUSIONS Overall, our study provides evidence that culturable taxa in G. avellana leaves is directly influenced by the sampling area. This change is likely due to the presence of atmospheric pollutants and diverse microbial symbionts that can be horizontally acquired from the environment.
Collapse
Affiliation(s)
- Alejandra Fuentes-Quiroz
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| | - Héctor Herrera
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| | - Roxana Alvarado
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| | - Claudia Rabert
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Avenida Alemania 01090, Temuco, Chile
| | - Cesar Arriagada
- Laboratorio de Biorremediación, Departamento de Ciencias Forestales, Universidad de La Frontera, Temuco 4811230, Chile
| | | |
Collapse
|
32
|
Zhou H, Jia S, Gao Y, Li X, Lin Y, Yang F, Ni K. Characterization of phyllosphere endophytic lactic acid bacteria reveals a potential novel route to enhance silage fermentation quality. Commun Biol 2024; 7:117. [PMID: 38253824 PMCID: PMC10803313 DOI: 10.1038/s42003-024-05816-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The naturally attached phyllosphere microbiota play a crucial role in plant-derived fermentation, but the structure and function of phyllosphere endophytes remain largely unidentified. Here, we reveal the diversity, specificity, and functionality of phyllosphere endophytes in alfalfa (Medicago sativa L.) through combining typical microbial culture, high-throughput sequencing, and genomic comparative analysis. In comparison to phyllosphere bacteria (PB), the fermentation of alfalfa solely with endophytes (EN) enhances the fermentation characteristics, primarily due to the dominance of specific lactic acid bacteria (LAB) such as Lactiplantibacillus, Weissella, and Pediococcus. The inoculant with selected endophytic LAB strains also enhances the fermentation quality compared to epiphytic LAB treatment. Especially, one key endophytic LAB named Pediococcus pentosaceus EN5 shows enrichment of genes related to the mannose phosphotransferase system (Man-PTS) and carbohydrate-metabolizing enzymes and higher utilization of carbohydrates. Representing phyllosphere, endophytic LAB shows great potential of promoting ensiling and provides a novel direction for developing microbial inoculant.
Collapse
Affiliation(s)
- Hongzhang Zhou
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yu Gao
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaomei Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanli Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Kuikui Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
33
|
Shi T, Shi M, Ye Y, Yue Y, Wang L, Yang X. Floral Volatile Organic Compounds Change the Composition and Function of the Endophytic Fungal Community in the Flowers of Osmanthus fragrans. Int J Mol Sci 2024; 25:857. [PMID: 38255929 PMCID: PMC10815108 DOI: 10.3390/ijms25020857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Endophytic fungi in flowers influence plant health and reproduction. However, whether floral volatile organic compounds (VOCs) affect the composition and function of the endophytic fungal community remains unclear. Here, gas chromatography-mass spectrometry (GC-MS) and high-throughput sequencing were used to explore the relationship between floral VOCs and the endophytic fungal community during different flower development stages in Osmanthus fragrans 'Rixiang Gui'. The results showed that the composition of the endophytic fungal community and floral VOCs shifted along with flowering development. The highest and lowest α diversity of the endophytic fungal community occurred in the flower fading stage and full blooming stage, respectively. The dominant fungi, including Dothideomycetes (class), Pleosporales (order), and Neocladophialophora, Alternaria, and Setophoma (genera), were enriched in the flower fading stage and decreased in the full blooming stage, demonstrating the enrichment of the Pathotroph, Saprotroph, and Pathotroph-Saprotroph functions in the flower fading stage and their depletion in the full blooming stage. However, the total VOC and terpene contents were highest in the full blooming stage and lowest in the flower fading stage, which was opposite to the α diversity of the endophytic fungal community and the dominant fungi during flowering development. Linalool, dihydro-β-ionone, and trans-linalool oxide(furan) were key factors affecting the endophytic fungal community composition. Furthermore, dihydro-β-ionone played an extremely important role in inhibiting endophytic fungi in the full blooming stage. Based on the above results, it is believed that VOCs, especially terpenes, changed the endophytic fungal community composition in the flowers of O. fragrans 'Rixiang Gui'. These findings improve the understanding of the interaction between endophytic fungi and VOCs in flowers and provide new insight into the mechanism of flower development.
Collapse
Affiliation(s)
- Tingting Shi
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (Y.Y.); (Y.Y.); (L.W.)
| | - Man Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yunfang Ye
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (Y.Y.); (Y.Y.); (L.W.)
| | - Yuanzheng Yue
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (Y.Y.); (Y.Y.); (L.W.)
| | - Lianggui Wang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (Y.Y.); (Y.Y.); (L.W.)
| | - Xiulian Yang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (Y.Y.); (Y.Y.); (L.W.)
| |
Collapse
|
34
|
Shi Z, Yang M, Li K, Yang L, Yang L. Influence of cultivation duration on microbial taxa aggregation in Panax ginseng soils across ecological niches. Front Microbiol 2024; 14:1284191. [PMID: 38282744 PMCID: PMC10813202 DOI: 10.3389/fmicb.2023.1284191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Microbial communities are crucial for plant health and productivity. However, the influence of cultivation age on the ecological processes in assembling plant microbiomes at various ecological niches remains unclear. Methods We selected 12 samples from ginseng farmlands with different cultivation years (N4: 4 years old, N6: 6 years old). We used soil physicochemical properties, enzyme activities, and high-throughput sequencing (16S rDNA and ITS) to examine the rhizoplane (RP), rhizosphere (RS), and bulk soil (BS). Results Our results indicated that cultivation years significantly affect the soil microbiome's diversity and community composition across different ecological niches. The BS microbiome experienced the largest effect, while the RS experienced the smallest. N6 showed a greater impact than N4. This effect was more pronounced on the fungal communities than the bacterial communities of various ecological niches and can be closely related to the soil's physicochemical properties. In N4 soils, we observed an upward trend in both the number of ASVs (amplicon sequence variations) and the diversity of soil microbial taxa across various ecological niches. In N4RP, the bacteria Sphingomonas, known for degrading toxic soil compounds, was present. All ecological niches in N4 showed significant enrichment of Tetracladium fungi, positively associated with crop yield (N4RP at 6.41%, N4RS at 11.31%, and N4BS at 3.45%). In N6 soils, we noted a stark decline in fungal diversity within the BS, with a 57.5% reduction in ASVs. Moreover, Sphingomonas was abundantly present in N6RS and N6BS soils. The relative abundance of the pathogen-inhibiting fungus Exophiala in N6RP and N6RS reached 34.18% and 13.71%, respectively, marking increases of 4.9-fold and 7.7-fold. Additionally, another pathogeninhibiting fungus, Humicola, showed significant enrichment in N6BS, with a 7.5-fold increase. The phenolic acid-producing fungus Pseudogymnoascus in N6RP, N6RS, and N6BS showed increases of 2.41-fold, 2.55-fold, and 4.32-fold, respectively. We hypothesize that functional genes related to the metabolism of terpenoids and polyketides, as well as signaling molecules and interactions, regulate soil microbial taxa in ginseng from different cultivation years. Discussion In conclusion, our study enhances understanding of plant-microbe interactions and aids the sustainable development of medicinal plants, particularly by addressing ginseng succession disorder.
