1
|
Nehra C, Harshini V, Shukla N, Chavda P, Bhure M, Savaliya K, Patil S, Shah T, Pandit R, Patil NV, Patel AK, Kachhawaha S, Kumawat RN, Joshi M, Joshi CG. Ruminal microbial responses to Moringa oleifera feed in lactating goats (Capra hircus): A metagenomic exploration. N Biotechnol 2025; 86:87-96. [PMID: 39864798 DOI: 10.1016/j.nbt.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 01/01/2025] [Accepted: 01/16/2025] [Indexed: 01/28/2025]
Abstract
The purpose of the current study was to explore the effects of Moringa oleifera feed on the taxonomy and function of the rumen microbial community, and further to evaluate its impact on milk yield and body weight in lactating goats. Nineteen goats were divided into moringa leaf diet (ML; n = 10) and masoor straw (MS; n = 9) groups. For each group fortnight milk yield and body weight was recorded. Rumen solid and liquid fraction samples were processed for metagenomic shotgun sequencing and further analysed. The pairwise comparison between the two groups showed a significant increase (p-value- <0.01) in milk yield of the ML goats after the 4th fortnight interval onwards. The metagenomic analysis revealed Bacteroidetes and Firmicutes are the most abundant phyla, with increased Bacteroidetes in response to the moringa diet. The ML group exhibited a reduction in microbial diversity, with an increase in Prevetolla and Bacteroidales populations which are positively associated with carbohydrate, protein, and VFA metabolism, and an increased proportions of Treponema sp., Ruminococcus sp., Ruminobacter amylophilus, and Aeromonas, indicating improved cellulose and nitrogen metabolism. KEGG analysis revealed significant changes in microbial gene pool and metabolic pathways, particularly in carbohydrate metabolism, propanoate metabolism, and fatty acid synthesis genes. These microbial and functional shifts are correlated with improvements in milk yield, growth rates, and potentially reduced methane emissions.This study highlighted the potential benefits of feeding moringa in the animal production system. However, furthermore experimental evidence including genetic and environmental effects is needed for a comprehensive understanding of moringa feed's impact on goat health and productivity.
Collapse
Affiliation(s)
- Chitra Nehra
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India.
| | - Vemula Harshini
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India.
| | - Nitin Shukla
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India.
| | - Priyank Chavda
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India.
| | - Minal Bhure
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India.
| | - Kaksha Savaliya
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India.
| | - Sonal Patil
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India.
| | - Tejas Shah
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India.
| | - Ramesh Pandit
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India.
| | - Niteen V Patil
- ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan 342005, India.
| | - Ashutosh K Patel
- ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan 342005, India.
| | - Subhash Kachhawaha
- ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan 342005, India.
| | - Ram N Kumawat
- ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan 342005, India.
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India.
| | - Chaitanya G Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India.
| |
Collapse
|
2
|
Yang J, Li Y, Sun M, Zhang Y, Guo S, Zhou D, Lin P, Wang A, Jin Y. Associations of rumen and rectum bacteria with the sustained productive performance of dairy cows. Front Microbiol 2025; 16:1565034. [PMID: 40365057 PMCID: PMC12069273 DOI: 10.3389/fmicb.2025.1565034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
The gut bacterial community is essential for maintaining lifelong health and productivity in ruminants, but the relationship between the gut microbiota and the sustained productivity of ruminants remains inadequately understood. In this study, we selected long-lived dairy cows in mid-lactation (≥5 parities) with different levels of milk production (n = 10). Significant differences were observed in the rumen bacterial structures between the two groups of dairy cows, whereas no significant differences were detected in the rectum bacterial communities. Additionally, there were no significant differences in serum oxidative stress biomarkers, inflammatory markers, or immunological markers between the long-lived high-yield (LH) and long-lived low-yield (LL) dairy cows. Furthermore, the concentrations of propionate (Pr) in the rumen and butyrate (Bu) in the rectum were elevated in the high-yield group. Spearman correlation and microbial co-occurrence network analyses revealed that several rumen-enriched bacteria, such as Syntrophococcus, Lachnospira, Shuttleworthia, Erysipelotrichaceae_UCG-2, and Roseburiaare associated with rumen propionate (Pr) production. In the rectum, the reduced abundance of Christensenellaceae_R-7_group and Moryella favors butyrate production. Furthermore, Random Forest machine learning analysis demonstrated that six bacterial taxa in the rumen combined with one serum biomarker, as well as three bacterial taxa in the rectum combined with three serum biomarkers, can serve as potential biomarkers for distinguishing between LH and long- LL dairy cows, achieving prediction accuracies of 92 and 99%, respectively. The findings of this study indicate that rumen and rectum bacteria are associated with the milk production phenotypes of dairy cows with sustained productivity. The rumen microbes are closely linked to the long-term productive capacity of dairy cows and represent a key target for the development of gut microbiota-based interventions. The unique bacterial communities of the rumen and rectum of long-lived high-yielding dairy cows contribute to maintaining their productive capacity.
Collapse
Affiliation(s)
- Jianhao Yang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China
| | - Yifan Li
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China
| | - Mengkun Sun
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China
| | - Yuan Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China
| | - Shanshan Guo
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China
| | - Dong Zhou
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China
| | - Pengfei Lin
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China
| |
Collapse
|
3
|
Zhang H, Lu T, Guo S, He T, Shin MK, Luo C, Tong J, Zhang Y. Rumen microbes affect the somatic cell counts of dairy cows by modulating glutathione metabolism. mSystems 2025; 10:e0109324. [PMID: 40105325 PMCID: PMC12013278 DOI: 10.1128/msystems.01093-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/12/2025] [Indexed: 03/20/2025] Open
Abstract
Healthy mammary glands are essential for high-quality milk production in the dairy industry. The relationship between somatic cell counts (SCCs), rumen fermentation, and microbiota interactions remains unclear. This study integrated physiological indicators, high-throughput 16S rRNA gene sequencing, and metagenomics data analysis to investigate the mechanisms linking rumen microbes and mastitis and to evaluate the changes in milk production and serum cytokine levels in cows with low (L-SCC) and high (H-SCC) somatic cell counts. Compared with the L-SCC group, the H-SCC group exhibited significantly lower lactose and fat contents in milk, reduced rumen fermentation product levels, and increased abundances of Bacteroidetes, Firmicutes, Lachnospiraceae, Prevotella, and Rumiclostridium. Elevated serum levels of IgG2, IgM, IL-1β, IL-6, and TNF-ɑ in the H-SCC group indicated inflammation and rumen microbiota dysbiosis. Functional analysis of microbial communities revealed significant enrichment in pathways related to glutathione metabolism, thyroid hormone synthesis, hypertrophic cardiomyopathy (HCM), the phosphotransferase system (PTS), the P53 signaling pathway, and the Jak-STAT signaling pathway. Correlation network analysis showed that changes in bacterial families, such as Rikenellaceae, Muribaculaceae, and Prevotellaceae, were associated with cytokines, rumen fermentation, and milk quality. The study highlights the interaction between rumen microbiota homeostasis and mammary gland health, indicating that rumen fermentation status influences serum inflammation and milk quality. Modulating rumen fermentation to enhance mammary gland immune function presents a viable strategy for sustainable dairy industry development with long-lived, highly productive cows.IMPORTANCEHigh somatic cell counts (SCCs) are a key biomarker of mastitis and are associated with decreased milk production and significant economic losses in dairy farming. This study systematically examines the relationship between elevated SCCs, rumen microbial dysbiosis, and host inflammatory responses, shedding light on the intricate interplay between microbial ecosystems and host physiology. The findings highlight the potential for microbiota-targeted interventions to reduce inflammation, improve milk composition, and enhance dairy cow productivity. Rather than presuming a direct causative link between SCC-associated dysbiosis and inflammation, this research focuses on their interdependent dynamics, offering a nuanced understanding of the complex biological mechanisms involved. This work advances knowledge of host-microbiota interactions in livestock, providing practical insights for the development of innovative strategies to manage mastitis and improve overall herd health. By adhering to One Health principles, this study underscores the significance of sustainable agricultural practices that prioritize animal welfare, environmental stewardship, and food security. These findings establish a robust foundation for future research into microbiota-driven solutions aimed at enhancing the health and productivity of dairy cattle.
Collapse
Affiliation(s)
- Hua Zhang
- College of Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Tianhang Lu
- College of Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Shijiao Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Tianying He
- College of Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Min-Kyoung Shin
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Chaochao Luo
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Jinjin Tong
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yinhua Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
4
|
Fan FX, Wu FC, Guo ZY, Che HY, Yang KL, Sun HZ, Liu JX, Gu FF. Supplementation with ursodeoxycholic acid and bile salt benefits lactation performance, health, and rumen and fecal microbiota of transition dairy cows. J Dairy Sci 2025:S0022-0302(25)00264-4. [PMID: 40252769 DOI: 10.3168/jds.2024-26224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/22/2025] [Indexed: 04/21/2025]
Abstract
This study investigated the effects of ursodeoxycholic acid (UDCA) and bile salt (BAS) supplementation on lactation performance, health, and gut microbiota in periparturient dairy cows. Fifty-one Holstein dairy cows were selected at d -28 before parturition and blocked into 3 dietary treatments, including the control (CON; n = 17) received a basal diet, whereas the UDCA (n = 17) and BAS groups (n = 17) were supplemented with 10 g/d UDCA and 20 g/d BAS from d -21 to +21, with an observation phase until d +35. Milk yield and composition were recorded weekly, whereas the DMI were measured biweekly. Blood samples were collected at d +7 and +21, whereas rumen fluid and fecal samples were collected at d +21. Milk yield was significantly higher in the UDCA group at d +21 compared with the CON group, whereas on d +28, milk yield was significantly higher in both the UDCA and BAS groups compared with the CON group, and the DMI of the UDCA group showed an increased tendency at prepartum. Plasma nonesterified fatty acids were significantly higher in the BAS group, whereas Ala aminotransferase content were significantly lower in the UDCA group compared with the control. Furthermore, the cholesterol, malondialdehyde, oxidative stress index, serum amyloid A, and haptoglobin content were significantly lower in the UDCA and BAS groups. In total, 35, 43, and 45 plasma bile acids (BA) were detected in the control, UDCA, and BAS groups, respectively. Compared with the control, 8 key BA, including UDCA, tauroursodeoxycholic acid, glycoursodeoxycholic acid, and 5 key BA, including tauro-β-muricholic acid and hyocholic acid, were identified in the UDCA and BAS groups, respectively. The concentrations of total VFA and acetate in the UDCA and BAS groups was higher than that in the CON group, and the concentration of propionate tended to be higher. The β-diversity of both rumen and gut microbiota was significantly higher in the CON, UDCA, and BAS groups, whereas no significant changes were observed in α-diversity. Key rumen VFA-production bacteria, including Prevotella_7, Succinivibrionaceae_UCG-001, and Selenomonas, were enriched in the UDCA and BAS groups, along with an increase in beneficial gut microbiota, such as Butyrivibrio, Ruminococcus, and Caproiciproducen, and a reduction in harmful bacteria, such as Stenotrophomonas and Chryseobacterium. These findings suggest that the observed improvements in production performance and health may be mediated by alterations in peripheral BA and rumen and gut microbiota, offering insights for optimizing the nutrition and health of transitional dairy cows.
Collapse
Affiliation(s)
- Fei-Xiang Fan
- College of Animal Sciences, Xinjiang Key Laboratory of Herbivorous Nutrition for Meat and Milk, Xinjiang Agricultural University, Urumqi 830052, China
| | - Fang-Chao Wu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhi-Yao Guo
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao-Yu Che
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kai-Lun Yang
- College of Animal Sciences, Xinjiang Key Laboratory of Herbivorous Nutrition for Meat and Milk, Xinjiang Agricultural University, Urumqi 830052, China
| | - Hui-Zeng Sun
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian-Xin Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng-Fei Gu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Feng X, Liu Y, Xu S, Ma J, Yuan H, Wang H, Hu J, Jin S, Liu S, Zhong J, Ma T, Tu Y. Functional analysis of Parabacteroides distasonis F4: a novel probiotic strain linked to calf growth and rumen fermentation. J Anim Sci Biotechnol 2025; 16:50. [PMID: 40181465 PMCID: PMC11969818 DOI: 10.1186/s40104-025-01182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Rumen microorganisms are key regulators of ruminant growth and production performance. Identifying probiotic candidates through microbial culturomics presents a promising strategy for improving ruminant production performance. Our previous study identified significant differences in rumen microbial communities of Holstein calves with varying average daily gain (ADG). This study aims to identify a target strain based on the findings from multi-omics analysis and literature review, isolating and evaluating the target microbial strains from both the rumen and hindgut contents for their probiotic potential. RESULTS Parabacteroides distasonis, a strain closely associated with ADG, was successfully isolated from calf rumen content cultured with Fastidious Anaerobe Agar (FAA) medium and named Parabacteroides distasonis F4. Whole-genome sequencing and pan-genome analysis showed that P. distasonis F4 possesses a core functional potential for carbohydrate and amino acid metabolism, with the ability to produce propionate, acetate, and lactate. The results of targeted and untargeted metabolomics further validated the organic acid production and metabolic pathways of P. distasonis F4. An in vitro simulated rumen fermentation test showed that supplementation with P. distasonis F4 significantly altered rumen microbial community structure and increased the molar proportions of propionate and butyrate in the rumen. Furthermore, an in vivo study demonstrated that dietary supplementation with P. distasonis F4 significantly increased the ADG of pre-weaning calves. CONCLUSIONS This study represents the first isolation of P. distasonis F4 from rumen, highlighting its potential as a probiotic strain for improving rumen development and growth performance in ruminants.
Collapse
Affiliation(s)
- Xiaoran Feng
- Beijing Key Laboratory for Dairy Cow Nutrition, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yunlong Liu
- Beijing Key Laboratory for Dairy Cow Nutrition, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shengyang Xu
- Beijing Key Laboratory for Dairy Cow Nutrition, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Junnan Ma
- Beijing Key Laboratory for Dairy Cow Nutrition, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Yuan
- Beijing Key Laboratory for Dairy Cow Nutrition, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haixin Wang
- Beijing Key Laboratory for Dairy Cow Nutrition, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiachen Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Sijie Jin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shanji Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tao Ma
- Beijing Key Laboratory for Dairy Cow Nutrition, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yan Tu
- Beijing Key Laboratory for Dairy Cow Nutrition, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
6
|
Gao Z, Zheng C, Mao Z, Zheng J, Xu G, Liu D. A comprehensive study of liver-gut microbiota and antioxidant enzyme activity mediated regulation of late-laying hens by high and low residual feed intake. Int J Biol Macromol 2025; 298:139938. [PMID: 39824417 DOI: 10.1016/j.ijbiomac.2025.139938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/29/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Residual feed intake (RFI) is a better indicator of feed efficiency than feed conversion ratio (FCR). It is frequently used to evaluate the efficacy of poultry and livestock feed consumption. Generally, Low RFI (LRFI) is associated with better feed conversion efficiency, whereas high RFI (HRFI) suggests poorer feed conversion efficiency. The study examined the association between microorganisms, tissue and organ functions. The results demonstrated that in contrast to the HRFI group, the LRFI group revealed higher length measurements, the digestive organs' mass, and chest width. The antioxidant indices revealed that the enzymatic activities (catalase and glutathione peroxidase) in the LRFI group were significantly higher than those in the HRFI group. The serum levels of HDLC, AST, and ACTH were identified as potential markers that could affect RFI. The variations between high and low RFI and the function of the liver and cecum microbiota of hens during late laying period were systematically investigated by multiple omics techniques. Through 16S, the most common beneficial microbial population in the gut of LRFI groups, such as Oscillospirales, Ruminococcaceae, and Butyricicoccaceae, has been detected via a microbiome-metabolome association analysis. Through multi-omics analysis, we found that FABP1 and ACSS2 are important regulatory genes affecting RFI. These findings will provide a basis for comprehending the role of gut microbiota in regulating RFI and the molecular mechanism behind the phenotypic changes observed in late-laying hens.
