1
|
Burnside M, Tang J, Baker JL, Merritt J, Kreth J. Shining Light on Oral Biofilm Fluorescence In Situ Hybridization (FISH): Probing the Accuracy of In Situ Biogeography Studies. Mol Oral Microbiol 2025. [PMID: 40304704 DOI: 10.1111/omi.12494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 05/02/2025]
Abstract
The oral biofilm has been instrumental in advancing microbial research and enhancing our understanding of oral health and disease. Recent developments in next-generation sequencing have provided detailed insights into the microbial composition of the oral microbiome, enabling species-level analyses of biofilm interactions. Fluorescence in situ hybridization (FISH) has been especially valuable for studying the spatial organization of these microbes, revealing intricate arrangements such as "corncob" structures that highlight close bacterial interactions. As more genetic sequence data become available, the specificity and accuracy of existing FISH probes used in biogeographical studies require reevaluation. This study examines the performance of commonly used species-specific FISH probes, designed to differentiate oral microbes within in situ oral biofilms, when applied in vitro to an expanded set of bacterial strains. Our findings reveal that the specificity of several FISH probes is compromised, with cross-species hybridization being more common than previously assumed. Notably, we demonstrate that biogeographical associations within in situ oral biofilms, particularly involving Streptococcus and Corynebacterium, may need to be reassessed to align with the latest metagenomic data.
Collapse
Affiliation(s)
- Molly Burnside
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Jonah Tang
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Jonathon L Baker
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Justin Merritt
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Jens Kreth
- Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| |
Collapse
|
2
|
Giacomini JJ, Torres-Morales J, Dewhirst FE, Borisy GG, Mark Welch JL. Spatial ecology of the Neisseriaceae family in the human oral cavity. Microbiol Spectr 2025; 13:e0327524. [PMID: 40197060 PMCID: PMC12054151 DOI: 10.1128/spectrum.03275-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
The human oral microbiome is a diverse ecosystem in which bacterial species have evolved to occupy specific niches within the oral cavity. The Neisseriaceae family, which includes human oral species in the genera Neisseria, Eikenella, Kingella, and Simonsiella, plays a significant role in both commensal and pathogenic relationships. In this study, we investigate the distribution and functional adaptations of Neisseriaceae species across oral habitats, focusing on their site tropisms and ecological roles. We employed a metapangenomic approach in which a curated set of reference genomes representing Neisseriaceae diversity was used for competitive mapping of metagenomic reads. Our analysis revealed distinct habitat preferences among Neisseriaceae species, with Kingella oralis, Neisseria elongata, and Neisseria mucosa primarily found in dental plaque; Neisseria subflava on the tongue dorsum; and Neisseria cinerea in the keratinized gingiva. Functional enrichment analyses identified genes and pathways underpinning habitat-specific adaptations. Plaque specialists showed metabolic versatility, with adaptations in nitrogen metabolism, including nitrate reduction and denitrification, lysine degradation, and galactose metabolism. Tongue dorsum specialists exhibited adaptations including enhanced capabilities for amino acid biosynthesis, short-chain fatty acid and glycerol transport, as well as lipopolysaccharide glycosylation, which may aid in resisting antimicrobial peptides and maintaining membrane integrity. These findings provide insights into the ecological roles and adaptive strategies of Neisseriaceae species within the human oral microbiome and establish a foundation for exploring functional specialization and microbial interactions in these niches.IMPORTANCEUnraveling the distribution and functional adaptations of Neisseriaceae within the human oral microbiome is essential for understanding the roles of these abundant and prevalent commensals in both health and disease. Through a metapangenomic approach, we uncovered distinct habitat preferences of various Neisseriaceae taxa across the oral cavity and identified key genetic traits that may drive their habitat specialization and role in host-microbe interactions. These insights enhance our understanding of the microbial dynamics that shape oral microbial ecology, offering potential pathways for advancing oral health research.
Collapse
Affiliation(s)
| | | | - Floyd E. Dewhirst
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | | | - Jessica L. Mark Welch
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| |
Collapse
|
3
|
Xiao L, Pu Y, Cui Y, Chen C, Xiao Q, Wang Y, Wei Y, Feng M, Zhang T, Yang S, Zhou J, Ni Y, Zhang J, Liao H, Wu J, Zhang Y. Elongation factor Tu promotes the onset of periodontitis through mediating bacteria adhesion. NPJ Biofilms Microbiomes 2025; 11:47. [PMID: 40113820 PMCID: PMC11926244 DOI: 10.1038/s41522-025-00680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/08/2025] [Indexed: 03/22/2025] Open
Abstract
Periodontitis, a leading cause of adult tooth loss and linked to various systemic diseases, is promoted by subgingival plaque biofilms, with Streptococci as early colonizers responsible for surface adhesion. Current studies of Streptococci adhesion have focused on bacteria surface adhesins with acquired protein membranes on the tooth surface, yet no critical proteins with implications for the overall early adhesion of subgingival plaque have been reported. Here, we identified that the "Barrel-like adhesion domain" of streptococcal EF-Tu facilitates cell-surface attachment, promotes biofilm formation, and contributes to the development of periodontitis. In the adherent state, EF-Tu is transported from the cytoplasm to the cell surface through membrane vesicles. Furthermore, we first found that simeprevir, an FDA-approved drug, binds to the "Barrel-like adhesion domain" of EF-Tu and effectively inhibits the protein's surface adhesion and secretory pathways. Simeprevir showed the ability to inhibit dental plaque formation and provided prevention and treatments for periodontitis.
Collapse
Affiliation(s)
- Leyi Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Yingying Pu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
- Medical Research Institute School of Medicine Wuhan University, 430071, Wuhan, China
| | - Yu Cui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Chen Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Qi Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Yulan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Yan Wei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Mengge Feng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Tiange Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Shanyi Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Jingxuan Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Yueqi Ni
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Jinglun Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Hebin Liao
- Medical Research Institute School of Medicine Wuhan University, 430071, Wuhan, China
| | - Jingwen Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Yufeng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China.
- Medical Research Institute School of Medicine Wuhan University, 430071, Wuhan, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, 430071, Wuhan, China.
| |
Collapse
|
4
|
Williams I, Tuckerman JS, Peters DI, Bangs M, Williams E, Shin IJ, Kaspar JR. A strain of Streptococcus mitis inhibits biofilm formation of caries pathogens via abundant hydrogen peroxide production. Appl Environ Microbiol 2025; 91:e0219224. [PMID: 39998256 PMCID: PMC11921374 DOI: 10.1128/aem.02192-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
Commensal oral streptococci that colonize supragingival biofilms deploy mechanisms to combat competitors within their niche. Here, we determined that Streptococcus mitis more effectively inhibited biofilm formation of Streptococcus mutans compared to other oral streptococci. This phenotype was common among all isolates of S. mutans, but was specific to a single strain of S. mitis, ATCC 49456. We documented ATCC 49456 to accumulate four to five times more hydrogen peroxide (H2O2) than other Streptococcus species tested, and 5-18 times more than other S. mitis strains assayed. S. mutans biofilm formation inhibition was dependent on cell contact/proximity and reduced when grown in media containing catalase or with a S. mitis mutant of pyruvate oxidase (spxB; pox), confirming that SpxB-dependent H2O2 production was a major antagonistic factor. Addition of S. mitis within hours after S. mutans inoculation was effective at reducing biofilm biomass, but not for 24 h pre-formed biofilms in an SpxB-dependent manner. Transcriptome analysis revealed responses for both S. mitis and S. mutans, with several S. mutans differentially expressed genes following a gene expression pattern we have previously described, while others being unique to the interaction with S. mitis. Finally, we show that S. mitis also affected coculture biofilm formation of several other commensal streptococci as well as cariogenic Streptococcus sobrinus. Our study shows that strains with abundant H2O2 production are effective at inhibiting initial growth of caries pathogens like S. mutans, but are less effective at disrupting pre-formed biofilms and have the potential to influence the stability of other oral commensal strains.IMPORTANCEAntagonistic properties displayed by oral bacteria have been sought as therapeutic approaches against dental caries pathogens like Streptococcus mutans. An emergent theme has been the ability of select strains that produce high amounts of hydrogen peroxide to effectively inhibit the growth of S. mutans within in vitro and in vivo models. Our study builds on these previous findings by determining that Streptococcus mitis ATCC 49456 is a high hydrogen peroxide producer, compared to other Streptococcus species as well as additional strains of S. mitis. In addition to S. mutans, we show that ATCC 49456 also affects biofilm formation of other oral streptococci, a non-desirable trait that should be weighed heavily for strains under consideration as probiotics. Further phenotypic characterization of strains like S. mitis ATCC 49456 in mixed-species settings will allow us to hone in on qualities that are optimal for probiotic strains that are intended to prevent the emergence of odontopathogens.