Collapse
Affiliation(s)
| | | | | | - Li Yang
- Cultivation Base of State Key Laboratory for Ecological Restoration and Ecosystem Management, College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Limin Yang
- Cultivation Base of State Key Laboratory for Ecological Restoration and Ecosystem Management, College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| |
Collapse
|
35
|
He C, Zhang M, Li X, He X. Seasonal dynamics of phyllosphere epiphytic microbial communities of medicinal plants in farmland environment. FRONTIERS IN PLANT SCIENCE 2024; 14:1328586. [PMID: 38239215 PMCID: PMC10794659 DOI: 10.3389/fpls.2023.1328586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024]
Abstract
Introduction The phyllosphere of plants is inhabited by various microorganisms, which play a crucial role in plant physiological metabolism. Currently, there is limited research on the dynamic effects of species and seasons on plant phyllosphere microbial community diversity and microbial interactions. Methods In this study, high-throughput sequencing technology was used to sequence the leaf surface parasitic microorganisms of five medicinal plants (Bupleurum chinense, Atractylodes lancea, Salvia miltiorrhiza, Astragalus membranaceus, and Lonicera japonica). Results The results showed that bacteria and fungi clustered into 3,898 and 1,572 operational taxonomic units (OTUs), respectively. Compared to host species, seasons had a more significant impact on the a diversity of bacteria and fungi. The heterogeneity of phyllosphere microbial communities was greater in winter compared to summer. Key species analysis at the OTU level and Spearman correlation analysis demonstrated significant preferences in microbial interactions under plant and seasonal backgrounds. The network connections between bacterial and fungal communities significantly increased during seasonal transitions compared to connections with plants. Discussion This study enhances our understanding of the composition and ecological roles of plant-associated microbial communities in small-scale agricultural environments. Additionally, it provides valuable insights for assessing the biodiversity of medicinal plants.
Collapse
Affiliation(s)
- Chao He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Man Zhang
- College of Life Sciences, Hebei University, Baoding, China
| | - Xianen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xueli He
- College of Life Sciences, Hebei University, Baoding, China
| |
Collapse
|
36
|
Shao Q, Ran Q, Li X, Dong C, Huang J, Han Y. Deciphering the effect of phytohormones on the phyllosphere microbiota of Eucommia ulmoides. Microbiol Res 2024; 278:127513. [PMID: 37837828 DOI: 10.1016/j.micres.2023.127513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/30/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
Phytohormones are key signals mediating plant-microbe molecular communication. However, their roles in driving phyllosphere microbiota assembly remain unclear. Here, high throughput target assays for 12 phytohormones and microbial amplicon sequencing techniques were used to reveal the effects of hormone components on phyllosphere microbiota of Eucommia ulmoides. Most of the phytohormone components in old leaves were lower than in tender leaves, such as indole-3-acetic acid (IAA), salicylic acid (SA), and jasmonic acid (JA), but the phyllosphere microbial community diversity in the older leaves was significantly higher than in the tender leaves, with more complex and aggregated microbial cooccurrence network. The E. ulmoides phyllosphere microbiota at tender and older leaf stage were dominated by the same dominant taxa at the phylum level, with Ascomycota and Basidiomycota as the main fungal taxa and Actinobacteriota, Bacteroidota, Firmicutes and Proteobacteria as the main bacterial taxa. FUNGuild and FAPROTAX functional predictions revealed that the high abundance functional groups of the E. ulmoides phyllosphere microbes were similar at tender and old leaf stages, with fungal functions mainly involving in plant pathogen, undefined saprotroph and endophyte, and bacterial functions mainly involving in chemoheterotrophy, fermentation and aerobic_chemoheterotrophy. Additionally, mantel test and variance partitioning analysis showed that IAA and N6-(delta 2-isopentenyl)-adenine (IP) were key phytohormones impacting the E. ulmoides phyllosphere microbiota, and their effects were largely interdependent. Our results improve the understanding of composition, diversity, function and influencing factors of phyllosphere microbiota, which might provide cue for sustainable agriculture and forestry management via precise regulation of the phyllosphere microbiota.
