1
|
Zheng X, Guo C, Lv Z, Jiang H, Li S, Yu L, Zhang Z. From animal to cell model: Pyroptosis targeted-fibrosis is a novel mechanism of lead-induced testicular toxicity. Food Chem Toxicol 2023:113886. [PMID: 37302539 DOI: 10.1016/j.fct.2023.113886] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/26/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Lead (Pb) exists widely in soil and seriously threatens agricultural soil and food crops. Pb can cause serious damage to organs. In this study, the animal model of Pb-induced rat testicular injury and the cell model of Pb-induced TM4 Sertoli cell injury were established to verify whether the testicular toxicity of Pb was related to pyroptosis-mediated fibrosis. The results of experiment in vivo showed that Pb could cause oxidative stress and up-regulated the expression levels of inflammation, pyroptosis, and fibrosis-related proteins in the testis of rats. The results of experiments in vitro showed that Pb induced the cell damage, enhanced the reactive oxygen species level in the TM4 Sertoli cells. After using nuclear factor-kappa B inhibitors and Caspase-1 inhibitors, the elevation of TM4 Sertoli cell inflammation, pyroptosis, and fibrosis-related proteins induced by Pb exposure was significantly decreased. Taken together, Pb can cause pyroptosis-targeted fibrosis and ultimately issues in testicular damage.
Collapse
Affiliation(s)
- Xiaoyan Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Changming Guo
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zhanjun Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Huijie Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Lu Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, China.
| |
Collapse
|
2
|
Aydemir Celep N, Gedikli S. Protective Effect of Silymarin on Liver in Experimental in the Sepsis Model of Rats. Acta Histochem Cytochem 2023; 56:9-19. [PMID: 36890848 PMCID: PMC9986308 DOI: 10.1267/ahc.22-00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 01/16/2023] [Indexed: 03/03/2023] Open
Abstract
This study, it was investigated whether silymarin has a protective effect by performing histological, immunohistochemical, and biochemical evaluations on the liver damage induced by cecal ligation perforation (CLP). CLP model was established and silymarin was treated at a dose of 50 mg/kg, 100 mg/kg, and 200 mg/kg, by oral one hour before the CLP. As an effect of the histological evaluations of the liver tissues, venous congestion, inflammation, and necrosis in the hepatocytes were observed in the CLP group. A situation close to the control group was observed in the Silymarin (SM)100 and SM200 groups. As a result of the immunohistochemical evaluations, inducible nitric oxide synthase (iNOS), cytokeratine (CK)18, Tumor necrosis factor-alpha (TNF-α), and interleukine (IL)-6 immunoreactivities were intense in the CLP group. In the biochemical analysis, Alkaline Phosphatase (ALP), Aspartate Aminotransferase (AST), and Alanine Aminotransferase (ALT) levels were significantly increased in the CLP group, while a significant decrease was observed in the treatment groups. TNFα, IL-1β, and IL-6 concentrations were in parallel with histopathological evaluations. In the biochemical analysis, Malondialdehyte (MDA) level increased significantly in the CLP group, but there was a significant decrease in the SM100 and SM200 groups. Glutathione (GSH), Superoxide Dismutase (SOD), Catalase (CAT), and Glutathione Peroxidase (GSH-Px) activities were relatively low in the CLP group. According to these data, it was concluded that using silymarin reduces the existing liver damage in sepsis.
Collapse
Affiliation(s)
- Nevra Aydemir Celep
- Department of Histology and Embriology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Semin Gedikli
- Department of Histology and Embriology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
3
|
The Molecular Pharmacology of Phloretin: Anti-Inflammatory Mechanisms of Action. Biomedicines 2023; 11:biomedicines11010143. [PMID: 36672652 PMCID: PMC9855955 DOI: 10.3390/biomedicines11010143] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
The isolation of phlorizin from the bark of an apple tree in 1835 led to a flurry of research on its inhibitory effect on glucose transporters in the intestine and kidney. Using phlorizin as a prototype drug, antidiabetic agents with more selective inhibitory activity towards glucose transport at the kidney have subsequently been developed. In contrast, its hydrolysis product in the body, phloretin, which is also found in the apple plant, has weak antidiabetic properties. Phloretin, however, displays a range of pharmacological effects including antibacterial, anticancer, and cellular and organ protective properties both in vitro and in vivo. In this communication, the molecular basis of its anti-inflammatory mechanisms that attribute to its pharmacological effects is scrutinised. These include inhibiting the signalling pathways of inflammatory mediators' expression that support its suppressive effect in immune cells overactivation, obesity-induced inflammation, arthritis, endothelial, myocardial, hepatic, renal and lung injury, and inflammation in the gut, skin, and nervous system, among others.