Collapse
Affiliation(s)
- Isabella Williams
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Jacob S. Tuckerman
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Daniel I. Peters
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Madisen Bangs
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Emily Williams
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Iris J. Shin
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Justin R. Kaspar
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| |
Collapse
|
5
|
Yang Y, Xu C, Xu S, Li Y, Chen K, Yang T, Bao J, Xu Y, Chen J, Mao C, Chen L, Sun W. Injectable hydrogels activated with copper sulfide nanoparticles for enhancing spatiotemporal sterilization and osteogenesis in periodontal therapy. Biomater Sci 2025; 13:1434-1448. [PMID: 38711336 DOI: 10.1039/d3bm02134c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Developing biomaterials capable of promoting bone regeneration in bacteria-infected sites is of utmost urgency for periodontal disease therapies. Here we produce a hybrid hydrogel by integrating CuS nanoparticles (CuSNPs), which could kill bacteria through photothermal therapy (PTT) triggered by a near infrared (NIR) light, and a gelatin methacryloyl (GelMA) hydrogel, which is injectable and biocompatible. Specifically, CuSNPs were precipitated by chitosan (CS) firstly, then grafted with methacrylic anhydride (MA) to form CuSNP@CS-MA, which was photo-crosslinked with GelMA to synthesize hybrid hydrogels (GelMA/CuSNP). The hybrid hydrogels exhibited a broad-spectrum antibacterial property that could be spatiotemprorally manipulated through applying a NIR light. Their mechanical properties were adjustable by controlling the concentration of CuSNPs, enabling the hydrogels to become more adapted to the oral diseases. Meanwhile, the hybrid hydrogels showed good cytocompatibility in vitro and improved hemostasis in vivo. Moreover, they accelerated alveolar osteogenesis and vascular genesis, successfully treating periodontis in four weeks in a rat model. GelMA/CuSNP hydrogels showed a broad-spectrum sterilization ability via PTT in vitro and outstanding antibacterial property in vivo, suggesting that the hybrid hydrogels could function in the challenging, bacteria-rich, oral environment. Such injectable hybrid hydrogels, capable of achieving both facilitated osteogenesis and NIR-inducible sterilization, represent a new biomaterial for treating periodontitis.
Collapse
Affiliation(s)
- Yuting Yang
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, P.R. China.
| | - Chunbin Xu
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, P.R. China.
| | - Shengqian Xu
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, P.R. China.
| | - Yan Li
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, P.R. China.
| | - Ke'er Chen
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, P.R. China.
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Jiaqi Bao
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, P.R. China.
| | - Yajing Xu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Jingyao Chen
- Facility for Histomorphology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310027, China
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Lili Chen
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, P.R. China.
| | - Weilian Sun
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, P.R. China.
| |
Collapse
|
6
|
Wyllie RM, Jensen PA. The MutRS quorum-sensing system controls lantibiotic mutacin production in the human pathogen Streptococcus mutans. Proc Natl Acad Sci U S A 2025; 122:e2421164122. [PMID: 39946531 PMCID: PMC11848300 DOI: 10.1073/pnas.2421164122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/24/2024] [Indexed: 02/26/2025] Open
Abstract
Microbes use quorum-sensing systems to respond to ecological and environmental changes. In the oral microbiome, the pathogenic bacterium Streptococcus mutans uses quorum-sensing to control the production of bacteriocins. These antimicrobial peptides kill off ecological competitors and allow S. mutans to dominate the microenvironment of dental plaques and form dental caries. One class of bacteriocins produced by S. mutans, the lantibiotic mutacins, are particularly effective at killing due to their broad spectrum of activity. Despite years of study, the regulatory mechanisms governing production of lantibiotic mutacins I, II, and III in S. mutans have never been elucidated. We identified a distinct class of quorum-sensing system, MutRS, that regulates mutacins and is widespread among the streptococci. We demonstrate that MutRS systems are activated by a short peptide pheromone (Mutacin Stimulating Peptide) and show that MutRS controls production of three separate lantibiotic mutacins in three different strains of S. mutans. Finally, we show that paralogous MutRS systems participate in inter- and intrastrain crosstalk, providing further evidence of the interplay between quorum-sensing systems in the oral streptococci.
Collapse
Affiliation(s)
- Ryan M. Wyllie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Paul A. Jensen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
7
|
Velsko IM, Warinner C. Streptococcus abundance and oral site tropism in humans and non-human primates reflects host and lifestyle differences. NPJ Biofilms Microbiomes 2025; 11:19. [PMID: 39824852 PMCID: PMC11748738 DOI: 10.1038/s41522-024-00642-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/19/2024] [Indexed: 01/20/2025] Open
Abstract
The genus Streptococcus is highly diverse and a core member of the primate oral microbiome. Streptococcus species are grouped into at least eight phylogenetically-supported clades, five of which are found almost exclusively in the oral cavity. We explored the dominant Streptococcus phylogenetic clades in samples from multiple oral sites and from ancient and modern-day humans and non-human primates and found that clade dominance is conserved across human oral sites, with most Streptococcus reads assigned to species falling in the Sanguinis or Mitis clades. However, minor differences in the presence and abundance of individual species within each clade differentiated human lifestyles, with loss of S. sinensis appearing to correlate with toothbrushing. Of the non-human primates, only baboons show clade abundance patterns similar to humans, suggesting that a habitat and diet similar to that of early humans may favor the growth of Sanguinis and Mitis clade species.
Collapse
Affiliation(s)
- Irina M Velsko
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Archaeogenetics Research Unit, Leibniz Institute for Natural Products Research and Infection Biology Hans Knöll Institute, Jena, Germany.
| | - Christina Warinner
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Archaeogenetics Research Unit, Leibniz Institute for Natural Products Research and Infection Biology Hans Knöll Institute, Jena, Germany.
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany.
- Radcliffe Institute for Advanced Study, Cambridge, MA, USA.
- Department of Anthropology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
8
|
Adelfio M, Callen GE, Diaz AR, Paster BJ, He X, Hasturk H, Ghezzi CE. Underscoring long-term host-microbiome interactions in a physiologically relevant gingival tissue model. NPJ Biofilms Microbiomes 2025; 11:9. [PMID: 39789014 PMCID: PMC11718163 DOI: 10.1038/s41522-024-00641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
The human body houses many distinct and interconnecting microbial populations with long-lasting systemic effects, where the oral cavity serves as a pathogens' reservoir. The correlation of different disease states strongly supports the need to understand the interplay between the oral tissue niche and microbiome. Despite efforts, the recapitulation of gingival architecture and physiological characteristics of the periodontal niche has yet to be accomplished by traditional cultural strategies. Here, we are showing for the first time the investigation of host-microbiome interactions in healthy conditions within a human oral tissue model over seven days. Our results indicated long-term host and microbiome viability, host barrier integrity, phenotypic functional response, and preservation of healthy microbial populations and interbacterial dialogs. This in vitro platform can maintain tissue homeostasis at the interface of the periodontal niche, thus, offering opportunities to identify predictive disease biomarkers and to develop intervention strategies to promote oral and overall health.
