1
|
Zhang H, Dong Z, Su J, Zhou Z, Li W, Yuan X, Chen L, He W. Research trends and hotspots of osteoporosis and intestinal microbiota: A bibliometric analysis. Medicine (Baltimore) 2025; 104:e41939. [PMID: 40324264 PMCID: PMC12055077 DOI: 10.1097/md.0000000000041939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Osteoporosis (OP) is the second most detrimental chronic disease, and thus novel diagnostic and therapeutic approaches are needed. In recent years, there has been an increased emphasis on the utilization of gut microbiota (GM) in the context of OP. However, a comprehensive bibliometric analysis on this subject is currently lacking. Furthermore, a deeper exploration of the role of GM in bone health is imperative, and there is a pressing need to foster international and inter-agency exchange and experience in this field. Accordingly, this study aimed to provide an overview of the research trends in this field and propose suggestions for related scientific and technological research and development. METHODS The Web of Science database was searched for articles related to both GM and OP. Statistical analyses and data visualization were performed using the EXCEL and CiteSpace software. RESULTS China exhibited the highest number of publications, followed by the United States. NUTRIENTS and Sichuan University were identified as the journal and institution, respectively, with the highest number of articles. Notably, the keywords "gut microbiota" and "bone loss" have been increasingly used in publications. CONCLUSION In conclusion, this study fills the existing gap in the literature and contributes valuable insights to the understanding of the relationship between GM and OP.
Collapse
Affiliation(s)
- Hongbin Zhang
- Department of Orthopaedics, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Zhejiang, China
| | - Zhiyu Dong
- Department of Traditional Chinese Medicine, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Zhejiang, China
| | - Jinyi Su
- Department of Orthopaedics, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Zhejiang, China
| | - Zhiqiang Zhou
- Department of Rheumatism Immunity, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Zhejiang, China
| | - Wenbing Li
- Department of Pneumology, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Zhejiang, China
| | - Xuefei Yuan
- Department of Reproductive Center, Changhai Hospital of Shanghai, Shanghai, China
| | - Limin Chen
- Department of Traditional Chinese Medicine, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Zhejiang, China
| | - Wenquan He
- Department of Orthopaedics, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Zhejiang, China
| |
Collapse
|
2
|
Flynn-Evans EE, Braun AM, Jansen RA. Sleep Away from Earth. Sleep Med Clin 2025; 20:73-80. [PMID: 39894600 DOI: 10.1016/j.jsmc.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
This article summarizes the studies that have been done in space to date, the challenges associated with sleeping in space, contributors to circadian misalignment, what is known about sleep disorders in space, and discussion of new sleep and circadian issues that may arise as more humans travel to space and embark on missions farther from Earth.
Collapse
Affiliation(s)
- Erin E Flynn-Evans
- Fatigue Countermeasures Lab, NASA Ames Research Center, Building 262, Moffett Field, CA 94035-0001, USA.
| | - Alisa M Braun
- Fatigue Countermeasures Laboratory, San Jose State University Research Foundation, NASA Ames Research Center, Building 262, Moffett Field, CA 94035-0001, USA
| | - Rachel A Jansen
- Fatigue Countermeasures Lab, NASA Ames Research Center, Building 262, Moffett Field, CA 94035-0001, USA
| |
Collapse
|
3
|
Zang P, Chen P, Chen J, Sun J, Lan H, Dong H, Liu W, Xu N, Wang W, Hou L, Sun B, Zhang L, Huang J, Wang P, Ren F, Liu S. Alteration of Gastrointestinal Function and the Ameliorative Effects of Hericium erinaceus Polysaccharides in Tail Suspension Rats. Nutrients 2025; 17:724. [PMID: 40005052 PMCID: PMC11858084 DOI: 10.3390/nu17040724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Long-term spaceflight in a microgravity environment frequently results in gastrointestinal dysfunction, presenting substantial challenges to astronauts' health. Hericium erinaceus, a plant recognized for its dual use as food and medicine, contains a key functional component called Hericium erinaceus polysaccharide (HEP), which is purported to promote gastrointestinal health. This study aims to investigate the protective effects of HEP against gastrointestinal disturbances induced by simulated weightlessness and to elucidate its regulatory mechanisms. Methods: Sprague Dawley rats subjected to a tail suspension model were administered either a standard diet or a diet supplemented with 0.125% HEP over a period of 4 weeks (the intake of HEP is approximately 157.5 mg/kg bw/d, n = 8), metagenomics and targeted metabolomics to investigate the effects of HEP on gastrointestinal hormone secretion disorders, gut microbiota dysbiosis, and intestinal barrier damage induced by simulated weightlessness. Results: Dietary supplementation with HEP was observed to significantly alleviate weightlessness-induced gastrointestinal hormone disruptions, enhancing motility and intestinal barrier function while reducing inflammation. In addition, HEP improved gut microbiota by boosting beneficial bacteria as Oscillibacter sp.1-3, Firmicutes bacterium ASF500, and Lactobacillus reuteri, while reducing harmful bacteria like Escherichia coli and Mucispirillum schaedleri at the species level. Furthermore, HEP altered the serum metabolic profile of the rats, reducing inflammation by upregulating the tryptophan metabolism pathway and enhancing the production of short-chain fatty acids. Conclusions: HEP effectively protects against gastrointestinal dysfunction induced by simulated weightlessness by regulating hormone secretion and maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Peng Zang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.Z.); (F.R.)
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (P.C.); (J.C.); (J.S.); (H.L.); (H.D.); (W.L.); (N.X.); (W.W.); (L.H.); (B.S.); (L.Z.)
| | - Pu Chen
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (P.C.); (J.C.); (J.S.); (H.L.); (H.D.); (W.L.); (N.X.); (W.W.); (L.H.); (B.S.); (L.Z.)
| | - Junli Chen
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (P.C.); (J.C.); (J.S.); (H.L.); (H.D.); (W.L.); (N.X.); (W.W.); (L.H.); (B.S.); (L.Z.)
| | - Jingchao Sun
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (P.C.); (J.C.); (J.S.); (H.L.); (H.D.); (W.L.); (N.X.); (W.W.); (L.H.); (B.S.); (L.Z.)
| | - Haiyun Lan
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (P.C.); (J.C.); (J.S.); (H.L.); (H.D.); (W.L.); (N.X.); (W.W.); (L.H.); (B.S.); (L.Z.)
| | - Haisheng Dong
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (P.C.); (J.C.); (J.S.); (H.L.); (H.D.); (W.L.); (N.X.); (W.W.); (L.H.); (B.S.); (L.Z.)
| | - Wei Liu
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (P.C.); (J.C.); (J.S.); (H.L.); (H.D.); (W.L.); (N.X.); (W.W.); (L.H.); (B.S.); (L.Z.)
| | - Nan Xu
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (P.C.); (J.C.); (J.S.); (H.L.); (H.D.); (W.L.); (N.X.); (W.W.); (L.H.); (B.S.); (L.Z.)
| | - Weiran Wang
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (P.C.); (J.C.); (J.S.); (H.L.); (H.D.); (W.L.); (N.X.); (W.W.); (L.H.); (B.S.); (L.Z.)
| | - Lingwei Hou
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (P.C.); (J.C.); (J.S.); (H.L.); (H.D.); (W.L.); (N.X.); (W.W.); (L.H.); (B.S.); (L.Z.)
| | - Bowen Sun
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (P.C.); (J.C.); (J.S.); (H.L.); (H.D.); (W.L.); (N.X.); (W.W.); (L.H.); (B.S.); (L.Z.)
| | - Lujia Zhang
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China; (P.C.); (J.C.); (J.S.); (H.L.); (H.D.); (W.L.); (N.X.); (W.W.); (L.H.); (B.S.); (L.Z.)
| | - Jiaqiang Huang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China;
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China;
| | - Fazheng Ren
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.Z.); (F.R.)
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China;
| | - Siyuan Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
4
|
Gebre SG, Scott RT, Saravia-Butler AM, Lopez DK, Sanders LM, Costes SV. NASA open science data repository: open science for life in space. Nucleic Acids Res 2025; 53:D1697-D1710. [PMID: 39558178 PMCID: PMC11701653 DOI: 10.1093/nar/gkae1116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024] Open
Abstract
Space biology and health data are critical for the success of deep space missions and sustainable human presence off-world. At the core of effectively managing biomedical risks is the commitment to open science principles, which ensure that data are findable, accessible, interoperable, reusable, reproducible and maximally open. The 2021 integration of the Ames Life Sciences Data Archive with GeneLab to establish the NASA Open Science Data Repository significantly enhanced access to a wide range of life sciences, biomedical-clinical and mission telemetry data alongside existing 'omics data from GeneLab. This paper describes the new database, its architecture and new data streams supporting diverse data types and enhancing data submission, retrieval and analysis. Features include the biological data management environment for improved data submission, a new user interface, controlled data access, an enhanced API and comprehensive public visualization tools for environmental telemetry, radiation dosimetry data and 'omics analyses. By fostering global collaboration through its analysis working groups and training programs, the open science data repository promotes widespread engagement in space biology, ensuring transparency and inclusivity in research. It supports the global scientific community in advancing our understanding of spaceflight's impact on biological systems, ensuring humans will thrive in future deep space missions.
Collapse
Affiliation(s)
- Samrawit G Gebre
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Ryan T Scott
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | | | - Danielle K Lopez
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Lauren M Sanders
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| |
Collapse
|
5
|
Wu Z, Liu H, Yan L, Deng Y, Tian Z, Du Y, Zhao Y, Ma H, Deng Y, Li Y, Wang Z. Imaging of Gut Bacterial Macroscopic Changes in Simulated Microgravity-Exposed Rats via In Vivo Metabolic Labeling. Anal Chem 2024; 96:19758-19767. [PMID: 39591367 DOI: 10.1021/acs.analchem.4c05028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
The impact of the microgravity environment on gut bacteria has been widely recognized to induce notable gastrointestinal pathology during extended spaceflight. However, most current studies for gut microbiome homeostasis profiling are based on the 16S rRNA gene sequencing of fecal samples; this technology faces challenges in analyzing gut bacterial alterations in situ, dynamically, and with high spatiotemporal resolution. Herein, we present the utilization of bioorthogonal metabolic labeling for noninvasive imaging of gut bacterial macroscopic changes in simulated microgravity (SMG) rats. After being subsequently labeled with the metabolic reporters d-Ala-N3 and ICG-DBCO through click chemistry, it was shown that SMG can trigger obvious perturbation of gut bacteria, evidenced by the significant increase in the total bacterial content and spatial distribution variations. Such a difference was accompanied by the occurrence of intestinal inflammation and tissue damage. Compared with 16S rRNA genome analysis focusing on composition and diversity, the metabolic labeling strategy provides unprecedented insights into the macroscopic changes of the gut bacterial content and distribution under SMG. Our study will be helpful for investigating the biological implication of SMG-induced imbalance in gut bacteria, potentially promoting the deep investigation of the complex gastrointestinal pathology in space biomedicine.
Collapse
Affiliation(s)
- Zhujun Wu
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Huayan Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Liben Yan
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yifan Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zhongqin Tian
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yiyang Du
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yuankun Zhao
- Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yulin Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yujuan Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhimin Wang
- Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
6
|
Gonzalez E, Lee MD, Tierney BT, Lipieta N, Flores P, Mishra M, Beckett L, Finkelstein A, Mo A, Walton P, Karouia F, Barker R, Jansen RJ, Green SJ, Weging S, Kelliher J, Singh NK, Bezdan D, Galazska J, Brereton NJB. Spaceflight alters host-gut microbiota interactions. NPJ Biofilms Microbiomes 2024; 10:71. [PMID: 39209868 PMCID: PMC11362537 DOI: 10.1038/s41522-024-00545-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
The ISS rodent habitat has provided crucial insights into the impact of spaceflight on mammals, inducing symptoms characteristic of liver disease, insulin resistance, osteopenia, and myopathy. Although these physiological responses can involve the microbiome on Earth, host-microbiota interactions during spaceflight are still being elucidated. We explore murine gut microbiota and host gene expression in the colon and liver after 29 and 56 days of spaceflight using multiomics. Metagenomics revealed significant changes in 44 microbiome species, including relative reductions in bile acid and butyrate metabolising bacteria like Extibacter muris and Dysosmobacter welbionis. Functional prediction indicate over-representation of fatty acid and bile acid metabolism, extracellular matrix interactions, and antibiotic resistance genes. Host gene expression described corresponding changes to bile acid and energy metabolism, and immune suppression. These changes imply that interactions at the host-gut microbiome interface contribute to spaceflight pathology and that these interactions might critically influence human health and long-duration spaceflight feasibility.