Collapse
Affiliation(s)
- Qiuyu Shao
- Institute of Fungus Resources, Department of Ecology/Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 5 50025, Guizhou, China
| | - Qingsong Ran
- Institute of Fungus Resources, Department of Ecology/Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 5 50025, Guizhou, China
| | - Xu Li
- Institute of Fungus Resources, Department of Ecology/Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 5 50025, Guizhou, China
| | - Chunbo Dong
- Institute of Fungus Resources, Department of Ecology/Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 5 50025, Guizhou, China
| | - Jianzhong Huang
- Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350108, Fujian, China
| | - Yanfeng Han
- Institute of Fungus Resources, Department of Ecology/Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 5 50025, Guizhou, China.
| |
Collapse
|
37
|
He C, Meng D, Li W, Li X, He X. Dynamics of Endophytic Fungal Communities Associated with Cultivated Medicinal Plants in Farmland Ecosystem. J Fungi (Basel) 2023; 9:1165. [PMID: 38132766 PMCID: PMC10744690 DOI: 10.3390/jof9121165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Microorganisms are an important component of global biodiversity and play an important role in plant growth and development and the protection of host plants from various biotic and abiotic stresses. However, little is known about the identities and communities of endophytic fungi inhabiting cultivated medicinal plants in the farmland ecosystem. The diversity and community composition of the endophytic fungi of cultivated medicinal plants in different hosts, tissue niches, and seasonal effects in the farmland of Northern China were examined using the next-generation sequencing technique. In addition, the ecological functions of the endophytic fungal communities were investigated by combining the sequence classification information and fungal taxonomic function annotation. A total of 1025 operational taxonomic units (OTUs) of endophytic fungi were obtained at a 97% sequence similarity level; they were dominated by Dothideomycetes and Pleosporales. Host factors (species identities and tissue niches) and season had significant effects on the community composition of endophytic fungi, and endophytic fungi assembly was shaped more strongly by host than by season. In summer, endophytic fungal diversity was higher in the root than in the leaf, whereas opposite trends were observed in winter. Network analysis showed that network connectivity was more complex in the leaf than in the root, and the interspecific relationship between endophytic fungal OTUs in the network structure was mainly positive rather than negative. The functional predications of fungi revealed that the pathotrophic types of endophytic fungi decreased and the saprotrophic types increased from summer to winter in the root, while both pathotrophic and saprotrophic types of endophytic fungi increased in the leaf. This study improves our understanding of the community composition and ecological distribution of endophytic fungi inhabiting scattered niches in the farmland ecosystem. In addition, the study provides insight into the biodiversity assessment and management of cultivated medicinal plants.
Collapse
Affiliation(s)
- Chao He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China;
| | - Deyao Meng
- College of Life Sciences, Hebei University, Baoding 071002, China; (D.M.); (W.L.)
| | - Wanyun Li
- College of Life Sciences, Hebei University, Baoding 071002, China; (D.M.); (W.L.)
| | - Xianen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China;
| | - Xueli He
- College of Life Sciences, Hebei University, Baoding 071002, China; (D.M.); (W.L.)
| |
Collapse
|
38
|
Du C, Xu R, Zhao X, Liu Y, Zhou X, Zhang W, Zhou X, Hu N, Zhang Y, Sun Z, Wang Z. Association between host nitrogen absorption and root-associated microbial community in field-grown wheat. Appl Microbiol Biotechnol 2023; 107:7347-7364. [PMID: 37747613 DOI: 10.1007/s00253-023-12787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/08/2023] [Accepted: 09/02/2023] [Indexed: 09/26/2023]
Abstract
Plant roots and rhizosphere soils assemble diverse microbial communities, and these root-associated microbiomes profoundly influence host development. Modern wheat has given rise to numerous cultivars for its wide range of ecological adaptations and commercial uses. Variations in nitrogen uptake by different wheat cultivars are widely observed in production practices. However, little is known about the composition and structure of the root-associated microbiota in different wheat cultivars, and it is not sure whether root-associated microbial communities are relevant in host nitrogen absorption. Therefore, there is an urgent need for systematic assessment of root-associated microbial communities and their association with host nitrogen absorption in field-grown wheat. Here, we investigated the root-associated microbial community composition, structure, and keystone taxa in wheat cultivars with different nitrogen absorption characteristics at different stages and their relationships with edaphic variables and host nitrogen uptake. Our results indicated that cultivar nitrogen absorption characteristics strongly interacted with bacterial and archaeal communities in the roots and edaphic physicochemical factors. The impact of host cultivar identity, developmental stage, and spatial niche on bacterial and archaeal community structure and network complexity increased progressively from rhizosphere soils to roots. The root microbial community had a significant direct effect on plant nitrogen absorption, while plant nitrogen absorption and soil temperature also significantly influenced root microbial community structure. The cultivar with higher nitrogen absorption at the jointing stage tended to cooperate with root microbial community to facilitate their own nitrogen absorption. Our work provides important information for further wheat microbiome manipulation to influence host nitrogen absorption. KEY POINTS: • Wheat cultivar and developmental stage affected microbiome structure and network. • The root microbial community strongly interacted with plant nitrogen absorption. • High nitrogen absorption cultivar tended to cooperate with root microbiome.
Collapse
Affiliation(s)
- Chenghang Du
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Runlai Xu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xuan Zhao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ying Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiaohan Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wanqing Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiaonan Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Naiyue Hu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yinghua Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhencai Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Zhimin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
39
|
Swift JF, Migicovsky Z, Trello GE, Miller AJ. Grapevine bacterial communities display compartment-specific dynamics over space and time within the Central Valley of California. ENVIRONMENTAL MICROBIOME 2023; 18:84. [PMID: 37996903 PMCID: PMC10668525 DOI: 10.1186/s40793-023-00539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Plant organs (compartments) host distinct microbiota which shift in response to variation in both development and climate. Grapevines are woody perennial crops that are clonally propagated and cultivated across vast geographic areas, and as such, their microbial communities may also reflect site-specific influences. These site-specific influences along with microbial differences across sites compose 'terroir', the environmental influence on wine produced in a given region. Commercial grapevines are typically composed of a genetically distinct root (rootstock) grafted to a shoot system (scion) which adds an additional layer of complexity via genome-to-genome interactions. RESULTS To understand spatial and temporal patterns of bacterial diversity in grafted grapevines, we used 16S rRNA amplicon sequencing to quantify soil and compartment microbiota (berries, leaves, and roots) for grafted grapevines in commercial vineyards across three counties in the Central Valley of California over two successive growing seasons. Community composition revealed compartment-specific dynamics. Roots assembled site-specific bacterial communities that reflected rootstock genotype and environment influences, whereas bacterial communities of leaves and berries displayed associations with time. CONCLUSIONS These results provide further evidence of a microbial terroir within the grapevine root systems but also reveal that the microbiota of above-ground compartments are only weakly associated with the local soil microbiome in the Central Valley of California.