Collapse
|
4
|
Eddie-Amadi BF, Ezejiofor AN, Orish CN, Rovira J, Allison TA, Orisakwe OE. Banana peel ameliorated hepato-renal damage and exerted anti-inflammatory and anti-apoptotic effects in metal mixture mediated hepatic nephropathy by activation of Nrf2/ Hmox-1 and inhibition of Nfkb pathway. Food Chem Toxicol 2022; 170:113471. [DOI: 10.1016/j.fct.2022.113471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
|
5
|
Yang X, Fang Y, Hou J, Wang X, Li J, Li S, Zheng X, Liu Y, Zhang Z. The heart as a target for deltamethrin toxicity: Inhibition of Nrf2/HO-1 pathway induces oxidative stress and results in inflammation and apoptosis. CHEMOSPHERE 2022; 300:134479. [PMID: 35367492 DOI: 10.1016/j.chemosphere.2022.134479] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
As a synthetic pyrethroid pesticide, deltamethrin (DLM) is widely employed in veterinary medicine and farming, and DLM-triggered oxidative stress largely causes serious harm to the organism. It is well-known that nuclear factor erythroid-2-related factor 2/heme oxygenase-1 (Nrf2/HO-1), a pivotal endogenous anti-oxidative pathway, acts on inhibiting oxidative stress-induced cell injury under the activated state. The purpose of this research was to observe the impact and molecular mechanism of DLM on inflammation and apoptosis in quail cardiomyocytes based on the Nrf2/HO-1 signaling route. In this research, quails were established as a cardiac injury model through gastric infusion of various doses of DLM (0, 15, 30, and 45 mg/kg b. w.) for 12 weeks. Our results showed that DLM could induced cardiomyocyte injury in a dose-dependent manner though weakening antioxidant defense via down-regulating Nrf2 and its downstream protein HO-1. Furthermore, DLM stimulation induced apoptosis in quail heart by decreasing the protein expressions of B-cell lymphoma-extra large and B-cell lymphoma gene 2 (Bcl-2), as well as increasing P53, caspase 3, and Bcl-2-associated X protein levels. Meanwhile, relative levels of nuclear factor-kappa B and interleukin-1β in quail hearts were up-regulated under DLM intervention progressively. Collectively, our study demonstrates that chronic exposure to DLM can induce quail cardiomyocyte inflammation and apoptosis by mediating Nrf2/HO-1 signaling pathway-related oxidative stress.
Collapse
Affiliation(s)
- Xue Yang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Yi Fang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Jianbo Hou
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Xuejiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Xiaoyan Zheng
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Yan Liu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin, 150030, China.
| |
Collapse
|
6
|
Songyang Y, Li W, Li W, Yang J, Song T. The inhibition of GLUT1-induced glycolysis in macrophage by phloretin participates in the protection during acute lung injury. Int Immunopharmacol 2022; 110:109049. [PMID: 35853279 DOI: 10.1016/j.intimp.2022.109049] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/05/2022]
Abstract
The increased level of glycolysis in macrophage aggravates lipopolysaccharide (LPS)-induced acute lung injury (ALI). Glucose transporter 1 (GLUT1) serves as a ubiquitously expressed glucose transporter, which could activate inflammatory response by mediating glycolysis. Phloretin (PHL), an apple polyphenol, is also an inhibitor of GLUT1, possessing potent anti-inflammatory effects in various diseases. However, the potential role of PHL in ALI remains unclear till now. This study aims to investigate the impacts of PHL on ALI as well as its possible mechanisms. A mouse ALI model was established via intratracheal injection of LPS. LPS-induced primary macrophages were used to mimic in vitro ALI. Mice were pretreated with low or high dosage of PHL for 7 days via intragastric administration once a day before LPS injection. The results showed that PHL pretreatment significantly prevented LPS-induced lung pathological injury and inflammatory response. Meantime, PHL pretreatment also decreased the level of glycolysis in macrophage during ALI. In terms of mechanism, PHL inhibited the mRNA and protein expression of GLUT1. In vitro experiments further showed GLUT1 overexpression in macrophage by infection with lentivirus could abolish the inhibition of inflammation and glycolysis mediated by PHL, suggesting that GLUT1 was essential for the protection of PHL. Taken together, PHL pretreatment may protect against LPS-induced ALI by inhibiting glycolysis in macrophage in a GLUT1-dependent manner, which may be a candidate against ALI in the future.