Collapse
Affiliation(s)
- E Gonzalez
- Microbiome Unit, Canadian Centre for Computational Genomics, Department of Human Genetics, McGill University, Montréal, Canada
- Centre for Microbiome Research, McGill University, Montréal, Canada
| | - M D Lee
- Exobiology Branch, NASA Ames Research Centre, Moffett Field, CA, USA
- Blue Marble Space Institute of Science, Seattle, WA, USA
| | - B T Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - N Lipieta
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - P Flores
- BioServe Space Technologies, University of Colorado Boulder, Boulder, CO, USA
| | - M Mishra
- Grossman School of Medicine, New York University, New York, USA
| | - L Beckett
- University of Nottingham, Nottingham, NG7 2RD, UK
| | - A Finkelstein
- NASA GeneLab for High Schools (GL4HS) program, NASA Ames Research Centre, Moffett Field, CA, USA
| | - A Mo
- NASA GeneLab for High Schools (GL4HS) program, NASA Ames Research Centre, Moffett Field, CA, USA
| | - P Walton
- NASA GeneLab for High Schools (GL4HS) program, NASA Ames Research Centre, Moffett Field, CA, USA
| | - F Karouia
- Exobiology Branch, NASA Ames Research Centre, Moffett Field, CA, USA
- Blue Marble Space Institute of Science, Seattle, WA, USA
- Centre for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - R Barker
- Blue Marble Space Institute of Science, Seattle, WA, USA
- Yuri GmbH, Wiesentalstr. 40, 88074, Meckenbeuren, Germany
- University of Wisconsin-Madison, Madison, WI, USA
| | - R J Jansen
- Department of Public Health, North Dakota State University, Fargo, ND, USA
- Genomics, Phenomics, and Bioinformatics Program, North Dakota State University, Fargo, ND, USA
| | - S J Green
- Genomics and Microbiome Core Facility, Rush University Medical Centre, 1653 W. Congress Parkway, Chicago, IL, 60612, USA
| | - S Weging
- Institute of Computer Science, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - J Kelliher
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - N K Singh
- Department of Industrial Relations, Division of Occupational Safety and Health, Oakland, USA
| | - D Bezdan
- University of Wisconsin-Madison, Madison, WI, USA
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Centre Tübingen (NCCT), University of Tübingen, Tübingen, Germany
| | - J Galazska
- Space Biosciences Research Branch, NASA Ames Research Centre, Moffett Field, CA, USA
| | - N J B Brereton
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
7
|
Wu W, Ren J, Han M, Huang B. Influence of gut microbiome on metabolic diseases: a new perspective based on microgravity. J Diabetes Metab Disord 2024; 23:353-364. [PMID: 38932858 PMCID: PMC11196560 DOI: 10.1007/s40200-024-01394-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/28/2024] [Indexed: 06/28/2024]
Abstract
Purpose Microgravity, characterized by gravity levels of 10-3-10-6g, has been found to significantly impair various physiological systems in astronauts, including cardiovascular function, bone density, and metabolism. With the recent surge in human spaceflight, understanding the impact of microgravity on biological health has become paramount. Methods A comprehensive literature search was performed using the PubMed database to identify relevant publications pertaining to the interplay between gut microbiome, microgravity, space environment, and metabolic diseases. Results This comprehensive review primarily focuses on the progress made in investigating the gut microbiome and its association with metabolic diseases under microgravity conditions. Microgravity induces notable alterations in the composition, diversity, and functionality of the gut microbiome. These changes hold direct implications for metabolic disorders such as cardiovascular disease (CVD), bone metabolism disorders, energy metabolism dysregulation, liver dysfunction, and complications during pregnancy. Conclusion This novel perspective is crucial for preparing for deep space exploration and interstellar migration, where understanding the complex interplay between the gut microbiome and metabolic health becomes indispensable.
Collapse
Affiliation(s)
- Wanxin Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui China
| | - Junjie Ren
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui China
| | - Maozhen Han
- School of Life Sciences, Anhui Medical University, Hefei, 230032 Anhui China
| | - Binbin Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui China
| |
Collapse
|
8
|
Rithidech KN, Peanlikhit T, Honikel L, Li J, Liu J, Karakach T, Zimmerman T, Welsh J. Consumption of Apigenin Prevents Radiation-induced Gut Dysbiosis in Male C57BL/6J Mice Exposed to Silicon Ions. Radiat Res 2024; 201:317-329. [PMID: 38373016 DOI: 10.1667/rade-23-00110.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
The search for medical treatments to prevent radiation-induced damage to gastrointestinal tissue is crucial as such injuries can be fatal. This study aimed to investigate the effects of apigenin (AP) on the gut microbiome of irradiated mice, as it is a promising radiation countermeasure. Male C57BL/6J mice were divided into four groups, with six mice in each group. Two groups were given food with apigenin (20 mg/kg body weight or AP 20) before and after exposure to 0 or 50 cGy of silicon (28Si) ions, while another two groups of mice received regular diet without apigenin (0 mg/kg body weight or AP 0) before and after irradiation. The duodenum, the primary site for oral AP absorption, was collected from each mouse seven days after radiation exposure. Using 16S rRNA amplicon sequencing, we found significant differences in microbial diversity among groups. Firmicutes and Bacteroidetes were the major phyla for all groups, while actinobacterial and proteobacterial sequences represented only a small percentage. Mice not given dietary apigenin had a higher Firmicutes and Bacteroidetes (F/B) ratio and an imbalanced duodenal microbiota after exposure to radiation, while irradiated mice given apigenin had maintained homeostasis of the microbiota. Additionally, irradiated mice not given apigenin had decreased probiotic bacteria abundance and increased inflammation, while apigenin-supplemented mice had reduced inflammation and restored normal histological structure. In conclusion, our results demonstrate the potential of dietary apigenin as a countermeasure against radiation-induced gut injuries due to its anti-inflammatory activity, reduction of gut microbiota dysbiosis, and increase in probiotic bacteria (e.g., Lachnospiraceae, Muribaculaceae and Bifidobacteriaceae).
Collapse
Affiliation(s)
| | - Tanat Peanlikhit
- Pathology Department, Stony Brook University, Stony Brook, New York 11794-8691
| | - Louise Honikel
- Pathology Department, Stony Brook University, Stony Brook, New York 11794-8691
| | - Jinyu Li
- Pathology Department, Stony Brook University, Stony Brook, New York 11794-8691
| | - Jingxuan Liu
- Pathology Department, Stony Brook University, Stony Brook, New York 11794-8691
| | - Tobias Karakach
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - Thomas Zimmerman
- Pathology Department, Stony Brook University, Stony Brook, New York 11794-8691
- Division of Laboratory Animal Resources, Stony Brook University, Stony Brook, New York 11794-8611
| | - James Welsh
- Department of Radiation Oncology, Loyola University Health System, Maywood, Illinois 60153
| |
Collapse
|
9
|
Mortazavi SMJ, Said-Salman I, Mortazavi AR, El Khatib S, Sihver L. How the adaptation of the human microbiome to harsh space environment can determine the chances of success for a space mission to Mars and beyond. Front Microbiol 2024; 14:1237564. [PMID: 38390219 PMCID: PMC10881706 DOI: 10.3389/fmicb.2023.1237564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/05/2023] [Indexed: 02/24/2024] Open
Abstract
The ability of human cells to adapt to space radiation is essential for the well-being of astronauts during long-distance space expeditions, such as voyages to Mars or other deep space destinations. However, the adaptation of the microbiomes should not be overlooked. Microorganisms inside an astronaut's body, or inside the space station or other spacecraft, will also be exposed to radiation, which may induce resistance to antibiotics, UV, heat, desiccation, and other life-threatening factors. Therefore, it is essential to consider the potential effects of radiation not only on humans but also on their microbiomes to develop effective risk reduction strategies for space missions. Studying the human microbiome in space missions can have several potential benefits, including but not limited to a better understanding of the major effects space travel has on human health, developing new technologies for monitoring health and developing new radiation therapies and treatments. While radioadaptive response in astronauts' cells can lead to resistance against high levels of space radiation, radioadaptive response in their microbiome can lead to resistance against UV, heat, desiccation, antibiotics, and radiation. As astronauts and their microbiomes compete to adapt to the space environment. The microorganisms may emerge as the winners, leading to life-threatening situations due to lethal infections. Therefore, understanding the magnitude of the adaptation of microorganisms before launching a space mission is crucial to be able to develop effective strategies to mitigate the risks associated with radiation exposure. Ensuring the safety and well-being of astronauts during long-duration space missions and minimizing the risks linked with radiation exposure can be achieved by adopting this approach.
Collapse
Affiliation(s)
- Seyed Mohammad Javad Mortazavi
- Ionizing and non-ionizing radiation protection research center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ilham Said-Salman
- Department of Biological and Chemical Sciences, School of Arts & Sciences, Lebanese International University, Saida, Lebanon
- Department of Biological and Chemical Sciences, International University of Beirut, Beirut, Lebanon
| | | | - Sami El Khatib
- Department of Biomedical Sciences, School of Arts and Sciences, Lebanese International University, Beirut, Lebanon
- Center for Applied Mathematics and Bioinformatics (CAMB) at Gulf University for Science and Technology, Kuwait City, Kuwait
| | - Lembit Sihver
- Department of Radiation Dosimetry, Nuclear Physics Institute (NPI) of the Czech Academy of Sciences (CAS), Prague, Czechia
- Department of Radiation Physics, Technische Universität Wien Atominstitut, Vienna, Austria
| |
Collapse
|
10
|
Gan X, Zhao J, Li S, Kan G, Zhang Y, Wang B, Zhang P, Ma X, Tian H, Liao M, Ju D, Xu S, Chen X, Guo J. Simulated space environmental factors of weightlessness, noise and low atmospheric pressure differentially affect the diurnal rhythm and the gut microbiome. LIFE SCIENCES IN SPACE RESEARCH 2024; 40:115-125. [PMID: 38245336 DOI: 10.1016/j.lssr.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/21/2023] [Accepted: 09/19/2023] [Indexed: 01/22/2024]
Abstract
The circadian clock extensively regulates physiology and behavior. In space, astronauts encounter many environmental factors that are dramatically different from those on Earth; however, the effects of these factors on circadian rhythms and the mechanisms remain largely unknown. The present study aimed to investigate the changes in the mouse diurnal rhythm and gut microbiome under simulated space capsule conditions, including microgravity, noise and low atmospheric pressure (LAP). Noise and LAP were loaded in the capsule while the conditions in the animal room remained constant. The mice in the capsule showed disturbed locomotor rhythms and faster adaptation to a 6-h phase advance. RNA sequencing of hypothalamus samples containing the suprachiasmatic nucleus (SCN) revealed that microgravity simulated by hind limb unloading (HU) and exposure to noise and LAP led to decreases in the quantities of differentially expressed genes (DEGs), including circadian clock genes. Changes in the rhythmicity of genes implicated in pathways of cardiovascular deconditioning and more concentrated phases were found under HU or noise and LAP. Furthermore, 16S rRNA sequencing revealed dysbiosis in the gut microbiome, and noise and LAP may repress the temporal discrepancy in the microbiome community structure induced by microgravity. Changes in diurnal oscillations were observed in a number of gut bacteria with critical physiological consequences on metabolism and immunodefense. We also found that the superimposition of noise and LAP may repress normal changes in global gene expression and adaptation in the gut microbiome. Our data demonstrate that in addition to microgravity, exposure to noise and LAP affect the robustness of circadian rhythms and the community structure of the gut microbiome, and these factors may interfere with each other in their adaptation to respective conditions. These findings are important for furthering our understanding of the alterations in circadian rhythms in the complex environment of space.
Collapse
Affiliation(s)
- Xihui Gan
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Jianwei Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Silin Li
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Guanghan Kan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yin Zhang
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Bo Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Peng Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiaohong Ma
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Hongni Tian
- National Institute of Biological Sciences, Beijing, China
| | - Meimei Liao
- National Institute of Biological Sciences, Beijing, China
| | - Dapeng Ju
- National Institute of Biological Sciences, Beijing, China
| | - Shuihong Xu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiaoping Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China; National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China.
| | - Jinhu Guo
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
11
|
Siddiqui R, Qaisar R, Al-Dahash K, Altelly AH, Elmoselhi AB, Khan NA. Cardiovascular changes under the microgravity environment and the gut microbiome. LIFE SCIENCES IN SPACE RESEARCH 2024; 40:89-96. [PMID: 38245353 DOI: 10.1016/j.lssr.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 01/22/2024]
Abstract
In view of the critical role the gut microbiome plays in human health, it has become clear that astronauts' gut microbiota composition changes after spending time in space. Astronauts are exposed to several risks in space, including a protracted period of microgravity, radiation, and mechanical unloading of the body. Several deleterious effects of such an environment are reported, including orthostatic intolerance, cardiovascular endothelial dysfunction, cellular and molecular changes, and changes in the composition of the gut microbiome. Herein, the correlation between the gut microbiome and cardiovascular disease in a microgravity environment is evaluated. Additionally, the relationship between orthostatic hypotension, cardiac shrinkage and arrhythmias during spaceflight, and cellular alterations during spaceflight is reviewed. Given its impact on human health in general, modifying the gut microbiota may significantly promote astronaut health and performance. This is merited, given the prospect of augmented human activities in future space missions.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- Microbiota Research Center, Istinye University, Istanbul 34010, Turkey; College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| | - Rizwan Qaisar
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Khulood Al-Dahash
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ahmad Hashem Altelly
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Adel B Elmoselhi
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, Istanbul 34010, Turkey.
| |
Collapse
|
12
|
Ramos-Nascimento A, Grenga L, Haange SB, Himmelmann A, Arndt FS, Ly YT, Miotello G, Pible O, Jehmlich N, Engelmann B, von Bergen M, Mulder E, Frings-Meuthen P, Hellweg CE, Jordan J, Rolle-Kampczyk U, Armengaud J, Moeller R. Human gut microbiome and metabolite dynamics under simulated microgravity. Gut Microbes 2023; 15:2259033. [PMID: 37749878 PMCID: PMC10524775 DOI: 10.1080/19490976.2023.2259033] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023] Open
Abstract
The Artificial Gravity Bed Rest - European Space Agency (AGBRESA) study was the first joint bed rest study by ESA, DLR, and NASA that examined the effect of simulated weightlessness on the human body and assessed the potential benefits of artificial gravity as a countermeasure in an analog of long-duration spaceflight. In this study, we investigated the impact of simulated microgravity on the gut microbiome of 12 participants during a 60-day head-down tilt bed rest at the :envihab facilities. Over 60 days of simulated microgravity resulted in a mild change in the gut microbiome, with distinct microbial patterns and pathway expression in the feces of the countermeasure group compared to the microgravity simulation-only group. Additionally, we found that the countermeasure protocols selectively increased the abundance of beneficial short-chain fatty acids in the gut, such as acetate, butyrate, and propionate. Some physiological signatures also included the modulation of taxa reported to be either beneficial or opportunistic, indicating a mild adaptation in the microbiome network balance. Our results suggest that monitoring the gut microbial catalog along with pathway clustering and metabolite profiling is an informative synergistic strategy to determine health disturbances and the outcome of countermeasure protocols for future space missions.