Collapse
Affiliation(s)
- Joel F Swift
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO, 63103, USA.
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA.
- Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS, 66045, USA.
| | - Zoë Migicovsky
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
- Department of Biology, Acadia University, Wolfville, NS, B4P 2R6, Canada
| | - Grace E Trello
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO, 63103, USA
| | - Allison J Miller
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO, 63103, USA.
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA.
| |
Collapse
|
40
|
Yuan Z, Ye J, Lin F, Wang X, Yang T, Bi B, Mao Z, Fang S, Wang X, Hao Z, Ali A. Relationships between Phyllosphere Bacterial Communities and Leaf Functional Traits in a Temperate Forest. PLANTS (BASEL, SWITZERLAND) 2023; 12:3854. [PMID: 38005751 PMCID: PMC10674237 DOI: 10.3390/plants12223854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023]
Abstract
As a vital component of biodiversity, phyllosphere bacteria in forest canopy play a critical role in maintaining plant health and influencing the global biogeochemical cycle. There is limited research on the community structure of phyllosphere bacteria in natural forests, which creates a gap in our understanding of whether and/or how phyllosphere bacteria are connected to leaf traits of their host. In this study, we investigated the bacterial diversity and composition of the canopy leaves of six dominant tree species in deciduous broad-leaved forests in northeastern China, using high-throughput sequencing. We then compare the differences in phyllosphere bacterial community structure and functional genes of dominant tree species. Fourteen key leaf functional traits of their host trees were also measured according to standard protocols to investigate the relationships between bacterial community composition and leaf functional traits. Our result suggested that tree species with closer evolutionary distances had similar phyllosphere microbial alpha diversity. The dominant phyla of phyllosphere bacteria were Proteobacteria, Actinobacteria, and Firmicutes. For these six tree species, the functional genes of phyllosphere bacteria were mainly involved in amino acid metabolism and carbohydrate metabolism processes. The redundancy and envfit analysis results showed that the functional traits relating to plant nutrient acquisition and resistance to diseases and pests (such as leaf area, isotope carbon content, and copper content) were the main factors influencing the community structure of phyllosphere bacteria. This study highlights the key role of plant interspecific genetic relationships and plant attributes in shaping phyllosphere bacterial diversity.
Collapse
Affiliation(s)
- Zuoqiang Yuan
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China; (Z.Y.); (B.B.)
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (J.Y.); (X.W.)
| | - Ji Ye
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (J.Y.); (X.W.)
| | - Fei Lin
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (J.Y.); (X.W.)
| | - Xing Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (J.Y.); (X.W.)
- Plant Ecology and Nature Conservation, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing 210008, China;
| | - Boyuan Bi
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China; (Z.Y.); (B.B.)
| | - Zikun Mao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (J.Y.); (X.W.)
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shuai Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (J.Y.); (X.W.)
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xugao Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (J.Y.); (X.W.)
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zhanqing Hao
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China; (Z.Y.); (B.B.)
| | - Arshad Ali
- Forest Ecology Research Group, College of Life Sciences, Hebei University, Baoding 071002, China;
| |
Collapse
|
41
|
Li T, Gao J. Attribution of dispersal limitation can better explain the assembly patterns of plant microbiota. FRONTIERS IN PLANT SCIENCE 2023; 14:1168760. [PMID: 37941678 PMCID: PMC10628812 DOI: 10.3389/fpls.2023.1168760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Disentangling community assembly processes is crucial for fully understanding the function of microbiota in agricultural ecosystems. However, numerous plant microbiome surveys have gradually revealed that stochastic processes dominate the assembly of the endophytic root microbiota in conflict with strong host filtering effects, which is an important issue. Resolving such conflicts or inconsistencies will not only help accurately predict the composition and structure of the root endophytic microbiota and its driving mechanisms, but also provide important guidance on the correlation between the relative importance of deterministic and stochastic processes in the assembly of the root endophytic microbiota, and crop productivity and nutritional quality. Here, we propose that the inappropriate division of dispersal limitation may be the main reason for such inconsistency, which can be resolved after the proportion of dispersal limitation is incorporated into the deterministic processes. The rationality of this adjustment under the framework of the formation of a holobiont between the microbiome and the plant host is herein explained, and a potential theoretical framework for dynamic assembly patterns of endophytic microbiota along the soil-plant continuum is proposed. Considering that the assembly of root endophytic microbiota is complicated, we suggest caution and level-by-level verification from deterministic processes to neutral components to stochastic processes when deciding on the attribution of dispersal limitation in the future to promote the expansion and application of microbiome engineering in sustainable agricultural development based on community assembly patterns.
Collapse
Affiliation(s)
| | - Jiangyun Gao
- Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
42
|
Yang J, Woo JJ, Oh SY, Kim W, Hur JS. Fungal community inside lichen: a curious case of sparse diversity and high modularity. ENVIRONMENTAL MICROBIOME 2023; 18:73. [PMID: 37789449 PMCID: PMC10548754 DOI: 10.1186/s40793-023-00531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND Lichens represent not only the mutualism of fungal and photosynthetic partners but also are composed of microbial consortium harboring diverse fungi known as endolichenic fungi. While endolichenic fungi are known to exert a remarkable influence on lichen ecology through their crucial roles in nutrient cycling, bioprospecting and biodiversity, the enigmatic community structures of these fungal inhabitants remain shrouded in mystery, awaiting further exploration and discovery. To address knowledge gap, we conducted metabarcoding on two lichens using 18S gene amplification, Dirinara applanta and Parmotrema tinctorum, and compared their microbial communities to those found in the pine bark to which the lichens were attached. Our hypothesis was that the endolichenic communities would exhibit distinct diversity patterns, community structures, network structures, and specialist composition compared to the surrounding epiphytic community. RESULTS Our investigation has shed light on the clear demarcation between the endolichenic and epiphytic fungal communities, as they exhibit markedly different characteristics that set them apart from each other. This research demonstrated that the endolichenic communities are less diverse as compared to the epiphytic communities. Through community similarity analysis, we observed that two endolichenic communities are more similar to each other in terms of community composition than with the adjacent epiphytic communities. Moreover, we unveiled a striking contrast in the network structures between the endolichenic and epiphytic communities, as the former displayed a more modular and less nested features that is evocative of a potent host-filtration mechanism. CONCLUSIONS Through our investigation, we have discovered that lichens harbor less intricate and interconnected fungal communities compared to the neighboring epiphytic environment. These observations provide valuable insights into the metagenomic architecture of lichens and offer a tantalizing glimpse into the unique mycobiome.