Collapse
Affiliation(s)
- Yiyan Songyang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, PR China
| | - Wen Li
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, PR China.
| | - Wenqiang Li
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, PR China.
| | - Ji Yang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, PR China
| | - TianBao Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, PR China
| |
Collapse
|
7
|
Zhu XX, Zhang WW, Wu CH, Wang SS, Smith FG, Jin SW, Zhang PH. The Novel Role of Metabolism-Associated Molecular Patterns in Sepsis. Front Cell Infect Microbiol 2022; 12:915099. [PMID: 35719361 PMCID: PMC9202891 DOI: 10.3389/fcimb.2022.915099] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
Sepsis, a life-threatening organ dysfunction, is not caused by direct damage of pathogens and their toxins but by the host’s severe immune and metabolic dysfunction caused by the damage when the host confronts infection. Previous views focused on the damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs), including metabolic proinflammatory factors in sepsis. Recently, new concepts have been proposed to group free fatty acids (FFAs), glucose, advanced glycation end products (AGEs), cholesterol, mitochondrial DNA (mtDNA), oxidized phospholipids (OxPLs), ceramides, and uric acid into metabolism-associated molecular patterns (MAMPs). The concept of MAMPs will bring new guidance to the research and potential treatments of sepsis. Nowadays, sepsis is regarded as closely related to metabolic disorders, and MAMPs play an important role in the pathogenesis and development of sepsis. According to this view, we have explained MAMPs and their possible roles in the pathogenesis of sepsis. Next, we have further explained the specific functions of different types of MAMPs in the metabolic process and their interactional relationship with sepsis. Finally, the therapeutic prospects of MAMPs in sepsis have been summarized.
Collapse
Affiliation(s)
- Xin-xu Zhu
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
| | - Wen-wu Zhang
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
| | - Cheng-hua Wu
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
| | - Shun-shun Wang
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
| | - Fang Gao Smith
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
- Academic Department of Anesthesia, Critical Care, Resuscitation and Pain, Heart of England NHS Foundation Trust, Birmingham, United Kingdom
| | - Sheng-wei Jin
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
- *Correspondence: Sheng-wei Jin, ; Pu-hong Zhang,
| | - Pu-hong Zhang
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang, China
- *Correspondence: Sheng-wei Jin, ; Pu-hong Zhang,
| |
Collapse
|
8
|
Quan Y, Li L, Yin Z, Chen S, Yi J, Lang J, Zhang L, Yue Q, Zhao J. Bulbus Fritillariae Cirrhosae as a Respiratory Medicine: Is There a Potential Drug in the Treatment of COVID-19? Front Pharmacol 2022; 12:784335. [PMID: 35126123 PMCID: PMC8811224 DOI: 10.3389/fphar.2021.784335] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/03/2021] [Indexed: 01/08/2023] Open
Abstract
Bulbus fritillariae cirrhosae (BFC) is one of the most used Chinese medicines for lung disease, and exerts antitussive, expectorant, anti-inflammatory, anti-asthmatic, and antioxidant effects, which is an ideal therapeutic drug for respiratory diseases such as ARDS, COPD, asthma, lung cancer, and pulmonary tuberculosis. Through this review, it is found that the therapeutic mechanism of BFC on respiratory diseases exhibits the characteristics of multi-components, multi-targets, and multi-signaling pathways. In particular, the therapeutic potential of BFC in terms of intervention of “cytokine storm”, STAT, NF-κB, and MAPK signaling pathways, as well as the renin-angiotensin system (RAS) that ACE is involved in. In the “cytokine storm” of SARS-CoV-2 infection there is an intense inflammatory response. ACE2 regulates the RAS by degradation of Ang II produced by ACE, which is associated with SARS-CoV-2. For COVID-19, may it be a potential drug? This review summarized the research progress of BFC in the respiratory diseases, discussed the development potentiality of BFC for the treatment of COVID-19, explained the chemical diversity and biological significance of the alkaloids in BFC, and clarified the material basis, molecular targets, and signaling pathways of BFC for the respiratory diseases. We hope this review can provide insights on the drug discovery of anti-COVID-19.