Collapse
Affiliation(s)
- Ana Ramos-Nascimento
- Institute of Aerospace Medicine, German Aerospace Center (DLR e.V.), Cologne, Germany
| | - Lucia Grenga
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols sur Cèze, France
| | - Sven-Bastiaan Haange
- Department of Metabolomics, UFZ-Helmholtz Centre for Environmental Research Leipzig, Leipzig, Germany
| | - Alexandra Himmelmann
- Institute of Aerospace Medicine, German Aerospace Center (DLR e.V.), Cologne, Germany
| | - Franca Sabine Arndt
- Institute of Aerospace Medicine, German Aerospace Center (DLR e.V.), Cologne, Germany
| | - Yen-Tran Ly
- Institute of Aerospace Medicine, German Aerospace Center (DLR e.V.), Cologne, Germany
| | - Guylaine Miotello
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols sur Cèze, France
| | - Olivier Pible
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols sur Cèze, France
| | - Nico Jehmlich
- Department of Metabolomics, UFZ-Helmholtz Centre for Environmental Research Leipzig, Leipzig, Germany
| | - Beatrice Engelmann
- Department of Metabolomics, UFZ-Helmholtz Centre for Environmental Research Leipzig, Leipzig, Germany
| | - Martin von Bergen
- Department of Metabolomics, UFZ-Helmholtz Centre for Environmental Research Leipzig, Leipzig, Germany
| | - Edwin Mulder
- Institute of Aerospace Medicine, German Aerospace Center (DLR e.V.), Cologne, Germany
| | - Petra Frings-Meuthen
- Institute of Aerospace Medicine, German Aerospace Center (DLR e.V.), Cologne, Germany
| | | | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR e.V.), Cologne, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Metabolomics, UFZ-Helmholtz Centre for Environmental Research Leipzig, Leipzig, Germany
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols sur Cèze, France
| | - Ralf Moeller
- Institute of Aerospace Medicine, German Aerospace Center (DLR e.V.), Cologne, Germany
| |
Collapse
|
13
|
He H, Yang M, Li W, Lu Z, Wang Y, Jin M. Fecal microbial and metabolic characteristics of swine from birth to market. Front Microbiol 2023; 14:1191392. [PMID: 37789849 PMCID: PMC10543884 DOI: 10.3389/fmicb.2023.1191392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction Recently, the research on pig intestinal microbiota has become a hot topic in the field of animal husbandry. There are few articles describing the dynamic changes of porcine fecal microbiota and metabolites at different time points from birth to market. Methods In the present study, 381 fecal samples were collected from 633 commercial pigs at 7 time points, including the 1st day, the 10th day, the 25th day, the 45th day, the 70th day, the 120th day, and the 180th day after the birth of swine, were used for microbiome analysis by Illumina MiSeq sequencing methods while 131 fecal samples from 3 time points, the 10th day, the 25th day, and 70th day after birth, were used for metabolome analysis by LC-MS methods. Results For the microbiome analysis, the fecal microbial richness increased over time from day 1 to 180 and the β-diversity of fecal microbiota was separated significantly at different time points. Firmicutes were the main phyla from day 10 to 180, followed by Bacteroides. The abundance of Lactobacillus increased significantly on day 120 compared with the previous 4 time points. From day 120 to day 180, the main porcine fecal microbes were Lactobacillus, Clostridium_sensu_stricto_1, Terrisporobacter and Streptococcus. Clostridium_sensu_stricto_1 and Terrisporobacter increased over time, while Lactobacillus, Escherichia-Shigella, Lachnoclostridium decreased with the time according to the heatmap, which showed the increase or decrease in microbial abundance over time. For the metabolome analysis, the PLS-DA plot could clearly distinguish porcine fecal metabolites on day 10, 25, and 70. The most different metabolic pathways of the 3 time points were Tryptophan metabolism, Sphingolipid signaling pathway, Protein digestion and absorption. Some metabolites increased significantly over time, such as Sucrose, L-Arginine, Indole, 2,3-Pyridinedicarboxylic acid and so on, while D-Maltose, L-2-Aminoadipic acid, 2,6-diaminohexanoic acid, L-Proline were opposite. The correlation between fecal metabolites and microbiota revealed that the microbes with an increasing trend were positively correlated with the metabolites affecting the tryptophan metabolic pathway from the overall trend, while the microbes with a decreasing trend were opposite. In addition, the microbes with an increasing trend were negatively correlated with the metabolites affecting the lysine pathway. Discussion In conclusion, this study elucidated the dynamic changes of porcine fecal microbiota and metabolites at different stages from birth to market, which may provide a reference for a comprehensive understanding of the intestinal health status of pigs at different growth stages.
Collapse
Affiliation(s)
- Huan He
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mingzhi Yang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wentao Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zeqing Lu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
McLeod A, Bernabe BP, Xia Y, Sanchez-Flack J, Lamar M, Schiffer L, Hemphill NON, Fantuzzi G, Maki P, Fitzgibbon M, Tussing-Humphreys L. Exploring the Effects of a Mediterranean Diet and Weight Loss on the Gut Microbiome and Cognitive Performance in Older, African American Obese Adults: A Post Hoc Analysis. Nutrients 2023; 15:3332. [PMID: 37571270 PMCID: PMC10420801 DOI: 10.3390/nu15153332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
African American adults have a higher prevalence of Alzheimer's dementia (AD) than non-Hispanic Whites. The impact of a Mediterranean Diet (Med Diet) and intentional weight loss (IWL) on the gut microbiome may alter AD risk. A post hoc analysis of the Building Research in Diet and Cognition (BRIDGE) trial was performed to determine whether participation in an 8-month Med Diet lifestyle intervention with (n = 35) or without IWL (n = 31) was associated with changes in gut microbiota structure, abundance, and function and whether these changes were related to changes in cognitive performance. The results showed that family and genus alpha diversity increased significantly in both groups combined (p = 0.0075 and p = 0.024, respectively). However, there were no other significant microbially related within- or between-group changes over time. Also, an increase in Med Diet adherence was significantly associated with a decrease in alpha diversity at the phylum level only (p = 0.049). Increasing alpha diversity was associated with decreasing cognitive performance, but this association was attenuated after controlling for Med Diet adherence. In sum, an 8-month Med Diet lifestyle intervention with or without IWL did not appreciably alter the gut microbiome.
Collapse
Affiliation(s)
- Andrew McLeod
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL 60612, USA; (G.F.); (L.T.-H.)
- Institute for Health Research and Policy, University of Illinois Chicago, Chicago, IL 60608, USA; (J.S.-F.); (L.S.); (M.F.)
| | | | - Yinglin Xia
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (Y.X.); (M.L.)
| | - Jennifer Sanchez-Flack
- Institute for Health Research and Policy, University of Illinois Chicago, Chicago, IL 60608, USA; (J.S.-F.); (L.S.); (M.F.)
- Department of Pediatrics, University of Illinois Chicago, Chicago, IL 60612, USA
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Melissa Lamar
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (Y.X.); (M.L.)
- Rush Alzheimer’s Disease Center, Rush University, Chicago, IL 60612, USA
| | - Linda Schiffer
- Institute for Health Research and Policy, University of Illinois Chicago, Chicago, IL 60608, USA; (J.S.-F.); (L.S.); (M.F.)
| | | | - Giamila Fantuzzi
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL 60612, USA; (G.F.); (L.T.-H.)
| | - Pauline Maki
- Departments of Psychology and Psychiatry, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Marian Fitzgibbon
- Institute for Health Research and Policy, University of Illinois Chicago, Chicago, IL 60608, USA; (J.S.-F.); (L.S.); (M.F.)
- Department of Pediatrics, University of Illinois Chicago, Chicago, IL 60612, USA
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Lisa Tussing-Humphreys
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL 60612, USA; (G.F.); (L.T.-H.)
- Institute for Health Research and Policy, University of Illinois Chicago, Chicago, IL 60608, USA; (J.S.-F.); (L.S.); (M.F.)
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
15
|
Klos B, Steinbach C, Ketel J, Lambert C, Penders J, Doré J, Enck P, Mack I. Effects of isolation and confinement on gastrointestinal microbiota-a systematic review. Front Nutr 2023; 10:1214016. [PMID: 37492598 PMCID: PMC10364611 DOI: 10.3389/fnut.2023.1214016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023] Open
Abstract
Purpose The gastrointestinal (GI) microbiota is a complex and dynamic ecosystem whose composition and function are influenced by many internal and external factors. Overall, the individual GI microbiota composition appears to be rather stable but can be influenced by extreme shifts in environmental exposures. To date, there is no systematic literature review that examines the effects of extreme environmental conditions, such as strict isolation and confinement, on the GI microbiota. Methods We conducted a systematic review to examine the effects of isolated and confined environments on the human GI microbiota. The literature search was conducted according to PRISMA criteria using PubMed, Web of Science and Cochrane Library. Relevant studies were identified based on exposure to isolated and confined environments, generally being also antigen-limited, for a minimum of 28 days and classified according to the microbiota analysis method (cultivation- or molecular based approaches) and the isolation habitat (space, space- or microgravity simulation such as MARS-500 or natural isolation such as Antarctica). Microbial shifts in abundance, alpha diversity and community structure in response to isolation were assessed. Results Regardless of the study habitat, inconsistent shifts in abundance of 40 different genera, mainly in the phylum Bacillota (formerly Firmicutes) were reported. Overall, the heterogeneity of studies was high. Reducing heterogeneity was neither possible by differentiating the microbiota analysis methods nor by subgrouping according to the isolation habitat. Alpha diversity evolved non-specifically, whereas the microbial community structure remained dissimilar despite partial convergence. The GI ecosystem returned to baseline levels following exposure, showing resilience irrespective of the experiment length. Conclusion An isolated and confined environment has a considerable impact on the GI microbiota composition in terms of diversity and relative abundances of dominant taxa. However, due to a limited number of studies with rather small sample sizes, it is important to approach an in-depth conclusion with caution, and results should be considered as a preliminary trend. The risk of dysbiosis and associated diseases should be considered when planning future projects in extreme environments. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022357589.
Collapse
Affiliation(s)
- Bea Klos
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Christina Steinbach
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Jasmin Ketel
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Claude Lambert
- CIRI–Immunology Lab University Hospital, Saint-Étienne, France
- LCOMS/ENOSIS Université de Lorraine, Metz, France
| | - John Penders
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Center, CAPHRI Care and Public Health Research Institute, Maastricht, Netherlands
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Center, School of Nutrition and Translational Research in Metabolism, Maastricht, Netherlands
| | - Joël Doré
- UMR Micalis Institut, INRA, Paris-Saclay University, Jouy-En-Josas, France
| | - Paul Enck
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Isabelle Mack
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
16
|
Bedree JK, Kerns K, Chen T, Lima BP, Liu G, Ha P, Shi J, Pan HC, Kim JK, Tran L, Minot SS, Hendrickson EL, Lamont EI, Schulte F, Hardt M, Stephens D, Patel M, Kokaras A, Stodieck L, Shirazi-Fard Y, Wu B, Kwak JH, Ting K, Soo C, McLean JS, He X, Shi W. Specific host metabolite and gut microbiome alterations are associated with bone loss during spaceflight. Cell Rep 2023; 42:112299. [PMID: 37080202 PMCID: PMC10344367 DOI: 10.1016/j.celrep.2023.112299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 10/30/2022] [Accepted: 03/07/2023] [Indexed: 04/22/2023] Open
Abstract
Understanding the axis of the human microbiome and physiological homeostasis is an essential task in managing deep-space-travel-associated health risks. The NASA-led Rodent Research 5 mission enabled an ancillary investigation of the gut microbiome, varying exposure to microgravity (flight) relative to ground controls in the context of previously shown bone mineral density (BMD) loss that was observed in these flight groups. We demonstrate elevated abundance of Lactobacillus murinus and Dorea sp. during microgravity exposure relative to ground control through whole-genome sequencing and 16S rRNA analyses. Specific functionally assigned gene clusters of L. murinus and Dorea sp. capable of producing metabolites, lactic acid, leucine/isoleucine, and glutathione are enriched. These metabolites are elevated in the microgravity-exposed host serum as shown by liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomic analysis. Along with BMD loss, ELISA reveals increases in osteocalcin and reductions in tartrate-resistant acid phosphatase 5b signifying additional loss of bone homeostasis in flight.