Collapse
Affiliation(s)
- M Adelfio
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, 01854, MA, USA
| | - G E Callen
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, 01854, MA, USA
| | - A R Diaz
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, 01854, MA, USA
| | - B J Paster
- The ADA Forsyth Institute, 245 First St, Cambridge, 02142, MA, USA
| | - X He
- The ADA Forsyth Institute, 245 First St, Cambridge, 02142, MA, USA
| | - H Hasturk
- The ADA Forsyth Institute, 245 First St, Cambridge, 02142, MA, USA
| | - C E Ghezzi
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, 01854, MA, USA.
| |
Collapse
|
9
|
Del Rey YC, Kitzinger K, Lund MB, Schramm A, Meyer RL, Wagner M, Schlafer S. pH-FISH: coupled microscale analysis of microbial identity and acid-base metabolism in complex biofilm samples. MICROBIOME 2024; 12:266. [PMID: 39707459 DOI: 10.1186/s40168-024-01977-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/12/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Correlative structural and chemical imaging of biofilms allows for the combined analysis of microbial identity and metabolism at the microscale. Here, we developed pH-FISH, a method that combines pH ratiometry with fluorescence in situ hybridization (FISH) in structurally intact biofilms for the coupled investigation of microbial acid metabolism and biofilm composition. Careful biofilm handling and modified sample preparation procedures for FISH allowed preservation of the three-dimensional biofilm structure throughout all processing and imaging steps. We then employed pH-FISH to investigate the relationship between local biofilm pH and the distribution of acid-producing (streptococci) and acid-consuming (Veillonella spp.) bacteria in dental biofilms from healthy subjects and caries-active patients. RESULTS The relative abundance of streptococci correlated with low biofilm pH at the field-of-view level, while the opposite trend was observed for Veillonella spp. These results suggest that clusters of streptococci contribute to the formation of acidic pockets inside dental biofilms, whereas Veillonella spp. may have a protective role against biofilm acidification. CONCLUSIONS pH-FISH combines microscale mapping of biofilm pH in real time with structural imaging of the local microbial architecture, and is a powerful method to explore the interplay between biofilm composition and metabolism in complex biological systems. Video Abstract.
Collapse
Affiliation(s)
- Yumi Chokyu Del Rey
- Section for Oral Ecology, Cariology, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000, Aarhus C, Denmark.
| | - Katharina Kitzinger
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Marie Braad Lund
- Section for Microbiology, Department of Biology, Aarhus University, Ny Munkegade 116, 8000, Aarhus C, Denmark
| | - Andreas Schramm
- Section for Microbiology, Department of Biology, Aarhus University, Ny Munkegade 116, 8000, Aarhus C, Denmark
| | - Rikke Louise Meyer
- Section for Microbiology, Department of Biology, Aarhus University, Ny Munkegade 116, 8000, Aarhus C, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- The Comammox Research Platform, University of Vienna, Vienna, Austria
| | - Sebastian Schlafer
- Section for Oral Ecology, Cariology, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000, Aarhus C, Denmark.
| |
Collapse
|
10
|
Ray RR. Biofilm architecture and dynamics of the oral ecosystem. BIOTECHNOLOGIA 2024; 105:395-402. [PMID: 39844868 PMCID: PMC11748217 DOI: 10.5114/bta.2024.145259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/16/2024] [Accepted: 09/11/2024] [Indexed: 01/24/2025] Open
Abstract
The oral cavity, being a nutritionally enriched environment, has been proven to be an ideal habitat for biofilm development. Various microenvironments, including dental enamel, supra- and subgingival surfaces, salivary fluid, and the dorsal surface of the tongue, harbor diverse microbes. These biofilms typically consist of four major layers. Depending on the food, age, clinical state, and lifestyle of the patient, the microbial growth dynamics in oral biofilm varies significantly. The presence of pathogenic bacteria that disrupt the normal floral composition of the oral cavity can lead to plaque biofilm formation, which is a precursor to various diseases. Noteworthy pathogenic bacteria, such as Porphyromonas gingivalis, Fusobacterium nucleatum, and Streptococcus mutans, often initiate biofilm formation. Undiagnosed and untreated oral biofilm can lead to severe diseases like periodontitis and eventual tooth loss. Therefore, studying the architecture and dynamics of oral biofilms is essential and can be achieved through image analysis and modern technologies, such as AI-enabled technologies and surface topography-adaptive robotic superstructures.
Collapse
Affiliation(s)
- Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia, West Bengal, India School of Life Sciences, Sambalpur University, Burla, Odisha, India
| |
Collapse
|
11
|
Majumder S, Coull BA, Mark Welch JL, La Riviere PJ, Dewhirst FE, Starr JR, Lee KH. Multivariate Cluster Point Process to Quantify and Explore Multi-Entity Configurations: Application to Biofilm Image Data. Stat Med 2024; 43:5446-5460. [PMID: 39449164 PMCID: PMC11833794 DOI: 10.1002/sim.10261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/26/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Clusters of similar or dissimilar objects are encountered in many fields. Frequently used approaches treat each cluster's central object as latent. Yet, often objects of one or more types cluster around objects of another type. Such arrangements are common in biomedical images of cells, in which nearby cell types likely interact. Quantifying spatial relationships may elucidate biological mechanisms. Parent-offspring statistical frameworks can be usefully applied even when central objects ("parents") differ from peripheral ones ("offspring"). We propose the novel multivariate cluster point process (MCPP) to quantify multi-object (e.g., multi-cellular) arrangements. Unlike commonly used approaches, the MCPP exploits locations of the central parent object in clusters. It accounts for possibly multilayered, multivariate clustering. The model formulation requires specification of which object types function as cluster centers and which reside peripherally. If such information is unknown, the relative roles of object types may be explored by comparing fit of different models via the deviance information criterion (DIC). In simulated data, we compared a series of models' DIC; the MCPP correctly identified simulated relationships. It also produced more accurate and precise parameter estimates than the classical univariate Neyman-Scott process model. We also used the MCPP to quantify proposed configurations and explore new ones in human dental plaque biofilm image data. MCPP models quantified simultaneous clustering of Streptococcus and Porphyromonas around Corynebacterium and of Pasteurellaceae around Streptococcus and successfully captured hypothesized structures for all taxa. Further exploration suggested the presence of clustering between Fusobacterium and Leptotrichia, a previously unreported relationship.
Collapse
Affiliation(s)
- Suman Majumder
- Department of Statistics, University of Missouri, Columbia, Missouri, USA
| | - Brent A. Coull
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | | | | | - Jacqueline R. Starr
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Kyu Ha Lee
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Ryder MI, Fine DH, Barron AE. From Global to Nano: A Geographical Perspective of Aggregatibacter actinomycetemcomitans. Pathogens 2024; 13:837. [PMID: 39452709 PMCID: PMC11510556 DOI: 10.3390/pathogens13100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The periodontal disease pathobiont Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) may exert a range of detrimental effects on periodontal diseases in general and, more specifically, with the initiation and progression of Localized Stage III Grade C periodontitis (molar-incisor pattern). In this review of the biogeography of this pathobiont, the full range of geographical scales for A. actinomycetemcomitans, from global origins and transmission to local geographical regions, to more locally exposed probands and families, to the individual host, down to the oral cavity, and finally, to spatial interactions with other commensals and pathobionts within the plaque biofilms at the micron/nanoscale, are reviewed. Using the newest technologies in genetics, imaging, in vitro cultures, and other research disciplines, investigators may be able to gain new insights to the role of this pathobiont in the unique initial destructive patterns of Localized Stage III Grade C periodontitis. These findings may incorporate the unique features of the microbiome that are influenced by variations in the geographic environment within the entire mouth. Additional insights into the geographic distribution of molar-incisor periodontal breakdown for Localized Stage III Grade C periodontitis may derive from the spatial interactions between A. actinomycetemcomitans and other pathobionts such as Porphyromonas gingivalis, Filifactor aclocis, and commensals such as Streptococcus gordonii. In addition, while the association of A. actinomycetemcomitans in systemic diseases is limited at the present time, future studies into possible periodontal disease-systemic disease links may also find A. actinomycetemcomitans and its geographical interactions with other microbiome members to provide important clues as to implications of pathobiological communications.