Collapse
Affiliation(s)
- Yunyun Quan
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
- Department of Pharmacognosy, West China School of Pharmacy Sichuan University, Chengdu, China
| | - Li Li
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Zhujun Yin
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Shilong Chen
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Jing Yi
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Jirui Lang
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Lu Zhang
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Qianhua Yue
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Junning Zhao
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
- Department of Pharmacognosy, West China School of Pharmacy Sichuan University, Chengdu, China
- *Correspondence: Junning Zhao,
| |
Collapse
|
9
|
Han Y, Kang L, Liu X, Zhuang Y, Chen X, Li X. Establishment and validation of a logistic regression model for prediction of septic shock severity in children. Hereditas 2021; 158:45. [PMID: 34772470 PMCID: PMC8588704 DOI: 10.1186/s41065-021-00206-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/14/2021] [Indexed: 11/10/2022] Open
Abstract
Background Septic shock is the most severe complication of sepsis, and is a major cause of childhood mortality, constituting a heavy public health burden. Methods We analyzed the gene expression profiles of septic shock and control samples from the Gene Expression Omnibus (GEO). Four differentially expressed genes (DEGs) from survivor and control groups, non-survivor and control groups, and survivor and non-survivor groups were selected. We used data about these genes to establish a logistic regression model for predicting the survival of septic shock patients. Results Leave-one-out cross validation and receiver operating characteristic (ROC) analysis indicated that this model had good accuracy. Differential expression and Gene Set Enrichment Analysis (GSEA) between septic shock patients stratified by prediction score indicated that the systemic lupus erythematosus pathway was activated, while the limonene and pinene degradation pathways were inactivated in the high score group. Conclusions Our study provides a novel approach for the prediction of the severity of pathology in septic shock patients, which are significant for personalized treatment as well as prognostic assessment. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-021-00206-9.
Collapse
Affiliation(s)
- Yujie Han
- Department of Neonatal, Qilu Children's Hospital of Shandong University, No. 23976, Huaiyin District, Jinan City, 250022, Shandong, People's Republic of China
| | - Lili Kang
- Department of Neonatal, Qilu Children's Hospital of Shandong University, No. 23976, Huaiyin District, Jinan City, 250022, Shandong, People's Republic of China
| | - Xianghong Liu
- Department of Neonatal, Qilu Children's Hospital of Shandong University, No. 23976, Huaiyin District, Jinan City, 250022, Shandong, People's Republic of China
| | - Yuanhua Zhuang
- Department of Neonatal, Qilu Children's Hospital of Shandong University, No. 23976, Huaiyin District, Jinan City, 250022, Shandong, People's Republic of China
| | - Xiao Chen
- Department of Neonatal, Qilu Children's Hospital of Shandong University, No. 23976, Huaiyin District, Jinan City, 250022, Shandong, People's Republic of China
| | - Xiaoying Li
- Department of Neonatal, Qilu Children's Hospital of Shandong University, No. 23976, Huaiyin District, Jinan City, 250022, Shandong, People's Republic of China.