Collapse
Affiliation(s)
- Joseph K Bedree
- Section of Oral Biology, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142, USA.
| | - Kristopher Kerns
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, WA 98195, USA
| | - Tsute Chen
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142, USA; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Bruno P Lima
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Guo Liu
- Section of Oral Biology, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Pin Ha
- Section of Orthodontics, Division of Growth & Development, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Division of Plastic and Reconstructive Surgery, School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jiayu Shi
- Section of Oral Biology, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hsin Chuan Pan
- Section of Oral Biology, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jong Kil Kim
- Section of Oral Biology, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Luan Tran
- Section of Oral Biology, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samuel S Minot
- Microbiome Research Initiative, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Erik L Hendrickson
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, WA 98195, USA
| | - Eleanor I Lamont
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, WA 98195, USA
| | - Fabian Schulte
- Forsyth Center for Salivary Diagnostics, Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA 02142, USA; Harvard School of Dental Medicine, Department of Developmental Biology, Boston, MA 02115, USA
| | - Markus Hardt
- Forsyth Center for Salivary Diagnostics, Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA 02142, USA; Harvard School of Dental Medicine, Department of Developmental Biology, Boston, MA 02115, USA
| | - Danielle Stephens
- Multiplex Core, Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA 02142, USA
| | - Michele Patel
- Multiplex Core, Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA 02142, USA
| | - Alexis Kokaras
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142, USA
| | - Louis Stodieck
- BioServe Space Technologies, Department of Aerospace Engineering Sciences, University of Colorado, Boulder, CO 80303, USA
| | - Yasaman Shirazi-Fard
- Bone and Signaling Laboratory, Space Biosciences Division, NASA Ames Research Center, Mail Stop 288-2, Moffett Field, CA 94035, USA
| | - Benjamin Wu
- Department of Bioengineering, School of Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jin Hee Kwak
- Section of Orthodontics, Division of Growth & Development, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kang Ting
- Section of Orthodontics, Division of Growth & Development, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery, School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Orthopedic Surgery, School of Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jeffrey S McLean
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, WA 98195, USA
| | - Xuesong He
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142, USA; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Wenyuan Shi
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142, USA.
| |
Collapse
|
17
|
McDonagh F, Cormican M, Morris D, Burke L, Singh NK, Venkateswaran K, Miliotis G. Medical Astro-Microbiology: Current Role and Future Challenges. J Indian Inst Sci 2023; 103:1-26. [PMID: 37362850 PMCID: PMC10082442 DOI: 10.1007/s41745-023-00360-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/03/2023] [Indexed: 06/28/2023]
Abstract
The second and third decades of the twenty-first century are marked by a flourishing of space technology which may soon realise human aspirations of a permanent multiplanetary presence. The prevention, control and management of infection with microbial pathogens is likely to play a key role in how successful human space aspirations will become. This review considers the emerging field of medical astro-microbiology. It examines the current evidence regarding the risk of infection during spaceflight via host susceptibility, alterations to the host's microbiome as well as exposure to other crew members and spacecraft's microbiomes. It also considers the relevance of the hygiene hypothesis in this regard. It then reviews the current evidence related to infection risk associated with microbial adaptability in spaceflight conditions. There is a particular focus on the International Space Station (ISS), as one of the only two crewed objects in low Earth orbit. It discusses the effects of spaceflight related stressors on viruses and the infection risks associated with latent viral reactivation and increased viral shedding during spaceflight. It then examines the effects of the same stressors on bacteria, particularly in relation to changes in virulence and drug resistance. It also considers our current understanding of fungal adaptability in spaceflight. The global public health and environmental risks associated with a possible re-introduction to Earth of invasive species are also briefly discussed. Finally, this review examines the largely unknown microbiology and infection implications of celestial body habitation with an emphasis placed on Mars. Overall, this review summarises much of our current understanding of medical astro-microbiology and identifies significant knowledge gaps. Graphical Abstract
Collapse
Affiliation(s)
- Francesca McDonagh
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Martin Cormican
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Department of Medical Microbiology, Galway University Hospitals, Galway, Ireland
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Liam Burke
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Nitin Kumar Singh
- Biotechnology and Planetary Protection Group, NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Georgios Miliotis
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| |
Collapse
|
18
|
Sanders LM, Scott RT, Yang JH, Qutub AA, Garcia Martin H, Berrios DC, Hastings JJA, Rask J, Mackintosh G, Hoarfrost AL, Chalk S, Kalantari J, Khezeli K, Antonsen EL, Babdor J, Barker R, Baranzini SE, Beheshti A, Delgado-Aparicio GM, Glicksberg BS, Greene CS, Haendel M, Hamid AA, Heller P, Jamieson D, Jarvis KJ, Komarova SV, Komorowski M, Kothiyal P, Mahabal A, Manor U, Mason CE, Matar M, Mias GI, Miller J, Myers JG, Nelson C, Oribello J, Park SM, Parsons-Wingerter P, Prabhu RK, Reynolds RJ, Saravia-Butler A, Saria S, Sawyer A, Singh NK, Snyder M, Soboczenski F, Soman K, Theriot CA, Van Valen D, Venkateswaran K, Warren L, Worthey L, Zitnik M, Costes SV. Biological research and self-driving labs in deep space supported by artificial intelligence. NAT MACH INTELL 2023. [DOI: 10.1038/s42256-023-00618-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
19
|
Capri M, Conte M, Ciurca E, Pirazzini C, Garagnani P, Santoro A, Longo F, Salvioli S, Lau P, Moeller R, Jordan J, Illig T, Villanueva MM, Gruber M, Bürkle A, Franceschi C, Rittweger J. Long-term human spaceflight and inflammaging: Does it promote aging? Ageing Res Rev 2023; 87:101909. [PMID: 36918115 DOI: 10.1016/j.arr.2023.101909] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Spaceflight and its associated stressors, such as microgravity, radiation exposure, confinement, circadian derailment and disruptive workloads represent an unprecedented type of exposome that is entirely novel from an evolutionary stand point. Within this perspective, we aimed to review the effects of prolonged spaceflight on immune-neuroendocrine systems, brain and brain-gut axis, cardiovascular system and musculoskeletal apparatus, highlighting in particular the similarities with an accelerated aging process. In particular, spaceflight-induced muscle atrophy/sarcopenia and bone loss, vascular and metabolic changes, hyper and hypo reaction of innate and adaptive immune system appear to be modifications shared with the aging process. Most of these modifications are mediated by molecular events that include oxidative and mitochondrial stress, autophagy, DNA damage repair and telomere length alteration, among others, which directly or indirectly converge on the activation of an inflammatory response. According to the inflammaging theory of aging, such an inflammatory response could be a driver of an acceleration of the normal, physiological rate of aging and it is likely that all the systemic modifications in turn lead to an increase of inflammaging in a sort of vicious cycle. The most updated countermeasures to fight these modifications will be also discussed in the light of their possible application not only for astronauts' benefit, but also for older adults on the ground.
Collapse
Affiliation(s)
- Miriam Capri
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Maria Conte
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy.
| | - Erika Ciurca
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Chiara Pirazzini
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy; Clinical Chemistry Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden; CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy; Center for Applied Biomedical Research (CRBA), St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Aurelia Santoro
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Federica Longo
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Stefano Salvioli
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Patrick Lau
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Ralf Moeller
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Medical Faculty, University of Cologne, Cologne, Germany
| | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Maria-Moreno Villanueva
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Markus Gruber
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Alexander Bürkle
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Claudio Franceschi
- Department of Applied Mathematics of the Institute of ITMM, National Research Lobachevsky State University of Nizhny Novgorod, the Russian Federation
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
20
|
Bharindwal S, Goswami N, Jha P, Pandey S, Jobby R. Prospective Use of Probiotics to Maintain Astronaut Health during Spaceflight. Life (Basel) 2023; 13:life13030727. [PMID: 36983881 PMCID: PMC10058446 DOI: 10.3390/life13030727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Maintaining an astronaut's health during space travel is crucial. Multiple studies have observed various changes in the gut microbiome and physiological health. Astronauts on board the International Space Station (ISS) had changes in the microbial communities in their gut, nose, and skin. Additionally, immune system cell alterations have been observed in astronauts with changes in neutrophils, monocytes, and T-cells. Probiotics help tackle these health issues caused during spaceflight by inhibiting pathogen adherence, enhancing epithelial barrier function by reducing permeability, and producing an anti-inflammatory effect. When exposed to microgravity, probiotics demonstrated a shorter lag phase, faster growth, improved acid tolerance, and bile resistance. A freeze-dried Lactobacillus casei strain Shirota capsule was tested for its stability on ISS for a month and has been shown to enhance innate immunity and balance intestinal microbiota. The usage of freeze-dried spores of B. subtilis proves to be advantageous to long-term spaceflight because it qualifies for all the aspects tested for commercial probiotics under simulated conditions. These results demonstrate a need to further study the effect of probiotics in simulated microgravity and spaceflight conditions and to apply them to overcome the effects caused by gut microbiome dysbiosis and issues that might occur during spaceflight.
Collapse
Affiliation(s)
- Sahaj Bharindwal
- Amity Centre of Excellence in Astrobiology, Amity University Mumbai, Mumbai 410206, Maharashtra, India
- Department of Biology, University of Naples Federico II, 80131 Naples, Italy
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, Maharashtra, India
| | - Nidhi Goswami
- Amity Centre of Excellence in Astrobiology, Amity University Mumbai, Mumbai 410206, Maharashtra, India
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, Maharashtra, India
| | - Pamela Jha
- Sunandan Divatia School of Science, NMIMS University Mumbai, Mumbai 400056, Maharashtra, India
| | - Siddharth Pandey
- Amity Centre of Excellence in Astrobiology, Amity University Mumbai, Mumbai 410206, Maharashtra, India
| | - Renitta Jobby
- Amity Centre of Excellence in Astrobiology, Amity University Mumbai, Mumbai 410206, Maharashtra, India
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, Maharashtra, India
| |
Collapse
|
21
|
Mancin L, Wu GD, Paoli A. Gut microbiota-bile acid-skeletal muscle axis. Trends Microbiol 2023; 31:254-269. [PMID: 36319506 DOI: 10.1016/j.tim.2022.10.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 01/13/2023]
Abstract
The gut microbiota represents a 'metabolic organ' that can regulate human metabolism. Intact gut microbiota contributes to host homeostasis, whereas compositional perturbations, termed dysbiosis, are associated with a wide range of diseases. Recent evidence demonstrates that dysbiosis, and the accompanying loss of microbiota-derived metabolites, results in a substantial alteration of skeletal muscle metabolism. As an example, bile acids, produced in the liver and further metabolized by intestinal microbiota, are of considerable interest since they regulate several host metabolic pathways by activating nuclear receptors, including the farnesoid X receptor (FXR). Indeed, alteration of gut microbiota may lead to skeletal muscle atrophy via a bile acid-FXR pathway. This Review aims to suggest a new pathway that connects different mechanisms, involving the gut-muscle axis, that are often seen as unrelated, and, starting from preclinical studies, we hypothesize new strategies aimed at optimizing skeletal muscle functionality.
Collapse
Affiliation(s)
- Laura Mancin
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Human Inspired Technology Research Center HIT, University of Padua, Padua, Italy.
| | - Gary D Wu
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Human Inspired Technology Research Center HIT, University of Padua, Padua, Italy; Research Center for High Performance Sport, UCAM, Catholic University of Murcia, Murcia, Spain
| |
Collapse
|
22
|
McLeod A, Penalver Bernabe B, Xia Y, Sanchez-Flack J, Lamar M, Schiffer L, Castellanos K, Fantuzzi G, Maki P, Fitzgibbon M, Tussing-Humphreys L. Comparing the gut microbiome of obese, African American, older adults with and without mild cognitive impairment. PLoS One 2023; 18:e0280211. [PMID: 36827280 PMCID: PMC9955629 DOI: 10.1371/journal.pone.0280211] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/08/2022] [Indexed: 02/25/2023] Open
Abstract
Those with mild cognitive impairment (MCI), a precursor to dementia, have a gut microbiome distinct from healthy individuals, but this has only been shown in healthy individuals, not in those exhibiting several risk factors for dementia. Using amplicon 16S rRNA gene sequencing in a case-control study of 60 older (ages 55-76), obese, predominately female, African American adults, those with MCI (cases) had different gut microbiota profiles than controls. While microbial community diversity was similar between cases and controls, the abundances of specific microbial taxa weren't, such as Parabacteroides distasonis (lower in cases) and Dialister invisus (higher in cases). These differences disappeared after adjusting for markers of oxidative stress and systemic inflammation. Cognitive scores were positively correlated with levels of Akkermansia muciniphila, a bacterium associated with reduced inflammation. Our study shows that gut microbial composition may be associated with inflammation, oxidative stress, and MCI in those at high risk for dementia.
Collapse
Affiliation(s)
- Andrew McLeod
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois, United States of America
- Institute for Health Research and Policy, University of Illinois Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - Beatriz Penalver Bernabe
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Yinglin Xia
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Jennifer Sanchez-Flack
- Institute for Health Research and Policy, University of Illinois Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics, University of Illinois Chicago, Chicago, Illinois, United States of America
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Melissa Lamar
- Rush Alzheimer’s Disease Center, Rush University, Chicago, Illinois, United States of America
| | - Linda Schiffer
- Institute for Health Research and Policy, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Karla Castellanos
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Giamila Fantuzzi
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Pauline Maki
- Departments of Psychology and Psychiatry, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Marian Fitzgibbon
- Institute for Health Research and Policy, University of Illinois Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics, University of Illinois Chicago, Chicago, Illinois, United States of America
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Lisa Tussing-Humphreys
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois, United States of America
- Institute for Health Research and Policy, University of Illinois Chicago, Chicago, Illinois, United States of America
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
23
|
Theotokis P, Manthou ME, Deftereou TE, Miliaras D, Meditskou S. Addressing Spaceflight Biology through the Lens of a Histologist-Embryologist. Life (Basel) 2023; 13:life13020588. [PMID: 36836946 PMCID: PMC9965490 DOI: 10.3390/life13020588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Embryogenesis and fetal development are highly delicate and error-prone processes in their core physiology, let alone if stress-associated factors and conditions are involved. Space radiation and altered gravity are factors that could radically affect fertility and pregnancy and compromise a physiological organogenesis. Unfortunately, there is a dearth of information examining the effects of cosmic exposures on reproductive and proliferating outcomes with regard to mammalian embryonic development. However, explicit attention has been given to investigations exploring discrete structures and neural networks such as the vestibular system, an entity that is viewed as the sixth sense and organically controls gravity beginning with the prenatal period. The role of the gut microbiome, a newly acknowledged field of research in the space community, is also being challenged to be added in forthcoming experimental protocols. This review discusses the data that have surfaced from simulations or actual space expeditions and addresses developmental adaptations at the histological level induced by an extraterrestrial milieu.