Collapse
Affiliation(s)
- Jiho Yang
- Korean Lichen Research Institute, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, South Korea
- Department of Biology, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, South Korea
| | - Jung-Jae Woo
- Korean Lichen Research Institute, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, South Korea
- Department of Biology, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, South Korea
| | - Seung-Yoon Oh
- Department of Biology and Chemistry, Changwon National University, 20 Changwondaehak-ro, Changwon, 51140, South Korea
| | - Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, South Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, South Korea.
| |
Collapse
|
43
|
Feng R, Wang H, Liu T, Wang F, Cai L, Chen X, Zhang S. Response of microbial communities in the phyllosphere ecosystem of tobacco exposed to the broad-spectrum copper hydroxide. Front Microbiol 2023; 14:1229294. [PMID: 37840714 PMCID: PMC10568630 DOI: 10.3389/fmicb.2023.1229294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Copper hydroxide is a broad-spectrum copper fungicide, which is often used to control crop fungal and bacterial diseases. In addition to controlling targeted pathogens, copper hydroxide may also affect other non-targeted microorganisms in the phyllosphere ecosystem. At four time points (before spraying, and 5, 10 and 15 days after fungicide application), the response of diseased and healthy tobacco phyllosphere microorganisms to copper hydroxide stress was studied by using Illumina high-throughput sequencing technology, and Biolog tools. The results showed that the microbiome communities of the healthy group were more affected than the disease group, and the fungal community was more sensitive than the bacterial community. The most common genera in the disease group were Alternaria, Boeremia, Cladosporium, Pantoea, Ralstonia, Pseudomonas, and Sphingomonas; while in the healthy group, these were Alternaria, Cladosporium, Symmetrospora, Ralstonia, and Pantoea. After spraying, the alpha diversity of the fungal community decreased at 5 days for both healthy and diseased groups, and then showed an increasing trend, with a significant increase at 15 days for the healthy group. The alpha diversity of bacterial community in healthy and diseased groups increased at 15 days, and the healthy group had a significant difference. The relative abundance of Alternaria and Cladosporium decreased while that of Boeremia, Stagonosporopsis, Symmetrospora, Epicoccum and Phoma increased in the fungal communities of healthy and diseased leaves. The relative abundance of Pantoea decreased first and then increased, while that of Ralstonia, Pseudomonas and Sphingomonas increased first and then decreased in the bacterial communities of healthy and diseased leaves. While copper hydroxide reduced the relative abundance of pathogenic fungi Alternaria and Cladosporium, it also resulted in the decrease of beneficial bacteria such as Actinomycetes and Pantoea, and the increase of potential pathogens such as Boeremia and Stagonosporopsis. After treatment with copper hydroxide, the metabolic capacity of the diseased group improved, while that of the healthy group was significantly suppressed, with a gradual recovery of metabolic activity as the application time extended. The results revealed changes in microbial community composition and metabolic function of healthy and diseased tobacco under copper hydroxide stress, providing a theoretical basis for future studies on microecological protection of phyllosphere.
Collapse
Affiliation(s)
- Ruichao Feng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co- construction by Ministry and Province), Yangtze University, Jingzhou, Hubei, China
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Hancheng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Tingting Liu
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Feng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Liuti Cai
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Xingjiang Chen
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Songbai Zhang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co- construction by Ministry and Province), Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
44
|
Luo K, Zhao G, Chen M, Tian X. Effects of maize resistance and leaf chemical substances on the structure of phyllosphere fungal communities. FRONTIERS IN PLANT SCIENCE 2023; 14:1241055. [PMID: 37645458 PMCID: PMC10461017 DOI: 10.3389/fpls.2023.1241055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023]
Abstract
It is well known that plant genotype can regulate phyllosphere fungi at the species level. However, little is known about how plant varieties shape the fungal communities in the phyllosphere. In this study, four types of maize varieties with various levels of resistances to Exserohilum turcicum were subjected to high-throughput sequencing to reveal the properties that influences the composition of phyllosphere fungal communities. The dominant fungi genera for all four maize varieties were Alternaria at different relative abundances, followed by Nigrospora. Hierarchical clustering analysis, non-metric multidimensional scaling and similarity analysis confirmed that the fungal communities in the phyllosphere of the four varieties were significantly different and clustered into the respective maize variety they inhabited. The findings from Redundancy Analysis (RDA) indicated that both maize resistance and leaf chemical constituents, including nitrogen, phosphorus, tannins, and flavonoids, were the major drivers in determining the composition of phyllosphere fungal communities. Among these factors, maize resistance was found to be the most influential, followed by phosphorus. The co-occurrence network of the fungal communities in the phyllosphere of highly resistant variety had higher complexity, integrity and stability compared to others maize varieties. In a conclusion, maize variety resistance and leaf chemical constituents play a major role in shaping the phyllosphere fungal community. The work proposes a link between the assembled fungal communities within the phyllosphere with maize variety that is resistant to pathogenic fungi infection.