Collapse
Affiliation(s)
- Mark I. Ryder
- Department of Bioengineering, School of Medicine and School of Engineering, Stanford University, Stanford, CA 94143, USA;
- Division of Periodontology, Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA
| | - Daniel H. Fine
- Department of Oral Biology, Rutgers School of Dental Medicine, 443 Via Ortega, Stanford, CA 94305, USA
| | - Annelise E. Barron
- Department of Bioengineering, School of Medicine and School of Engineering, Stanford University, Stanford, CA 94143, USA;
| |
Collapse
|
13
|
Chimileski S, Borisy GG, Dewhirst FE, Mark Welch JL. Tip extension and simultaneous multiple fission in a filamentous bacterium. Proc Natl Acad Sci U S A 2024; 121:e2408654121. [PMID: 39226354 PMCID: PMC11406273 DOI: 10.1073/pnas.2408654121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Organisms display an immense variety of shapes, sizes, and reproductive strategies. At microscopic scales, bacterial cell morphology and growth dynamics are adaptive traits that influence the spatial organization of microbial communities. In one such community-the human dental plaque biofilm-a network of filamentous Corynebacterium matruchotii cells forms the core of bacterial consortia known as hedgehogs, but the processes that generate these structures are unclear. Here, using live-cell time-lapse microscopy and fluorescent D-amino acids to track peptidoglycan biosynthesis, we report an extraordinary example of simultaneous multiple division within the domain Bacteria. We show that C. matruchotii cells elongate at one pole through tip extension, similar to the growth strategy of soil-dwelling Streptomyces bacteria. Filaments elongate rapidly, at rates more than five times greater than other closely related bacterial species. Following elongation, many septa form simultaneously, and each cell divides into 3 to 14 daughter cells, depending on the length of the mother filament. The daughter cells then nucleate outgrowth of new thinner vegetative filaments, generating the classic "whip handle" morphology of this taxon. Our results expand the known diversity of bacterial cell cycles and help explain how this filamentous bacterium can compete for space, access nutrients, and form important interspecies interactions within dental plaque.
Collapse
Affiliation(s)
- Scott Chimileski
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA02543
| | - Gary G. Borisy
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA02543
- Department of Microbiology, American Dental Association Forsyth Institute, Cambridge, MA02142
| | - Floyd E. Dewhirst
- Department of Microbiology, American Dental Association Forsyth Institute, Cambridge, MA02142
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Jessica L. Mark Welch
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA02543
- Department of Microbiology, American Dental Association Forsyth Institute, Cambridge, MA02142
| |
Collapse
|
14
|
Mann AE, Aumend C, Crull S, O'Connell LM, Osagie E, Akhigbe P, Obuekwe O, Omoigberale A, Rowe M, Blouin T, Soule A, Kelly C, Burne RA, Coker MO, Richards VP. HIV Infection and Exposure Increases Cariogenic Taxa, Reduces Taxonomic Turnover, and Homogenizes Spatial Differentiation for the Supragingival Microbiome. RESEARCH SQUARE 2024:rs.3.rs-4720457. [PMID: 39149457 PMCID: PMC11326420 DOI: 10.21203/rs.3.rs-4720457/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Background The oral microbiome comprises distinct microbial communities that colonize diverse ecological niches across the oral cavity, the composition of which are influenced by nutrient and substrate availability, host genetics, diet, behavior, age, and other diverse host and environmental factors. Unlike other densely populated human-associated microbial ecosystems (e.g., gut, urogenital), the oral microbiome is regularly and directly exposed to the external environment and is therefore likely less stable over time. Cross sectional studies of the oral microbiome capture a glimpse of this temporal dynamism, yet a full appreciation of the relative stability, robusticity, and spatial structure of the oral environment is necessary to understand the role of microbial communities in promoting health or disease. Results Here we investigate the spatial and temporal stability of the oral microbiome over three sampling time points in the context of HIV infection and exposure. Individual teeth were sampled from a cohort of 565 Nigerian children with varying levels of tooth decay severity (i.e., caries disease). We collected 1,960 supragingival plaque samples and characterized the oral microbiome using a metataxonomic approach targeting an approximately 478 bp region of the bacterial rpoC gene. We found that both infection and exposure to HIV have significant effects on the stability of the supragingival plaque microbiome at both the spatial and temporal scale. Specifically, we detect (1) significantly lower taxonomic turnover of the oral community among exposed and infected children compared to unexposed children, (2) we find that HIV infection homogenizes the oral community across the anterior and posterior dentition, and (3) that impaired immunity (i.e., low CD4 count) and low taxonomic turnover over time in children living with HIV is associated with higher frequency of cariogenic taxa including Streptococcus mutans. Conclusions Our results document substantial community fluctuations over time in children unexposed to HIV independent of oral health status. This suggests that the oral community, under typical conditions, rapidly adapts to environmental perturbations to maintain homeostasis and that long-term taxonomic rigidity is a signal of community dysfunction, potentially leading to a higher incidence of oral disease including caries.
Collapse
|
15
|
Williams I, Tuckerman JS, Peters DI, Bangs M, Williams E, Shin IJ, Kaspar JR. A Strain of Streptococcus mitis Inhibits Biofilm Formation of Caries Pathogens via Abundant Hydrogen Peroxide Production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606862. [PMID: 39149263 PMCID: PMC11326308 DOI: 10.1101/2024.08.06.606862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Commensal oral streptococci that colonize supragingival biofilms deploy mechanisms to combat competitors within their niche. Here, we determined that Streptococcus mitis more effectively inhibited biofilm formation of Streptococcus mutans within a seven species panel. This phenotype was common amongst all assayed isolates of S. mutans, but was specific to a single strain of S. mitis, ATCC 49456. The growth inhibitory factor was not effectively carried in spent supernatants of S. mitis. However, we documented ATCC 49456 to accumulate 4-5 times more hydrogen peroxide (H2O2) than other species tested, and 5-18 times more than other S. mitis strains assayed. The S. mutans biofilm formation inhibitory phenotype was reduced when grown in media containing catalase or with a S. mitis mutant of pyruvate oxidase (spxB; pox), confirming that SpxB-dependent H2O2 production was the main antagonistic factor. Addition of S. mitis within hours after S. mutans inoculation was effective at reducing biofilm biomass, but not for 24 h pre-formed biofilms. Transcriptome analysis revealed responses for both S. mitis and S. mutans, with several S. mutans differentially expressed genes following a gene expression pattern previously described, while others being unique to the interaction with S. mitis. Finally, we show that S. mitis also affected coculture biofilm formation of several other commensal streptococci. Our study shows that strains with abundant H2O2 production are effective at inhibiting initial growth of caries pathogens like S. mutans, but are less effective at disrupting pre-formed biofilms and have the potential to influence the stability of other oral commensal strains.
Collapse
Affiliation(s)
| | | | - Daniel I. Peters
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Madisen Bangs
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Emily Williams
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Iris J. Shin
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Justin R. Kaspar
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| |
Collapse
|
16
|
Grodner B, Wu DT, Hahm S, Takayasu L, Wen N, Kim DM, Chen CY, De Vlaminck I. Microscale Spatial Dysbiosis in Oral biofilms Associated with Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604873. [PMID: 39211202 PMCID: PMC11360903 DOI: 10.1101/2024.07.24.604873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microbiome dysbiosis has largely been defined using compositional analysis of metagenomic sequencing data; however, differences in the spatial arrangement of bacteria between healthy and diseased microbiomes remain largely unexplored. In this study, we measured the spatial arrangement of bacteria in dental implant biofilms from patients with healthy implants, peri-implant mucositis, or peri-implantitis, an oral microbiome-associated inflammatory disease. We discovered that peri-implant biofilms from patients with mild forms of the disease were characterized by large single-genus patches of bacteria, while biofilms from healthy sites were more complex, mixed structures. Based on these findings, we propose a model of peri-implant dysbiosis where changes in biofilm spatial architecture allow the colonization of new community members. This model indicates that spatial structure could be used as a potential biomarker for community stability and has implications in diagnosis and treatment of peri-implant diseases. These results enhance our understanding of peri-implant disease pathogenesis and may be broadly relevant for spatially structured microbiomes.