Collapse
Affiliation(s)
- Zhouyang Gao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | | | - Zhiqiong Mao
- Beinongda Technology Co., Ltd., Beijing 100083, China
| | - Jiangxia Zheng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guiyun Xu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Dan Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Guo R, Chang Y, Wang D, Sun H, Gu T, Zong Y, Zhou S, Huang Z, Chen L, Tian Y, Xu W, Lu L, Zeng T. Interaction between cecal microbiota and liver genes of laying ducks with different residual feed intake. Anim Microbiome 2025; 7:30. [PMID: 40119394 PMCID: PMC11929276 DOI: 10.1186/s42523-025-00394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/08/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND The gut microbiota exerts a critical influence on energy metabolism homeostasis and productive performance in avian species. Given the diminishing availability of arable land and intensifying competition for finite resources between livestock production and human populations, the agricultural sector faces dual imperatives to enhance productive efficiency while mitigating ecological footprints. Within this paradigm, optimizing nutrient assimilation efficiency in commercial waterfowl operations emerges as a strategic priority. This investigation employs an integrated multi-omics approach framework (metagenomic, metabolomic, and transcriptomic analyses) to elucidate the mechanistic relationships between cecal microbial consortia and feed conversion ratios in Shan Partridge ducks. RESULTS Based on the analysis of metagenome data, a total of 34 phyla, 1033 genera and 3262 species of bacteria were identified by metagenomic sequencing analysis. At the phylum level, 31 phylums had higher mean abundance in the low residual feed intake ( LRFI) group than in the high residual feed intake (HRFI) group. Among them, the expression of microbiome Elusimicrobiota was significantly higher in the LRFI group than in the HRFI group (P < 0.05). And we also found a significant differences in secondary metabolites biosynthesis, transport, and catabolism pathways between the two groups in microbial function (P < 0.05). Based on metabolomic analysis, 17 different metabolites were found. Among them, Lipids and lipid molecules accounted for the highest proportion. Whereas the liver is very closely related to lipid metabolism, we are close to understanding whether an individual's energy utilization efficiency is related to gene expression in the liver. We selected six ducks from each group of six ducks each for liver transcriptome analysis. A total of 322 differential genes were identified in the transcriptome analysis results, and 319 genes were significantly down-regulated. Among them, we found that prostaglandin endoperoxide synthase 2 (PTGS2) might be a key hub gene regulating RFI by co-occurrence network analysis. Interestingly, the differential gene PTGS2 was enriched in the arachidonic acid pathway at the same time as the differential metabolite 15-deoxy-delta12,14-prostaglandin J2 (15d-PGJ2). In addition, the results of the association analysis of differential metabolites with microorganisms also revealed a significant negative correlation between 15d-PGJ2 and Elusimicrobiota. CONCLUSION Based on comprehensive analysis of the research results, we speculate that the Elusimicrobiota may affect the feed utilization efficiency in ducks by regulating the expression of the PTGS2 gene.
Collapse
Affiliation(s)
- Rongbing Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Zhejiang Provincial Engineering Research Center for Poultry Breeding Industry and Green Farming Technology, Institute of Animal Science & Veterinary, Ministry of Agriculture and Rural Affairs of China, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yuguang Chang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Zhejiang Provincial Engineering Research Center for Poultry Breeding Industry and Green Farming Technology, Institute of Animal Science & Veterinary, Ministry of Agriculture and Rural Affairs of China, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Dandan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Zhejiang Provincial Engineering Research Center for Poultry Breeding Industry and Green Farming Technology, Institute of Animal Science & Veterinary, Ministry of Agriculture and Rural Affairs of China, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hanxue Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Zhejiang Provincial Engineering Research Center for Poultry Breeding Industry and Green Farming Technology, Institute of Animal Science & Veterinary, Ministry of Agriculture and Rural Affairs of China, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Zhejiang Provincial Engineering Research Center for Poultry Breeding Industry and Green Farming Technology, Institute of Animal Science & Veterinary, Ministry of Agriculture and Rural Affairs of China, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yibo Zong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Zhejiang Provincial Engineering Research Center for Poultry Breeding Industry and Green Farming Technology, Institute of Animal Science & Veterinary, Ministry of Agriculture and Rural Affairs of China, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shiheng Zhou
- Cherry Valley Agricultural Technology Co. Ltd, Zhoukou, 461300, China
| | - Zhizhou Huang
- Cherry Valley Agricultural Technology Co. Ltd, Zhoukou, 461300, China
| | - Li Chen
- Xianghu Laboratory, Hangzhou, 311231, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Zhejiang Provincial Engineering Research Center for Poultry Breeding Industry and Green Farming Technology, Institute of Animal Science & Veterinary, Ministry of Agriculture and Rural Affairs of China, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Zhejiang Provincial Engineering Research Center for Poultry Breeding Industry and Green Farming Technology, Institute of Animal Science & Veterinary, Ministry of Agriculture and Rural Affairs of China, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Zhejiang Provincial Engineering Research Center for Poultry Breeding Industry and Green Farming Technology, Institute of Animal Science & Veterinary, Ministry of Agriculture and Rural Affairs of China, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Lizhi Lu
- Xianghu Laboratory, Hangzhou, 311231, China.
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Zhejiang Provincial Engineering Research Center for Poultry Breeding Industry and Green Farming Technology, Institute of Animal Science & Veterinary, Ministry of Agriculture and Rural Affairs of China, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Zhejiang Provincial Engineering Research Center for Poultry Breeding Industry and Green Farming Technology, Institute of Animal Science & Veterinary, Ministry of Agriculture and Rural Affairs of China, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
8
|
Xu J, Li X, Fan Q, Zhao S, Jiao T. Effects of Yeast Culture on Lamb Growth Performance, Rumen Microbiota, and Metabolites. Animals (Basel) 2025; 15:738. [PMID: 40076021 PMCID: PMC11899153 DOI: 10.3390/ani15050738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
The effects of incorporating yeast culture (YC) into pelleted feeds on sheep production and the potential impact on rumen microbial populations, microbial metabolism, and fermentation have not been extensively studied. This study aimed to evaluate the effect of YC on growth performance, rumen tissue development, rumen fermentation, and rumen microflora in sheep and to explore the potential microbial mechanisms involved. Fifty healthy 3-month-old male lambs of small-tailed Han sheep, with an average weight of 28.44 ± 0.63 kg, were randomly divided into five groups: control (0% YC), 3% YC, 6% YC, 9% YC, and 12% YC. The pre-feeding period lasted for 15 days, followed by an official feeding period of 60 days. On the last day of the formal feeding period, six lambs that exhibited the best growth performance were randomly selected from the control group and the 9% YC group. These sheep were slaughtered, then the rumen epithelial tissue and rumen contents were collected for the measurement of rumen fermentation, microbial populations, and metabolites. Compared to the control group, the YC-treated groups showed higher daily and final body weight gains, as well as increased levels of propionic acid, butyric acid, and total volatile fatty acids (p < 0.05). YC supplementation also enhanced rumen papilla length and width (p < 0.05). Additionally, YC increased the relative abundance of certain microbial species (p < 0.05). These results suggest that supplementing 9% YC in pelleted diets for small-tailed Han sheep may enhance growth performance and improve the rumen environment.
Collapse
Affiliation(s)
- Jinlong Xu
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China; (J.X.); (Q.F.)
- Key Laboratory for Grassland Ecosystem of Ministry of Education, Gansu Agricultural University, Lanzhou 730070, China
- Provincial R&D Institute of Ruminants in Gansu, Lanzhou 730070, China;
| | - Xiongxiong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Qingshan Fan
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China; (J.X.); (Q.F.)
- Key Laboratory for Grassland Ecosystem of Ministry of Education, Gansu Agricultural University, Lanzhou 730070, China
| | - Shengguo Zhao
- Provincial R&D Institute of Ruminants in Gansu, Lanzhou 730070, China;
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Ting Jiao
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China; (J.X.); (Q.F.)
- Key Laboratory for Grassland Ecosystem of Ministry of Education, Gansu Agricultural University, Lanzhou 730070, China
- Provincial R&D Institute of Ruminants in Gansu, Lanzhou 730070, China;
| |
Collapse
|
9
|
Zhang S, You M, Shen Y, Zhao X, He X, Liu J, Ma N. Improving fatty liver hemorrhagic syndrome in laying hens through gut microbiota and oxylipin metabolism by Bacteroides fragilis: A potential involvement of arachidonic acid. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:182-199. [PMID: 39967692 PMCID: PMC11834063 DOI: 10.1016/j.aninu.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 08/02/2024] [Accepted: 08/18/2024] [Indexed: 02/20/2025]
Abstract
Bacteroides fragilis (B. fragilis), a crucial commensal bacterium within the gut, has shown connections with hepatic lipid metabolism and inflammation regulation. Nonetheless, the role of B. fragilis in the progression of fatty liver hemorrhagic syndrome (FLHS) remains unknown. This study aims to explore the ameliorative effects of B. fragilis on FLHS in laying hens, as well as its underlying mechanisms. This is the first study to employ a chicken FLHS model, combining microbiomics and oxylipin metabolomics to investigate the mechanism of action of intestinal symbiotic bacteria. Exp. 1: 40 laying hens at 25 weeks old were randomly divided into five treatment groups (eight replicates per group and one hen per replicate), including the control group (basal diet), the high-energy and low-protein (HELP) group, and the HELP group with three different levels (108, 109, and 1010 CFU) of B. fragilis. Exp. 2: 18 chickens at 25 weeks old were randomly divided into three treatment groups (six replicates per group and one hen per replicate) including the control group (basal diet), the model group (HELP diet), and the arachidonic acid (AA) group (HELP diet with 0.3% AA). The experiment period of Exp. 1 and Exp. 2 were 8 weeks. B. fragilis significantly improved body weight of seventh week (P = 0.006), liver lipid degeneration, blood lipid levels (triglycerides, cholesterol, and low-density lipoprotein cholesterol; P < 0.05), and liver function (alanine aminotransferase and aminotransferase; P < 0.05) in laying hens. B. fragilis downregulated the expression of lipid synthesis-related genes fatty acid synthase, acetyl-CoA carboxylase, and liver X receptor α, and inflammation-related genes tumor necrosis factor α, interleukin (IL)-1β, IL-6, and IL-8 in the liver of FLHS-affected hens (P < 0.05), while upregulating the expression of lipid oxidation-related genes carnitine palmitoyl transferase-1, peroxisome proliferator activated receptor (PPAR) α, and PPARγ (P < 0.05). The in-depth analysis indicated alterations in oxylipin pathways triggered by B. fragilis, as evidenced by changes in the expression of pivotal genes arachidonate 15-lipoxygenase, arachidonate 5-lipoxygenase (P < 0.05), subsequently causing modifications in relevant metabolites. This included a decrease in pro-inflammatory substances such as 15-oxoETE (P = 0.004), accompanied by an increase in AA (P = 0.008). B. fragilis regulated the homeostasis of intestinal flora by increasing the abundance of Bacteroides and decreasing the abundance of Succinatimonas and Faecalicoccus (P < 0.05). The integrated analysis revealed a robust positive correlation between Bacteroides abundance and AA levels (P = 0.007). This relationship was corroborated through in vitro experiments. Subsequently, the beneficial effect of AA in mitigating FLHS was confirmed in laying hens with FLHS, further supported by reverse transcription-polymerase chain reaction analysis demonstrating gene expression patterns akin to B. fragilis intervention. This study demonstrated that B. fragilis exerts an anti-FLHS effect through modulation of oxylipin metabolism and gut microbiota stability, with a pivotal role played by AA.
Collapse
Affiliation(s)
- Shaobo Zhang
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| | - Manhua You
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| | - Youming Shen
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Xinghua Zhao
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| | - Xin He
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| | - Juxiang Liu
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| | - Ning Ma
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
10
|
Wang C, Zhao J, Zhao W, Xue L, Chen Y, Tian J, Wang H, Ji X, Tian X, Zhang J, Gu Y. A comparative study of the composition of microorganisms and metabolites in different β-casein genetic types of dairy cows based on metagenomics and non-targeted metabolomics. Food Res Int 2025; 204:115859. [PMID: 39986751 DOI: 10.1016/j.foodres.2025.115859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/24/2025]
Abstract
β-Casein is the main component of cow's milk protein, with A1 and A2 β-casein being the most common. Of these, A1 β-casein hydrolysate produces BCM-7, which can cause lactose intolerance, while A2 β-casein milk is more gentle on the gut. However, there is limited research on the composition of rumen microbiota, metabolites, and host metabolites in different genotype cows using metagenomics and metabolomics. In this study, we used multi-omics analysis techniques to perform enrichment analysis of differential metabolites, identifying three key metabolic pathways in all three groups: Arachidonic acid metabolism and Tryptophan metabolism. The metabolites in these pathways exhibited unique metabolic characteristics within each group. We then used random forests and ROC to predict key metabolites in these pathways, identifying that the signature metabolites in the A2A2 group were predominantly anti-inflammatory substances, including 12-HETE, PGD2-4d, and Arachidonic Acid. The signature metabolites in the A1A2 group and A2A2 group were Indoleacetaldehyde. The AUC of these signature metabolites was greater than 0.85. Macrogenic linear discriminant analysis (LDA > 2.5) found that the microorganisms with greater contribution were concentrated in the A2A2 group. Compared with the other two groups, g_Bacteroides and g_Parabacteroides were mainly enriched in the A1A2 group. In group A2A2, g_Xanthomonas and g_Acetobacter are mainly enriched. Then, the key microorganisms in A1A2 group were identified by correlation analysis as g_Bacteroides and g_Parabacteroides. The key microorganisms in group A2A2 were g_Acetobacter, g_Xanthomonas and g_Mannheimia, which were consistent with the results of LEfSe analysis. These microorganisms mainly affect the degradation of fiber in the diet, host metabolism and the occurrence of inflammation. In conclusion, our results provide theoretical basis and data support for the study of dairy cows with different genotypes of β-casein, and help to determine the potential biological functions of different genotypes of casein in dairy products and their effects on human health.
Collapse
Affiliation(s)
- Chuanchuan Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding in Ningxia, Ningxia University, Yinchuan 750021, China
| | - Jinyan Zhao
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding in Ningxia, Ningxia University, Yinchuan 750021, China
| | - Wei Zhao
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding in Ningxia, Ningxia University, Yinchuan 750021, China
| | - Lin Xue
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding in Ningxia, Ningxia University, Yinchuan 750021, China
| | - Yafei Chen
- Yinchuan Animal Husbandry Technical Extension and Service Centre, Yinchuan 750021, China
| | - Jia Tian
- Ningxia Hui Autonomous Region Animal Husbandry Workstation, China
| | - Hua Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding in Ningxia, Ningxia University, Yinchuan 750021, China
| | - Xiaoyun Ji
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding in Ningxia, Ningxia University, Yinchuan 750021, China
| | - Xiaohua Tian
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding in Ningxia, Ningxia University, Yinchuan 750021, China
| | - Juan Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding in Ningxia, Ningxia University, Yinchuan 750021, China.
| | - Yaling Gu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding in Ningxia, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
11
|
Sáenz JS, Rios-Galicia B, Seifert J. Antiviral defense systems in the rumen microbiome. mSystems 2025; 10:e0152124. [PMID: 39807869 PMCID: PMC11834463 DOI: 10.1128/msystems.01521-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
The continuous interaction between phages and their respective hosts has resulted in the evolution of multiple bacterial immune mechanisms. However, the diversity and prevalence of antiviral defense systems in complex communities are still unknown. We therefore investigated the diversity and abundance of viral defense systems in 3,038 high-quality bacterial and archaeal genomes from the rumen. In total, 14,241 defense systems and 31,948 antiviral-related genes were identified. Those genes represented 114 unique system types grouped into 49 families. We observed a high prevalence of defense systems in the genomes. However, the number of defense systems, defense system families, and system density varied widely from genome to genome. Additionally, the number of defense system per genome correlated positively with the number of defense system families and the genome size. Restriction modification, Abi, and cas system families were the most common, but many rare systems were present in only 1% of the genomes. Antiviral defense systems are prevalent and diverse in the rumen, but only a few are dominant, indicating that most systems are rarely present. However, the collection of systems throughout the rumen may represent a pool of mechanisms that can be shared by different members of the community and modulate the phage-host interaction.IMPORTANCEPhages may act antagonistically at the cell level but have a mutualistic interaction at the microbiome level. This interaction shapes the structure of microbial communities and is mainly driven by the defense mechanism. However, the diversity of such mechanism is larger than previously thought. Because of that, we described the abundance and diversity of the antiviral defense system of a collection of genomes, metagenome-assembled genomes (MAGs) and isolates, from the rumen. While defense mechanisms seem to be prevalent among bacteria and archaea, only a few were common. This suggests that most of these defense mechanisms are not present in many rumen microbes but could be shared among different members of the microbial community. This is consistent with the "pan-immune system" model, which appears to be common across different environments.