Collapse
Affiliation(s)
- Kun Luo
- Hunan Agricultural University, Changsha, Hunan, China
| | - Gonghua Zhao
- Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Mengfei Chen
- Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Xueliang Tian
- Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang, Henan, China
| |
Collapse
|
45
|
Ma N, Yin D, Liu Y, Gao Z, Cao Y, Chen T, Huang Z, Jia Q, Wang D. Succession of endophytic fungi and rhizosphere soil fungi and their correlation with secondary metabolites in Fagopyrum dibotrys. Front Microbiol 2023; 14:1220431. [PMID: 37601353 PMCID: PMC10434241 DOI: 10.3389/fmicb.2023.1220431] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023] Open
Abstract
Golden buckwheat (Fagopyrum dibotrys, also known as F. acutatum) is a traditional edible herbal medicinal plant with a large number of secondary metabolites and is considered to be a source of therapeutic compounds. Different ecological environments have a significant impact on their compound content and medicinal effects. However, little is known about the interactions between soil physicochemical properties, the rhizosphere, endophytic fungal communities, and secondary metabolites in F. dibotrys. In this study, the rhizosphere soil and endophytic fungal communities of F. dibotrys in five different ecological regions in China were identified based on high-throughput sequencing methods. The correlations between soil physicochemical properties, active components (total saponins, total flavonoids, proanthocyanidin, and epicatechin), and endophytic and rhizosphere soil fungi of F. dibotrys were analyzed. The results showed that soil pH, soil N, OM, and P were significantly correlated with the active components of F. dibotrys. Among them, epicatechin, proanthocyanidin, and total saponins were significantly positively correlated with soil pH, while proanthocyanidin content was significantly positively correlated with STN, SAN, and OM in soil, and total flavone content was significantly positively correlated with P in soil. In soil microbes, Mortierella, Trechispora, Exophiala, Ascomycota_unclassified, Auricularia, Plectosphaerella, Mycena, Fungi_unclassified, Agaricomycetes_unclassified, Coprinellus, and Pseudaleuria were significantly related to key secondary metabolites of F. dibotrys. Diaporthe and Meripilaceae_unclassified were significantly related to key secondary metabolites in the rhizome. This study presents a new opportunity to deeply understand soil-plant-fungal symbioses and secondary metabolites in F. dibotrys, as well as provides a scientific basis for using biological fertilization strategies to improve the quality of F. dibotrys.
Collapse
Affiliation(s)
- Nan Ma
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Dengpan Yin
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Ying Liu
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Ziyong Gao
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Yu Cao
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Tongtong Chen
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Ziyi Huang
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Qiaojun Jia
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Dekai Wang
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| |
Collapse
|
46
|
Lin T, Tang J, Li S, Li S, Han S, Liu Y, Yang C, Chen G, Chen L, Zhu T. Drought stress-mediated differences in phyllosphere microbiome and associated pathogen resistance between male and female poplars. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1100-1113. [PMID: 37177875 DOI: 10.1111/tpj.16283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Phyllosphere-associated microbes play a crucial role in plant-pathogen interactions while their composition and diversity are strongly influenced by drought stress. As dioecious plant species exhibited secondary dimorphism between the two sexes in response to drought stress, whether such difference will lead to sex-specific differences in phyllosphere microbiome and associated pathogen resistance between male and female conspecifics is still unknown. In this study, we subjected female and male full siblings of a dioecious poplar species to a short period of drought treatment followed by artificial infection of a leaf pathogenic fungus. Our results showed that male plants grew better than females with or without drought stress. Female control plants had more leaf lesion area than males after pathogen infection, whereas drought stress reversed such a difference. Further correlation and in vitro toxicity tests suggested that drought-mediated sexual differences in pathogen resistance between the two plant sexes could be attributed to the shifts in structure and function of phyllosphere-associated microbiome rather than the amount of leaf main defensive chemicals contained in plant leaves. Supportively, the microbiome analysis through high-throughput sequencing indicated that female phyllosphere enriched a higher abundance of ecologically beneficial microbes that serve as biological plant protectants, while males harbored abundant phytopathogens under drought-stressed conditions. The results could provide potential implications for the selection of suitable poplar sex to plants in drought or semi-drought habitats.
Collapse
Affiliation(s)
- Tiantian Lin
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Key Laboratory of Forest Protection of Sichuan Education Department, College of Forestry, Sichuan Agricultural University, 611130, Chengdu, China
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China and Centre of Invasion Biology, Institute of Biodiversity, Yunnan University, 650504, Kunming, China
| | - Jiayao Tang
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Key Laboratory of Forest Protection of Sichuan Education Department, College of Forestry, Sichuan Agricultural University, 611130, Chengdu, China
| | - Shuying Li
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Key Laboratory of Forest Protection of Sichuan Education Department, College of Forestry, Sichuan Agricultural University, 611130, Chengdu, China
| | - Shujiang Li
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Key Laboratory of Forest Protection of Sichuan Education Department, College of Forestry, Sichuan Agricultural University, 611130, Chengdu, China
| | - Shan Han
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Key Laboratory of Forest Protection of Sichuan Education Department, College of Forestry, Sichuan Agricultural University, 611130, Chengdu, China
| | - Yinggao Liu
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Key Laboratory of Forest Protection of Sichuan Education Department, College of Forestry, Sichuan Agricultural University, 611130, Chengdu, China
| | - Chunlin Yang
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Key Laboratory of Forest Protection of Sichuan Education Department, College of Forestry, Sichuan Agricultural University, 611130, Chengdu, China
| | - Gang Chen
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Key Laboratory of Forest Protection of Sichuan Education Department, College of Forestry, Sichuan Agricultural University, 611130, Chengdu, China
| | - Lianghua Chen
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Key Laboratory of Forest Protection of Sichuan Education Department, College of Forestry, Sichuan Agricultural University, 611130, Chengdu, China
| | - Tianhui Zhu
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Key Laboratory of Forest Protection of Sichuan Education Department, College of Forestry, Sichuan Agricultural University, 611130, Chengdu, China
| |
Collapse
|
47
|
Zhang G, Shi L, Liu C, Mao R, Xia B, Huang Z, Wei X, Wu L, Zheng Y, Wei G, Xu J, Gao S, Chen S, Dong L. Modules in robust but low-efficiency phyllosphere fungal networks drive saponin accumulation in leaves of different Panax species. ENVIRONMENTAL MICROBIOME 2023; 18:57. [PMID: 37438802 PMCID: PMC10337071 DOI: 10.1186/s40793-023-00516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND The phyllosphere mycobiome plays a crucial role in plant fitness and ecosystem functions. The complex microbial ecological networks (MEN) formed by these fungi remain poorly understood, particularly with regard to their organization strategy and their contributions to plant secondary metabolites such as saponin. RESULTS In this study, we constructed six MENs from leaf epiphytic and endophytic mycobiomes of three Panax species distributed in the northeast and southwest ends of mainland China. Hub nodes were absent in these MENs, which were significantly more complex, robust, and less efficient compared to random graphs (P < 0.05), indicating a hub-independent high-robustness strategy to maintain structural homeostasis. The important roles of specific MEN modules in shaping leaf saponin profiles of each Panax species were proved by multiple machine learning algorithms. Positive regulation modules (PRMs) of total saponin content were further identified, which exhibited more deterministic ecological assembly and comprised of highly connected nodes as well as higher proportion of plant-associated fungal guilds compared to other network members, indicating their tight links with host plant. The significant and direct effects (P < 0.05) of PRMs on total saponin accumulation were validated by well-fitted structural equation models (χ2 < 0.3, P > 0.5). Taxonomic analysis revealed that Pleosporales and Chaetothyriales were significantly overrepresented by positive regulation taxa (PRT) of total saponin content (FDR < 0.05). Across PRT identified in three Panax species, Epicoccum and Coniothyrium were conservatively present, while species-specific taxa such as Agaricales were also found, indicating the conservatism and specificity of plant-fungi interactions associated with leaf saponin accumulation in Panax genus. CONCLUSIONS These findings provide a foundation for understanding mechanisms maintaining the steady state of phyllosphere mycobiome in healthy plant, and offer clues for engineering phyllosphere mycobiome to improve the accumulation of bioactive secondary metabolites on the basis of network modules.