Collapse
|
17
|
Ovsepian A, Kardaras FS, Skoulakis A, Hatzigeorgiou AG. Microbial signatures in human periodontal disease: a metatranscriptome meta-analysis. Front Microbiol 2024; 15:1383404. [PMID: 38659984 PMCID: PMC11041396 DOI: 10.3389/fmicb.2024.1383404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024] Open
Abstract
The characterization of oral microbial communities and their functional potential has been shaped by metagenomics and metatranscriptomics studies. Here, a meta-analysis of four geographically and technically diverse oral shotgun metatranscriptomics studies of human periodontitis was performed. In total, 54 subgingival plaque samples, 27 healthy and 27 periodontitis, were analyzed. The core microbiota of the healthy and periodontitis group encompassed 40 and 80 species, respectively, with 38 species being common to both microbiota. The differential abundance analysis identified 23 genera and 26 species, that were more abundant in periodontitis. Our results not only validated previously reported genera and species associated with periodontitis with heightened statistical significance, but also elucidated additional genera and species that were overlooked in the individual studies. Functional analysis revealed a significant up-regulation in the transcription of 50 gene families (UniRef-90) associated with transmembrane transport and secretion, amino acid metabolism, surface protein and flagella synthesis, energy metabolism, and DNA supercoiling in periodontitis samples. Notably, the overwhelming majority of the identified gene families did not exhibit differential abundance when examined across individual datasets. Additionally, 4 bacterial virulence factor genes, including TonB dependent receptor from P. gingivalis, surface antigen BspA from T. forsynthia, and adhesin A (PsaA) and Type I glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from the Streptococcus genus, were also found to be significantly more transcribed in periodontitis group. Microbial co-occurrence analysis demonstrated that the periodontitis microbial network was less dense compared to the healthy network, but it contained more positive correlations between the species. Furthermore, there were discernible disparities in the patterns of interconnections between the species in the two networks, denoting the rewiring of the whole microbial network during the transition to the disease state. In summary, our meta-analysis has provided robust insights into the oral active microbiome and transcriptome in both health and disease.
Collapse
Affiliation(s)
- Armen Ovsepian
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Filippos S. Kardaras
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Anargyros Skoulakis
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Artemis G. Hatzigeorgiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
18
|
Giacomini JJ, Torres-Morales J, Tang J, Dewhirst FE, Borisy GG, Mark Welch JL. Spatial ecology of Haemophilus and Aggregatibacter in the human oral cavity. Microbiol Spectr 2024; 12:e0401723. [PMID: 38488280 PMCID: PMC10986600 DOI: 10.1128/spectrum.04017-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/26/2024] [Indexed: 04/06/2024] Open
Abstract
Haemophilus and Aggregatibacter are two of the most common bacterial genera in the human oral cavity, encompassing both commensals and pathogens of substantial ecological and medical significance. In this study, we conducted a metapangenomic analysis of oral Haemophilus and Aggregatibacter species to uncover genomic diversity, phylogenetic relationships, and habitat specialization within the human oral cavity. Using three metrics-pangenomic gene content, phylogenomics, and average nucleotide identity (ANI)-we first identified distinct species and sub-species groups among these genera. Mapping of metagenomic reads then revealed clear patterns of habitat specialization, such as Aggregatibacter species predominantly in dental plaque, a distinctive Haemophilus parainfluenzae sub-species group on the tongue dorsum, and H. sp. HMT-036 predominantly in keratinized gingiva and buccal mucosa. In addition, we found that supragingival plaque samples contained predominantly only one out of the three taxa, H. parainfluenzae, Aggregatibacter aphrophilus, and A. sp. HMT-458, suggesting independent niches or a competitive relationship. Functional analyses revealed the presence of key metabolic genes, such as oxaloacetate decarboxylase, correlated with habitat specialization, suggesting metabolic versatility as a driving force. Additionally, heme synthesis distinguishes H. sp. HMT-036 from closely related Haemophilus haemolyticus, suggesting that the availability of micronutrients, particularly iron, was important in the evolutionary ecology of these species. Overall, our study exemplifies the power of metapangenomics to identify factors that may affect ecological interactions within microbial communities, including genomic diversity, habitat specialization, and metabolic versatility. IMPORTANCE Understanding the microbial ecology of the mouth is essential for comprehending human physiology. This study employs metapangenomics to reveal that various Haemophilus and Aggregatibacter species exhibit distinct ecological preferences within the oral cavity of healthy individuals, thereby supporting the site-specialist hypothesis. Additionally, it was observed that the gene pool of different Haemophilus species correlates with their ecological niches. These findings shed light on the significance of key metabolic functions in shaping microbial distribution patterns and interspecies interactions in the oral ecosystem.
Collapse
Affiliation(s)
| | | | - Jonathan Tang
- The Forsyth Institute, Cambridge, Massachusetts, USA
| | - Floyd E. Dewhirst
- The Forsyth Institute, Cambridge, Massachusetts, USA
- Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | | | - Jessica L. Mark Welch
- The Forsyth Institute, Cambridge, Massachusetts, USA
- Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| |
Collapse
|
19
|
Mann AE, Chakraborty B, O'Connell LM, Nascimento MM, Burne RA, Richards VP. Heterogeneous lineage-specific arginine deiminase expression within dental microbiome species. Microbiol Spectr 2024; 12:e0144523. [PMID: 38411054 PMCID: PMC10986539 DOI: 10.1128/spectrum.01445-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
Arginine catabolism by the bacterial arginine deiminase system (ADS) has anticariogenic properties through the production of ammonia, which modulates the pH of the oral environment. Given the potential protective capacity of the ADS pathway, the exploitation of ADS-competent oral microbes through pre- or probiotic applications is a promising therapeutic target to prevent tooth decay. To date, most investigations of the ADS in the oral cavity and its relation to caries have focused on indirect measures of activity or on specific bacterial groups, yet the pervasiveness and rate of expression of the ADS operon in diverse mixed microbial communities in oral health and disease remain an open question. Here, we use a multivariate approach, combining ultra-deep metatranscriptomic sequencing with paired metataxonomic and in vitro citrulline quantification to characterize the microbial community and ADS operon expression in healthy and late-stage cavitated teeth. While ADS activity is higher in healthy teeth, we identify multiple bacterial lineages with upregulated ADS activity on cavitated teeth that are distinct from those found on healthy teeth using both reference-based mapping and de novo assembly methods. Our dual metataxonomic and metatranscriptomic approach demonstrates the importance of species abundance for gene expression data interpretation and that patterns of differential expression can be skewed by low-abundance groups. Finally, we identify several potential candidate probiotic bacterial lineages within species that may be useful therapeutic targets for the prevention of tooth decay and propose that the development of a strain-specific, mixed-microbial probiotic may be a beneficial approach given the heterogeneity of taxa identified here across health groups. IMPORTANCE Tooth decay is the most common preventable chronic disease, affecting more than two billion people globally. The development of caries on teeth is primarily a consequence of acid production by cariogenic bacteria that inhabit the plaque microbiome. Other bacterial strains in the oral cavity may suppress or prevent tooth decay by producing ammonia as a byproduct of the arginine deiminase metabolic pathway, increasing the pH of the plaque biofilm. While the benefits of arginine metabolism on oral health have been extensively documented in specific bacterial groups, the prevalence and consistency of arginine deiminase system (ADS) activity among oral bacteria in a community context remain an open question. In the current study, we use a multi-omics approach to document the pervasiveness of the expression of the ADS operon in both health and disease to better understand the conditions in which ADS activity may prevent tooth decay.