Collapse
Affiliation(s)
- Johan S. Sáenz
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
- HoLMiR—Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
| | - Bibiana Rios-Galicia
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
- HoLMiR—Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
| | - Jana Seifert
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
- HoLMiR—Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
12
|
Pu G, Hou L, Zhao Q, Liu G, Wang Z, Zhou W, Niu P, Wu C, Li P, Huang R. Interactions between gut microbes and host promote degradation of various fiber components in Meishan pigs. mSystems 2025; 10:e0150024. [PMID: 39873521 PMCID: PMC11834408 DOI: 10.1128/msystems.01500-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025] Open
Abstract
Although metagenomic investigations into microbial fiber-degrading capabilities are currently prevalent, there is a notable gap in research concerning the regulatory mechanisms underpinning host-microbiota interactions that confer tolerance to high-fiber diets in pigs. In this study, 28 Meishan (MS) and 28 Large White (LW) pigs were subjected to feeding experiments involving various fiber levels. Subsequently, multi-omics was employed to investigate the influence of host-microbiota interactions on the fiber degradation of pigs. MS exhibited superior fiber digestibility compared with LW, particularly evident when fed a high-fiber diet. In MS, positive interactions among Treponema bryantii, Treponema sp., Rikenellaceae bacterium, and Bacteroidales bacterium WCE2004 facilitated the degradation of both cellulose and pectin. The reduced polymerization of polysaccharides and oligosaccharides observed in MS provides compelling evidence for their superior microbial fiber-degrading capability. The concentrations of propionate and butyrate retained in cecal lumen of MS was unchanged, whereas it was significantly increased in LW, indicating a strong absorption of short-chain fatty acids (SCFAs) in MS intestines. Correlation analysis using RNA-seq data revealed distinct patterns in LW and MS. In LW, microbial profiles along with GPR183 and GPR174 exhibited negative correlations with butyrate and propionate, respectively. Conversely, in MS, GPR174 and SLC2A4 were positively correlated with butyrate. Our findings underscore the dynamic collaboration among microbial species in degrading cellulose and pectin, coupled with the synergistic effects of SCFA transport-related genes, as crucial underpinnings for the heightened fiber digestibility observed in MS. These discoveries offer fresh perspectives into the intricate mechanisms governing host-microbiota interactions that influence fiber digestion in pigs. IMPORTANCE Studies on porcine intestinal microbiota have been widely conducted, and some microbial taxa with fiber degradation functions have been identified. However, the mechanisms of division among gut microbes in the degradation of complex fiber components are still unclear. In addition, the regulation of fiber digestion by host through absorption of short-chain fatty acids (SCFAs) needs to be further investigated. Our study used apparent total tract digestibility of dietary fiber to assess the utilization efficiency of dietary fiber between Meishan and Large White pigs. Subsequently, through metagenome sequencing and determination of fiber-degrading products, we found that in Meishan pigs, positive interactions among Treponema bryantii, Treponema sp., Rikenellaceae bacterium, and Bacteroidales bacterium WCE2004 facilitated the degradation of both cellulose and pectin. RNA-seq analysis elucidated breed-specific genes associated with SCFA absorption in cecum. By integrating multi-omics data, we constructed a framework outlining host-microbiota interactions that control dietary fiber utilization in pigs. Our data provide novel insights into host-microbiota interactions regulating fiber degradation and lay some theoretical foundations for improving the utilization efficiency of high-fiber cereal feed in pigs through targeted modulation of gut microbial function.
Collapse
Affiliation(s)
- Guang Pu
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Liming Hou
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Intestinal Microbiology, Huaian Academy, Nanjing Agricultural University, Nanjing, China
| | - Qingbo Zhao
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Gensheng Liu
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhongyu Wang
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wuduo Zhou
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Peipei Niu
- Laboratory of Intestinal Microbiology, Huaian Academy, Nanjing Agricultural University, Nanjing, China
| | - Chengwu Wu
- Laboratory of Intestinal Microbiology, Huaian Academy, Nanjing Agricultural University, Nanjing, China
| | - Pinghua Li
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Intestinal Microbiology, Huaian Academy, Nanjing Agricultural University, Nanjing, China
- Industrial Technology System Integration Innovation Center of Jiangsu Modern Agriculture (PIG), Nanjing, China
| | - Ruihua Huang
- Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Intestinal Microbiology, Huaian Academy, Nanjing Agricultural University, Nanjing, China
- Industrial Technology System Integration Innovation Center of Jiangsu Modern Agriculture (PIG), Nanjing, China
| |
Collapse
|
13
|
Liu Z, Jiang A, Ma D, Liu D, Han X, Zhao M, Zhou C, Tan Z. The impact of rumen microbial composition on apparent digestibility, rumen fermentation and metabolism in Sanhe cows and Holstein cows of different parities under identical dietary conditions. Front Vet Sci 2025; 11:1463209. [PMID: 40034816 PMCID: PMC11873279 DOI: 10.3389/fvets.2024.1463209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/22/2024] [Indexed: 03/05/2025] Open
Abstract
Previous studies have discussed the association between serum metabolism and lactation performance among Sanhe and Holstein cows of different parities and found that the metabolic profiles of these two breeds vary differently with parity. Since the rumen is the central organ for nutrient absorption and production transformation in dairy cows, it remains unknown whether the differences observed under the same dietary conditions are related to the structure of the rumen microbiome. This study measured the apparent digestibility and rumen fermentation parameters of Sanhe cows (S1/S2/S3/S4) and Holstein cows (H1/H2/H3/H4) across four parities and generated a comprehensive rumen microbiome dataset using high-throughput sequencing technology. Significant differences in dry matter digestibility (p = 0.001) and ammonia nitrogen (p = 0.024) were observed among the S groups, with higher trends of various VFA contents in S1 (0.05 < p < 0.1). The H group showed significant differences in crude protein digestibility (p = 0.001), higher isovaleric acid content in H1 (p = 0.002), and the lowest acetate to propionate ratio (p = 0.002) in H3. Metagenomic sequencing results indicated consistency between rumen microbiome patterns and metabolic changes, with S1 distinctly different from S2/S3/S4, and H1 and H2 different from H3 and H4. The species composition of the rumen microbiome was similar between Sanhe and Holstein cows, but differences in abundance were noted. Rhizophagus , Neocallimastix, and Piromyces were more abundant in S1, H1, and H2, and pathways such as autophagy-animal, plant-pathogen interaction, and endocytosis were significantly enriched in these parities. Multiparous Sanhe cows had higher abundances of ATP-binding cassette transporters pathways. Additionally, CAZymes such as GH84 and GH37 were significantly associated with differential physiological indicators and milk traits. In conclusion, this study reveals the complex relationship between rumen microbiota and metabolic characteristics in Sanhe and Holstein cows of different parities, indicating that changes in the structure of the rumen microbiome may be key factors affecting lactation performance and metabolic differences in dairy cows.
Collapse
Affiliation(s)
- Zixin Liu
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Aoyu Jiang
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Dianyu Ma
- Hulun Buir State Farm Xieertala Farm and Ranch Co., Ltd., Hulunbuir, China
| | - Dexin Liu
- Hulun Buir State Farm Xieertala Farm and Ranch Co., Ltd., Hulunbuir, China
| | - Xiaoyu Han
- Hulun Buir State Farm Xieertala Farm and Ranch Co., Ltd., Hulunbuir, China
| | - Man Zhao
- Hulun Buir State Farm Xieertala Farm and Ranch Co., Ltd., Hulunbuir, China
| | - Chuanshe Zhou
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zhiliang Tan
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Liu X, Tang Y, Chen H, Liu JX, Sun HZ. Rumen DNA virome and its relationship with feed efficiency in dairy cows. MICROBIOME 2025; 13:14. [PMID: 39819730 PMCID: PMC11740651 DOI: 10.1186/s40168-024-02019-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND The rumen harbors a diverse virome that interacts with other microorganisms, playing pivotal roles in modulating metabolic processes within the rumen environment. However, the characterization of rumen viruses remains incomplete, and their association with production traits, such as feed efficiency (FE), has not been documented. In this study, rumen fluid from 30 Chinese Holstein dairy cows was analyzed using next-generation sequencing (NGS) and High-Fidelity (HiFi) sequencing to elucidate the rumen DNA virome profile and uncover potential viral mechanisms influencing FE. RESULTS Integrated NGS and HiFi sequencing enhanced the length, completeness, and resolution of viral operational taxonomic units (vOTUs) compared to NGS. A total of 6,922 vOTUs were identified, including 4,716 lytic and 1,961 temperate vOTUs. At the family level, lytic viruses were predominantly from Siphoviridae (30.35%) and Schitoviridae (23.93%), while temperate viruses were primarily Siphoviridae (67.21%). The study annotated 2,382 auxiliary metabolic genes (AMGs), comprising 1,752 lytic virus-associated AMGs across 51 functional categories and 589 temperate virus-associated AMGs across 29 categories. Additionally, 2,232 vOTU-host metagenome-assembled genome (hMAG) linkages were predicted, with Firmicutes_A (33.60%) and Bacteroidota (33.24%) being the most prevalent host phyla. Significant differences in viral populations were observed between high and low FE groups across multiple taxonomic levels (P < 0.05). Two pathways were proposed to explain how rumen viruses might modulate FE: (1) Lytic viruses could lyse beneficial host bacteria linked to favorable cattle phenotypes, such as vOTU1836 targeting Ruminococcaceae, resulting in diminished organic acid production and consequently lower FE; (2) AMG-mediated host metabolism modulation, exemplified by GT2 carried by vOTU0897, which may enhance Lachnospiraceae fermentation capacity, increasing organic acid production and thereby improving FE. CONCLUSIONS This study constructed a comprehensive rumen DNA virome profile for Holstein dairy cows, elucidating the structural and functional complexity of rumen viruses, the roles of AMGs, and vOTU-hMAG linkages. The integration of these data offers novel insights into the mechanisms by which rumen viruses may regulate nutrient utilization, potentially influencing FE in dairy cows. Video Abstract.
Collapse
Affiliation(s)
- Xiaohan Liu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yifan Tang
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hongyi Chen
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jian-Xin Liu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hui-Zeng Sun
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
15
|
Yu S, Fu Y, Qu J, Zhang K, Zhu W, Mao S, Liu J. Adaptive survival strategies of rumen microbiota with solid diet deficiency in early life cause epithelial mitochondrial dysfunction. THE ISME JOURNAL 2025; 19:wraf064. [PMID: 40188484 PMCID: PMC12021266 DOI: 10.1093/ismejo/wraf064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/11/2025] [Accepted: 04/03/2025] [Indexed: 04/08/2025]
Abstract
With extreme nutritional substrate deficiency, the adaptive responses of the gastrointestinal microbiota and host metabolism are largely unknown. Here, we successfully established a microbial substrate deficiency model in the rumen without solid diet introduction in neonatal lambs. In the absence of solid diet, we observed a reduction in the Simpson Index of rumen bacteria, along with a marked decline in the abundance of keystone microorganisms such as Prevotella, Selenomonas, Megasphaera, and Succiniclasticum, indicating a simplified microbial interaction network. Additionally, more urea and NH3-N production facilitated microbial efficient nitrogen utilization to prioritize ammonia as a nitrogen source for survival, reallocating energy to overcome nutritional limitations and sustain their viability. In addition, enriched archaea (Methanosarcina, Methanomicrobium, Methanobrevibacter, and Methanobacterium) promoted hydrogen removal and the growth of nitrogen-producing microorganisms (Pecoramyces, Piromyces, Caecomyces, and Orpinomyces). It also reinforced the glutamate-glutamine pathway, as evidenced by the higher expression of glnA, GLUL, gdhA, and ureAB, suggesting enhanced internal cycling of nitrogen for microbial survival. This selfish microbial survival strategy deprived the host of adequate volatile fatty acids for energy metabolism, resulting in the downregulation of rumen epithelial cell cycle proteins (CCNB1, CCNE), abnormal mitochondrial morphology, and reduced mitochondrial deoxyribonucleic acid copy number and adenosine triphosphate production. Overall, these findings revealed the adaptive survival strategies of rumen microbiota with solid diet deficiency in early life, which caused alterations in epithelial cell mitochondrial function.
Collapse
Affiliation(s)
- Shiqiang Yu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuting Fu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinrui Qu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Zhang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengyong Mao
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Junhua Liu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
16
|
Eom JS, Choi Y, Lee SJ, Kim HS, Jo SU, Bae D, Lim DH, Kim ET, Kim SB, Lee SS. Integrated analysis of rumen metabolomics and metataxonomics to understand changes in metabolic and microbial community in Korean native goats under heat stress. Sci Rep 2024; 14:31416. [PMID: 39733052 PMCID: PMC11682336 DOI: 10.1038/s41598-024-83017-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024] Open
Abstract
Heat stress (HS) is an impactful condition in ruminants that negatively affects their physiological and rumen microbial composition. However, a fundamental understanding of metabolomic and metataxonomic mechanisms in goats under HS conditions is lacking. Here, we analyzed the rumen metabolomics, metataxonomics, and serum metabolomics of goats (n = 10, body weight: 41.08 ± 1.83 kg) under optimum temperature period (OTP) (HS-free, temperature humidity index (THI): 57.13 ± 3.98) and high temperature period (HTP) (HS-exposed, THI: 80.27 ± 1.22) conditions, to identify changes in key metabolites and the rumen microbiome induced by HS. Compared to the OTP and HTP conditions, metabolomic analysis revealed significant changes in rumen metabolites related to energy and amino acid metabolism, with HTP goats showing potential rumen metabolic biomarkers, such as butyrate, isopropanol, phenylacetate, and 2-oxoisocaproate (P < 0.001). Serum analysis revealed significant changes in energy metabolism and immune response, with HTP goats showing potential metabolic biomarkers, including acetate, betaine, glucuronate, and kynurenine (P < 0.05). Metataxonomic analysis revealed that HS affected the alpha diversity measurements, including the Chao1 estimate (P < 0.05) and evenness (P < 0.05) between OTP and HTP groups. Through the metabolic association of the rumen microbiome with the metabolome, we found that Fibrobacter and Ruminococcus were enriched in HTP and positively correlated with ruminal microbial metabolites, such as acetate. In addition, Prevotellaceae UCG-003, which was denoted as the keynote genus in the HTP, co-occurred with acetate-producing bacteria such as Quinella and Ruminococcus. Furthermore, we identified that Oscillospiraceae UCG-002, an enriched bacterial genus in HTP, showed a positive correlation with functional features, such as biotin and sulfur metabolism. Our study provided fundamental insights into how HS affected the physiology and rumen microbial compositions of goats and how both microbiome and host-dependent mechanisms contributed to these changes. These findings could potentially suggest strategies for mitigating the adverse effects of HS, including changes in the microbial population and energy metabolism in goats.
Collapse
Affiliation(s)
- Jun Sik Eom
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - Youyoung Choi
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Shin Ja Lee
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyun Sang Kim
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Animal Nutrition and Physiology Division, Rural Development Administration, National Institute of Animal Science, Wanju, 55368, Republic of Korea
| | - Seong Uk Jo
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Dongryeoul Bae
- Division of Research and Development, TracoWorld Ltd., Gwangmyeong-si, 14348, Republic of Korea
| | - Dong-Hyun Lim
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - Eun Tae Kim
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - Sang Bum Kim
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - Sung Sill Lee
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
17
|
Nunes AT, Faleiros CA, Poleti MD, Novais FJ, López-Hernández Y, Mandal R, Wishart DS, Fukumasu H. Unraveling Ruminant Feed Efficiency Through Metabolomics: A Systematic Review. Metabolites 2024; 14:675. [PMID: 39728456 DOI: 10.3390/metabo14120675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Advancements in metabolomic technologies have revolutionized our understanding of feed efficiency (FE) in livestock, offering new pathways to enhance both profitability and sustainability in ruminant production. METHODS This review offers a critical and systematic evaluation of the metabolomics methods used to measure and assess FE in ruminants. We conducted a comprehensive search of PubMed, Web of Science, and Scopus databases, covering publications from 1971 to 2023. This review synthesizes findings from 71 studies that applied metabolomic approaches to uncover the biological mechanisms driving interindividual variations in FE across cattle, sheep, goats, and buffaloes. RESULTS Most studies focused on cattle and employed targeted metabolomics to identify key biomarkers, including amino acids, fatty acids, and other metabolites linked to critical pathways such as energy metabolism, nitrogen utilization, and muscle development. Despite promising insights, challenges remain, including small sample sizes, methodological inconsistencies, and a lack of validation studies, particularly for non-cattle species. CONCLUSIONS By leveraging state-of-the-art metabolomic methods, this review highlights the potential of metabolomics to provide cost-effective, non-invasive molecular markers for FE evaluation, paving the way for more efficient and sustainable livestock management. Future research should prioritize larger, species-specific studies with standardized methods to validate identified biomarkers and enhance practical applications in livestock production systems.