Collapse
Affiliation(s)
- Paschalis Theotokis
- Laboratory of Histology and Embryology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Eleni Manthou
- Laboratory of Histology and Embryology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Dimosthenis Miliaras
- Laboratory of Histology and Embryology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Soultana Meditskou
- Laboratory of Histology and Embryology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence:
| |
Collapse
|
24
|
Krittanawong C, Singh NK, Scheuring RA, Urquieta E, Bershad EM, Macaulay TR, Kaplin S, Dunn C, Kry SF, Russomano T, Shepanek M, Stowe RP, Kirkpatrick AW, Broderick TJ, Sibonga JD, Lee AG, Crucian BE. Human Health during Space Travel: State-of-the-Art Review. Cells 2022; 12:cells12010040. [PMID: 36611835 PMCID: PMC9818606 DOI: 10.3390/cells12010040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
The field of human space travel is in the midst of a dramatic revolution. Upcoming missions are looking to push the boundaries of space travel, with plans to travel for longer distances and durations than ever before. Both the National Aeronautics and Space Administration (NASA) and several commercial space companies (e.g., Blue Origin, SpaceX, Virgin Galactic) have already started the process of preparing for long-distance, long-duration space exploration and currently plan to explore inner solar planets (e.g., Mars) by the 2030s. With the emergence of space tourism, space travel has materialized as a potential new, exciting frontier of business, hospitality, medicine, and technology in the coming years. However, current evidence regarding human health in space is very limited, particularly pertaining to short-term and long-term space travel. This review synthesizes developments across the continuum of space health including prior studies and unpublished data from NASA related to each individual organ system, and medical screening prior to space travel. We categorized the extraterrestrial environment into exogenous (e.g., space radiation and microgravity) and endogenous processes (e.g., alteration of humans' natural circadian rhythm and mental health due to confinement, isolation, immobilization, and lack of social interaction) and their various effects on human health. The aim of this review is to explore the potential health challenges associated with space travel and how they may be overcome in order to enable new paradigms for space health, as well as the use of emerging Artificial Intelligence based (AI) technology to propel future space health research.
Collapse
Affiliation(s)
- Chayakrit Krittanawong
- Department of Medicine and Center for Space Medicine, Section of Cardiology, Baylor College of Medicine, Houston, TX 77030, USA
- Translational Research Institute for Space Health, Houston, TX 77030, USA
- Department of Cardiovascular Diseases, New York University School of Medicine, New York, NY 10016, USA
- Correspondence: or (C.K.); (B.E.C.); Tel.: +1-713-798-4951 (C.K.); +1-281-483-0123 (B.E.C.)
| | - Nitin Kumar Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | | | - Emmanuel Urquieta
- Translational Research Institute for Space Health, Houston, TX 77030, USA
- Department of Emergency Medicine and Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric M. Bershad
- Department of Neurology, Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Scott Kaplin
- Department of Cardiovascular Diseases, New York University School of Medicine, New York, NY 10016, USA
| | - Carly Dunn
- Department of Dermatology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephen F. Kry
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Marc Shepanek
- Office of the Chief Health and Medical Officer, NASA, Washington, DC 20546, USA
| | | | - Andrew W. Kirkpatrick
- Department of Surgery and Critical Care Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | - Jean D. Sibonga
- Division of Biomedical Research and Environmental Sciences, NASA Lyndon B. Johnson Space Center, Houston, TX 77058, USA
| | - Andrew G. Lee
- Department of Ophthalmology, University of Texas Medical Branch School of Medicine, Galveston, TX 77555, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Ophthalmology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Ophthalmology, Texas A and M College of Medicine, College Station, TX 77807, USA
- Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY 10021, USA
| | - Brian E. Crucian
- National Aeronautics and Space Administration (NASA) Johnson Space Center, Human Health and Performance Directorate, Houston, TX 77058, USA
- Correspondence: or (C.K.); (B.E.C.); Tel.: +1-713-798-4951 (C.K.); +1-281-483-0123 (B.E.C.)
| |
Collapse
|
25
|
Abstract
The pathogenesis of irritable bowel syndrome (IBS)-a disorder of gut-brain interaction that affects up to 10% of the world's population-remains uncertain. It is puzzling that a disorder so prevalent and archetypal among humans can be explained by disparate theories, respond to treatments with vastly different mechanisms of action, and present with a dazzling array of comorbidities. It is reasonable to question whether there is a unifying factor that binds these divergent theories and observations, and if so, what that factor might be. This article offers a testable hypothesis that seeks to accommodate the manifold theories, clinical symptoms, somatic comorbidities, neuropsychological features, and treatment outcomes of IBS by describing the syndrome in relation to a principal force of human evolution: gravity. In short, the hypothesis proposed here is that IBS may result from ineffective anatomical, physiological, and neuropsychological gravity management systems designed to optimize gastrointestinal form and function, protect somatic and visceral integrity, and maximize survival in a gravity-bound world. To explain this unconventional hypothesis of IBS pathogenesis, referred to herein as the gravity hypothesis, this article reviews the influence of gravity on human evolution; discusses how Homo sapiens imperfectly evolved to manage this universal force of attraction; and explores the mechanical, microbial, and neuropsychological consequences of gravity intolerance with a focus on explaining IBS. This article concludes by considering the diagnostic and therapeutic implications of this new hypothesis and proposes experiments to support or reject this line of inquiry. It is hoped that the ideas in this thought experiment may also help encourage new or different ways of thinking about this common disorder.
Collapse
|
26
|
Vinken M. Hepatology in space: Effects of spaceflight and simulated microgravity on the liver. Liver Int 2022; 42:2599-2606. [PMID: 36183343 DOI: 10.1111/liv.15444] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 12/13/2022]
Abstract
Microgravity as experienced during spaceflight affects a number of physiological processes in various organs. However, effects on the liver have yet been poorly documented. Nevertheless, the liver is a metabolically highly active organ involved in carbohydrate metabolism, lipid metabolism and xenobiotic biotransformation. The present paper provides an overview of the effects of microgravity on the liver observed in experimental animals during actual spaceflight and upon simulation of microgravity on Earth. These include (i) induction of liver injury and inflammation associated with apoptosis and oxidative stress, (ii) changes in liver carbohydrate metabolism resulting in the onset of a diabetogenic phenotype, (iii) modifications in hepatic lipid metabolism leading to early non-alcoholic fatty liver disease and (iv) alterations of the hepatic xenobiotic biotransformation machinery. Although most of these observations remain to be fully validated in humans, appropriate measures to counteract liver pathogenesis should be considered, especially in view of long-term space missions.
Collapse
Affiliation(s)
- Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
27
|
Singh VK, Seed TM. Armed Forces Radiobiology Research Institute/Uniformed Services University of the Health Sciences perspective on space radiation countermeasure discovery. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:20-29. [PMID: 36336365 DOI: 10.1016/j.lssr.2022.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
There is a need to develop and deploy medical countermeasures (MCMs) in order to support astronauts during space missions against excessive exposures to ionizing radiation exposure. The radiation environment of extraterrestrial space is complex and is characterized by nearly constant fluences of elemental atomic particles (protons being a dominant particle type) with widely different energies and ionization potentials. Chronic exposure to such ionizing radiation carries both near- and long-term health risks, which are generally related to the relative intensity and duration of exposure. These radiation-associated health risks can be managed only to a limited extent by physical means, but perhaps they might be more effectively managed biomedically. The Armed Forces Radiobiology Research Institute/Uniformed Services University of the Health Sciences has a long history of researching and developing MCMs specifically designed to support terrestrial-based military missions involving a radiation-threat component. The development of MCMs for both low and high doses of radiation are major aims of current research, and as such can provide lessons learned for the development of countermeasures applicable to future space missions and its extraterrestrial radiation environment.
Collapse
Affiliation(s)
- Vijay K Singh
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| | - Thomas M Seed
- Tech Micro Services, 4417 Maple Avenue, Bethesda, MD, USA
| |
Collapse
|
28
|
Zong B, Wang Y, Wang J, Zhang P, Kan G, Li M, Feng J, Wang Y, Chen X, Jin R, Ge Q. Effects of long-term simulated microgravity on liver metabolism in rhesus macaques. FASEB J 2022; 36:e22536. [PMID: 36070186 DOI: 10.1096/fj.202200544rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 11/11/2022]
Abstract
The liver is an essential multifunctional organ and constantly communicates with nearly all the tissues in the body. Spaceflight or simulated microgravity has a significant impact on the livers of rodent models, including lipid accumulation and inflammatory cell infiltration. Whether similar liver lipotoxicity could occur in humans is not known, even though altered circulating cholesterol profile has been reported in astronauts. Using a 42-day head-down bed rest (HDBR) model in rhesus macaques, the present study investigated whether simulated microgravity alters the liver of non-human primates at the transcriptome and metabolome levels. Its association with stress and intestinal changes was also explored. Compared to the controls, the HDBR monkeys showed mild liver injury, elevated ANGPTL3 level in the plasma, and accumulation of fat vacuoles and inflammatory cells in the liver. Altered transcriptome signatures with up-regulation of genes in lipid metabolisms and down-regulation of genes in innate immune defense were also found in HDBR group-derived liver samples. The metabolic profiling of the liver revealed mildly disturbed fatty acid metabolism in the liver of HDBR monkeys. The intestinal dysbiosis, its associated endotoxemia and changes in the composition of bile acids, and elevated stress hormone in HDBR monkeys may contribute to the altered lipid metabolisms in the liver. These data indicate that liver metabolic functions and gut-liver axis should be closely monitored in prolonged spaceflight to facilitate strategy design to improve and maintain metabolic homeostasis.
Collapse
Affiliation(s)
- Beibei Zong
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yujia Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Jingyi Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Peng Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China
| | - Guanghan Kan
- State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China
| | - Mingyang Li
- Immunology Research Center, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Juan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Yifan Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Xiaoping Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China.,National Key Laboratory of Human Factors Engineering, China Astronauts Research and Training Center, Beijing, China
| | - Rong Jin
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Qing Ge
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| |
Collapse
|
29
|
Vroom MM, Troncoso-Garcia A, Duscher AA, Foster JS. Modeled microgravity alters apoptotic gene expression and caspase activity in the squid-vibrio symbiosis. BMC Microbiol 2022; 22:202. [PMID: 35982413 PMCID: PMC9389742 DOI: 10.1186/s12866-022-02614-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022] Open
Abstract
Background Spaceflight is a novel and profoundly stressful environment for life. One aspect of spaceflight, microgravity, has been shown to perturb animal physiology thereby posing numerous health risks, including dysregulation of normal developmental pathways. Microgravity can also negatively impact the interactions between animals and their microbiomes. However, the effects of microgravity on developmental processes influenced by beneficial microbes, such as apoptosis, remains poorly understood. Here, the binary mutualism between the bobtail squid, Euprymna scolopes, and the gram-negative bacterium, Vibrio fischeri, was studied under modeled microgravity conditions to elucidate how this unique stressor alters apoptotic cell death induced by beneficial microbes. Results Analysis of the host genome and transcriptome revealed a complex network of apoptosis genes affiliated with extrinsic/receptor-mediated and intrinsic/stress-induced apoptosis. Expression of apoptosis genes under modeled microgravity conditions occurred earlier and at high levels compared to gravity controls, in particular the expression of genes encoding initiator and executioner caspases. Functional assays of these apoptotic proteases revealed heightened activity under modeled microgravity; however, these increases could be mitigated using caspase inhibitors. Conclusions The outcomes of this study indicated that modeled microgravity alters the expression of both extrinsic and intrinsic apoptosis gene expression and that this process is mediated in part by caspases. Modeled microgravity-associated increases of caspase activity can be pharmacologically inhibited suggesting that perturbations to the normal apoptosis signaling cascade can be mitigated, which may have broader implications for maintaining animal-microbial homeostasis in spaceflight. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02614-x.
Collapse
Affiliation(s)
- Madeline M Vroom
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, 32953, USA
| | - Angel Troncoso-Garcia
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, 32953, USA
| | - Alexandrea A Duscher
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, 32953, USA
| | - Jamie S Foster
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, 32953, USA.
| |
Collapse
|
30
|
Mammarella N, Gatti M, Ceccato I, Di Crosta A, Di Domenico A, Palumbo R. The Protective Role of Neurogenetic Components in Reducing Stress-Related Effects during Spaceflights: Evidence from the Age-Related Positive Memory Approach. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081176. [PMID: 36013355 PMCID: PMC9410359 DOI: 10.3390/life12081176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
Fighting stress-related effects during spaceflight is crucial for a successful mission. Emotional, motivational, and cognitive mechanisms have already been shown to be involved in the decrease of negative emotions. However, emerging evidence is pointing to a neurogenetic profile that may render some individuals more prone than others to focusing on positive information in memory and increasing affective health. The relevance for adaptation to the space environment and the interaction with other stressors such as ionizing radiations is discussed. In particular, to clarify this approach better, we will draw from the psychology and aging literature data. Subsequently, we report on studies on candidate genes for sensitivity to positive memories. We review work on the following candidate genes that may be crucial in adaptation mechanisms: ADRA2B, COMT, 5HTTLPR, CB1, and TOMM40. The final aim is to show how the study of genetics and cell biology of positive memory can help us to reveal the underlying bottom-up pathways to also increasing positive effects during a space mission.
Collapse
Affiliation(s)
- Nicola Mammarella
- Department of Psychological Sciences, Health and Territory, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.G.); (A.D.C.); (A.D.D.); (R.P.)
- Correspondence:
| | - Matteo Gatti
- Department of Psychological Sciences, Health and Territory, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.G.); (A.D.C.); (A.D.D.); (R.P.)
| | - Irene Ceccato
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy;
| | - Adolfo Di Crosta
- Department of Psychological Sciences, Health and Territory, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.G.); (A.D.C.); (A.D.D.); (R.P.)
| | - Alberto Di Domenico
- Department of Psychological Sciences, Health and Territory, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.G.); (A.D.C.); (A.D.D.); (R.P.)
| | - Rocco Palumbo
- Department of Psychological Sciences, Health and Territory, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.G.); (A.D.C.); (A.D.D.); (R.P.)
| |
Collapse
|
31
|
Al KF, Chmiel JA, Stuivenberg GA, Reid G, Burton JP. Long-Duration Space Travel Support Must Consider Wider Influences to Conserve Microbiota Composition and Function. Life (Basel) 2022; 12:1163. [PMID: 36013342 PMCID: PMC9409767 DOI: 10.3390/life12081163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/03/2022] Open
Abstract
The microbiota is important for immune modulation, nutrient acquisition, vitamin production, and other aspects for long-term human health. Isolated model organisms can lose microbial diversity over time and humans are likely the same. Decreasing microbial diversity and the subsequent loss of function may accelerate disease progression on Earth, and to an even greater degree in space. For this reason, maintaining a healthy microbiome during spaceflight has recently garnered consideration. Diet, lifestyle, and consumption of beneficial microbes can shape the microbiota, but the replenishment we attain from environmental exposure to microbes is important too. Probiotics, prebiotics, fermented foods, fecal microbiota transplantation (FMT), and other methods of microbiota modulation currently available may be of benefit for shorter trips, but may not be viable options to overcome the unique challenges faced in long-term space travel. Novel fermented food products with particular impact on gut health, immune modulation, and other space-targeted health outcomes are worthy of exploration. Further consideration of potential microbial replenishment to humans, including from environmental sources to maintain a healthy microbiome, may also be required.