Collapse
Affiliation(s)
- Allison E. Mann
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Brinta Chakraborty
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Lauren M. O'Connell
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Marcelle M. Nascimento
- Division of Operative Dentistry, Department of Restorative Dental Sciences, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Robert A. Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Vincent P. Richards
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
20
|
Podar NA, Carrell AA, Cassidy KA, Klingeman DM, Yang Z, Stahler EA, Smith DW, Stahler DR, Podar M. From wolves to humans: oral microbiome resistance to transfer across mammalian hosts. mBio 2024; 15:e0334223. [PMID: 38299854 PMCID: PMC10936156 DOI: 10.1128/mbio.03342-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 02/02/2024] Open
Abstract
The mammalian mouth is colonized by complex microbial communities, adapted to specific niches, and in homeostasis with the host. Individual microbes interact metabolically and rely primarily on nutrients provided by the host, with which they have potentially co-evolved along the mammalian lineages. The oral environment is similar across mammals, but the diversity, specificity, and evolution of community structure in related or interacting mammals are little understood. Here, we compared the oral microbiomes of dogs with those of wild wolves and humans. In dogs, we found an increased microbial diversity relative to wolves, possibly related to the transition to omnivorous nutrition following domestication. This includes a larger diversity of Patescibacteria than previously reported in any other oral microbiota. The oral microbes are most distinct at bacterial species or strain levels, with few if any shared between humans and canids, while the close evolutionary relationship between wolves and dogs is reflected by numerous shared taxa. More taxa are shared at higher taxonomic levels including with humans, supporting their more ancestral common mammalian colonization followed by diversification. Phylogenies of selected oral bacterial lineages do not support stable human-dog microbial transfers but suggest diversification along mammalian lineages (apes and canids). Therefore, despite millennia of cohabitation and close interaction, the host and its native community controls and limits the assimilation of new microbes, even if closely related. Higher resolution metagenomic and microbial physiological studies, covering a larger mammalian diversity, should help understand how oral communities assemble, adapt, and interact with their hosts.IMPORTANCENumerous types of microbes colonize the mouth after birth and play important roles in maintaining oral health. When the microbiota-host homeostasis is perturbed, proliferation of some bacteria leads to diseases such as caries and periodontitis. Unlike the gut microbiome, the diversity of oral microbes across the mammalian evolutionary space is not understood. Our study compared the oral microbiomes of wild wolves, dogs, and apes (humans, chimpanzees, and bonobos), with the aim of identifying if microbes have been potentially exchanged between humans and dogs as a result of domestication and cohabitation. We found little if any evidence for such exchanges. The significance of our research is in finding that the oral microbiota and/or the host limit the acquisition of exogenous microbes, which is important in the context of natural exclusion of potential novel pathogens. We provide a framework for expanded higher-resolution studies across domestic and wild animals to understand resistance/resilience.
Collapse
Affiliation(s)
- Nicholas A. Podar
- School of Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Alyssa A. Carrell
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Kira A. Cassidy
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Dawn M. Klingeman
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Zamin Yang
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Erin A. Stahler
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Douglas W. Smith
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Daniel R. Stahler
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, Wyoming, USA
| | - Mircea Podar
- Biosciences Department, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
21
|
Li J, Zhang Q, Zhao J, Zhang H, Chen W. Lactobacillus-derived components for inhibiting biofilm formation in the food industry. World J Microbiol Biotechnol 2024; 40:117. [PMID: 38429597 DOI: 10.1007/s11274-024-03933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
Biofilm, a microbial community formed by especially pathogenic and spoilage bacterial species, is a critical problem in the food industries. It is an important cause of continued contamination by foodborne pathogenic bacteria. Therefore, removing biofilm is the key to solving the high pollution caused by foodborne pathogenic bacteria in the food industry. Lactobacillus, a commonly recognized probiotic that is healthy for consumer, have been proven useful for isolating the potential biofilm inhibitors. However, the addition of surface components and metabolites of Lactobacillus is not a current widely adopted biofilm control strategy at present. This review focuses on the effects and preliminary mechanism of action on biofilm inhibition of Lactobacillus-derived components including lipoteichoic acid, exopolysaccharides, bacteriocins, secreted protein, organic acids and some new identified molecules. Further, the review discusses several modern biofilm identification techniques and particularly interesting new technology of biofilm inhibition molecules. These molecules exhibit stronger inhibition of biofilm formation, playing a pivotal role in food preservation and storage. Overall, this review article discusses the application of biofilm inhibitors produced by Lactobacillus, which would greatly aid efforts to eradicate undesirable bacteria from environment in the food industries.
Collapse
Affiliation(s)
- Jiaxun Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
22
|
Kaliniak S, Fiedoruk K, Spałek J, Piktel E, Durnaś B, Góźdź S, Bucki R, Okła S. Remodeling of Paranasal Sinuses Mucosa Functions in Response to Biofilm-Induced Inflammation. J Inflamm Res 2024; 17:1295-1323. [PMID: 38434581 PMCID: PMC10906676 DOI: 10.2147/jir.s443420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/23/2024] [Indexed: 03/05/2024] Open
Abstract
Rhinosinusitis (RS) is an acute (ARS) or chronic (CRS) inflammatory disease of the nasal and paranasal sinus mucosa. CRS is a heterogeneous condition characterized by distinct inflammatory patterns (endotypes) and phenotypes associated with the presence (CRSwNP) or absence (CRSsNP) of nasal polyps. Mucosal barrier and mucociliary clearance dysfunction, inflammatory cell infiltration, mucus hypersecretion, and tissue remodeling are the hallmarks of CRS. However, the underlying factors, their priority, and the mechanisms of inflammatory responses remain unclear. Several hypotheses have been proposed that link CRS etiology and pathogenesis with host (eg, "immune barrier") and exogenous factors (eg, bacterial/fungal pathogens, dysbiotic microbiota/biofilms, or staphylococcal superantigens). The abnormal interplay between these factors is likely central to the pathophysiology of CRS by triggering compensatory immune responses. Here, we discuss the role of the sinonasal microbiota in CRS and its biofilms in the context of mucosal zinc (Zn) deficiency, serving as a possible unifying link between five host and "bacterial" hypotheses of CRS that lead to sinus mucosa remodeling. To date, no clear correlation between sinonasal microbiota and CRS has been established. However, the predominance of Corynebacteria and Staphylococci and their interspecies relationships likely play a vital role in the formation of the CRS-associated microbiota. Zn-mediated "nutritional immunity", exerted via calprotectin, alongside the dysregulation of Zn-dependent cellular processes, could be a crucial microbiota-shaping factor in CRS. Similar to cystic fibrosis (CF), the role of SPLUNC1-mediated regulation of mucus volume and pH in CRS has been considered. We complement the biofilms' "mechanistic" and "mucin" hypotheses behind CRS pathogenesis with the "structural" one - associated with bacterial "corncob" structures. Finally, microbiota restoration approaches for CRS prevention and treatment are reviewed, including pre- and probiotics, as well as Nasal Microbiota Transplantation (NMT).