Collapse
Affiliation(s)
- Alanne T Nunes
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Pirassununga 13635-900, Brazil
| | - Camila A Faleiros
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Pirassununga 13635-900, Brazil
| | - Mirele D Poleti
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Pirassununga 13635-900, Brazil
| | - Francisco J Novais
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Yamilé López-Hernández
- Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Metabolomics and Proteomics Laboratory, CONAHCyT-Autonomous University of Zacatecas, Zacatecas 98066, Mexico
| | - Rupasri Mandal
- Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - David S Wishart
- Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Heidge Fukumasu
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo, Pirassununga 13635-900, Brazil
| |
Collapse
|
18
|
Wei J, Su J, Wang G, Li W, Wen Z, Liu H. Chitooligosaccharides improves intestinal mucosal immunity and intestinal microbiota in blue foxes. Front Immunol 2024; 15:1506991. [PMID: 39628477 PMCID: PMC11611864 DOI: 10.3389/fimmu.2024.1506991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 10/30/2024] [Indexed: 12/06/2024] Open
Abstract
Objective Gut health is critical to the health of the host. This study was conducted to investigate the effects of Chitooligosaccharides (COS) on intestinal morphology, intestinal barrier, intestinal immunity and cecum microbiota of blue foxes. Methods Seventy-two 125-day-old blue foxes were randomly divided into basal diet (BD) group, 200 ppm COS1 (1.5 kDa) group and 200 ppm COS2 (3 kDa) group for 8 weeks. Results We elucidated that dietary COS1 supplementation promoted the development of intestinal villus morphology in blue foxes. Importantly, COS1 increased the number of goblet cells in duodenum, jejunum and ileum by 27.71%, 23.67%, 14.97% and S-IgA secretion in duodenum, jejunum and ileum by 71.59% and 38.56%, and up-regulate the expression of Occludin and ZO-1 by 50.18% and 148.62%, respectively. Moreover, COS1 promoted the pro-inflammatory and anti-inflammatory balance of small intestinal mucosa, and increased the diversity of cecum microbiota of blue foxes, especially Lactobacillus_agilis and Lactobacillus_murinus, and up-regulated the signaling pathways related to polysaccharide decomposition and utilization. Conclusion Here, we present dietary COS1 (1.5 kDa) can promote intestinal villus development, enhance intestinal barrier function, regulate intestinal immune balance and cecum microbiota homeostasis.
Collapse
Affiliation(s)
- Jiali Wei
- Department of Livestock and Poultry Breeding, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jing Su
- Department of Livestock and Poultry Breeding, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Guiwu Wang
- Department of Livestock and Poultry Breeding, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wei Li
- Technological Innovation Center for Fur Animal Breeding of Hebei, Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | | | - Huitao Liu
- Department of Livestock and Poultry Breeding, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
19
|
Thacharodi A, Hassan S, Ahmed ZHT, Singh P, Maqbool M, Meenatchi R, Pugazhendhi A, Sharma A. The ruminant gut microbiome vs enteric methane emission: The essential microbes may help to mitigate the global methane crisis. ENVIRONMENTAL RESEARCH 2024; 261:119661. [PMID: 39043353 DOI: 10.1016/j.envres.2024.119661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/17/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
Ruminants release enteric methane into the atmosphere, significantly increasing greenhouse gas emissions and degrading the environment. A common focus of traditional mitigation efforts is on dietary management and manipulation, which may have limits in sustainability and efficacy, exploring the potential of essential microorganisms as a novel way to reduce intestinal methane emissions in ruminants; a topic that has garnered increased attention in recent years. Fermentation and feed digestion are significantly aided by essential microbes found in the rumen, such as bacteria, fungi, and archaea. The practical implications of the findings reported in various studies conducted on rumen gut concerning methane emissions may pave the way to understanding the mechanisms of CH4 production in the rumen to enhance cattle feed efficiency and mitigate CH4 emissions from livestock. This review discussed using essential bacteria to reduce intestinal methane emissions in ruminants. It investigates how particular microbial strains or consortia can alter rumen fermentation pathways to lower methane output while preserving the health and productivity of animals. We also describe the role of probiotics and prebiotics in managing methane emissions using microbial feed additives. Further, recent studies involving microbial interventions have been discussed. The use of new methods involving functional metagenomics and meta-transcriptomics for exploring the rumen microbiome structure has been highlighted. This review also emphasizes the challenges faced in altering the gut microbiome and future directions in this area.
Collapse
Affiliation(s)
- Aswin Thacharodi
- Dr. Thacharodi's Laboratories, Department of Research and Development, Puducherry, 605005, India
| | - Saqib Hassan
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India; Future Leaders Mentoring Fellow, American Society for Microbiology, Washington, 20036, USA
| | - Z H Tawfeeq Ahmed
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India
| | - Prabhakar Singh
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India
| | - Mohsin Maqbool
- Sidney Kimmel Cancer Center, Jefferson Health, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Ramu Meenatchi
- Department of Biotechnology, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, 603203, India
| | - Arivalagan Pugazhendhi
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, AgroInnovationLab, School of Engineering and Sciences, Queretaro, 76130, Mexico
| | - Ashutosh Sharma
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, AgroInnovationLab, School of Engineering and Sciences, Queretaro, 76130, Mexico.
| |
Collapse
|
20
|
Zhao Y, Tan J, Fang L, Jiang L. Harnessing meta-omics to unveil and mitigate methane emissions in ruminants: Integrative approaches and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175732. [PMID: 39182764 DOI: 10.1016/j.scitotenv.2024.175732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Methane emissions from enteric fermentation present a dual challenge globally: they not only contribute significantly to atmospheric greenhouse gases but also represent a considerable energy loss for ruminant animals. Utilizing high-throughput omics technologies to analyze rumen microbiome samples (meta-omics, i.e., metagenomics, metatranscriptomics, metaproteomics, metabolomics) holds vast potential for uncovering the intricate interplay between diet, microbiota, and methane emissions in these animals. The primary obstacle is the effective integration of diverse meta-omic approaches and their broader application across different ruminant species. Genetic variability significantly impacts methane production in ruminants, suggesting that genomic selection could be a viable strategy to reduce emissions. While substantial research has been conducted on the microbiological aspects of methane production, there remains a critical need to delineate the specific genetic interactions between the host and its microbiome. Advancements in meta-omics technologies are poised to shed light on these interactions, enhancing our understanding of the genetic factors that govern methane output. This review explores the potential of meta-omics to accelerate genetic advancements that could lead to reduced methane emissions in ruminants. By employing a systems biology approach, the integration of various omics technologies allows for the identification of key genomic regions and genetic markers linked to methane production. These markers can then be leveraged in selective breeding programs to cultivate traits associated with lower emissions. Moreover, the review addresses current challenges in applying genomic selection for this purpose and discusses how omics technologies can overcome these obstacles. The systematic integration and analysis of diverse biological data provide deeper insights into the genetic underpinnings and overall biology of methane production traits in ruminants. Ultimately, this comprehensive approach not only aids in reducing the environmental impact of agriculture but also contributes to the sustainability and efficiency of livestock management.
Collapse
Affiliation(s)
- Yuchao Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Jian Tan
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Luoyun Fang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
21
|
Zhang C, Liu H, Jiang X, Zhang Z, Hou X, Wang Y, Wang D, Li Z, Cao Y, Wu S, Huws SA, Yao J. An integrated microbiome- and metabolome-genome-wide association study reveals the role of heritable ruminal microbial carbohydrate metabolism in lactation performance in Holstein dairy cows. MICROBIOME 2024; 12:232. [PMID: 39529146 PMCID: PMC11555892 DOI: 10.1186/s40168-024-01937-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Despite the growing number of studies investigating the connection between host genetics and the rumen microbiota, there remains a dearth of systematic research exploring the composition, function, and metabolic traits of highly heritable rumen microbiota influenced by host genetics. Furthermore, the impact of these highly heritable subsets on lactation performance in cows remains unknown. To address this gap, we collected and analyzed whole-genome resequencing data, rumen metagenomes, rumen metabolomes and short-chain fatty acids (SCFAs) content, and lactation performance phenotypes from a cohort of 304 dairy cows. RESULTS The results indicated that the proportions of highly heritable subsets (h2 ≥ 0.2) of the rumen microbial composition (55%), function (39% KEGG and 28% CAZy), and metabolites (18%) decreased sequentially. Moreover, the highly heritable microbes can increase energy-corrected milk (ECM) production by reducing the rumen acetate/propionate ratio, according to the structural equation model (SEM) analysis (CFI = 0.898). Furthermore, the highly heritable enzymes involved in the SCFA synthesis metabolic pathway can promote the synthesis of propionate and inhibit the acetate synthesis. Next, the same significant SNP variants were used to integrate information from genome-wide association studies (GWASs), microbiome-GWASs, metabolome-GWASs, and microbiome-wide association studies (mWASs). The identified single nucleotide polymorphisms (SNPs) of rs43470227 and rs43472732 on SLC30A9 (Zn2+ transport) (P < 0.05/nSNPs) can affect the abundance of rumen microbes such as Prevotella_sp., Prevotella_sp._E15-22, Prevotella_sp._E13-27, which have the oligosaccharide-degradation enzymes genes, including the GH10, GH13, GH43, GH95, and GH115 families. The identified SNPs of chr25:11,177 on 5s_rRNA (small ribosomal RNA) (P < 0.05/nSNPs) were linked to ECM, the abundance alteration of Pseudobutyrivibrio_sp. (a genus that was also showed to be linked to the ECM production via the mWASs analysis), GH24 (lysozyme), and 9,10,13-TriHOME (linoleic acid metabolism). Moreover, ECM, and the abundances of Pseudobutyrivibrio sp., GH24, and 9,10,13-TRIHOME were significantly greater in the GG genotype than in the AG genotype at chr25:11,177 (P < 0.05). By further the SEM analysis, GH24 was positively correlated with Pseudobutyrivibrio sp., which was positively correlated with 9,10,13-triHOME and subsequently positively correlated with ECM (CFI = 0.942). CONCLUSION Our comprehensive study revealed the distinct heritability patterns of rumen microbial composition, function, and metabolism. Additionally, we shed light on the influence of host SNP variants on the rumen microbes with carbohydrate metabolism and their subsequent effects on lactation performance. Collectively, these findings offer compelling evidence for the host-microbe interactions, wherein cows actively modulate their rumen microbiota through SNP variants to regulate their own lactation performance. Video Abstract.
Collapse
Affiliation(s)
- Chenguang Zhang
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Huifeng Liu
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Xingwei Jiang
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Zhihong Zhang
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- JUNLEBAO-Northwest A&F University Cooperation Dairy Research Institute, Leyuan Animal Husbandry, JUNLEBAO Company, Shijiazhuang, Hebei, China
| | - Xinfeng Hou
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- JUNLEBAO-Northwest A&F University Cooperation Dairy Research Institute, Leyuan Animal Husbandry, JUNLEBAO Company, Shijiazhuang, Hebei, China
| | - Yue Wang
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Dangdang Wang
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Zongjun Li
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China.
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China.
| | - Sharon A Huws
- Institute of Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, BT9 5DL, UK.
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China.
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China.
| |
Collapse
|
22
|
Mi J, Jing X, Ma C, Shi F, Cao Z, Yang X, Yang Y, Kakade A, Wang W, Long R. A metagenomic catalogue of the ruminant gut archaeome. Nat Commun 2024; 15:9609. [PMID: 39505912 PMCID: PMC11542040 DOI: 10.1038/s41467-024-54025-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
While the ruminant gut archaeome regulates the gut microbiota and hydrogen balance, it is also a major producer of the greenhouse gas methane. However, ruminant gut archaeome diversity within the gastrointestinal tract (GIT) of ruminant animals worldwide remains largely underexplored. Here, we construct a catalogue of 998 unique archaeal genomes recovered from the GITs of ruminants, utilizing 2270 metagenomic samples across 10 different ruminant species. Most of the archaeal genomes (669/998 = 67.03%) belong to Methanobacteriaceae and Methanomethylophilaceae (198/998 = 19.84%). We recover 47/279 previously undescribed archaeal genomes at the strain level with completeness of >80% and contamination of <5%. We also investigate the archaeal gut biogeography across various ruminants and demonstrate that archaeal compositional similarities vary significantly by breed and gut location. The catalogue contains 42,691 protein clusters, and the clustering and methanogenic pathway analysis reveal strain- and host-specific dependencies among ruminant animals. We also find that archaea potentially carry antibiotic and metal resistance genes, mobile genetic elements, virulence factors, quorum sensors, and complex archaeal viromes. Overall, this catalogue is a substantial repository for ruminant archaeal recourses, providing potential for advancing our understanding of archaeal ecology and discovering strategies to regulate methane production in ruminants.
Collapse
Affiliation(s)
- Jiandui Mi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, 730000, China.
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, 730000, China.
| | - Xiaoping Jing
- State Key Laboratory of Grassland and Agro-Ecosystems, International Centre for Tibetan Plateau Ecosystem Management, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Chouxian Ma
- Independent Researcher, Changsha, 410023, China
| | - Fuyu Shi
- State Key Laboratory of Grassland and Agro-Ecosystems, International Centre for Tibetan Plateau Ecosystem Management, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Ze Cao
- State Key Laboratory of Grassland and Agro-Ecosystems, International Centre for Tibetan Plateau Ecosystem Management, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Xin Yang
- State Key Laboratory of Grassland and Agro-Ecosystems, International Centre for Tibetan Plateau Ecosystem Management, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Yiwen Yang
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Apurva Kakade
- State Key Laboratory of Grassland and Agro-Ecosystems, International Centre for Tibetan Plateau Ecosystem Management, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Weiwei Wang
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Ruijun Long
- State Key Laboratory of Grassland and Agro-Ecosystems, International Centre for Tibetan Plateau Ecosystem Management, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
23
|
Li Q, Wu Y, Qi X, Liu Z, Wang C, Ma X, Ma Y. Prickly Ash Seeds Improve the Ruminal Epithelial Development and Growth Performance of Hu Sheep by Modulating the Rumen Microbiota and Metabolome. Microorganisms 2024; 12:2242. [PMID: 39597631 PMCID: PMC11596069 DOI: 10.3390/microorganisms12112242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
It is known that the addition of feed rich in bioactive components to animal diets will affect rumen fermentation parameters and flora structure. However, research on the regulatory effects of prickly ash seeds (PASs) during rumen development or on the rumen microbiome and its metabolites in sheep is limited. The current study was designed to explore the effects of PASs on sheep rumen development and growth performance using metagenomics and metabolomics. Eighteen 3-month-old Hu lambs were randomly allotted to three different dietary treatment groups: 0% (basal diet, CK), 3% (CK with 3% PAS, low-dose PAS, LPS), and 6% (CK with 6% PAS, high-dose PAS, HPS) PASs. The lambs were slaughtered to evaluate production performance. Our results showed that dietary PAS addition improved the average daily gain and reduced the F/G ratio of the experimental animals. Additionally, the height and width of the rumen papilla in the treatment groups were significantly higher than those in the CK group. The fermentation parameters showed that the levels of acetate and butyrate were significantly higher in the LPS group than in the CK and HPS groups. The propionate levels in the HPS group were significantly higher than those in the CK and LPS groups. Metagenomics analysis revealed that PAS dietary supplementation improved the abundance of Clostridiales and Bacteroidales and reduced the abundance of Prevotella, Butyrivibrio, and Methanococcus. Metabolomic analyses revealed that increased metabolite levels, such as those of serotonin, L-isoleucine, and L-valine, were closely related to growth-related metabolic pathways. The correlations analyzed showed that papilla height and muscular thickness were positively and negatively correlated with serotonin and L-valine, respectively. Average daily gain (ADG) was positively and negatively correlated with L-valine and several Prevotella, respectively. In addition, muscular thickness was positively correlated with Sodaliphilus pleomorphus, four Prevotella strains, Sarcina_sp_DSM_11001, and Methanobrevibacter_thaueri. Overall, PAS addition improved sheep growth performance by regulating beneficial microorganism and metabolite abundances, facilitating bacterial and viral invasion resistance.
Collapse
Affiliation(s)
- Qiao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (Y.W.); (X.Q.); (Z.L.); (C.W.); (X.M.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yi Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (Y.W.); (X.Q.); (Z.L.); (C.W.); (X.M.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xingcai Qi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (Y.W.); (X.Q.); (Z.L.); (C.W.); (X.M.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Zilong Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (Y.W.); (X.Q.); (Z.L.); (C.W.); (X.M.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Chunhui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (Y.W.); (X.Q.); (Z.L.); (C.W.); (X.M.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xueyi Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (Y.W.); (X.Q.); (Z.L.); (C.W.); (X.M.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (Y.W.); (X.Q.); (Z.L.); (C.W.); (X.M.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
24
|
Chen T, Deng C, Li S, Li B, Liang Y, Zhang Y, Li J, Xu N, Yu K. Multi-omics illuminates the functional significance of previously unknown species in a full-scale landfill leachate treatment plant. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135669. [PMID: 39208627 DOI: 10.1016/j.jhazmat.2024.135669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/30/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Landfill leachate treatment plants (LLTPs) harbor a vast reservoir of uncultured microbes, yet limited studies have systematically unraveled their functional potentials within LLTPs. Combining 36 metagenomic and 18 metatranscriptomic datasets from a full-scale LLTP, we unveiled a double-edged sword role of unknown species in leachate biotreatment and environmental implication. We identified 655 species-level genome bins (SGBs) spanning 47 bacterial and 3 archaeal phyla, with 75.9 % unassigned to any known species. Over 90 % of up-regulated functional genes in biotreatment units, compared to the leachate influent, were carried by unknown species and actively participated in carbon, nitrogen, and sulfur cycles. Approximately 79 % of the 37,366 carbohydrate active enzymes (CAZymes), with ∼90 % novelty and high expression, were encoded by unknown species, exhibiting great potential in biodegrading carbohydrate compounds linked to human meat-rich diets. Unknown species offered a valuable genetic resource of thousands of versatile, abundant, and actively expressed metabolic gene clusters (MGCs) and biosynthetic gene clusters (BGCs) for enhancing leachate treatment. However, unknown species may contribute to the emission of hazardous N2O/H2S and represented significant reservoirs for antibiotic-resistant pathogens that posed environmental safety risks. This study highlighted the significance of considering both positive and adverse effects of LLTP microbes to optimize LLTP performance.