| |
Collapse
|
10
|
Dynamics of Phloridzin and Related Compounds in Four Cultivars of Apple Trees during the Vegetation Period. Molecules 2021; 26:molecules26133816. [PMID: 34206687 PMCID: PMC8270342 DOI: 10.3390/molecules26133816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 01/14/2023] Open
Abstract
Apple trees (Malus domestica Borgh) are a rich source of dihydrochalcones, phenolic acids and flavonoids. Considering the increasing demand for these phytochemicals with health-benefitting properties, the objective of this study was to evaluate the profile of the main bioactive compounds—phloridzin, phloretin, chlorogenic acid and rutin—in apple tree bark, leaves, flower buds and twigs. The variety in the phenolic profiles of four apple tree cultivars was monitored during the vegetation period from March to September using chromatography analysis. Phloridzin, the major glycoside of interest, reached the highest values in the bark of all the tested cultivars in May (up to 91.7 ± 4.4 mg g−1 of the dried weight (DW), cv. ‘Opal’). In the leaves, the highest levels of phloridzin were found in cv. ‘Opal’ in May (82.5 ± 22.0 mg g−1 of DW); in twigs, the highest levels were found in cv. ‘Rozela’ in September (52.4 ± 12.1 mg g−1 of DW). In the flower buds, the content of phloridzin was similar to that in the twigs. Aglycone phloretin was found only in the leaves in relatively low concentrations (max. value 2.8 ± 1.4 mg g−1 of DW). The highest values of rutin were found in the leaves of all the tested cultivars (10.5 ± 2.9 mg g−1 of DW, cv. ‘Opal’ in September); the concentrations in the bark and twigs were much lower. The highest content of chlorogenic acid was found in flower buds (3.3 ± 1.0 mg g−1 of DW, cv. ‘Rozela’). Whole apple fruits harvested in September were rich in chlorogenic acid and phloridzin. The statistical evaluation by Scheffe’s test confirmed the significant difference of cv. ‘Rozela’ from the other tested cultivars. In conclusion, apple tree bark, twigs, and leaves were found to be important renewable resources of bioactive phenolics, especially phloridzin and rutin. The simple availability of waste plant material can therefore be used as a rich source of phenolic compounds for cosmetics, nutraceuticals, and food supplement preparation.
Collapse
|
11
|
Özenver N, Efferth T. Phytochemical inhibitors of the NLRP3 inflammasome for the treatment of inflammatory diseases. Pharmacol Res 2021; 170:105710. [PMID: 34089866 DOI: 10.1016/j.phrs.2021.105710] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/15/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023]
Abstract
The NLRP3 inflammasome holds a crucial role in innate immune responses. Pathogen- and danger-associated molecular patterns may initiate inflammasome activation and following inflammatory cytokine release. The inflammasome formation and its-associated activity are involved in various pathological conditions such as cardiovascular, central nervous system, metabolic, renal, inflammatory and autoimmune diseases. Although the mechanism behind NLRP3-mediated disorders have not been entirely illuminated, many phytochemicals and medicinal plants have been described to prevent inflammatory disorders. In the present review, we mainly introduced phytochemicals inhibiting NLRP3 inflammasome in addition to NLRP3-mediated diseases. For this purpose, we performed a systematic literature search by screening PubMed, Scopus, and Google Scholar databases. By compiling the data of phytochemical inhibitors targeting NLRP3 inflammasome activation, a complex balance between inflammasome activation or inhibition with NLRP3 as central player was pointed out in NLRP3-driven pathological conditions. Phytochemicals represent potential therapeutic leads, enabling the generation of chemical derivatives with improved pharmacological features to treat NLRP3-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Nadire Özenver
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey; Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
12
|
Xie Y, Liu J, Shi Y, Wang B, Wang X, Wang W, Sun M, Xu X, Jiang H, Guo M, He Y, Ren C, Cheng L. The combination of sesamol and clofibric acid moieties leads to a novel potent hypolipidemic agent with antioxidant, anti-inflammatory and hepatoprotective activity. Bioorg Med Chem Lett 2021; 44:128121. [PMID: 34015506 DOI: 10.1016/j.bmcl.2021.128121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
Oxidative stress and inflammation have been considered the main factors in the liver injury of clofibrate (CF). To obtain a novel antihyperlipidemic agent with antioxidant, anti-inflammation and hepatoprotection, the combination of sesamol and clofibric acid moieties was performed and achieved sesamol-clofibrate (CF-Sesamol). CF-Sesamol showed significant hypolipidemia effects in hyperlipidemia mice induced by Triton WR 1339, reducing TG by 38.8% (P < 0.01) and TC by 35.1% (P < 0.01). CF-Sesamol also displayed an alleviating effect on hepatotoxicity. The hepatic weight and hepatic coefficient were decreased. The amelioration of liver function was observed, such as aspartate and lactate transaminases (AST and ALT), alkaline phosphatase (ALP) and total proteins (TP) levels. Liver histopathological examination showed that hepatocyte necrosis, cytoplasmic loosening, nuclear degeneration and inflammatory cell infiltration reduced obviously by treatment with CF-Sesamol. Related molecular mechanisms on hepatoprotection showed that CF-Sesamol up-regulated Nrf2 and HO-1 expression and down-regulated p-NF-κB p65 expression in hepatic tissues. CF-Sesamol has significant antioxidant and anti-inflammatory effects. Plasma antioxidant enzymes such as SOD and CAT increased, anti-lipid peroxidation product MDA decreased. The expression of TNF-α and IL-6 inflammatory cytokines in liver was significantly lower than that in the CF group. The results indicated that CF-Sesamol exerted more potent antihyperlipidemic effects and definite hepatoprotective activity partly through the Nrf2/NF-κB-mediated signaling pathway.