Collapse
Affiliation(s)
- Guozhuang Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Liping Shi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Congsheng Liu
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Fujian, 363000 China
| | - Renjun Mao
- School of Life Sciences, Yan’ an University, Yan’ an, 716000 China
| | - Bing Xia
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Zhixin Huang
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Fujian, 363000 China
| | - Xiuye Wei
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Lixuan Wu
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Fujian, 363000 China
| | - Yuqing Zheng
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Fujian, 363000 China
| | - Guangfei Wei
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Jia Xu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Shuangrong Gao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan China
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| |
Collapse
|
48
|
Wang W, Cai T, Yang Y, Guo H, Shang Z, Shahid H, Zhang Y, Qiu S, Zeng X, Xu X, Liu Y, Fang P, Ding P, Mao Z, Shan T. Diversity of Fungal Communities on Diseased and Healthy Cinnamomum burmannii Fruits and Antibacterial Activity of Secondary Metabolites. Microbiol Spectr 2023; 11:e0008023. [PMID: 37162357 PMCID: PMC10269519 DOI: 10.1128/spectrum.00080-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/19/2023] [Indexed: 05/11/2023] Open
Abstract
The composition and structure of fungal communities on healthy and diseased fruits of Cinnamomum burmannii (Nees and Nees) Blume were characterized, with evaluation of the antibacterial activity of secondary metabolites from culturable fungi following the first identification of secondary metabolites in the fungus Medicopsis romeroi (Esf-14; GenBank accession number OK242756). These results are significant for understanding the functional variation in bioactivity in fungal communities and developing a broader range of bioactive resources. High-throughput sequencing results indicated that the fungal community in diseased fruit differed from that in healthy fruit at the phylum, class, order, or genus level, with significant differences in the species and relative abundance of the dominant flora. A total of 49 (healthy fruit) and 122 (diseased fruit) artificially cultivable endophytic fungi were isolated, and 41 different strains (11 from healthy fruit and 30 from diseased fruit) were successfully identified by morphological and molecular biological analyses, which were classified into 8 groups and 23 genera by phylogenetic tree analysis, with Pleosporales, Glomerellales, and Hypocreales being the dominant groups at the order level and Colletotrichum being the dominant group at the genus level. The results of the antibacterial assay demonstrated that the secondary metabolites of all strains had different degrees of antibacterial activity, while the secondary metabolites of endophytic fungi from diseased fruit were generally stronger than those of fungi from healthy fruit, with the active secondary metabolites dominated by small and moderately polar compounds. Combined analysis of fungal communities, phylogenetic tree analysis, and bioactivity analysis of culturable strains revealed strong antibacterial activity of both upregulated and downregulated flora in diseased fruit. Five compounds, including two new (5,6-dimethoxy-[1',1:4,1″-terphenyl]-2-ol [compound 1] and 5-(methoxycarbonyl)-2-methylbenzo[d][1,3]dioxole-2-carboxylic acid [compound 2]) and three known compounds (3,7-dihydroxy-1,9-dimethyldibenzofuran [compound 3], methyl 3-hydroxybenzoate [compound 4], and uracil [compound 5]), were isolated and identified for the first time from the endophytic fungus Medicopsis romeroi. In general, the diversity of fungal communities on diseased fruit was lower than that on healthy fruits, while the antibacterial activity of artificially cultured endophytic fungi on diseased fruits was generally stronger than that on healthy fruits, suggesting excellent promise for the development of secondary metabolites from active strains on diseased fruit as antibacterial agents. IMPORTANCE Powdery fruit disease is a notorious disease of Cinnamomum burmannii that causes severe loss in fruit production. Studies on the function of endophytic fungal communities in healthy plant tissues are not new, while little is known about the functional changes of fungal communities in disease-causing plant tissues. Our results demonstrate that fungal communities in diseased fruits differ from those in healthy fruits at the level of phylum, class, order, or genus, with significant differences in the species and relative abundance of dominant groups. Endophytic fungi in diseased fruits appeared to produce secondary metabolites with stronger antibacterial properties, although the community diversity was not as varied as that in healthy fruits. In addition, secondary metabolites of the Medicopsis romeroi strain from diseased fruits were identified for the first time. These results have important implications for understanding the functional variation of bioactivity in fungal communities and for developing a broader resource of bioactivity.