Collapse
Affiliation(s)
- Tianyi Chen
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China; College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China
| | - Chunfang Deng
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China; College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China.
| | - Shaoyang Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
| | - Bing Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Yuanmei Liang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
| | - Yuanyan Zhang
- Jiangxi Academy of Eco-Environmental Sciences & Planning, Nanchang 330029, PR China
| | - Jiarui Li
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China
| | - Nan Xu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
| |
Collapse
|
25
|
Guo W, Zhou M, Li F, Neves ALA, Ma T, Bi S, Wang W, Long R, Guan LL. Seasonal stability of the rumen microbiome contributes to the adaptation patterns to extreme environmental conditions in grazing yak and cattle. BMC Biol 2024; 22:240. [PMID: 39443951 PMCID: PMC11515522 DOI: 10.1186/s12915-024-02035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The rumen microbiome plays an essential role in maintaining ruminants' growth and performance even under extreme environmental conditions, however, which factors influence rumen microbiome stability when ruminants are reared in such habitats throughout the year is unclear. Hence, the rumen microbiome of yak (less domesticated) and cattle (domesticated) reared on the Qinghai-Tibetan Plateau through the year were assessed to evaluate temporal changes in their composition, function, and stability. RESULTS Rumen fermentation characteristics and pH significantly shifted across seasons in both cattle and yak, but the patterns differed between the two ruminant species. Ruminal enzyme activity varied with season, and production of xylanase and cellulase was greater in yak compared to cattle in both fall and winter. The rumen bacterial community varied with season in both yak and cattle, with higher alpha diversity and similarity (beta diversity) in yak than cattle. The diversity indices of eukaryotic community did not change with season in both ruminant species, but higher similarity was observed in yak. In addition, the similarity of rumen microbiome functional community was higher in yak than cattle across seasons. Moreover, yak rumen microbiome encoded more genes (GH2 and GH3) related to cellulose and hemicellulose degradation compared to cattle, and a new enzyme family (GH160) gene involved in oligosaccharides was uniquely detected in yak rumen. The season affected microbiome attenuation and buffering values (stability), with higher buffering value in yak rumen microbiome than cattle. Positive correlations between antimicrobial resistance gene (dfrF) and CAZyme family (GH113) and microbiome stability were identified in yak, but such relationship was negatively correlated in cattle. CONCLUSIONS The findings of the potential of cellulose degradation, the relationship between rumen microbial stability and the abundance of functional genes varied differently across seasons and between yak and cattle provide insight into the mechanisms that may underpin their divergent adaptation patterns to the harsh climate of the Qinghai-Tibetan Plateau. These results lay a solid foundation for developing strategies to maintain and improve rumen microbiome stability and dig out the potential candidates for manufacturing lignocellulolytic enzymes in the yak rumen to enhance ruminants' performance under extreme environmental conditions.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Plateau Mountain Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
- State Key Laboratory of Grassland Agro-Ecosystems, International Centre of Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mi Zhou
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Fuyong Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
- Department of Animal Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - André Luis Alves Neves
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, Frederiksberg C, 1870, Denmark
| | - Tao Ma
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sisi Bi
- State Key Laboratory of Grassland Agro-Ecosystems, International Centre of Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Weiwei Wang
- Key Laboratory of Plateau Mountain Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Ruijun Long
- State Key Laboratory of Grassland Agro-Ecosystems, International Centre of Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
26
|
Tang Y, Liu X, Zhu S, Jia M, Liu JX, Sun HZ. New insights into the enteric methane production based on the archaeal genome atlas of ruminant gastrointestinal tract. J Adv Res 2024:S2090-1232(24)00418-1. [PMID: 39426464 DOI: 10.1016/j.jare.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/15/2024] [Indexed: 10/21/2024] Open
Abstract
INTRODUCTION As one of the important components of ruminant gastrointestinal tract (GIT) microbiome, archaea are involved in many biological processes, especially methanogenesis. In spite of being a well-recognised member of the mammalian gut microbiome, it remains poorly characterized, partly due to the lack of a unified reference genome catalog. OBJECTIVES This study aimed to construct a unified genome atlas that captures the wider diversity in archaea and is thus more appropriate for functional and taxonomic exploration of ruminant GIT archaea. METHODS We collected archaeal genomes from public sources and new data of this study. We performed phylogenetic and functional genomics analysis, prophage identification based on the genomes. Using collected genomes as a reference, we conducted metagenomic and metatranscriptomic analysis on rumen fluid samples from 18 dairy cows, and investigated the correlation between rumen archaeal communities and methane (CH4) production profiles. RESULTS We constructed the ruminant GIT archaeal genomes (RGAG) by compiling 405 strain-level (160 species) non-redundant archaeal genomes from more than 10 ruminant species. Investigating the functional heterogeneity and methanogenic structure within RGAG revealed that it possessed 1,124 (99.5%) unknown microbial biosynthetic gene clusters. A survey of RGAG-borne prophages identified 63 prophages with 122 host-beneficial genes and 18 auxiliary metabolic genes. The pipeline for both metagenomics and metatranscriptomics generated in the study revealed the roles of archaeal genomes under-assessed in general multi-omics analysis. The highly expressed genus Methanosphaera was negatively correlated with CH4 production at the RNA level. CONCLUSION A unified genome atlas of ruminant GIT archaea is constructed in the study. Our analyses revealed the advantages of metatranscriptomics over metagenomics in studying rumen archaeal communities and further demonstrated that the multifaceted functions of ruminant archaea remain undiscovered. Differences in rumen archaeal community structure among cattle with different CH4 production profiles may reflect the balance between rumen hydrogen production and methanogenesis. Our work provides a new resource for interrogating archaeal functions in the ruminant GIT and potential targets for future CH4 reduction.
Collapse
Affiliation(s)
- Yifan Tang
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaohan Liu
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, PR China
| | - Senlin Zhu
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, PR China
| | - Minghui Jia
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, PR China
| | - Jian-Xin Liu
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, PR China; Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou 310058, PR China
| | - Hui-Zeng Sun
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, PR China; Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
27
|
Adnane M, Chapwanya A. Microbial Gatekeepers of Fertility in the Female Reproductive Microbiome of Cattle. Int J Mol Sci 2024; 25:10923. [PMID: 39456706 PMCID: PMC11507627 DOI: 10.3390/ijms252010923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
This review paper delves into the intricate relationship between the genital microbiome and fertility outcomes in livestock, with a specific focus on cattle. Drawing upon insights derived from culture-independent metagenomics studies, the paper meticulously examines the composition and dynamics of the genital microbiome. Through advanced techniques such as high-throughput sequencing, the review illuminates the temporal shifts in microbial communities and their profound implications for reproductive health. The analysis underscores the association between dysbiosis-an imbalance in microbial communities-and the development of reproductive diseases, shedding light on the pivotal role of microbial gatekeepers in livestock fertility. Furthermore, the paper emphasizes the need for continued exploration of uncharted dimensions of the female reproductive microbiome to unlock new insights into its impact on fertility. By elucidating the complex interplay between microbial communities and reproductive health, this review underscores the importance of innovative strategies aimed at enhancing fertility and mitigating reproductive diseases in livestock populations.
Collapse
Affiliation(s)
- Mounir Adnane
- Department of Biomedicine, Institute of Veterinary Sciences, University of Tiaret, Tiaret 14000, Algeria;
| | - Aspinas Chapwanya
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, Basseterre 00265, Saint Kitts and Nevis
| |
Collapse
|
28
|
Bai J, Tang L, Bi Y, Li M. Multi-omics insights into the energy compensation of rumen microbiota of grazing yaks in cold season. Front Microbiol 2024; 15:1467841. [PMID: 39444681 PMCID: PMC11496799 DOI: 10.3389/fmicb.2024.1467841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Background The ability of yaks to adapt to the extreme environment of low temperatures and hypoxia at cold seasons on the Qinghai-Tibet Plateau (QTP) is related to the host genome; however, the convergent evolution of rumen microbiomes in host adaption is unknown. Methods Here, we conducted a multi-omics study on the rumen fluid of grazing yaks from warm (July) and cold (December) seasons on the QTP to evaluate the convergent evolution of rumen microbiomes in the adaptation of grazing yaks to cold-seasons environments. Results The results showed that grazing yaks at cold seasons had higher fibrolytic enzyme activities and volatile fatty acids (VFAs) concentrations, and the relative abundance of Firmicutes and the ratio Firmicutes to Bacteroidetes was significantly higher than that of yaks at warm seasons. Macrogenomic analyses showed that genes involved in forming VFAs and arginine were significantly enriched in cold-season yaks. Transcriptome analyses of the rumen epithelium showed that 72 genes associated with VFAs absorption and transport were significantly upregulated in cold-season yaks. Metabolomic analyses showed that the levels of ornithine, related to efficient nitrogen utilization, were significantly upregulated in cold-season yaks. Conclusion The synergistic role of rumen microbiomes in the adaptation of grazing yaks to extreme environments at cold seasons was revealed by multi-omics study.
Collapse
Affiliation(s)
- Jie Bai
- Key Laboratory for Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China
| | - Lijuan Tang
- Key Laboratory for Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China
| | - Yanliang Bi
- National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingliang Li
- Livestock and Poultry Genetic Resources Protection and Utilization Center in Qinghai Province, Xining, China
| |
Collapse
|
29
|
Wang W, Wei Z, Li Z, Ren J, Song Y, Xu J, Liu A, Li X, Li M, Fan H, Jin L, Niyazbekova Z, Wang W, Gao Y, Jiang Y, Yao J, Li F, Wu S, Wang Y. Integrating genome- and transcriptome-wide association studies to uncover the host-microbiome interactions in bovine rumen methanogenesis. IMETA 2024; 3:e234. [PMID: 39429883 PMCID: PMC11487568 DOI: 10.1002/imt2.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 10/22/2024]
Abstract
The ruminal microbiota generates biogenic methane in ruminants. However, the role of host genetics in modifying ruminal microbiota-mediated methane emissions remains mysterious, which has severely hindered the emission control of this notorious greenhouse gas. Here, we uncover the host genetic basis of rumen microorganisms by genome- and transcriptome-wide association studies with matched genome, rumen transcriptome, and microbiome data from a cohort of 574 Holstein cattle. Heritability estimation revealed that approximately 70% of microbial taxa had significant heritability, but only 43 genetic variants with significant association with 22 microbial taxa were identified through a genome-wide association study (GWAS). In contrast, the transcriptome-wide association study (TWAS) of rumen microbiota detected 28,260 significant gene-microbe associations, involving 210 taxa and 4652 unique genes. On average, host genetic factors explained approximately 28% of the microbial abundance variance, while rumen gene expression explained 43%. In addition, we highlighted that TWAS exhibits a strong advantage in detecting gene expression and phenotypic trait associations in direct effector organs. For methanogenic archaea, only one significant signal was detected by GWAS, whereas the TWAS obtained 1703 significant associated host genes. By combining multiple correlation analyses based on these host TWAS genes, rumen microbiota, and volatile fatty acids, we observed that substrate hydrogen metabolism is an essential factor linking host-microbe interactions in methanogenesis. Overall, these findings provide valuable guidelines for mitigating methane emissions through genetic regulation and microbial management strategies in ruminants.
Collapse
Affiliation(s)
- Wei Wang
- Department of Animal GeneticsBreeding and Reproduction, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Zhenyu Wei
- Department of Animal GeneticsBreeding and Reproduction, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Zhuohui Li
- Department of Animal GeneticsBreeding and Reproduction, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Jianrong Ren
- Department of Animal Nutrition and Environmental HealthCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Yanliang Song
- Department of Clinical VeterinaryCollege of Veterinary MedicineNorthwest A&F UniversityYanglingChina
| | - Jingyi Xu
- Department of Animal Nutrition and Environmental HealthCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Anguo Liu
- Department of Animal GeneticsBreeding and Reproduction, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Xinmei Li
- Department of Animal GeneticsBreeding and Reproduction, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Manman Li
- Department of Animal GeneticsBreeding and Reproduction, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Huimei Fan
- Department of Animal GeneticsBreeding and Reproduction, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Liangliang Jin
- Department of Animal GeneticsBreeding and Reproduction, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Zhannur Niyazbekova
- Department of Animal GeneticsBreeding and Reproduction, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Wen Wang
- School of Ecology and EnvironmentFaculty of Life Sciences and MedicineNorthwestern Polytechnical UniversityXi'anChina
| | - Yuanpeng Gao
- Department of Clinical VeterinaryCollege of Veterinary MedicineNorthwest A&F UniversityYanglingChina
- Key Laboratory of Livestock BiologyNorthwest A&F UniversityYanglingChina
| | - Yu Jiang
- Department of Animal GeneticsBreeding and Reproduction, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
- Key Laboratory of Livestock BiologyNorthwest A&F UniversityYanglingChina
| | - Junhu Yao
- Department of Animal Nutrition and Environmental HealthCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
- Key Laboratory of Livestock BiologyNorthwest A&F UniversityYanglingChina
| | - Fuyong Li
- Department of Animal Science and TechnologyCollege of Animal SciencesZhejiang UniversityHangzhouChina
| | - Shengru Wu
- Department of Animal Nutrition and Environmental HealthCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
- Key Laboratory of Livestock BiologyNorthwest A&F UniversityYanglingChina
| | - Yu Wang
- Department of Animal GeneticsBreeding and Reproduction, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
- Key Laboratory of Livestock BiologyNorthwest A&F UniversityYanglingChina
| |
Collapse
|
30
|
Li H, La SK, Zhang LY, Li S, Yu ZB, Ao LM, Gao TY, Huang HT. Metabolomics and amino acid profiling of plasma reveals the metabolite profiles associated with nitrogen utilisation efficiency in primiparous dairy cows. Animal 2024; 18:101202. [PMID: 39270357 DOI: 10.1016/j.animal.2024.101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 09/15/2024] Open
Abstract
Nitrogen (N) utilisation efficiency (NUE, milk N yield [g/d]/N intake [g/d]) is an important performance indicator in dairy farming. Determining the NUE-associated blood metabolite profile will contribute to the optimisation of nutritional strategies to further improve NUE among dairy cows. Here, 20 primiparous lactating cows with days in milk ranging from 95 to 115 days were selected from a total of 1 221 cows. Each cow's N intake and milk N yield were measured for 7 days. Subsequently, blood samples were collected before morning feeding. Based on analysis and calculations, cows were retrospectively classified into two groups based on their NUE values, namely, a low NUE group (LNUE, NUE = 24.8 ± 1.6%, n = 10, mean ± SD) and a high NUE group (HNUE, NUE = 35.2 ± 1.7%, n = 10, mean ± SD). Plasma samples were selected from six cows in each group for metabolomics and amino acid profiling. Among the 41 differential metabolites (DMs) identified in the metabolomic analysis, sucrose, MG(0:0/22:1(13Z)/0:0), 2-amino-6-hydroxyhexanoic acid, and L-glutamine exhibited significant correlations with NUE, milk yield, and BW (P < 0.05). Moreover, the five differential amino acids and amino acid metabolites (DAAs) identified in the amino acid profiling and 5 of the 6 differential amino acids and amino acid conjugates identified by plasma metabolomics were found to be less abundant in the HNUE group (P < 0.05). Specifically, there was a 39.4% decrease in L-arginine content and a 29.2% decrease in L-glutamine content (P < 0.05). Pathway analysis indicated that the DMs and DAAs were mainly involved in arginine biosynthesis, glutathione metabolism, arginine and proline metabolism, and tryptophan metabolism (pathway impact > 0.1). These results provided new insights into the new blood metabolite profile associated with NUE in dairy cows. These new insights can provide foundational information for the formulation of new strategies to further enhance NUE in dairy cows.