Collapse
Affiliation(s)
- Yundong Xie
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China
| | - Jiping Liu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, People's Republic of China
| | - Yongheng Shi
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, People's Republic of China
| | - Bin Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, People's Republic of China
| | - Xiaoping Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China
| | - Wei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China
| | - Meng Sun
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China
| | - Xinya Xu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China
| | - Haihui Jiang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China
| | - Min Guo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China
| | - Yiyi He
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China
| | - Cuicui Ren
- First Hospital of Xi'an, Xi'an, Shaanxi Province 710002, People's Republic of China.
| | - Lifei Cheng
- Shaanxi Traffic Hospital, 276 Daxue South Road, Beilin District, Xi'an, Shannxi Province 710068, People's Republic of China.
| |
Collapse
|
13
|
Wu CS, Lin SC, Li S, Chiang YC, Bracci N, Lehman CW, Tang KT, Lin CC. Phloretin alleviates dinitrochlorobenzene-induced dermatitis in BALB/c mice. Int J Immunopathol Pharmacol 2021; 34:2058738420929442. [PMID: 32571120 PMCID: PMC7313336 DOI: 10.1177/2058738420929442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory disease of the skin that substantially affects a patient's quality of life. While steroids are the most common therapy used to temporally alleviate the symptoms of AD, effective and nontoxic alternatives are urgently needed. In this study, we utilized a natural, plant-derived phenolic compound, phloretin, to treat allergic contact dermatitis (ACD) on the dorsal skin of mice. In addition, the effectiveness of phloretin was evaluated using a mouse model of ACD triggered by 2,4-dinitrochlorobenzene (DNCB). In our experimental setting, phloretin was orally administered to BALB/c mice for 21 consecutive days, and then, the lesions were examined histologically. Our data revealed that phloretin reduced the process of epidermal thickening and decreased the infiltration of mast cells into the lesion regions, subsequently reducing the levels of histamine and the pro-inflammatory cytokines interleukin (IL)-6, IL-4, thymic stromal lymphopoietin (TSLP), interferon-γ (IFN-γ) and IL-17A in the serum. These changes were associated with lower serum levels after phloretin treatment. In addition, we observed that the mitogen-activated protein kinase (MAPK) and NF-κB pathways in the dermal tissues of the phloretin-treated rodents were suppressed compared to those in the AD-like skin regions. Furthermore, phloretin appeared to limit the overproliferation of splenocytes in response to DNCB stimulation, reducing the number of IFN-γ-, IL-4-, and IL-17A-producing CD4+ T cells in the spleen back to their normal ranges. Taken together, we discovered a new therapeutic role of phloretin using a mouse model of DNCB-induced ACD, as shown by the alleviated AD-like symptoms and the reversed immunopathological effects. Therefore, we believe that phloretin has the potential to be utilized as an alternative therapeutic agent for treating AD.