Collapse
Affiliation(s)
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Jakub Spałek
- Holy-Cross Cancer Center, Kielce, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, 25-317, Poland
| | - Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Bonita Durnaś
- Holy-Cross Cancer Center, Kielce, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, 25-317, Poland
| | - Stanisław Góźdź
- Holy-Cross Cancer Center, Kielce, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, 25-317, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, 25-317, Poland
| | - Sławomir Okła
- Holy-Cross Cancer Center, Kielce, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, 25-317, Poland
| |
Collapse
|
23
|
Baker JL, Mark Welch JL, Kauffman KM, McLean JS, He X. The oral microbiome: diversity, biogeography and human health. Nat Rev Microbiol 2024; 22:89-104. [PMID: 37700024 PMCID: PMC11084736 DOI: 10.1038/s41579-023-00963-6] [Citation(s) in RCA: 141] [Impact Index Per Article: 141.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 09/14/2023]
Abstract
The human oral microbiota is highly diverse and has a complex ecology, comprising bacteria, microeukaryotes, archaea and viruses. These communities have elaborate and highly structured biogeography that shapes metabolic exchange on a local scale and results from the diverse microenvironments present in the oral cavity. The oral microbiota also interfaces with the immune system of the human host and has an important role in not only the health of the oral cavity but also systemic health. In this Review, we highlight recent advances including novel insights into the biogeography of several oral niches at the species level, as well as the ecological role of candidate phyla radiation bacteria and non-bacterial members of the oral microbiome. In addition, we summarize the relationship between the oral microbiota and the pathology of oral diseases and systemic diseases. Together, these advances move the field towards a more holistic understanding of the oral microbiota and its role in health, which in turn opens the door to the study of novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Jonathon L Baker
- Oregon Health & Science University, Portland, OR, USA
- J. Craig Venter Institute, La Jolla, CA, USA
- UC San Diego School of Medicine, La Jolla, CA, USA
| | - Jessica L Mark Welch
- The Forsyth Institute, Cambridge, MA, USA
- Marine Biological Laboratory, Woods Hole, MA, USA
| | | | | | - Xuesong He
- The Forsyth Institute, Cambridge, MA, USA.
- Harvard School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
24
|
Wang X, Liu M, Yu C, Li J, Zhou X. Biofilm formation: mechanistic insights and therapeutic targets. MOLECULAR BIOMEDICINE 2023; 4:49. [PMID: 38097907 PMCID: PMC10721784 DOI: 10.1186/s43556-023-00164-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Biofilms are complex multicellular communities formed by bacteria, and their extracellular polymeric substances are observed as surface-attached or non-surface-attached aggregates. Many types of bacterial species found in living hosts or environments can form biofilms. These include pathogenic bacteria such as Pseudomonas, which can act as persistent infectious hosts and are responsible for a wide range of chronic diseases as well as the emergence of antibiotic resistance, thereby making them difficult to eliminate. Pseudomonas aeruginosa has emerged as a model organism for studying biofilm formation. In addition, other Pseudomonas utilize biofilm formation in plant colonization and environmental persistence. Biofilms are effective in aiding bacterial colonization, enhancing bacterial resistance to antimicrobial substances and host immune responses, and facilitating cell‒cell signalling exchanges between community bacteria. The lack of antibiotics targeting biofilms in the drug discovery process indicates the need to design new biofilm inhibitors as antimicrobial drugs using various strategies and targeting different stages of biofilm formation. Growing strategies that have been developed to combat biofilm formation include targeting bacterial enzymes, as well as those involved in the quorum sensing and adhesion pathways. In this review, with Pseudomonas as the primary subject of study, we review and discuss the mechanisms of bacterial biofilm formation and current therapeutic approaches, emphasizing the clinical issues associated with biofilm infections and focusing on current and emerging antibiotic biofilm strategies.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ming Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chuanjiang Yu
- Institute for Cancer Genetics, Columbia University, New York, NY, 10032, USA
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Xikun Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
25
|
Labossiere A, Ramsey M, Merritt J, Kreth J. Molecular commensalism-how to investigate underappreciated health-associated polymicrobial communities. mBio 2023; 14:e0134223. [PMID: 37754569 PMCID: PMC10653818 DOI: 10.1128/mbio.01342-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023] Open
Abstract
The study of human commensal bacteria began with the first observation of prokaryotes >340 years ago. Since then, the study of human-associated microbes has been justifiably biased toward the study of infectious pathogens. However, the role of commensal microbes has in recent years begun to be understood with some appreciation of them as potential protectors of host health rather than bystanders. As our understanding of these valuable microbes grows, it highlights how much more remains to be learned about them and their roles in maintaining health. We note here that a thorough framework for the study of commensals, both in vivo and in vitro is overall lacking compared to well-developed methodologies for pathogens. The modification and application of methods for the study of pathogens can work well for the study of commensals but is not alone sufficient to properly characterize their relationships. This is because commensals live in homeostasis with the host and within complex communities. One difficulty is determining which commensals have a quantifiable impact on community structure and stability as well as host health, vs benign microbes that may indeed serve only as bystanders. Human microbiomes are composed of bacteria, archaea, fungi, and viruses. This review focuses particularly on oral bacteria, yet many of the principles of commensal impacts on host health observed in the mouth can translate well to other host sites. Here, we discuss the value of commensals, the shortcomings involved in model systems for their study, and some of the more notable impacts they have upon not only each other but host health.
Collapse
Affiliation(s)
- Alex Labossiere
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Matthew Ramsey
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Justin Merritt
- Biomaterial and Biomedical Sciences, Oregon Health and Science University, School of Dentistry, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Jens Kreth
- Biomaterial and Biomedical Sciences, Oregon Health and Science University, School of Dentistry, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
26
|
Almeida E, Puri S, Labossiere A, Elangovan S, Kim J, Ramsey M. Bacterial multispecies interaction mechanisms dictate biogeographic arrangement between the oral commensals Corynebacterium matruchotii and Streptococcus mitis. mSystems 2023; 8:e0011523. [PMID: 37610230 PMCID: PMC10654079 DOI: 10.1128/msystems.00115-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/27/2023] [Indexed: 08/24/2023] Open
Abstract
IMPORTANCE As the microbiome era matures, the need for mechanistic interaction data between species is crucial to understand how stable microbiomes are preserved, especially in healthy conditions where the microbiota could help resist opportunistic or exogenous pathogens. Here we reveal multiple mechanisms of interaction between two commensals that dictate their biogeographic relationship to each other in previously described structures in human supragingival plaque. Using a novel variation for chemical detection, we observed metabolite exchange between individual bacterial cells in real time validating the ability of these organisms to carry out metabolic crossfeeding at distal and temporal scales observed in vivo. These findings reveal one way by which these interactions are both favorable to the interacting commensals and potentially the host.
Collapse
Affiliation(s)
- Eric Almeida
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Surendra Puri
- Department of Chemistry, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Alex Labossiere
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Subashini Elangovan
- Department of Chemistry, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Jiyeon Kim
- Department of Chemistry, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Matthew Ramsey
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
27
|
Abstract
Microbial species colonizing host ecosystems in health or disease rarely do so alone. Organisms conglomerate into dynamic heterotypic communities or biofilms in which interspecies and interkingdom interactions drive functional specialization of constituent species and shape community properties, including nososymbiocity or pathogenic potential. Cell-to-cell binding, exchange of signaling molecules, and nutritional codependencies can all contribute to the emergent properties of these communities. Spatial constraints defined by community architecture also determine overall community function. Multilayered interactions thus occur between individual pairs of organisms, and the relative impact can be determined by contextual cues. Host responses to heterotypic communities and impact on host surfaces are also driven by the collective action of the community. Additionally, the range of interspecies interactions can be extended by bacteria utilizing host cells or host diet to indirectly or directly influence the properties of other organisms and the community microenvironment. In contexts where communities transition to a dysbiotic state, their quasi-organismal nature imparts adaptability to nutritional availability and facilitates resistance to immune effectors and, moreover, exploits inflammatory and acidic microenvironments for their persistence.