Collapse
Affiliation(s)
- H Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, Henan Province, PR China; Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - S K La
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, Henan Province, PR China
| | - L Y Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, Henan Province, PR China; Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - S Li
- ZhongLi (Hinggan League) Animal Husbandry Co. LTD, Ulanhot 137400, Inner Mongolia Autonomous Region, PR China
| | - Z B Yu
- ZhongLi (Hinggan League) Animal Husbandry Co. LTD, Ulanhot 137400, Inner Mongolia Autonomous Region, PR China
| | - L M Ao
- ZhongLi (Hinggan League) Animal Husbandry Co. LTD, Ulanhot 137400, Inner Mongolia Autonomous Region, PR China
| | - T Y Gao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, Henan Province, PR China; Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - H T Huang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, Henan Province, PR China; Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, PR China.
| |
Collapse
|
31
|
Ji H, Chen L, Ma Y, Degen AA, Yuan Z, Chen H, Zhou J. A Comparison of Growth Performance, Blood Parameters, Rumen Fermentation, and Bacterial Community of Tibetan Sheep When Fattened by Pasture Grazing versus Stall Feeding. Microorganisms 2024; 12:1967. [PMID: 39458276 PMCID: PMC11509657 DOI: 10.3390/microorganisms12101967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Traditionally, Tibetan sheep only graze pastures without any supplementary feed. However, in recent years, feedlots are being used for fattening Tibetan sheep. The present study compared the growth rates, blood parameters, rumen fermentation, and bacterial communities in Tibetan sheep fattened by pasture grazing (PG) versus those fattened by stall feeding (SF). Twenty 18-month-old Tibetan sheep wethers (42.6 ± 2.11 kg) were divided randomly into PG (n = 10) and SF (n = 10) groups. The PG sheep grazed the grasslands without any supplementary feed, while the SF sheep were offered a commercial total mixed ration (TMR) at a crude protein content of 16.2% DM and an ME of 10.59 MJ/kg. The sheep were on their treatments for 70 days, which included 10 days for adaptation and 60 days for measurements. The average daily gain, white blood cell and lymphocyte counts were greater (p < 0.05), while the platelet count was lower (p < 0.05) in the SF group than in the PG group. The serum glutathione peroxidase activity, and concentrations of total proteins and albumin were greater (p < 0.05), while glucose was lower (p < 0.01) in the PG group compared to the SF group. The concentrations of ruminal ammonia-N and total volatile fatty acids (VFAs) were greater (p < 0.05), while the pH was lower (p < 0.05) in the SF group compared to the PG group. The molar proportion of acetate and the ratio of acetate to propionate were greater (p < 0.01) in the PG sheep than in the SF sheep, but the molar proportion of propionate and iso-VFAs did not differ (p > 0.05) between the groups. Based on the PCoA, the ruminal bacterial communities were distinct between groups, and the alpha diversity was greater (p < 0.001) in the PG sheep than in the SF sheep. The dominant phyla of the rumen bacteria were Firmicutes and Bacteroidetes, while the Firmicutes to Bacteroidetes ratio was greater (p < 0.001) in the SF group than in the PG group. At the genus level, the relative abundance of Ruminococcus was greater (p < 0.05) in the SF group, while the abundances of Prevotella, the Rikenellaceae_RC9_gut_group, Butyrivibrio, and unclassified_f_Lachnospiraceae were greater (p < 0.05) in the PG group. It was concluded that the Tibetan sheep adopted a short-term intensive fattening strategy when stall fed which altered the rumen bacterial community and blood parameters, enhanced rumen fermentation, and, ultimately, improved their average daily gain.
Collapse
Affiliation(s)
- Huiying Ji
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (H.J.); (L.C.)
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China;
| | - Lili Chen
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (H.J.); (L.C.)
| | - Yi Ma
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (H.J.); (L.C.)
| | - Abraham Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 8410500, Israel;
| | - Zhengrong Yuan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
| | - Hualong Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China;
| | - Jianwei Zhou
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China;
| |
Collapse
|
32
|
Zhou G, Li J, Liang X, Yang B, He X, Tang H, Guo H, Liu G, Cui W, Chen Y, Yang Y. Multi-omics revealed the mechanism of feed efficiency in sheep by the combined action of the host and rumen microbiota. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:367-379. [PMID: 39290858 PMCID: PMC11406083 DOI: 10.1016/j.aninu.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 03/12/2024] [Accepted: 04/23/2024] [Indexed: 09/19/2024]
Abstract
This study was conducted to investigate potential regulatory mechanisms of feed efficiency (FE) in sheep by linking rumen microbiota with its host by the multi-omics analysis. One hundred and ninety-eight hybrid female sheep (initial body weight = 30.88 ± 4.57 kg; 4-month-old) were selected as candidate sheep. Each test sheep was fed in an individual pen for 60 days, and the residual feed intake (RFI) was calculated. The ten candidate sheep with the highest RFI were divided into the Low-FE group, and the ten with the lowest RFI were divided into the High-FE group, all selected for sample collection. The RFI, average daily gain and average daily feed intake were highly significantly different between the two experimental groups (P < 0.05). Compared with Low-FE group, the insulin-like growth factor-1 and very low-density lipoprotein in serum and the propionate in rumen significantly increased in High-FE group (P < 0.01), but the acetate:propionate ratio in rumen significantly decreased in High-FE group (P = 0.034). Metagenomics revealed Selenomonas ruminantium, Selenomonas sp. and Faecalibacterium prausnitzi i were key bacteria, and increased abundance of the genes encoding the enzymes for cellulose degradation and production of propionate in High-FE group. The results of proteomics and section showed the rumen papilla length (P < 0.001) and expression of carbonic anhydrase and Na+/K+-ATPase were significantly higher in High-FE group (P < 0.05). On the other hand, the acetyl-CoA content significantly increased in the liver of High-FE group (P = 0.002). The relative expression levels of insulin-like growth factor-1 and apolipoprotein A4 genes were significantly up-regulated in the liver of High-FE group (P < 0.01), but relative expression level of monoacylglycerol O-acyltransferase 3 gene was significantly down-regulated (P = 0.037). These findings provide the mechanism by which the collaborative interaction between rumen microbiota fermentation and host uptake and metabolism of fermentation products impacts feed efficiency traits in sheep.
Collapse
Affiliation(s)
- Guangchen Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Junda Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xuhui Liang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Bohua Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ximeng He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Hongyu Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Hongran Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Gongwei Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Wenyuan Cui
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yuxin Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
33
|
Zhao X, Zhang Y, Rahman A, Chen M, Li N, Wu T, Qi Y, Zheng N, Zhao S, Wang J. Rumen microbiota succession throughout the perinatal period and its association with postpartum production traits in dairy cows: A review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:17-26. [PMID: 39022774 PMCID: PMC11253274 DOI: 10.1016/j.aninu.2024.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/18/2024] [Accepted: 04/24/2024] [Indexed: 07/20/2024]
Abstract
The transition period for dairy cows usually refers to the 3 weeks pre-calving to the 3 weeks post-calving. During this period, dairy cows undergo metabolic and physiological adaptations because of their susceptibility to metabolic and infectious diseases. Poor feeding management under these circumstances may adversely affect the health and subsequent production performance of the cows. Owing to long-term adaptation and evolution, the rumen has become a unique ecosystem inhabited by a complex microbial community closely associated with its natural host. Dietary components are metabolized by the rumen microbiota, and volatile fatty acids and microbial protein products can be used as precursor substances for synthesizing meat and milk components. The successful transition of perinatal dairy cows includes changes in diet, physiology, and the rumen microbiota. Rumen microbial profiles have been confirmed to be heritable and repairable; however, adverse circumstances affect rumen microbial composition, host digestion and metabolism, as well as postpartum production traits of dairy cows for a certain period. Preliminary evidence indicates a close relationship between the rumen microbiota and animal performance. Therefore, changes in rumen microbes during the transition period and the intrinsic links between the microbiota and host postpartum phenotypic traits need to be better understood to optimize production performance in ruminants.
Collapse
Affiliation(s)
- Xiaowei Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Xinjiang Agricultural University, Urumqi 830052, China
| | - Yangdong Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ashikur Rahman
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Meiqing Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ning Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Wu
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yunxia Qi
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
34
|
Marcos CN, Bach A, Gutiérrez-Rivas M, González-Recio O. The oral microbiome as a proxy for feed intake in dairy cattle. J Dairy Sci 2024; 107:5881-5896. [PMID: 38522834 DOI: 10.3168/jds.2024-24014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024]
Abstract
Genetic material from rumen microorganisms can be found within the oral cavity, and hence there is potential in using the oral microbiome as a proxy of the ruminal microbiome. Feed intake (FI) influences the composition of rumen microbiota and might directly influence the oral microbiome in dairy cattle. Ruminal content samples (RS) from 29 cows were collected at the beginning of the study and also 42 d later (RS0 and RS42, respectively). Additionally, 18 oral samples were collected through buccal swabbing at d 42 (OS42) from randomly selected cows. Samples were used to characterize and compare the taxonomy and functionality of the oral microbiome using nanopore sequencing and to evaluate the feasibility of using the oral microbiome to estimate FI. Up to 186 taxonomical features were found differentially abundant (DA) between RS and OS42. Similar results were observed when comparing OS42 to RS collected on different days. Microorganisms associated with the liquid fraction of the rumen were less abundant in OS42 because these were probably swallowed after regurgitation. Up to 1,102 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were found to be DA between RS and OS42, and these results differed when comparing time of collection, but DA KEGG pathways were mainly associated with metabolism in both situations. Models based on the oral microbiome and rumen microbiome differed in their selection of microbial groups and biological pathways to predict FI. In the rumen, fiber-associated microorganisms are considered suitable indicators of FI. In contrast, biofilm formers like Gammaproteobacteria or Bacteroidia classes are deemed appropriate proxies for predicting FI from oral samples. Models from RS exhibited some predictive ability to estimate FI, but oral samples substantially outperformed them. The best lineal model to estimate FI was obtained with the relative abundance of taxonomical feature at genera level, achieving an average R2 = 0.88 within the training data, and a root mean square error of 3.46 ± 0.83 (±SD) kg of DM, as well as a Pearson correlation coefficient between observed and estimated FI of 0.48 ± 0.30 in the test data. The results from this study suggest that oral microbiome has potential to predict FI in dairy cattle, and it encourages validating this potential in other populations.
Collapse
Affiliation(s)
- C N Marcos
- Departamento de Producción Agraria, ETSIAAB, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain; Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - CSIC, 28040 Madrid, Spain.
| | - A Bach
- ICREA, 08007 Barcelona, Spain
| | - M Gutiérrez-Rivas
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - CSIC, 28040 Madrid, Spain; Blanca from the Pyrenees, Hostalets de Tost, 25795 Lleida, Spain
| | - O González-Recio
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - CSIC, 28040 Madrid, Spain
| |
Collapse
|
35
|
Xue M, Xie Y, Zang X, Zhong Y, Ma X, Sun H, Liu J. Deciphering functional groups of rumen microbiome and their underlying potentially causal relationships in shaping host traits. IMETA 2024; 3:e225. [PMID: 39135684 PMCID: PMC11316931 DOI: 10.1002/imt2.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 08/15/2024]
Abstract
Over the years, microbiome research has achieved tremendous advancements driven by culture-independent meta-omics approaches. Despite extensive research, our understanding of the functional roles and causal effects of the microbiome on phenotypes remains limited. In this study, we focused on the rumen metaproteome, combining it with metatranscriptome and metabolome data to accurately identify the active functional distributions of rumen microorganisms and specific functional groups that influence feed efficiency. By integrating host genetics data, we established the potentially causal relationships between microbes-proteins/metabolites-phenotype, and identified specific patterns in which functional groups of rumen microorganisms influence host feed efficiency. We found a causal link between Selenomonas bovis and rumen carbohydrate metabolism, potentially mediated by bacterial chemotaxis and a two-component regulatory system, impacting feed utilization efficiency of dairy cows. Our study on the nutrient utilization functional groups in the rumen of high-feed-efficiency dairy cows, along with the identification of key microbiota functional proteins and their potentially causal relationships, will help move from correlation to causation in rumen microbiome research. This will ultimately enable precise regulation of the rumen microbiota for optimized ruminant production.
Collapse
Affiliation(s)
- Ming‐Yuan Xue
- Institute of Dairy Science, College of Animal SciencesZhejiang UniversityHangzhouChina
- Xianghu LaboratoryHangzhouChina
| | - Yun‐Yi Xie
- Institute of Dairy Science, College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Xin‐Wei Zang
- Institute of Dairy Science, College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Yi‐Fan Zhong
- Institute of Dairy Science, College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Xiao‐Jiao Ma
- Institute of Dairy Science, College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Hui‐Zeng Sun
- Institute of Dairy Science, College of Animal SciencesZhejiang UniversityHangzhouChina
- Ministry of Education Key Laboratory of Molecular Animal NutritionZhejiang UniversityHangzhouChina
| | - Jian‐Xin Liu
- Institute of Dairy Science, College of Animal SciencesZhejiang UniversityHangzhouChina
- Ministry of Education Key Laboratory of Molecular Animal NutritionZhejiang UniversityHangzhouChina
| |
Collapse
|
36
|
Han C, Cao H, Tan H, Li X, Yang W. Distribution and community structure of antibiotic resistance genes in the Three Gorges Reservoir Area. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50952-50966. [PMID: 39103584 DOI: 10.1007/s11356-024-34590-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Antibiotic resistance genes (ARG) are widespread across various regions. While several studies have investigated the distribution of antibiotic resistance in natural environments, the occurrence and diversity of ARGs in the Three Gorges Reservoir have not been fully elucidated. In this study, we employed metagenomic sequencing techniques to investigate the abundance, diversity, and influencing factors of ARGs in the ecosystem of the Three Gorges Reservoir. A total of 874 ARGs, 20 antibiotic classes, and 6 resistance mechanisms were detected. The dominant ARG is the macB, the dominant antibiotic class is multidrug resistance (MDR), and the dominant resistance mechanism is antibiotic efflux. The microorganisms with the highest contribution to ARGs are Betaproteobacteria and Gammaproteobacteria. In this region, pH and NH4+ concentration were significantly negatively correlated with the relative abundance of most ARGs, while NO3- concentration and TN were significantly positively correlated with the relative abundance of most ARGs. The results indicate that the Three Gorges Reservoir constitutes a significant reservoir of ARGs. By studying the distribution of ARGs in the sediments of the Three Gorges Reservoir Area and the relationship between environmental factors and ARGs, we can more comprehensively understand the pollution status of ARGs in this area, and provide theoretical support for subsequent treatment.
Collapse
Affiliation(s)
- Chang Han
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing, 210024, China
| | - Huiqun Cao
- Changjiang River Scientific Research Institute, Wuhan, 430010, China
| | - Haoyue Tan
- Changjiang River Scientific Research Institute, Wuhan, 430010, China
| | - Xiaomeng Li
- Changjiang River Scientific Research Institute, Wuhan, 430010, China
| | - Wenjun Yang
- Changjiang River Scientific Research Institute, Wuhan, 430010, China.