Collapse
Affiliation(s)
- Wei Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Teng Cai
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuting Yang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Hui Guo
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Zhuo Shang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Hamza Shahid
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yirong Zhang
- College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Sirun Qiu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xinnian Zeng
- College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xiaoli Xu
- Instrumental Analysis and Research Center of SCAU, South China Agricultural University, Guangzhou, China
| | - Yi Liu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Ping Fang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Ping Ding
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziling Mao
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Tijiang Shan
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
49
|
Chen Y, Liu G, Ali MR, Zhang M, Zhou G, Sun Q, Li M, Shirin J. Regulation of gut bacteria in silkworm (Bombyx mori) after exposure to endogenous cadmium-polluted mulberry leaves. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114853. [PMID: 37023650 DOI: 10.1016/j.ecoenv.2023.114853] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/08/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Soil cadmium (Cd) pollution presents a severe pollution burden to flora and fauna due to its non-degradability and transferability. The Cd in the soil is stressing the silkworm (Bombyx mori) out through a soil-mulberry-silkworm system. The gut microbiota of B.mori are reported to shape host health. However, earlier research had not reported the effect of endogenous Cd-polluted mulberry leaves on the gut microbiota of B.mori. In the current research, we compared the phyllosphere bacteria of endogenous Cd-polluted mulberry leaves at different concentrations. The investigation of the gut bacteria of B.mori fed with the mulberry leaves was done to evaluate the impact of endogenous Cd- polluted mulberry leaves on the gut bacteria of the silkworm. The results revealed a dramatic change in the gut bacteria of B.mori whereas, the changes in the phyllosphere bacteria of mulberry leaves in response to an increased Cd concentration were insignificant. It also increased the α-diversity and altered the gut bacterial community structure of B. mori. A significant change in the abundance of dominant phyla of gut bacteria of B.mori was recorded. At the genus level, the abundance of Enterococcus, Brachybacterium and Brevibacterium group related to disease resistance, and the abundance of Sphingomonas, Glutamicibacter and Thermus related to metal detoxification was significantly increased after Cd exposure. Meanwhile, there was a significant decrease in the abundance of the pathogenic bacteria Serratia and Enterobacter. The results demonstrated that endogenous Cd-polluted mulberry leaves caused perturbations in the gut bacterial composition of B.mori, which may driven by Cd content rather than phyllosphere bacteria. A significant variation in the specific bacterial community indicated the adaptation of B. mori gut for its role in heavy metal detoxification and immune function regulation. The results of this study help to understand the bacterial community associated with endogenous Cd-polluted resistance in the gut of B.mori, which proves to be a novel addition in describing its response in activating the detoxification mechanism and promoting its growth and development. This research work will help to explore the other mechanisms and microbiota associated with the adaptations to mitigate the Cd pollution problems.
Collapse
Affiliation(s)
- Yongjing Chen
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui Province, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, China; Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
| | - Guijia Liu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui Province, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, China; Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
| | - Maria Rafraf Ali
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui Province, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, China; Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
| | - Mingzhu Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui Province, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, China; Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
| | - Guowei Zhou
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui Province, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, China; Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
| | - Qingye Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui Province, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, China; Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China.
| | - Mingjun Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui Province, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, China; Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
| | - Jazbia Shirin
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui Province, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, China; Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
| |
Collapse
|
50
|
Dos Reis JBA, Pappas Junior GJ, Lorenzi AS, Pinho DB, Costa AM, Bustamante MMDC, Vale HMMD. How Deep Can the Endophytic Mycobiome Go? A Case Study on Six Woody Species from the Brazilian Cerrado. J Fungi (Basel) 2023; 9:jof9050508. [PMID: 37233219 DOI: 10.3390/jof9050508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/27/2023] Open
Abstract
Elucidating the complex relationship between plants and endophytic fungi is very important in order to understand the maintenance of biodiversity, equity, stability, and ecosystem functioning. However, knowledge about the diversity of endophytic fungi from species of the native Brazilian Cerrado biome is poorly documented and remains largely unknown. These gaps led us to characterize the diversity of Cerrado endophytic foliar fungi associated with six woody species (Caryocar brasiliense, Dalbergia miscolobium, Leptolobium dasycarpum, Qualea parviflora, Ouratea hexasperma, and Styrax ferrugineus). Additionally, we investigated the influence of host plant identities on the structure of fungal communities. Culture-dependent methods coupled with DNA metabarcoding were employed. Irrespective of the approach, the phylum Ascomycota and the classes Dothideomycetes and Sordariomycetes were dominant. Using the cultivation-dependent method, 114 isolates were recovered from all the host species and classified into more than 20 genera and 50 species. Over 50 of the isolates belonged to the genus Diaporthe, and were distributed into more than 20 species. Metabarcoding revealed the phyla Chytridiomycota, Glomeromycota, Monoblepharomycota, Mortierellomycota, Olpidiomycota, Rozellomycota, and Zoopagomycota. These groups are reported for the first time as components of the endophytic mycobiome of Cerrado plant species. In total, 400 genera were found in all host species. A unique leaf endophytic mycobiome was identified in each host species, which differed not only by the distribution of fungal species, but also by the abundance of shared species. These findings highlight the importance of the Brazilian Cerrado as a reservoir of microbial species, and emphasize how endophytic fungal communities are diversified and adapted.
Collapse
Affiliation(s)
| | - Georgios Joannis Pappas Junior
- University of Brasília (UnB), Institute of Biological Sciences, Department of Cellular Biology, Brasília 70910-900, DF, Brazil
| | - Adriana Sturion Lorenzi
- University of Brasília (UnB), Institute of Biological Sciences, Department of Cellular Biology, Brasília 70910-900, DF, Brazil
| | - Danilo Batista Pinho
- University of Brasília (UnB), Institute of Biological Sciences, Department of Phytopathology, Brasília 70910-900, DF, Brazil
| | - Alexandra Martins Costa
- University of Brasília (UnB), Institute of Biological Sciences, Department of Ecology, Brasília 70910-900, DF, Brazil
| | | | - Helson Mario Martins do Vale
- University of Brasília (UnB), Institute of Biological Sciences, Department of Phytopathology, Brasília 70910-900, DF, Brazil
| |
Collapse
|