Collapse
Affiliation(s)
- Chieh-Shan Wu
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung
| | - Shih-Chao Lin
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Shiming Li
- Hubei Key Laboratory for Processing & Application of Catalytic Materials, College of Chemistry & Chemical Engineering, Huanggang Normal University, Huanggang, China
| | - Yu-Chih Chiang
- Department of Restaurant, Hotel and Institutional Management, College of Human Ecology, Fu Jen Catholic University, New Taipei City
| | - Nicole Bracci
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Caitlin W Lehman
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Kuo-Tung Tang
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung
| | - Chi-Chien Lin
- Department of Life Sciences, Institute of Biomedical Sciences, The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung.,Department of Medical Research, China Medical University Hospital, Taichung.,Department of Medical Research, Taichung Veterans General Hospital, Taichung
| |
Collapse
|
14
|
Sadek SA, Hassanein SS, Mohamed AS, Soliman AM, Fahmy SR. Echinochrome pigment extracted from sea urchin suppress the bacterial activity, inflammation, nociception, and oxidative stress resulted in the inhibition of renal injury in septic rats. J Food Biochem 2021; 46:e13729. [PMID: 33871886 DOI: 10.1111/jfbc.13729] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/05/2021] [Accepted: 03/29/2021] [Indexed: 12/26/2022]
Abstract
The current study aimed to evaluate the antibacterial, anti-inflammatory, analgesic, and renoprotective effects of echinochrome pigment extracted from sea urchin. The disk diffusion method was used for the antibacterial activity of echinochrome against four different bacterial strains; Salmonella typhimurium, Pseudomonas aeroginosa, Staphylococcus aureus, and Listeria monocytogenes. While, acetic acid-induced writhing, formalin-induced licking, and hot plate latency assays evaluate the analgesic activity. The biochemical and oxidative stress markers of kidneys, as well as the histopathological examination, were measured to evaluate the renoprotective activity of echinochrome for cecal ligation and puncture-induced renal injury in rats. Echinochrome pigment exhibited in vitro antibacterial activity against all aforementioned bacterial species besides a powerful anti-inflammatory impact in vitro by the effective stabilization of the RBCs membrane and in vivo by decrease levels of serum IL6 and TNF-α. What's more, echinochrome showed a notable analgesic efficacy as well as an enhancement of the kidney's biochemical markers, oxidative stress status, and histopathological screening. Ech attenuated cecal ligation and puncture-induced renal injury by improving renal biomarkers, suppressing reactive oxygen species propagation as well as its antibacterial, anti-inflammatory, and anti-nociceptive activities. PRACTICAL APPLICATIONS: Sea urchins are rich in pharmacologically important quinone pigments, specifically echinochrome. The current study aimed to evaluate the role of echinochrome as a renal protective remedy in sepsis and clarify its biological activities. Echinochrome exhibited antibacterial activity in vitro against Salmonella typhimurium, Pseudomonas aeroginosa, Staphylococcus aureus, and Listeria monocytogenes. Our results revealed that echinochrome protects the kidney against damage caused by sepsis in rats. Echinochrome can use in the treatment of sepsis as an antibacterial, anti-inflammatory, and antioxidant agent.
Collapse
Affiliation(s)
- Shimaa A Sadek
- Physiology, Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Sarah S Hassanein
- Physiology, Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ayman S Mohamed
- Physiology, Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Amel M Soliman
- Physiology, Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Sohair R Fahmy
- Physiology, Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
15
|
Nazari A, Mirian M, Aghaei M, Aliomrani M. 4-Hydroxyhalcone effects on cisplatin-induced genotoxicity model. Toxicol Res (Camb) 2021; 10:11-17. [PMID: 33613968 PMCID: PMC7885192 DOI: 10.1093/toxres/tfaa091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/21/2020] [Accepted: 11/02/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The genotoxicity of cisplatin (CP) as a platinum-based antineoplastic agent due to its oxidative stress induction was well known. In this research, we examined 4-hydroxychalcone (4-HCH) as a natural food that presents flavonoid effects on reactive oxygen species (ROS) production and CP-induced in vivo genotoxicity. METHOD AND MATERIALS Cytotoxicity of CP and 4-HCH was measured on human embryonic kidney 293 cells with MTT assay. Then, intracellular ROS content at IC50 concentration of CP was measured with 2',7'-dichlorofluorescein diacetate (DCFDA) dye. Finally, 4-HCH was administered intraperitoneally at 10 and 40 mg/kg/BW doses as a pre and post-treatment schedule in a mice model of CP genotoxicity (7 mg/kg). Acridine-orange-stained bone marrow cells were quantified for micronucleus presence examination. RESULTS The calculated IC50 of CP and 4-HCH were reported around 19.4 and 133.6 μM, respectively, on HEK293 cells. Also, it was observed that 4-HCH at 0.2, 2 and 10 μM concentrations did not show obvious cytotoxicity. The fluorimetry confirmed that pre-treatment with 10 μM and co-treatment with 2 μM of 4-HCH could attenuate the CP-induced ROS production (P < 0.05 and P < 0.01, respectively). Also, the lowest micronucleated cells were seen in 10 mg/kg 4-HCH-treated group after CP exposure (39 ± 7.9, P < 0.0001). DISCUSSION Our results demonstrated the antigenotoxic action of 4-HCH in CP-treated mice bone marrow cells for the first time in both concentrations of 10 and 40 mg/kg especially in the form of co-treatment. Further studies required clinical application of this compound in a combination of CP to attenuate the normal cells' genotoxicity side effects.