| |
Collapse
|
37
|
Wu X, Zhang G, Zhang W, Zhou J, Cong H, Yang G, Liu G. Rumen microbiota helps Tibetan sheep obtain energy more efficiently to survive in the extreme environment of the Qinghai-Tibet Plateau. Front Microbiol 2024; 15:1431063. [PMID: 39113833 PMCID: PMC11303141 DOI: 10.3389/fmicb.2024.1431063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction T-sheep and H-sheep exhibit different environmental adaptability and production performance. The rumen microbiome has co-evolved with hosts and plays a vital role in nutrient digestion and energy metabolism. In our previous study, we found that T-sheep have a higher efficiency in energy metabolism than H-sheep, but the rumen microbial community remains unclear. Methods In this study, we determined the rumen bacterial profile and rumen fermentation parameters to reveal the bacterial profiles and predictive functions among breeds and diets with four different energy levels, as well as the correlation between bacterial profiles and rumen fermentation characteristics. Results The results showed that the rumen total volatile fatty acids (VFAs), acetate, butyrate, total branched-chain VFAs, iso-butyrate, and iso-valerate were higher in T-sheep than H-sheep. The alpha diversity of ruminal bacteria is not affected by dietary energy, but it shows a distinction between the sheep breeds. Specifically, T-sheep rumen bacteria exhibit higher alpha diversity than H-sheep. The beta diversity of ruminal bacteria is not influenced by dietary energy or sheep breeds, indicating similar communities of ruminal bacteria between different diets and sheep breeds. The phyla of Bacteroidetes and Firmicutes predominate in the rumen, with a higher relative abundance of Firmicutes observed in T-sheep than H-sheep. The two most abundant genera in the rumen were Prevotella 1 and Rikenellaceae RC9 gut group. Prevotella 1 is the predominant bacterial genus in the rumen of H-sheep, while the Rikenellaceae RC9 gut group dominates in the rumen of T-sheep. Microbial co-occurrence network analysis reveals that variations in rumen fermentation characteristics result from differences in module abundance, with a higher abundance of VFA-producing modules observed in the rumen of T-sheep. Microbial function prediction analysis showed that dietary energy rarely alters the functional composition of rumen bacteria. However, there were differences in the functions of rumen bacteria between sheep breeds, with T-sheep showing a greater emphasis on energy metabolism-related functions, while H-sheep showed a greater emphasis on protein metabolism-related functions. Discussion These findings provide evidence of the special rumen microbial community that helps T-sheep efficiently obtain energy from low-protein and low-energy diets, enabling them to survive in the extreme environment of the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Xiukun Wu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
| | - Gaosen Zhang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
| | - Wei Zhang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
| | - Jianwei Zhou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Haitao Cong
- Shandong Huakun Rural Revitalization Institute Co., Ltd., Jinan, China
| | - Guo Yang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Guangxiu Liu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
| |
Collapse
|
38
|
Wu Z, Zhang F, Su Q, Ji Q, Zhu K, Zhang Y, Hou S, Gui L. Integrating 16S rRNA Sequencing and LC-MS-Based Metabolomics to Evaluate the Effects of Dietary Crude Protein on Ruminal Morphology, Fermentation Parameter and Digestive Enzyme Activity in Tibetan Sheep. Animals (Basel) 2024; 14:2149. [PMID: 39123675 PMCID: PMC11310993 DOI: 10.3390/ani14152149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024] Open
Abstract
The dietary crude protein level could affect ruminal fermentation parameters and the microflora of ruminants. The present study's aim was to investigate the effects of different protein level diets on ruminal morphology, fermentation parameters, digestive enzyme activity, microflora and metabolites of Tibetan sheep. Ninety weaned lambs (initial weight of 15.40 ± 0.81 kg, 2 months old) were selected and randomly divided into three groups (six pens/treatment, five rams/pen). Dietary treatments were formulated with 13.03% (high protein, HP), 11.58% (moderate protein, MP) and 10.20% (low protein, LP), respectively. Compared with LP, both papillae length and papillae width were significantly promoted in HP and MP (p < 0.05). The concentrations of ammonia nitrogen, total VFAs, propionic acids and butyric acids in HP were significantly increased compared to those in MP and LP (p < 0.05). The activities of protease and α-amylase in HP were significantly greater than those of LP (p < 0.05). For the ruminal microbial community, higher proportions of phylum Prevotella 1 and Succiniclasticum and genus Rikenellaceae RC9 gut group and Ruminococcus 1 were observed in HP (p < 0.05). A total of 60 differential metabolites (DMs) (28 up, 32 down) between HP and MP; 73 DMs (55 up, 18 down) between HP and LP; and 65 DMs (49 up, 16 down) between MP and LP were identified. Furthermore, four pathways of the biosynthesis of unsaturated fatty acids, tryptophan metabolism, bile secretion and ABC transporters were significantly different (p < 0.05). The abundance of phylum Prevotella 1 was negatively associated with stearic acid and palmitic acid but positively associated with the taurine. The abundance of genus Ruminococcus 1 was negatively associated with stearic acid, oleic acid, erucic acid, Indole-3-acetamide and palmitic acid but positively associated with 6-hydroxymelatonin. In conclusion, a 13.03% CP level improved ruminal morphology, fermentation parameters and digestive enzyme activities through modulating the microbial community and regulating metabolism in Tibetan sheep.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (Z.W.); (F.Z.); (Q.S.); (Q.J.); (K.Z.); (Y.Z.); (S.H.)
| |
Collapse
|
39
|
Raza SHA, Khan M, Ni X, Zhao X, Yang H, Jiang Y, Danzeng B, Ouyang Y, Pant SD, Zhong R, Quan G. Association of litter size with the ruminal microbiome structure and metabolomic profile in goats. Sci Rep 2024; 14:15476. [PMID: 38969828 PMCID: PMC11226442 DOI: 10.1038/s41598-024-66200-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024] Open
Abstract
The Yunshang black goat is a renowned mutton specialist breed mainly originating from China that has excellent breeding ability with varying litter sizes. Litter size is an important factor in the economics of goat farming. However, ruminal microbiome structure might be directly or indirectly regulated by pregnancy-associated factors, including litter sizes. Therefore, the current experiment aimed to evaluate the association of different litter sizes (low versus high) with ruminal microbiome structure by 16S rRNA gene sequencing and metabolomic profiling of Yunshang black does. A total of twenty does of the Yunshang Black breed, approximately aged between 3 and 4 years, were grouped (n = 10 goats/group) into low (D-l) and high (D-h) litter groups according to their litter size (the lower group has ≤ 2 kids/litter and the high group has ≧ 3 kids/litter, respectively). All goats were sacrificed, and collected ruminal fluid samples were subjected to 16S rRNA sequencing and LC-MS/MC Analysis for ruminal microbiome and metabolomic profiling respectively. According to PCoA analysis, the ruminal microbiota was not significantly changed by the litter sizes among the groups. The Firmicutes and Bacteroidetes were the most dominant phyla, with an abundance of 55.34% and 39.62%, respectively. However, Ruminococcaceae_UCG-009, Sediminispirochaeta, and Paraprevotella were significantly increased in the D-h group, whereas Ruminococcaceae_UCG-010 and Howardella were found to be significantly decreased in the D-l group. The metabolic profiling analysis revealed that litter size impacts metabolites as 29 and 50 metabolites in positive and negative ionic modes respectively had significant differences in their regulation. From them, 16 and 24 metabolites of the D-h group were significantly down-regulated in the positive ionic mode, while 26 metabolites were up-regulated in the negative ionic mode for the same group. The most vibrant identified metabolites, including methyl linoleate, acetylursolic acid, O-desmethyl venlafaxine glucuronide, melanostatin, and arginyl-hydroxyproline, are involved in multiple biochemical processes relevant to rumen roles. The identified differential metabolites were significantly enriched in 12 different pathways including protein digestion and absorption, glycerophospholipid metabolism, regulation of lipolysis in adipocytes, and the mTOR signaling pathway. Spearman's correlation coefficient analysis indicated that metabolites and microbial communities were tightly correlated and had significant differences between the D-l and D-h groups. Based on the results, the present study provides novel insights into the regulation mechanisms of the rumen microbiota and metabolomic profiles leading to different fertility in goats, which can give breeders some enlightenments to further improve the fertility of Yunshang Black goats.
Collapse
Affiliation(s)
- Sayed Haidar Abbas Raza
- Yunnan Animal Science and Veterinary Institute, Kunming City, Yunnan Province, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Muhammad Khan
- Yunnan Animal Science and Veterinary Institute, Kunming City, Yunnan Province, China
| | - Xiaojun Ni
- Yunnan Animal Science and Veterinary Institute, Kunming City, Yunnan Province, China
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming City, Yunnan Province, China
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Kunming City, Yunnan Province, China
| | - Xiaoqi Zhao
- Yunnan Animal Science and Veterinary Institute, Kunming City, Yunnan Province, China
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming City, Yunnan Province, China
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Kunming City, Yunnan Province, China
| | - Hongyuan Yang
- Yunnan Animal Science and Veterinary Institute, Kunming City, Yunnan Province, China
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming City, Yunnan Province, China
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Kunming City, Yunnan Province, China
| | - Yanting Jiang
- Yunnan Animal Science and Veterinary Institute, Kunming City, Yunnan Province, China
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming City, Yunnan Province, China
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Kunming City, Yunnan Province, China
| | - Baiji Danzeng
- Yunnan Animal Science and Veterinary Institute, Kunming City, Yunnan Province, China
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming City, Yunnan Province, China
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Kunming City, Yunnan Province, China
| | - Yina Ouyang
- Yunnan Animal Science and Veterinary Institute, Kunming City, Yunnan Province, China
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming City, Yunnan Province, China
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Kunming City, Yunnan Province, China
| | - Sameer D Pant
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
| | - Guobo Quan
- Yunnan Animal Science and Veterinary Institute, Kunming City, Yunnan Province, China.
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming City, Yunnan Province, China.
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Kunming City, Yunnan Province, China.
| |
Collapse
|
40
|
Choi Y, Lee SJ, Kim HS, Eom JS, Jo SU, Guan LL, Lee SS. Metataxonomic and metabolomic profiling revealed Pinus koraiensis cone essential oil reduced methane emission through affecting ruminal microbial interactions and host-microbial metabolism. Anim Microbiome 2024; 6:37. [PMID: 38943213 PMCID: PMC11212255 DOI: 10.1186/s42523-024-00325-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Pinus koraiensis cone essential oil (PEO) contains functional compounds such as monoterpene hydrocarbons, and the administration of PEO reduced methane (CH4) emissions during growing phase of goats. However, the mode of action of PEO driven CH4 reduction is not known, especially how the administration of PEO can affect rumen microbiota and host metabolism in goats during the fattening phase. This study aimed to elucidate the potential microbial and host responses PEO supplementation in goats using metataxonomics (prokaryotes and protozoa) and metabolomics (rumen fluid and serum). RESULTS Ten fattening Korean native goats were divided into two dietary groups: control (CON; basal diet without additives) and PEO (basal diet + 1.5 g/d of PEO) with a 2 × 2 crossover design and the treatment lasted for 11 weeks. Administration of PEO reduced CH4 concentrations in the exhaled gas from eructation by 12.0-13.6% (P < 0.05). Although the microbial composition of prokaryotes (bacteria and archaea) and protozoa in the rumen was not altered after PEO administration. MaAsLin2 analysis revealed that the abundance of Selenomonas, Christensenellaceae R-7 group, and Anaerovibrio were enriched in the rumen of PEO supplemented goats (Q < 0.1). Co-occurrence network analysis revealed that Lachnospiraceae AC2044 group and Anaerovibrio were the keystone taxa in the CON and PEO groups, respectively. Methane metabolism (P < 0.05) was enriched in the CON group, whereas metabolism of sulfur (P < 0.001) and propionate (P < 0.1) were enriched in the PEO group based on microbial predicted functions. After PEO administration, the abundance of 11 rumen and 4 serum metabolites increased, whereas that of 25 rumen and 14 serum metabolites decreased (P < 0.1). Random forest analysis identified eight ruminal metabolites that were altered after PEO administration, among which four were associated with propionate production, with predictive accuracy ranging from 0.75 to 0.88. Additionally, we found that serum sarcosine (serum metabolite) was positively correlated with CH4 emission parameters and abundance of Methanobrevibacter in the rumen (|r|≥ 0.5, P < 0.05). CONCLUSIONS This study revealed that PEO administration reduced CH4 emission from of fattening goats with altered microbial interactions and metabolites in the rumen and host. Importantly, PEO administration affected utilizes various mechanisms such as formate, sulfur, methylated amines metabolism, and propionate production, collectively leading to CH4 reduction. The knowledge is important for future management strategies to maintain animal production and health while mitigate CH4 emission.
Collapse
Affiliation(s)
- Y Choi
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - S J Lee
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea
- Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - H S Kim
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - J S Eom
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - S U Jo
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - L L Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - S S Lee
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea.
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea.
- Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
41
|
Du D, Wang Y, Gao Y, Feng L, Zhang Z, Hu Z. Analysis of differences in the rumen microbiome and metabolic function in prepartum dairy cows with different body condition scores. Anim Microbiome 2024; 6:35. [PMID: 38915057 PMCID: PMC11194928 DOI: 10.1186/s42523-024-00324-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND The rumen is a crucial digestive organ for dairy cows. The rumen microbiota assists in the digestion of plant feed through microbe-mediated fermentation, during which the plant feed is transformed into nutrients for the cow's use. Variations in the composition and function of the rumen microbiome affect the energy utilization efficiency of dairy cows, which is one of the reasons for the varying body condition scores (BCSs). This study focused on prepartum Holstein dairy cows to analyze differences in rumen microbiota and metabolites among cows with different BCSs. Twelve prepartum dairy cows were divided into two groups, low BCS (LBCS, BCS = 2.75, n = 6) and high BCS (HBCS, BCS = 3.5, n = 6), to explore differences in microbial composition and metabolites. RESULTS In the HBCS group, the genera within the phylum Firmicutes exhibited stronger correlations and greater abundances. Phyla such as Firmicutes, Patescibacteria, Acidobacteriota, Euryarchaeota, and Desulfobacterota, in addition to most of their constituent microbial groups, were significantly more abundant in the HBCS group than in the LBCS group. At the genus level, the abundances of Anaerovibrio, Veillonellaceae_UCG_001, Ruminococcus_gauvreauii_group, Blautia, Eubacterium, Prevotellaceae_YAB2003_group, Schwartzia, and Halomonas significantly increased in the HBCS group. The citrate cycle, involved in carbohydrate metabolism, exhibited a significant enrichment trend, with a notable increase in the abundance of its key substrate, citrate, in the HBCS group. This increase was significantly positively correlated with the differential bacterial genera. CONCLUSION In this study, prepartum dairy cows with higher BCS exhibited greater abundance of Firmicutes. This study provides theoretical support for microbiological research on dairy cows with different BCSs and suggests that regulating the rumen microbiome could help maintain prepartum dairy cows within an optimal BCS range.
Collapse
Affiliation(s)
- Dewei Du
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Yanzhe Wang
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Yongji Gao
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Lei Feng
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Ziye Zhang
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Zhiyong Hu
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
42
|
Yu Q, Wang H, Qin L, Wang T, Zhang Y, Sun Y. Interpretable machine learning reveals microbiome signatures strongly associated with dairy cow milk urea nitrogen. iScience 2024; 27:109955. [PMID: 38840841 PMCID: PMC11152649 DOI: 10.1016/j.isci.2024.109955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/10/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
The gut microbiome plays an important role in the healthy and efficient farming of dairy cows. However, high-dimensional microbial information is difficult to interpret in a simplified manner. We collected fecal samples from 161 cows and performed 16S amplicon sequencing. We developed an interpretable machine learning framework to classify individuals based on their milk urea nitrogen (MUN) concentrations. In this framework, we address the challenge of handling high-dimensional microbial data imbalances and identify 9 microorganisms strongly correlated with MUN. We introduce the Shapley Additive Explanations (SHAP) method to provide insights into the machine learning predictions. The results of the study showed that the performance of the machine learning model improved (accuracy = 72.7%) after feature selection on high-dimensional data. Among the 9 microorganisms, g__Firmicutes_unclassified had the greatest impact in the model. This study provides a reference for precision animal husbandry.
Collapse
Affiliation(s)
- Qingyuan Yu
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin 150030, China
| | - Hui Wang
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin 150030, China
| | - Linqing Qin
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin 150030, China
| | - Tianlin Wang
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin 150030, China
| | - Yonggen Zhang
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin 150030, China
| | - Yukun Sun
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin 150030, China
| |
Collapse
|
43
|
Lu H, Chen S, Li F, Zhang G, Geng J, Zhang M, Huang X, Wang Y. Comparative Study of Bacterial Microbiota Differences in the Rumen and Feces of Xinjiang Brown and Holstein Cattle. Animals (Basel) 2024; 14:1748. [PMID: 38929367 PMCID: PMC11200985 DOI: 10.3390/ani14121748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Xinjiang Brown cattle are a unique and widely distributed breed of dual-purpose cattle in the Xinjiang area of China, whose milk production performance differs from Holstein cattle. It has been known that variations in bacterial species of the gastrointestinal tract influence milk protein, fat, and lactose synthesis. However, the microbiota differences between Xinjiang Brown and Holstein cattle are less known. This study aims to compare the bacterial community composition of the rumen and feces of these two cattle breeds under the same dietary and management conditions. The 16s rRNA sequencing data and milk production of 18 Xinjiang Brown cows and 20 Holstein cows on the same farm were obtained for analysis. The results confirmed differences in milk production between Xinjiang Brown and Holstein cattle. Microbiota with different relative abundance between these two cattle breeds were identified, and their biological functions might be related to milk synthesis. This study increases the understanding of the differences in microbiota between Xinjiang Brown and Holstein cattle and might provide helpful information for microbiota composition optimization of these dairy cattle.
Collapse
Affiliation(s)
- Haibo Lu
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (G.Z.)
| | - Shaokan Chen
- Beijing Sunlon Livestock Development Company Limited, Beijing 100029, China;
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (F.L.); (M.Z.)
| | - Fengjie Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (F.L.); (M.Z.)
| | - Guoxing Zhang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (G.Z.)
| | - Juan Geng
- Xinjiang Uygur Autonomous Region Animal Husbandry Station, Urumqi 830000, China;
| | - Menghua Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (F.L.); (M.Z.)