Collapse
Affiliation(s)
- Kait F. Al
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
| | - John A. Chmiel
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
| | - Gerrit A. Stuivenberg
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
| | - Gregor Reid
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
- Department of Surgery, University of Western Ontario, London, ON N6A 4V2, Canada
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
| | - Jeremy P. Burton
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
- Department of Surgery, University of Western Ontario, London, ON N6A 4V2, Canada
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
| |
Collapse
|
32
|
Arora S, Puri S, Bhambri N. "A designer diet layout for astronauts using a microbiome mediated approach.". FEMS Microbiol Lett 2022; 369:6604380. [PMID: 35675219 DOI: 10.1093/femsle/fnac049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/18/2022] Open
Abstract
Astronauts undergo space travel to bring scientific information to benefit humanity under various missions of space agencies such as NASA, European Space Agency, Indian Space Research Organization etc. During space missions, they encounter several stressors namely microgravity, fluid shifts, cosmic radiation, sleep deprivation and alteration in the circadian rhythm perturbing the quality of sleep. In addition, confined spaces makes pathogen interaction more likely if a pathobiont gets introduced into spacecraft. Microbiota is the first line оf resistаnсe tо vаriоus disorders and diseаses. It direсtly influenсes the biосhemiсаl, рhysiоlоgiсаl, аnd immunоlоgiсаl раthwаys. 'Gut microbiota' is essential for maintenance of healthy gut barrier functions. 'Dysbiosis' refers to perturbation of microbiota which is correlated with several metabolic and psychological disorders. Microbial metabolites are implicated in maintenance of human health. Investigations conducted on astronauts in international space missions and on analog terrestrial models have indicated a 'dysbiosis' of the gut microbiota associated with spaceflights. 'Dysbiosis' of the gut microbiome observed in astronauts has been implicated in immune dysregulation and a probiotic enriched diet is proposed to restore immune homeostasis. This article not just summarizes the state of art research on dysbiosis of the gut microbiome of astronauts, but also a diet mediated correction plan to restore their health especially during long term space missions. A characterization of microbial metabolites of the gut to enable administration of astronaut specific probiotic, postbiotic or synbiotic to alleviate space associated dysbiosis is proposed. It is also recommended that astronauts maintain a balanced nutritious diet throughout life to promote a resilient microbiota that is not perturbed by space missions. Further, a bioregenerative life support system wherein a probiotic may be produced in space station is proposed.
Collapse
Affiliation(s)
- Smriti Arora
- Department of Allied Health Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies (UPES), Energy Acres Building, Bidholi Dehradun, 248007 Uttarakhand, India
| | - Samikshha Puri
- Department of Allied Health Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies (UPES), Energy Acres Building, Bidholi Dehradun, 248007 Uttarakhand, India
| | - Nitika Bhambri
- Department of Allied Health Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies (UPES), Energy Acres Building, Bidholi Dehradun, 248007 Uttarakhand, India
| |
Collapse
|
33
|
Acute exposure to simulated high-altitude hypoxia alters gut microbiota in mice. Arch Microbiol 2022; 204:412. [PMID: 35731330 DOI: 10.1007/s00203-022-03031-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 01/04/2023]
Abstract
Gut microbiota bears adaptive potential to different environments, but little is known regarding its responses to acute high-altitude exposure. This study aimed to evaluate the microbial changes after acute exposure to simulated high-altitude hypoxia. C57BL/6 J mice were divided into hypoxia and normoxia groups. The hypoxia group was exposed to a simulated altitude of 5500 m for 24 h above sea level. The normoxia group was maintained in low altitude of 10 m above sea level. Colonic microbiota was analyzed using 16S rRNA V4 gene sequencing. Compared with the normoxia group, Shannon, Simpson and Akkermansia were significantly increased, while Firmicutes-to-Bacteroidetes ratio and Bifidobacterium were significantly decreased in the hypoxia group. The hypoxia group exhibited lower mobile element containing and higher potentially pathogenic and stress-tolerant phenotypes than those in the normoxia group. Functional analysis indicated that environmental information processing was significantly lower, metabolism, cellular processes and organismal systems were significantly higher in the hypoxia group than those in the normoxia group. In conclusion, acute exposure to simulated high-altitude hypoxia alters gut microbiota diversity and composition, which may provide a potential target to alleviate acute high-altitude diseases.
Collapse
|
34
|
Li Y, Sui L, Zhao H, Zhang W, Gao L, Hu W, Song M, Liu X, Kong F, Gong Y, Wang Q, Guan H, Zhou P. Differences in the Establishment of Gut Microbiota and Metabolome Characteristics Between Balb/c and C57BL/6J Mice After Proton Irradiation. Front Microbiol 2022; 13:874702. [PMID: 35663879 PMCID: PMC9157390 DOI: 10.3389/fmicb.2022.874702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Although proton irradiation is ubiquitous in outer space as well as in the treatment of human diseases, its effects remain largely unclear. This work aimed to investigate and compare the composition of gut microbiota composition of mice in different species exposed to high-dose radiation. Male Balb/c mice and C57BL/6J mice were irradiated at a high dose (5Gy). Fecal specimens before and after irradiation were subjected to high-throughput sequencing (HTS) for the amplification of 16S rRNA gene sequences. We observed substantial changes in gut microbial composition among mice irradiated at high doses compared to non-irradiated controls. The changes included both the alpha and beta diversities. Furthermore, there were 11 distinct alterations in the irradiation group compared to the non-radiation control, including the families Muribaculaceae, Ruminococcaceae, Lactobacillus, Lachnospiraceae_NK4A136, Bacteroides, Alistipes, Clostridiales, Muribaculum, and Alloprevotella. Such alterations in the gut microbiome were accompanied by alterations in metabolite abundances, while at the metabolic level, 32 metabolites were likely to be potential biomarkers. Some alterations may have a positive effect on the repair of intestinal damage. Simultaneously, metabolites were predicted to involve multiple signal pathways, such as Urea Cycle, Ammonia Recycling, Alpha Linolenic Acid and Linoleic Acid Metabolism, Ketone Body Metabolism, Aspartate Metabolism, Phenylacetate Metabolism, Malate-Aspartate Shuttle, Arginine and Proline Metabolism and Carnitine Synthesis. Metabolites produced by proton irradiation in the microbial region play a positive role in repairing damage, making this area worthy of further experimental exploration. The present work offers an analytical and theoretical foundation to investigate how proton radiation affects the treatment of human diseases and identifies potential biomarkers to address the adverse effects of radiation.
Collapse
Affiliation(s)
- Yuchen Li
- Hengyang Medical School, University of South China, Hengyang, China.,Beijing Institute of Radiation Medicine, Beijing, China
| | - Li Sui
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing, China
| | - Hongling Zhao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Wen Zhang
- Hengyang Medical School, University of South China, Hengyang, China.,Beijing Institute of Radiation Medicine, Beijing, China
| | - Lei Gao
- College of Life Sciences, Hebei University, Baoding, China
| | - Weixiang Hu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Man Song
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaochang Liu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Fuquan Kong
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing, China
| | - Yihao Gong
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing, China
| | - Qiaojuan Wang
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing, China
| | - Hua Guan
- Hengyang Medical School, University of South China, Hengyang, China.,Beijing Institute of Radiation Medicine, Beijing, China
| | - Pingkun Zhou
- Hengyang Medical School, University of South China, Hengyang, China.,Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
35
|
Pollmann M, Moore LD, Krimmer E, D'Alvise P, Hasselmann M, Perlman SJ, Ballinger MJ, Steidle JL, Gottlieb Y. Highly transmissible cytoplasmic incompatibility by the extracellular insect symbiont Spiroplasma. iScience 2022; 25:104335. [PMID: 35602967 PMCID: PMC9118660 DOI: 10.1016/j.isci.2022.104335] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/06/2022] [Accepted: 04/26/2022] [Indexed: 11/19/2022] Open
Abstract
Cytoplasmic incompatibility (CI) is a form of reproductive manipulation caused by maternally inherited endosymbionts infecting arthropods, like Wolbachia, whereby matings between infected males and uninfected females produce few or no offspring. We report the discovery of a new CI symbiont, a strain of Spiroplasma causing CI in the parasitoid wasp Lariophagus distinguendus. Its extracellular occurrence enabled us to establish CI in uninfected adult insects by transferring Spiroplasma-infected hemolymph. We sequenced the CI-Spiroplasma genome and did not find any homologues of any of the cif genes discovered to cause CI in Wolbachia, suggesting independent evolution of CI. Instead, the genome contains other potential CI-causing candidate genes, such as homologues of high-mobility group (HMG) box proteins that are crucial in eukaryotic development but rare in bacterial genomes. Spiroplasma's extracellular nature and broad host range encompassing medically and agriculturally important arthropods make it a promising tool to study CI and its applications.
Collapse
Affiliation(s)
- Marie Pollmann
- Department of Chemical Ecology 190t, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Logan D. Moore
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Elena Krimmer
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Paul D'Alvise
- Institute of Medical Microbiology and Hygiene, University Hospital of Tuebingen, 72016 Tuebingen, Germany
| | - Martin Hasselmann
- Department of Livestock Population Genomics 460h, Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Steve J. Perlman
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Matthew J. Ballinger
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Johannes L.M. Steidle
- Department of Chemical Ecology 190t, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
- KomBioTa - Center of Biodiversity and Integrative Taxonomy, University of Hohenheim, 70599 Stuttgart, Germany
| | - Yuval Gottlieb
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, POB 12, Rehovot 76100, Israel
| |
Collapse
|
36
|
Xiao M, Huang M, Huan W, Dong J, Xiao J, Wu J, Wang D, Song L. Effects of Torreya grandis Kernel Oil on Lipid Metabolism and Intestinal Flora in C57BL/6J Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4472751. [PMID: 35464771 PMCID: PMC9023180 DOI: 10.1155/2022/4472751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Recent experimental studies have shown that vegetable oil supplementation ameliorates high-fat diet- (HFD-) induced hyperlipidemia and oxidative stress in mice via modulating hepatic lipid metabolism and the composition of the gut microbiota. The aim of this study was to investigate the efficacy of the Torreya grandis kernel oil (TKO) rich in unpolysaturated fatty acid against hyperlipidemia and gain a deep insight into its potential mechanisms. METHODS Normal mice were randomly divided into three groups: ND (normal diet), LO (normal diet supplement with 4% TKO), and HO (normal diet supplement with 8% TKO). Hyperlipidemia mice were randomly divided into two groups: HFN (normal diet) and HFO (normal diet supplement with 8% TKO). Blood biochemistry and histomorphology were observed; liver RNA-seq, metabolomics, and gut 16S rRNA were analyzed. RESULTS Continuous supplementation of TKO in normal mice significantly ameliorated serum total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and free fatty acid (FFA) accumulation, decreased blood glucose and malondialdehyde (MDA), and enhanced superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels. According to GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, most differentially expressed genes (DEGs) were significantly enriched in the biosynthesis of unsaturated fatty acid pathways, and significantly changed metabolites (SCMs) might be involved in the metabolism of lipids. High-dose TKO improved gut alpha diversity and beta diversity showing that the microbial community compositions of the five groups were different. CONCLUSION Supplementation of TKO functions in the prevention of hyperlipidemia via regulating hepatic lipid metabolism and enhancing microbiota richness in normal mice. Our study is the first to reveal the mechanism of TKO regulating blood lipid levels by using multiomics and promote further studies on TKO for their biological activity.
Collapse
Affiliation(s)
- Minghui Xiao
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Minjie Huang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weiwei Huan
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Jie Dong
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
| | - Jiasheng Wu
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Deqian Wang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lili Song
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
37
|
Tesei D, Jewczynko A, Lynch AM, Urbaniak C. Understanding the Complexities and Changes of the Astronaut Microbiome for Successful Long-Duration Space Missions. Life (Basel) 2022; 12:life12040495. [PMID: 35454986 PMCID: PMC9031868 DOI: 10.3390/life12040495] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
During space missions, astronauts are faced with a variety of challenges that are unique to spaceflight and that have been known to cause physiological changes in humans over a period of time. Several of these changes occur at the microbiome level, a complex ensemble of microbial communities residing in various anatomic sites of the human body, with a pivotal role in regulating the health and behavior of the host. The microbiome is essential for day-to-day physiological activities, and alterations in microbiome composition and function have been linked to various human diseases. For these reasons, understanding the impact of spaceflight and space conditions on the microbiome of astronauts is important to assess significant health risks that can emerge during long-term missions and to develop countermeasures. Here, we review various conditions that are caused by long-term space exploration and discuss the role of the microbiome in promoting or ameliorating these conditions, as well as space-related factors that impact microbiome composition. The topics explored pertain to microgravity, radiation, immunity, bone health, cognitive function, gender differences and pharmacomicrobiomics. Connections are made between the trifecta of spaceflight, the host and the microbiome, and the significance of these interactions for successful long-term space missions.