Collapse
Affiliation(s)
- Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hyun Koo
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biofilm Research Laboratories, Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
28
|
Mann AE, O'Connell LM, Osagie E, Akhigbe P, Obuekwe O, Omoigberale A, Kelly C, Coker MO, Richards VP. Impact of HIV on the Oral Microbiome of Children Living in Sub-Saharan Africa, Determined by Using an rpoC Gene Fragment Metataxonomic Approach. Microbiol Spectr 2023; 11:e0087123. [PMID: 37428077 PMCID: PMC10434123 DOI: 10.1128/spectrum.00871-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/11/2023] [Indexed: 07/11/2023] Open
Abstract
Children living with HIV have a higher prevalence of oral diseases, including caries, but the mechanisms underlying this higher prevalence are not well understood. Here, we test the hypothesis that HIV infection is associated with a more cariogenic oral microbiome, characterized by an increase in bacteria involved in the pathogenesis of caries. We present data generated from supragingival plaques collected from 484 children representing three exposure groups: (i) children living with HIV (HI), (ii) children who were perinatally exposed but uninfected (HEU), and (iii) unexposed and therefore uninfected children (HUU). We found that the microbiome of HI children is distinct from those of HEU and HUU children and that this distinction is more pronounced in diseased teeth than healthy teeth, suggesting that the impact of HIV is more severe as caries progresses. Moreover, we report both an increase in bacterial diversity and a decrease in community similarity in our older HI cohort compared to our younger HI cohort, which may in part be a prolonged effect of HIV and/or its treatment. Finally, while Streptococcus mutans is often a dominant species in late-stage caries, it tended to be found at lower frequency in our HI cohort than in other groups. Our results highlight the taxonomic diversity of the supragingival plaque microbiome and suggest that broad and increasingly individualistic ecological shifts are responsible for the pathogenesis of caries in children living with HIV, coupled with a diverse and possibly severe impact on known cariogenic taxa that potentially exacerbates caries. IMPORTANCE Since its recognition as a global epidemic in the early 1980s, approximately 84.2 million people have been diagnosed with HIV and 40.1 million people have died from AIDS-related illnesses. The development and increased global availability of antiretroviral treatment (ART) regimens have dramatically reduced the mortality rate of HIV and AIDS, yet approximately 1.5 million new infections were reported in 2021, 51% of which are in sub-Saharan Africa. People living with HIV have a higher prevalence of caries and other chronic oral diseases, the mechanisms of which are not well understood. Here, we used a novel genetic approach to characterize the supragingival plaque microbiome of children living with HIV and compared it to the microbiomes of uninfected and perinatally exposed children to better understand the role of oral bacteria in the etiology of tooth decay in the context of HIV exposure and infection.
Collapse
Affiliation(s)
- Allison E. Mann
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Lauren M. O'Connell
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Esosa Osagie
- Institute of Human Virology Nigeria, Abuja, Nigeria
| | - Paul Akhigbe
- Institute of Human Virology Nigeria, Abuja, Nigeria
| | - Ozoemene Obuekwe
- University of Benin Teaching Hospital, Benin, Edo State, Nigeria
| | | | - Colton Kelly
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
- School of Dentistry, University of the Pacific, San Francisco, California, USA
| | - the DOMHaIN Study Team
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
- Institute of Human Virology Nigeria, Abuja, Nigeria
- University of Benin Teaching Hospital, Benin, Edo State, Nigeria
- Department of Oral Biology, Rutgers School of Dental Medicine, Rutgers University, Newark, New Jersey, USA
- School of Dentistry, University of the Pacific, San Francisco, California, USA
| | - Modupe O. Coker
- Institute of Human Virology Nigeria, Abuja, Nigeria
- Department of Oral Biology, Rutgers School of Dental Medicine, Rutgers University, Newark, New Jersey, USA
| | - Vincent P. Richards
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
29
|
Treerat P, Anderson D, Giacaman RA, Merritt J, Kreth J. Glycerol metabolism supports oral commensal interactions. THE ISME JOURNAL 2023; 17:1116-1127. [PMID: 37169870 PMCID: PMC10284889 DOI: 10.1038/s41396-023-01426-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023]
Abstract
During oral biofilm development, interspecies interactions drive species distribution and biofilm architecture. To understand what molecular mechanisms determine these interactions, we used information gained from recent biogeographical investigations demonstrating an association of corynebacteria with streptococci. We previously reported that Streptococcus sanguinis and Corynebacterium durum have a close relationship through the production of membrane vesicle and fatty acids leading to S. sanguinis chain elongation and overall increased fitness supporting their commensal state. Here we present the molecular mechanisms of this interspecies interaction. Coculture experiments for transcriptomic analysis identified several differentially expressed genes in S. sanguinis. Due to its connection to fatty acid synthesis, we focused on the glycerol-operon. We further explored the differentially expressed type IV pili genes due to their connection to motility and biofilm adhesion. Gene inactivation of the glycerol kinase glpK had a profound impact on the ability of S. sanguinis to metabolize C. durum secreted glycerol and impaired chain elongation important for their interaction. Investigations on the effect of type IV pili revealed a reduction of S. sanguinis twitching motility in the presence of C. durum, which was caused by a decrease in type IV pili abundance on the surface of S. sanguinis as determined by SEM. In conclusion, we identified that the ability to metabolize C. durum produced glycerol is crucial for the interaction of C. durum and S. sanguinis. Reduced twitching motility could lead to a closer interaction of both species, supporting niche development in the oral cavity and potentially shaping symbiotic health-associated biofilm communities.
Collapse
Affiliation(s)
- Puthayalai Treerat
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, 97239, USA.
| | - David Anderson
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, 97239, USA
| | - Rodrigo A Giacaman
- Cariology Unit, Department of Oral Rehabilitation, Faculty of Dentistry, University of Talca, Talca, Chile
| | - Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, 97239, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University (OHSU), Portland, OR, 97239, USA
| | - Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, 97239, USA.
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University (OHSU), Portland, OR, 97239, USA.
| |
Collapse
|
30
|
Puri SR, Almeida E, Elangovan S, Labossiere A, Collins C, Ramsey M, Kim J. Mechanistic Assessment of Metabolic Interaction between Single Oral Commensal Cells by Scanning Electrochemical Microscopy. Anal Chem 2023. [PMID: 37228117 DOI: 10.1021/acs.analchem.3c01498] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The human oral microbiome heavily influences the status of oral and systemic diseases through different microbial compositions and complex signaling between microbes. Recent evidence suggests that investigation of interactions between oral microbes can be utilized to understand how stable communities are maintained and how they may preserve health. Herein, we investigate two highly abundant species in the human supragingival plaque, Streptococcus mitis and Corynebacterium matruchotii, to elucidate their real-time chemical communication in commensal harmony. Specifically, we apply nanoscale scanning electrochemical microscopy (SECM) using a submicropipet-supported interface between two immiscible electrolyte solutions as an SECM probe not only to image the permeability of S. mitis and C. matruchotii membranes to tetraethylammonium (TEA+) probe ions but also to real-time visualize the metabolic interaction between two microbes via lactate production/consumption at a single-cell level. The metabolic relationship between two strains is quantitatively assessed by determining (1) the passive permeability of both bacterial membranes of 2.4 × 10-4 cm/s to the free diffusion of TEA+, (2) 0.5 mM of the lactate concentration produced by a single S. mitis strain at a rate of 2.7 × 10-4 cm/s, and (3) a lactate oxidation rate ≥5.0 × 106 s-1 by an individual C. matruchotii strain. Significantly, this study, for the first time, describes a mechanism of in situ metabolic interaction between oral commensals at the single-cell level through quantitative analysis, which supports the observed in vivo spatial arrangements of these microbes.
Collapse
Affiliation(s)
- Surendra R Puri
- Department of Chemistry, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Eric Almeida
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Subhashini Elangovan
- Department of Chemistry, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Alex Labossiere
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Cybele Collins
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Matthew Ramsey
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Jiyeon Kim
- Department of Chemistry, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
31
|
Murugkar P, Dimise E, Stewart E, Viala SN, Clardy J, Dewhirst FE, Lewis K. Identification of a growth factor required for culturing specific fastidious oral bacteria. J Oral Microbiol 2023; 15:2143651. [DOI: 10.1080/20002297.2022.2143651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Pallavi Murugkar
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, 134 Mugar Hall, 360 Huntington Ave 02115, Boston, MA, USA
| | - Eric Dimise
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School 02115, Boston, MA, USA
| | - Eric Stewart
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, 134 Mugar Hall, 360 Huntington Ave 02115, Boston, MA, USA
| | - Stéphane N. Viala
- Department of Microbiology, the Forsyth Institute, Cambridge, MA, USA
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School 02115, Boston, MA, USA
| | - Floyd E. Dewhirst
- Department of Microbiology, the Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Kim Lewis
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, 134 Mugar Hall, 360 Huntington Ave 02115, Boston, MA, USA
| |
Collapse
|