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (F.L.); (M.Z.)
| | - Yachun Wang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (G.Z.)
| |
Collapse
|
44
|
Singh S, Koli P, Ahmed S, Kumar N, Rana M, Singhal R, Indu, Choudhary M, Ren Y. Exploring the genetic variability in yield, nutritional and digestibility traits in oat grains through ruminant nutrition. Heliyon 2024; 10:e31541. [PMID: 38813156 PMCID: PMC11133913 DOI: 10.1016/j.heliyon.2024.e31541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Oat is a dual-purpose crop used for both food and feed for animals. The objective of this work is to characterize oat varieties for their genetic diversity in yield, physical traits, and nutritional composition, aiming to identify potential parent varieties for breeding programs to develop new oat varieties for improved livestock feed and diverse industrial applications. To conduct, chemical analysis for protein and carbohydare fractions, energy and digestible nutrient estimated, stastical analyses performed to assess genetic variations for traits among vaieties. Significant genetic variation (p < 0.05) for grain yield, grain density, sieving percentage, crude protein, ether extract, neutral and acid detergent fiber, cellulose, lignin, neutral and acid detergent insoluble nitrogen were observed in grains of eight oat varieties. All protein fractions exhibited significant differences (p < 0.05). Total carbohydrate content ranged significantly (p < 0.05) from 73 % to 79 %. The grains contained higher levels of intermediately degradable starch and pectin (54.12-60.16 %) compared to the slowly degradable cell wall (26-33 %), lignin bounded cell wall (6-10 %), and rapidly degradable sugars (2-8%). Significant variation (p < 0.05) was observed in terms of gross energy, digestible energy, metabolizable energy, net energy for maintenance and lactation about (2 Mcal/kg dry matter), gain (1.6-1.8 Mcal/kg dry matter), total digestible nutrients, digestible dry matter, rumen degradable protein, and total digestible nutrients related to crude protein, fatty acid, neutral detergent fiber, and non-fiber carbohydrate. Organic matter and ether extract were positively associated (p < 0.01) with total digestible nutrients, digestible and metabolizable energy, dry matter digestible and truly digestible non fibrous cabohydrates, while neutral and acid detergent fiber and cellulose showed negative correlation. The research shows that oat varieties vary widely in their yield, physical features, and nutritional content, offering potential for breeding better varieties for both animal feed and industrial uses.
Collapse
Affiliation(s)
- Sultan Singh
- Plant Animal Relationship Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi, UP, 284003 India
| | - Pushpendra Koli
- Plant Animal Relationship Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi, UP, 284003 India
- College of Environmental and Life Sciences, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Shahid Ahmed
- Crop Improvement Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi, UP, 284003 India
| | - Neeraj Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Maneet Rana
- Crop Improvement Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi, UP, 284003 India
| | - Rajesh Singhal
- Crop Improvement Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi, UP, 284003 India
| | - Indu
- Crop Improvement Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi, UP, 284003 India
| | - Mukesh Choudhary
- ICAR-Indian Institute of Maize Research, Ludhiana, 141001, Punjab, India
- School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Yonglin Ren
- College of Environmental and Life Sciences, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| |
Collapse
|
45
|
Xu Y, Feng T, Ding Z, Li L, Li Z, Cui K, Chen W, Pan H, Zhu P, Liu Q. Age-related compositional and functional changes in the adult and breastfed buffalo rumen microbiome. Front Microbiol 2024; 15:1342804. [PMID: 38881655 PMCID: PMC11177756 DOI: 10.3389/fmicb.2024.1342804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/07/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction The buffalo is an important domestic animal globally, providing milk, meat, and labor to more than 2 billion people in 67 countries. The rumen microorganisms of buffaloes play an indispensable role in enabling the healthy functionality and digestive function of buffalo organisms. Currently, there is a lack of clarity regarding the differences in the composition and function of rumen microorganisms among buffaloes at different growth stages. Methods In this study, metagenomics sequencing technology was applied to examine the compositional and functional differences of rumen microorganisms in adult and breastfed buffaloes. Results The results revealed that the rumen of adult buffaloes had significantly higher levels of the following dominant genera: Prevotella, UBA1711, RF16, Saccharofermentans, F23-D06, UBA1777, RUG472, and Methanobrevibacter_A. Interestingly, the dominant genera specific to the rumen of adult buffaloes showed a significant positive correlation (correlation>0.5, p-value<0.05) with both lignocellulose degradation-related carbohydrate-active enzymes (CAZymes) and immune signaling pathways activated by antigenic stimulation. The rumen of breastfed buffaloes had significantly higher levels of the following dominant genera: UBA629, CAG- 791, Selenomonas_C, Treponema_D, Succinivibrio, and RC9. Simultaneously, the rumen-dominant genera specific to breastfed buffaloes were significantly positively correlated (correlation>0.5, p-value<0.05) with CAZymes associated with lactose degradation, amino acid synthesis pathways, and antibiotic-producing pathways. Discussion This indicates that rumen microorganisms in adult buffaloes are more engaged in lignocellulose degradation, whereas rumen microorganisms in breastfed buffaloes are more involved in lactose and amino acid degradation, as well as antibiotic production. In conclusion, these findings suggest a close relationship between differences in rumen microbes and the survival needs of buffaloes at different growth stages.
Collapse
Affiliation(s)
- Yixue Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Tong Feng
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zixu Ding
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Ling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Buffalo Genetics, Nanning, China
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Kuiqing Cui
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Weihua Chen
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hongping Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Peng Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Beibu Gulf University, Qinzhou, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
46
|
Xue P, Xue M, Luo Y, Tang Q, Wang F, Sun R, Song Y, Chao Z, Fang M. Colonic Microbiota Improves Fiber Digestion Ability and Enhances Absorption of Short-Chain Fatty Acids in Local Pigs of Hainan. Microorganisms 2024; 12:1033. [PMID: 38930415 PMCID: PMC11205767 DOI: 10.3390/microorganisms12061033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Compared to commercial breeds, Chinese local pig breeds have a greater ability to digest dietary fiber, which may be due to differences in intestinal microbiota. In this study, we fed Ding'an and DLY pigs high and low levels of dietary fiber, respectively, to investigate factors contributing to high dietary fiber adaption in Ding'an pigs. Twelve Ding'an pigs and DLY pigs were randomly divided into a 2 (diet) × 2 (breed) factorial experiment (n = 3). Compared with commercial pigs, Ding'an pigs have a stronger ability to digest dietary fiber. Prevotella was more prevalent in Ding'an pigs than in DLY pigs, which may be an important reason for the stronger ability of fiber degradation in Ding'an pigs. When the effects of feed and breed factors are considered, differences in abundance of 31 species and 14 species, respectively, may result in a greater ability of fiber degradation in Ding'an pigs. Among them, Prevotella. sp. CAG:520 may be a newly discovered bacterium related to fiber degradation, which positively correlated with many fiber-degrading bacteria (r > 0.7). We also found that the concentration of plant metabolites with anti-inflammatory and antioxidant effects was higher in the colonic chyme of Ding'an pigs after increasing the fiber content, which resulted in the downregulated expression of inflammatory factors in colonic mucosa. Spearman's correlation coefficient revealed a strong correlation between microbiota and the apparent digestibility of dietary fiber (r > 0.7). The mRNA expressions of SLC16A1, PYY, and GCG were significantly increased in the colonic mucosa of Ding'an pigs fed on high-fiber diets, which indicates that Ding'an pigs have an enhanced absorption of SCFAs. Our results suggested that an appropriate increase in dietary fiber content can reduce the inflammatory response and improve feed efficiency in Ding'an pigs, and differences in the intestinal microbial composition may be an important reason for the difference in the fiber degradation capacity between the two breeds of pigs.
Collapse
Affiliation(s)
- Pengxiang Xue
- National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (P.X.); (M.X.); (Y.L.); (Q.T.)
| | - Mingming Xue
- National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (P.X.); (M.X.); (Y.L.); (Q.T.)
| | - Yabiao Luo
- National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (P.X.); (M.X.); (Y.L.); (Q.T.)
| | - Qiguo Tang
- National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (P.X.); (M.X.); (Y.L.); (Q.T.)
| | - Feng Wang
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Science, Haikou 571101, China; (F.W.); (R.S.); (Z.C.)
| | - Ruiping Sun
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Science, Haikou 571101, China; (F.W.); (R.S.); (Z.C.)
| | - Yanxia Song
- Sanya Institute, China Agricultural University, Sanya 572024, China;
| | - Zhe Chao
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Science, Haikou 571101, China; (F.W.); (R.S.); (Z.C.)
| | - Meiying Fang
- National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (P.X.); (M.X.); (Y.L.); (Q.T.)
- Sanya Institute, China Agricultural University, Sanya 572024, China;
| |
Collapse
|
47
|
Vasco KA, Hansen ZA, Schilmiller AL, Bowcutt B, Carbonell SL, Ruegg PL, Quinn RA, Zhang L, Manning SD. Untargeted metabolomics and metagenomics reveal signatures for intramammary ceftiofur treatment and lactation stage in the cattle hindgut. Front Mol Biosci 2024; 11:1364637. [PMID: 38836107 PMCID: PMC11148447 DOI: 10.3389/fmolb.2024.1364637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
The gut microbiota in cattle is essential for protein, energy, and vitamin production and hence, microbiota perturbations can affect cattle performance. This study evaluated the effect of intramammary (IMM) ceftiofur treatment and lactation stage on the functional gut microbiome and metabolome. Forty dairy cows were enrolled at dry-off. Half received IMM ceftiofur and a non-antibiotic teat sealant containing bismuth subnitrate (cases), while the other half received the teat sealant (controls). Fecal samples were collected before treatment at dry off, during the dry period (weeks 1 and 5) and the first week after calving (week 9). Shotgun metagenomic sequencing was applied to predict microbial metabolic pathways whereas untargeted metabolomics was used identify polar and nonpolar metabolites. Compared to controls, long-term changes were observed in the cows given ceftiofur, including a lower abundance of microbial pathways linked to energy production, amino acid biosynthesis, and other vital molecules. The metabolome of treated cows had elevated levels of stachyose, phosphatidylethanolamine diacylglycerol (PE-DAG), and inosine a week after the IMM ceftiofur application, indicating alterations in microbial fermentation, lipid metabolism, energy, and cellular signaling. Differences were also observed by sampling, with cows in late lactation having more diverse metabolic pathways and a unique metabolome containing higher levels of histamine and histamine-producing bacteria. These data illustrate how IMM ceftiofur treatment can alter the functionality of the hindgut metabolome and microbiome. Understanding how antibiotics and lactation stages, which are each characterized by unique diets and physiology, impact the function of resident microbes is critical to define normal gut function in dairy cattle.
Collapse
Affiliation(s)
- Karla A. Vasco
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI, United States
| | - Zoe A. Hansen
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI, United States
| | - Anthony L. Schilmiller
- Research Technology Support Facility, Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, MI, United States
| | - Bailey Bowcutt
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI, United States
| | - Samantha L. Carbonell
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI, United States
| | - Pamela L. Ruegg
- Department of Large Animal and Clinical Sciences, Michigan State University, East Lansing, MI, United States
| | - Robert A. Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Lixin Zhang
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI, United States
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
| | - Shannon D. Manning
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
48
|
Yan M, Yu Z. Viruses contribute to microbial diversification in the rumen ecosystem and are associated with certain animal production traits. MICROBIOME 2024; 12:82. [PMID: 38725064 PMCID: PMC11080232 DOI: 10.1186/s40168-024-01791-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/09/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND The rumen microbiome enables ruminants to digest otherwise indigestible feedstuffs, thereby facilitating the production of high-quality protein, albeit with suboptimal efficiency and producing methane. Despite extensive research delineating associations between the rumen microbiome and ruminant production traits, the functional roles of the pervasive and diverse rumen virome remain to be determined. RESULTS Leveraging a recent comprehensive rumen virome database, this study analyzes virus-microbe linkages, at both species and strain levels, across 551 rumen metagenomes, elucidating patterns of microbial and viral diversity, co-occurrence, and virus-microbe interactions. Additionally, this study assesses the potential role of rumen viruses in microbial diversification by analyzing prophages found in rumen metagenome-assembled genomes. Employing CRISPR-Cas spacer-based matching and virus-microbe co-occurrence network analysis, this study suggests that the viruses in the rumen may regulate microbes at strain and community levels through both antagonistic and mutualistic interactions. Moreover, this study establishes that the rumen virome demonstrates responsiveness to dietary shifts and associations with key animal production traits, including feed efficiency, lactation performance, weight gain, and methane emissions. CONCLUSIONS These findings provide a substantive framework for further investigations to unravel the functional roles of the virome in the rumen in shaping the microbiome and influencing overall animal production performance. Video Abstract.
Collapse
Affiliation(s)
- Ming Yan
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA.
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
49
|
Wei L, Zeng B, Li B, Guo W, Mu Z, Gan Y, Li Y. Hybridization alters red deer gut microbiome and metabolites. Front Microbiol 2024; 15:1387957. [PMID: 38784815 PMCID: PMC11112572 DOI: 10.3389/fmicb.2024.1387957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
The host genes play a crucial role in shaping the composition and structure of the gut microbiome. Red deer is listed as an endangered species by the International Union for the Conservation of Nature, and its pilose antlers have good medicinal value. Hybridization can lead to heterosis, resulting in increased pilose antler production and growth performance in hybrid deer. However, the role of the gut microbiome in hybrid deer remains largely unknown. In this study, alpha and beta diversity analysis showed that hybridization altered the composition and structure of the gut microbiome of the offspring, with the composition and structure of the hybrid offspring being more similar to those of the paternal parents. Interestingly, the LefSe differential analysis showed that there were some significantly enriched gut microbiome in the paternal parents (such as g_Prevotellaceae UCG-003, f_Bacteroidales RF16 group; Ambiguous_taxa, etc.) and the maternal parents (including g_Alistipes, g_Anaerosporobacter, etc.), which remained significantly enriched in the hybrid offspring. Additionally, the hybrid offspring exhibited a significant advantage over the parental strains, particularly in taxa that can produce short-chain fatty acids, such as g_Prevotellaceae UCG-003, g_Roseburia, g_Succinivibrio, and g_Lachnospiraceae UCG-006. Similar to bacterial transmission, metagenomic analysis showed that some signaling pathways related to pilose antler growth ("Wnt signaling pathway," "PI3K Akt signaling pathway," "MAPK signaling pathway") were also enriched in hybrid red deer after hybridization. Furthermore, metabolomic analysis revealed that compared with the paternal and maternal parents, the hybrid offspring exhibited significant enrichment in metabolites related to "Steroid hormone biosynthesis," "Tryptophan metabolism," "Valine, leucine and isoleucine metabolism," and "Vitamin B metabolism." Notably, the metagenomic analysis also showed that these metabolic pathways were significantly enriched in hybrid deer. Finally, a correlation analysis between the gut microbiome and metabolites revealed a significant positive correlation between the enriched taxa in hybrid deer, including the Bacteroidales RF16 group, Prevotellaceae, and Succinivibrio, and metabolites, such as 7α-hydroxytestosterone, L-kynurenine, indole, L-isoleucine, and riboflavin. The study contributes valuable data toward understanding the role of the gut microbiome from red deer in hybridization and provides reference data for further screening potential probiotics and performing microbial-assisted breeding that promotes the growth of red deer pilose antlers and bodies, development, and immunity.
Collapse
Affiliation(s)
- Limin Wei
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Bo Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bo Li
- College of Resources and Environment, Aba Teachers University, Aba, China
| | - Wei Guo
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Zhenqiang Mu
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Yunong Gan
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Yanhong Li
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
50
|
Wu D, Zhao P, Wang C, Huasai S, Chen H, Chen A. Differences in the intestinal microbiota and association of host metabolism with hair coat status in cattle. Front Microbiol 2024; 15:1296602. [PMID: 38711970 PMCID: PMC11071169 DOI: 10.3389/fmicb.2024.1296602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/11/2024] [Indexed: 05/08/2024] Open
Abstract
Introduction The hair coat status of cattle serves as an easily observed indicator of economic value in livestock production; however, the underlying mechanism remains largely unknown. Therefore, the objective of the current study was to determine differences in the intestinal microbiota and metabolome of cattle based on a division of with either slick and shining (SHC) or rough and dull (MHC) hair coat in Simmental cows. Methods Eight SHC and eight MHC late-pregnancy Simmental cows (with similar parities, body weights, and body conditions) were selected based on their hair coat status, and blood samples (plasma) from coccygeal venipuncture and fecal samples from the rectum were collected. The intestinal microbiota (in the fecal samples) was characterized by employing 16S rRNA gene sequencing targeting the V3-V4 hypervariable region on the Illumina MiSeq PE300 platform, and plasma samples were subjected to LC-MS/MS-based metabolomics with Progenesis QI 2.3. Plasma macromolecular metabolites were examined for differences in the metabolism of lipids, proteins, mineral elements, and hormones. Results Notable differences between the SHC and MHC groups related to host hair coat status were observed in the host metabolome and intestinal microbiota (P < 0.05). The host metabolome was enriched in histidine metabolism, cysteine and methionine metabolism, and purine metabolism in the SHC group, and the intestinal microbiota were also enriched in histidine metabolism (P < 0.05). In the MHC group, the symbiotic relationship transitioned from cooperation to competition in the MHC group, and an uncoupling effect was present in the microbe-metabolite association of intestine microbiota-host interactions. The hubs mediating the relationships between intestinal microbiota and plasma metabolites were the intestinal bacterial genus g__norank_f__Eubacterium_coprostanoligenes_group, plasma inosine, triiodothyronine, and phosphorus, which could be used to differentiate cows' hair coat status (P < 0.05). Conclusion Overall, the present study identified the relationships between the features of the intestinal microbiota and host hair coat status, thereby providing evidence and a new direction (intestine microbiota-host interplay) for future studies aimed at understanding the hair coat status of cattle.
Collapse
Affiliation(s)
- Donglin Wu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Pengfei Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Chunjie Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Simujide Huasai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Hao Chen
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Aorigele Chen
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|