Collapse
Affiliation(s)
- Donatella Tesei
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | - Anna Jewczynko
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Anne M. Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Camilla Urbaniak
- ZIN Technologies Inc., Middleburg Heights, OH 44130, USA
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
- Correspondence:
| |
Collapse
|
38
|
Sun Z, Zhang M, Li M, Bhaskar Y, Zhao J, Ji Y, Cui H, Zhang H, Sun Z. Interactions between Human Gut Microbiome Dynamics and Sub-Optimal Health Symptoms during Seafaring Expeditions. Microbiol Spectr 2022; 10:e0092521. [PMID: 35019672 PMCID: PMC8754112 DOI: 10.1128/spectrum.00925-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
During long ocean voyages, crew members are subject to complex pressures from their living and working environment, which lead to chronic diseases-like sub-optimal health status. Although the association between dysbiotic gut microbiome and chronic diseases has been broadly reported, the correlation between the sub-optimal health status and gut microbiome remains elusive. Here, the health status of 77 crew members (20-35 years old Chinese, male) during a 135-day sea expedition was evaluated using the shotgun metagenomics of stool samples and health questionnaires taken before and after the voyage. We found five core symptoms (e.g., abnormal defecation frequency, insomnia, poor sleep quality, nausea, and overeating) in 55 out of 77 crew members suffering from sub-optimal health status, and this was termed "seafaring syndrome" (SS) in this study. Significant correlation was found between the gut microbiome and SS rather than any single symptom. For example, SS was proven to be associated with individual perturbation in the gut microbiome, and the microbial dynamics between SS and non-SS samples were different during the voyage. Moreover, the microbial signature for SS was identified using the variation of 19 bacterial species and 26 gene families. Furthermore, using a Random Forest model, SS was predicted with high accuracy (84.4%, area under the concentration-time curve = 0.91) based on 28 biomarkers from pre-voyage samples, and the prediction model was further validated by another 30-day voyage cohort (accuracy = 83.3%). The findings in this study provide insights to help us discover potential predictors or even therapeutic targets for dysbiosis-related diseases. IMPORTANCE Systemic and chronic diseases are important health problems today and have been proven to be strongly associated with dysbiotic gut microbiome. Studying the association between the gut microbiome and sub-optimal health status of humans in extreme environments (such as ocean voyages) will give us a better understanding of the interactions between observable health signs and a stable versus dysbiotic gut microbiome states. In this paper, we illustrated that ocean voyages could trigger different symptoms for different crew member cohorts due to individual differences; however, the co-occurrence of high prevalence symptoms indicated widespread perturbation of the gut microbiome. By investigating the microbial signature and gut microbiome dynamics, we demonstrated that such sub-optimal health status can be predicted even before the voyage. We termed this phenomenon as "seafaring syndrome." This study not only provides the potential strategy for health management in extreme environments but also can assist the prediction of other dysbiosis-related diseases.
Collapse
Affiliation(s)
- Zheng Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Single-Cell Center and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Meng Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot, China
| | - Min Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot, China
| | - Yogendra Bhaskar
- Single-Cell Center and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Jinshan Zhao
- College of Animal Science, Qingdao University, Qingdao, Shandong, China
| | - Youran Ji
- Medical Department, 971 Hospital, Qingdao, Shandong, China
| | - Hongbing Cui
- Department of Emergency, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot, China
| |
Collapse
|
39
|
The Nutrition-Microbiota-Physical Activity Triad: An Inspiring New Concept for Health and Sports Performance. Nutrients 2022; 14:nu14050924. [PMID: 35267899 PMCID: PMC8912693 DOI: 10.3390/nu14050924] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
The human gut microbiota is currently the focus of converging interest in many diseases and sports performance. This review presents gut microbiota as a real “orchestra conductor” in the host’s physio(patho)logy due to its implications in many aspects of health and disease. Reciprocally, gut microbiota composition and activity are influenced by many different factors, such as diet and physical activity. Literature data have shown that macro- and micro-nutrients influence gut microbiota composition. Cumulative data indicate that gut bacteria are sensitive to modulation by physical activity, as shown by studies using training and hypoactivity models. Sports performance studies have also presented interesting and promising results. Therefore, gut microbiota could be considered a “pivotal” organ for health and sports performance, leading to a new concept: the nutrition-microbiota-physical activity triad. The next challenge for the scientific and medical communities is to test this concept in clinical studies. The long-term aim is to find the best combination of the three elements of this triad to optimize treatments, delay disease onset, or enhance sports performance. The many possibilities offered by biotic supplementation and training modalities open different avenues for future research.
Collapse
|
40
|
Chronic intermittent hypoxia induces gut microbial dysbiosis and infers metabolic dysfunction in mice. Sleep Med 2022; 91:84-92. [DOI: 10.1016/j.sleep.2022.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/19/2022] [Accepted: 02/07/2022] [Indexed: 11/19/2022]
|
41
|
Kumar R, Sood U, Kaur J, Anand S, Gupta V, Patil KS, Lal R. The rising dominance of microbiology: what to expect in the next 15 years? Microb Biotechnol 2022; 15:110-128. [PMID: 34713975 PMCID: PMC8719816 DOI: 10.1111/1751-7915.13953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 01/10/2023] Open
Abstract
What microbiology beholds after a decade and a half in the future requires a vision based on the facts and ongoing trends in research and technological advancements. While the latter, assisted by microbial dark matter, presents a greater potential of creating an upsurge in in-situ and ex-situ rapid microbial detection techniques, this anticipated change will also set forth a revolution in microbial cultivation and diversity analyses. The availability of a microbial genetic toolbox at the expanse will help complement the current understanding of the microbiome and assist in real-time monitoring of the dynamics for detecting the health status of the host with utmost precision. Alongside, in light of the emerging infectious diseases, antimicrobial resistance (AMR) and social demands for safer and better health care alternatives, microbiology laboratories are prospected to drift in terms of the volume and nature of research and outcomes. With today's microbiological lens, one can predict with certainty that in the years to come, microbes will play a significant role in therapeutic treatment and the designing of novel diagnostic techniques. Another area where the scope of microbial application seems to be promising is the use of novel probiotics as a method to offer health benefits whilst promoting metabolic outputs specific for microbiome replenishment. Nonetheless, the evolution of extraterrestrial microbes or the adaptation of earth microbes as extraterrestrial residents are also yet another prominent microbial event one may witness in the upcoming years. But like the two sides of the coin, there is also an urgent need to dampen the bloom of urbanization, overpopulation and global trade and adopting sustainable approaches to control the recurrence of epidemics and pandemics.
Collapse
Affiliation(s)
- Roshan Kumar
- Post‐Graduate Department of ZoologyMagadh UniversityBodh GayaBihar824234India
| | - Utkarsh Sood
- The Energy and Resources InstituteDarbari Seth Block, IHC Complex, Lodhi RoadNew Delhi110003India
| | - Jasvinder Kaur
- Department of ZoologyGargi CollegeUniversity of DelhiSiri Fort RoadNew Delhi110049India
| | - Shailly Anand
- Department of ZoologyDeen Dayal Upadhyaya CollegeUniversity of DelhiDwarkaNew Delhi110078India
| | - Vipin Gupta
- Indira Paryavaran BhawanMinistry of Environment, Forest and Climate ChangeLodi ColonyNew Delhi110003India
| | - Kishor Sureshbhai Patil
- Department of Biological SciencesP. D. Patel Institute of Applied SciencesCharotar University of Science and Technology (CHARUSAT)ChangaGujarat388421India
| | - Rup Lal
- The Energy and Resources InstituteDarbari Seth Block, IHC Complex, Lodhi RoadNew Delhi110003India
| |
Collapse
|
42
|
Mhatre SD, Iyer J, Puukila S, Paul AM, Tahimic CGT, Rubinstein L, Lowe M, Alwood JS, Sowa MB, Bhattacharya S, Globus RK, Ronca AE. Neuro-consequences of the spaceflight environment. Neurosci Biobehav Rev 2021; 132:908-935. [PMID: 34767877 DOI: 10.1016/j.neubiorev.2021.09.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/03/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022]
Abstract
As human space exploration advances to establish a permanent presence beyond the Low Earth Orbit (LEO) with NASA's Artemis mission, researchers are striving to understand and address the health challenges of living and working in the spaceflight environment. Exposure to ionizing radiation, microgravity, isolation and other spaceflight hazards pose significant risks to astronauts. Determining neurobiological and neurobehavioral responses, understanding physiological responses under Central Nervous System (CNS) control, and identifying putative mechanisms to inform countermeasure development are critically important to ensuring brain and behavioral health of crew on long duration missions. Here we provide a detailed and comprehensive review of the effects of spaceflight and of ground-based spaceflight analogs, including simulated weightlessness, social isolation, and ionizing radiation on humans and animals. Further, we discuss dietary and non-dietary countermeasures including artificial gravity and antioxidants, among others. Significant future work is needed to ensure that neural, sensorimotor, cognitive and other physiological functions are maintained during extended deep space missions to avoid potentially catastrophic health and safety outcomes.
Collapse
Affiliation(s)
- Siddhita D Mhatre
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; KBR, Houston, TX, 77002, USA; COSMIAC Research Center, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Janani Iyer
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA
| | - Stephanie Puukila
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA; Flinders University, Adelaide, Australia
| | - Amber M Paul
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA
| | - Candice G T Tahimic
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; KBR, Houston, TX, 77002, USA; Department of Biology, University of North Florida, Jacksonville, FL, 32224, USA
| | - Linda Rubinstein
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA
| | - Moniece Lowe
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Blue Marble Space Institute of Science, Seattle, WA, 98154, USA
| | - Joshua S Alwood
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Marianne B Sowa
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Sharmila Bhattacharya
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Ruth K Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - April E Ronca
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Wake Forest Medical School, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
43
|
Low A, Soh M, Miyake S, Aw VZJ, Feng J, Wong A, Seedorf H. Longitudinal Changes in Diet Cause Repeatable and Largely Reversible Shifts in Gut Microbial Communities of Laboratory Mice and Are Observed across Segments of the Entire Intestinal Tract. Int J Mol Sci 2021; 22:5981. [PMID: 34205981 PMCID: PMC8198505 DOI: 10.3390/ijms22115981] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 01/04/2023] Open
Abstract
Dietary changes are known to alter the composition of the gut microbiome. However, it is less understood how repeatable and reversible these changes are and how diet switches affect the microbiota in the various segments of the gastrointestinal tract. Here, a treatment group of conventionally raised laboratory mice is subjected to two periods of western diet (WD) interrupted by a period of standard diet (SD) of the same duration. Beta-diversity analyses show that diet-induced microbiota changes are largely reversible (q = 0.1501; PERMANOVA, weighted-UniFrac comparison of the treatment-SD group to the control-SD group) and repeatable (q = 0.032; PERMANOVA, weighted-UniFrac comparison of both WD treatments). Furthermore, we report that diet switches alter the gut microbiota composition along the length of the intestinal tract in a segment-specific manner, leading to gut segment-specific Firmicutes/Bacteroidota ratios. We identified prevalent and distinct Amplicon Sequencing Variants (ASVs), particularly in genera of the recently described Muribaculaceae, along the gut as well as ASVs that are differentially abundant between segments of treatment and control groups. Overall, this study provides insights into the reversibility of diet-induced microbiota changes and highlights the importance of expanding sampling efforts beyond the collections of fecal samples to characterize diet-dependent and segment-specific microbiome differences.
Collapse
Affiliation(s)
- Adrian Low
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore; (A.L.); (M.S.); (S.M.); (V.Z.J.A.); (J.F.); (A.W.)
| | - Melissa Soh
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore; (A.L.); (M.S.); (S.M.); (V.Z.J.A.); (J.F.); (A.W.)
| | - Sou Miyake
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore; (A.L.); (M.S.); (S.M.); (V.Z.J.A.); (J.F.); (A.W.)
| | - Vanessa Zhi Jie Aw
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore; (A.L.); (M.S.); (S.M.); (V.Z.J.A.); (J.F.); (A.W.)
| | - Jian Feng
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore; (A.L.); (M.S.); (S.M.); (V.Z.J.A.); (J.F.); (A.W.)
| | - Adeline Wong
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore; (A.L.); (M.S.); (S.M.); (V.Z.J.A.); (J.F.); (A.W.)
| | - Henning Seedorf
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore; (A.L.); (M.S.); (S.M.); (V.Z.J.A.); (J.F.); (A.W.)
- Department of Biological Sciences, National University of Singapore, Singapore 117604, Singapore
| |
Collapse
|
44
|
Mikelsaar M, Mändar R. Commentary: Gut Microbiome and Space Travelers' Health: State of the Art and Possible Pro/Prebiotic Strategies for Long-Term Space Missions. Front Physiol 2021; 12:651977. [PMID: 33833693 PMCID: PMC8021706 DOI: 10.3389/fphys.2021.651977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marika Mikelsaar
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Reet Mändar
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
45
|
Vroom MM, Rodriguez-Ocasio Y, Lynch JB, Ruby EG, Foster JS. Modeled microgravity alters lipopolysaccharide and outer membrane vesicle production of the beneficial symbiont Vibrio fischeri. NPJ Microgravity 2021; 7:8. [PMID: 33686090 PMCID: PMC7940393 DOI: 10.1038/s41526-021-00138-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/02/2021] [Indexed: 01/04/2023] Open
Abstract
Reduced gravity, or microgravity, can have a pronounced impact on the physiology of animals, but the effects on their associated microbiomes are not well understood. Here, the impact of modeled microgravity on the shedding of Gram-negative lipopolysaccharides (LPS) by the symbiotic bacterium Vibrio fischeri was examined using high-aspect ratio vessels. LPS from V. fischeri is known to induce developmental apoptosis within its symbiotic tissues, which is accelerated under modeled microgravity conditions. In this study, we provide evidence that exposure to modeled microgravity increases the amount of LPS released by the bacterial symbiont in vitro. The higher rates of shedding under modeled microgravity conditions are associated with increased production of outer-membrane vesicles (OMV), which has been previously correlated to flagellar motility. Mutants of V. fischeri defective in the production and rotation of their flagella show significant decreases in LPS shedding in all treatments, but levels of LPS are higher under modeled microgravity despite loss of motility. Modeled microgravity also appears to affect the outer-membrane integrity of V. fischeri, as cells incubated under modeled microgravity conditions are more susceptible to cell-membrane-disrupting agents. These results suggest that, like their animal hosts, the physiology of symbiotic microbes can be altered under microgravity-like conditions, which may have important implications for host health during spaceflight.
Collapse
Affiliation(s)
- Madeline M Vroom
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, USA
| | - Yaneli Rodriguez-Ocasio
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, USA
| | - Jonathan B Lynch
- Pacific Biosciences Research Center, Kewalo Marine Laboratory, University of Hawai'i at Manoa, Honolulu, HI, USA.,Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Edward G Ruby
- Pacific Biosciences Research Center, Kewalo Marine Laboratory, University of Hawai'i at Manoa, Honolulu, HI, USA
| | - Jamie S Foster
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, USA.
| |
Collapse
|
46
|
Grape seed extract ameliorates PhIP-induced colonic injury by modulating gut microbiota, lipid metabolism, and NF-κB signaling pathway in rats. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
47
|
Mehta O, Inbaraj LR, Astbury S, Grove JI, Norman G, Aithal GP, Valdes AM, Vijay A. Gut Microbial Profile Is Associated With Residential Settings and Not Nutritional Status in Adults in Karnataka, India. Front Nutr 2021; 8:595756. [PMID: 33708787 PMCID: PMC7940358 DOI: 10.3389/fnut.2021.595756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Undernutrition is a leading contributor to disease and disability in people of all ages. Several studies have reported significant association between nutritional status and gut microbiome composition but other factors such as demographic settings may also influence the adult microbiome. The relationship between undernourishment and gut microbiome in adults has not been described to date. In this study, we compared the gut microbiome in fecal samples of 48 individuals, from two demographic settings (rural and urban slum) in Karnataka, India using 16S rRNA sequencing. Nutritional status was assessed based on BMI, with a BMI of < 18.5 kg/m2 classified as undernourished, and a BMI in the range 18.5-25 kg/m2 as nourished. We analyzed 25 individuals from rural settings (12 undernourished and 13 nourished) and 23 individuals from urban slum settings (11 undernourished and 12 nourished). We found no significant difference in overall gut microbial diversity (Shannon and Unweighted UniFrac) between undernourished and nourished individuals in either geographical settings, however, microbial taxa at the phylum level (i.e., Firmicutes and Proteobacteria) and beta diversity (unweighted UniFrac) differed significantly between the rural and urban slum settings. By predicting microbial function from 16S data profiling we found significant differences in metabolic pathways present in the gut microbiota from people residing in different settings; specifically, those related to carbohydrate and lipid metabolism. The weighted sum of the KEGG Orthologs associated with carbohydrate metabolism (Spearman's correlation coefficient, ρ = -0.707, p < 0.001), lipid metabolism (Spearman's correlation coefficient, ρ = -0.330, p < 0.022) and biosynthesis of secondary metabolites (Spearman's correlation coefficient, ρ = -0.507, p < 0.001) were decreased in the urban slum group compared to the rural group. In conclusion, we report that the geographical location of residence is associated with differences in gut microbiome composition in adults. We found no significant differences in microbiome composition between nourished and undernourished adults from urban slum or rural settings in India.
Collapse
Affiliation(s)
- Ojasvi Mehta
- Nottingham Digestive Diseases Center, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Center, Nottingham University Hospitals National Health Service (NHS) Trust and University of Nottingham, Nottingham, United Kingdom
| | | | - Stuart Astbury
- Nottingham Digestive Diseases Center, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Center, Nottingham University Hospitals National Health Service (NHS) Trust and University of Nottingham, Nottingham, United Kingdom
| | - Jane I. Grove
- Nottingham Digestive Diseases Center, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Center, Nottingham University Hospitals National Health Service (NHS) Trust and University of Nottingham, Nottingham, United Kingdom
| | - Gift Norman
- Department of Community Health, Bangalore Baptist Hospital, Bangalore, India
| | - Guruprasad P. Aithal
- Nottingham Digestive Diseases Center, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Center, Nottingham University Hospitals National Health Service (NHS) Trust and University of Nottingham, Nottingham, United Kingdom
| | - Ana M. Valdes
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Center, Nottingham University Hospitals National Health Service (NHS) Trust and University of Nottingham, Nottingham, United Kingdom
- Division of Rheumatology, Orthopedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Amrita Vijay
- Nottingham Digestive Diseases Center, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Center, Nottingham University Hospitals National Health Service (NHS) Trust and University of Nottingham, Nottingham, United Kingdom
- Division of Rheumatology, Orthopedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
48
|
Marcos-Zambrano LJ, Karaduzovic-Hadziabdic K, Loncar Turukalo T, Przymus P, Trajkovik V, Aasmets O, Berland M, Gruca A, Hasic J, Hron K, Klammsteiner T, Kolev M, Lahti L, Lopes MB, Moreno V, Naskinova I, Org E, Paciência I, Papoutsoglou G, Shigdel R, Stres B, Vilne B, Yousef M, Zdravevski E, Tsamardinos I, Carrillo de Santa Pau E, Claesson MJ, Moreno-Indias I, Truu J. Applications of Machine Learning in Human Microbiome Studies: A Review on Feature Selection, Biomarker Identification, Disease Prediction and Treatment. Front Microbiol 2021; 12:634511. [PMID: 33737920 PMCID: PMC7962872 DOI: 10.3389/fmicb.2021.634511] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
The number of microbiome-related studies has notably increased the availability of data on human microbiome composition and function. These studies provide the essential material to deeply explore host-microbiome associations and their relation to the development and progression of various complex diseases. Improved data-analytical tools are needed to exploit all information from these biological datasets, taking into account the peculiarities of microbiome data, i.e., compositional, heterogeneous and sparse nature of these datasets. The possibility of predicting host-phenotypes based on taxonomy-informed feature selection to establish an association between microbiome and predict disease states is beneficial for personalized medicine. In this regard, machine learning (ML) provides new insights into the development of models that can be used to predict outputs, such as classification and prediction in microbiology, infer host phenotypes to predict diseases and use microbial communities to stratify patients by their characterization of state-specific microbial signatures. Here we review the state-of-the-art ML methods and respective software applied in human microbiome studies, performed as part of the COST Action ML4Microbiome activities. This scoping review focuses on the application of ML in microbiome studies related to association and clinical use for diagnostics, prognostics, and therapeutics. Although the data presented here is more related to the bacterial community, many algorithms could be applied in general, regardless of the feature type. This literature and software review covering this broad topic is aligned with the scoping review methodology. The manual identification of data sources has been complemented with: (1) automated publication search through digital libraries of the three major publishers using natural language processing (NLP) Toolkit, and (2) an automated identification of relevant software repositories on GitHub and ranking of the related research papers relying on learning to rank approach.
Collapse
Affiliation(s)
- Laura Judith Marcos-Zambrano
- Computational Biology Group, Precision Nutrition and Cancer Research Program, IMDEA Food Institute, Madrid, Spain
| | | | | | - Piotr Przymus
- Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland
| | - Vladimir Trajkovik
- Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | - Oliver Aasmets
- Institute of Genomics, Estonian Genome Centre, University of Tartu, Tartu, Estonia
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Magali Berland
- Université Paris-Saclay, INRAE, MGP, Jouy-en-Josas, France
| | - Aleksandra Gruca
- Department of Computer Networks and Systems, Silesian University of Technology, Gliwice, Poland
| | - Jasminka Hasic
- University Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
| | - Karel Hron
- Department of Mathematical Analysis and Applications of Mathematics, Palacký University, Olomouc, Czechia
| | | | - Mikhail Kolev
- South West University “Neofit Rilski”, Blagoevgrad, Bulgaria
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Marta B. Lopes
- NOVA Laboratory for Computer Science and Informatics (NOVA LINCS), FCT, UNL, Caparica, Portugal
- Centro de Matemática e Aplicações (CMA), FCT, UNL, Caparica, Portugal
| | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO)Barcelona, Spain
- Colorectal Cancer Group, Institut de Recerca Biomedica de Bellvitge (IDIBELL), Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Irina Naskinova
- South West University “Neofit Rilski”, Blagoevgrad, Bulgaria
| | - Elin Org
- Institute of Genomics, Estonian Genome Centre, University of Tartu, Tartu, Estonia
| | - Inês Paciência
- EPIUnit – Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
| | | | - Rajesh Shigdel
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Blaz Stres
- Group for Microbiology and Microbial Biotechnology, Department of Animal Science, University of Ljubljana, Ljubljana, Slovenia
| | - Baiba Vilne
- Bioinformatics Research Unit, Riga Stradins University, Riga, Latvia
| | - Malik Yousef
- Department of Information Systems, Zefat Academic College, Zefat, Israel
- Galilee Digital Health Research Center (GDH), Zefat Academic College, Zefat, Israel
| | - Eftim Zdravevski
- Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | | | | | - Marcus J. Claesson
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Isabel Moreno-Indias
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jaak Truu
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|
49
|
Izraeli Y, Lalzar M, Netanel N, Mozes-Daube N, Steinberg S, Chiel E, Zchori-Fein E. Wolbachia influence on the fitness of Anagyrus vladimiri (Hymenoptera: Encyrtidae), a bio-control agent of mealybugs. PEST MANAGEMENT SCIENCE 2021; 77:1023-1034. [PMID: 33002324 DOI: 10.1002/ps.6117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/17/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Like numerous other animals, biocontrol agents (BCAs) of arthropod pests carry various microorganisms that may have diverse effects on the biology of their eukaryote hosts. We postulated that it is possible to improve the efficacy of BCAs by manipulating the composition of their associated microbiota. The parasitoid wasp Anagyrus vladimiri (Hymenoptera: Encyrtidae) from a mass-rearing facility was chosen for testing this hypothesis. RESULTS High-throughput sequencing analysis indicated that fungal abundance in A. vladimiri was low and variable, whereas the bacterial community was dominated by the endosymbiont Wolbachia. Wolbachia was fixed in the mass-rearing population, whereas in field-collected A. vladimiri Wolbachia's prevalence was only approximately 20%. Identification of Wolbachia strains from the two populations by Multi Locus Sequence Typing, revealed two closely related but unique strains. A series of bioassays with the mass-rearing Wolbachia-fixed (W+ ) and a derived antibiotic-treated Wolbachia-free (W- ) lines revealed that: (i) Wolbachia does not induce reproductive manipulations; (ii) W- females have higher fecundity when reared individually, but not when reared with conspecifics; (iii) W+ females outcompete W- when they share hosts for oviposition; (iv) longevity and developmental time were similar in both lines. CONCLUSIONS The findings suggest that W+ A. vladimiri have no clear fitness benefit under mass-rearing conditions and may be disadvantageous under lab-controlled conditions. In a broader view, the results suggest that augmentative biological control can benefit from manipulation of the microbiome of natural enemies.
Collapse
Affiliation(s)
- Yehuda Izraeli
- Department of Evolution and Environmental Biology, University of Haifa, Haifa, Israel
- Department of Entomology, ARO Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Maya Lalzar
- Bioinformatic Department, University of Haifa, Haifa, Israel
| | - Nir Netanel
- Department of Evolution and Environmental Biology, University of Haifa, Haifa, Israel
- Department of Entomology, ARO Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Netta Mozes-Daube
- Department of Entomology, ARO Newe Ya'ar Research Center, Ramat Yishay, Israel
| | | | - Elad Chiel
- Department of Biology and Environment, University of Haifa-Oranim, Kiryat Tiv'on, Israel
| | - Einat Zchori-Fein
- Department of Entomology, ARO Newe Ya'ar Research Center, Ramat Yishay, Israel
| |
Collapse
|
50
|
LaPelusa M, Donoviel D, Branzini SE, Carlson PE, Culler S, Cheema AK, Kaddurah-Daouk R, Kelly D, de Cremoux I, Knight R, Krajmalnik-Brown R, Mayo SL, Mazmanian SK, Mayer EA, Petrosino JF, Garrison K. Microbiome for Mars: surveying microbiome connections to healthcare with implications for long-duration human spaceflight, virtual workshop, July 13, 2020. MICROBIOME 2021; 9:2. [PMID: 33397500 PMCID: PMC7781430 DOI: 10.1186/s40168-020-00951-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
The inaugural "Microbiome for Mars" virtual workshop took place on July 13, 2020. This event assembled leaders in microbiome research and development to discuss their work and how it may relate to long-duration human space travel. The conference focused on surveying current microbiome research, future endeavors, and how this growing field could broadly impact human health and space exploration. This report summarizes each speaker's presentation in the order presented at the workshop.
Collapse
Affiliation(s)
- Michael LaPelusa
- Department of Medicine, Vanderbilt University Medical Center, One Hundred Oaks - North 719 Thompson Lane Suite 20400, Nashville, TN, 37204, USA.
| | - Dorit Donoviel
- Department of Pharmacology and Chemical Biology, Center for Space Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sergio E Branzini
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Paul E Carlson
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Stephanie Culler
- Persephone Biosciences Inc, JLABS, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Department of Medicine and the Duke Institute for Brain Sciences, Duke University, Durham, NC, 27708, USA
| | - Denise Kelly
- Seventure Partners, 5-7 rue de Monttessuy, 75340 Cedex 07, Paris, France
| | | | - Rob Knight
- Departments of Pediatrics, Bioengineering, and Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, MC 0763, La Jolla, CA, 92093-0763, USA
| | - Rosa Krajmalnik-Brown
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | - Stephen L Mayo
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Bl, Pasadena, CA, 91125, USA
| | - Sarkis K Mazmanian
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Bl, Pasadena, CA, 91125, USA
| | - Emeran A Mayer
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity Program, University of California Los Angeles, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Joseph F Petrosino
- Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Keith Garrison
- Department of Medicine, The University of Texas at Houston Health Sciences Center, 6431 Fannin St, Houston, TX, 77030, USA.
| |
Collapse
|