Collapse
Affiliation(s)
- Aref Nazari
- Toxicology M.SC Candidate, Isfahan University of Medical Sciences and Health Services, Isfahan 83714, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Isfahan University of Medical Sciences and Health Services, Isfahan 83714, Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan 83714, Iran
| | - Mehdi Aliomrani
- Department of Toxicology and Pharmacology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences and Health Services, Isfahan 83714, Iran
| |
Collapse
|
16
|
Zhang X, Feng J, Su S, Huang L. Hepatoprotective effects of Camellia nitidissima aqueous ethanol extract against CCl 4-induced acute liver injury in SD rats related to Nrf2 and NF-κB signalling. PHARMACEUTICAL BIOLOGY 2020; 58:239-246. [PMID: 32202453 PMCID: PMC7144296 DOI: 10.1080/13880209.2020.1739719] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/04/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Context: Camellia nitidissima Chi (Theaceae) is an evergreen shrub, the leaves of which are used in many medicinal applications.Objective: To characterize the chemical composition of a 10% aqueous ethanol extract of C. nitidissima leaves (CNE), and to explore the protective effect of the extract against acute liver injury (ALI) in rats.Materials and methods: Male Sprague-Dawley rats were divided into six groups (n = 10): control and negative (0.5% CMC-Na, 5 mL/kg/d), thiopronin (20 mg/kg/d) and CNE (40, 80 and 160 mg/kg/d). All groups were treated for seven consecutive days, and then, except for the control, carbon tetrachloride was administered intraperitoneally. The biochemical parameters, mRNAs, and proteins were analyzed using enzyme-linked immunoassays kits, quantitative polymerase chain reaction and western blot. Chemical components were identified using mass spectroscopy, and the phenol and flavonoid content determined by ultraviolet spectrophotometry.Results: Pre-treatment with CNE (160 mg/kg) attenuated the pathological changes in liver tissues and decreased alanine transaminase (62 and 60%), aspartate transaminase (49 and 53%) and malondialdehyde (35 and 42%) levels in serum and liver tissues. Moreover, CNE reduced the concentrations of reactive oxygen species (55%), tumour necrosis factor-α (26%), interleukin-1β (19%) and IL-6 (19%) and blocked the nuclear translocation of p65. Pre-treatment with CNE increased anti-heme oxygenase-1 (40%), superoxide dismutase (108%) and glutathione (97%) levels through upregulating nuclear factor erythroid-2-related factor 2. Twelve compounds were detected; the content of phenols and flavonoids was determined as 34.474 ± 1.026 and 15.228 ± 0.422 mg/g crude drug in CNE, respectively.Discussion and conclusions: These results suggested that CNE is a promising agent for functional food and hepatoprotective drug against ALI.
Collapse
Affiliation(s)
- Xiaoman Zhang
- School of Pharmaceutical Sciences, Guangxi Medical University, Nanning, China
| | - Jie Feng
- School of Pharmaceutical Sciences, Guangxi Medical University, Nanning, China
| | - Shaofeng Su
- School of Pharmaceutical Sciences, Guangxi Medical University, Nanning, China
| | - Lei Huang
- School of Pharmaceutical Sciences, Guangxi Medical University, Nanning, China
| |
Collapse
|
17
|
Variability in the Qualitative and Quantitative Composition and Content of Phenolic Compounds in the Fruit of Introduced American Cranberry ( Vaccinium macrocarpon Aiton). PLANTS 2020; 9:plants9101379. [PMID: 33081256 PMCID: PMC7602967 DOI: 10.3390/plants9101379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 11/26/2022]
Abstract
The aim of this study was to determine the composition and content of phenolic compounds in ethanol extracts of eight different cultivars of American cranberry (Vaccinium macrocarpon Aiton) fruit using spectrophotometric and UPLC-ESI-MS/MS analysis and to evaluate the antioxidant activity in vitro of these extracts. The highest total amount of phenolic compounds evaluated via Folin–Ciocalteu spectrophotometry was detected in American cranberry fruit samples of the ‘Bain’ clone, and the highest total amount of flavonoids was found in samples of the ‘Drever’ and ‘Baiwfay’ cultivars. The highest total amount of the individual phenolic compounds (519.53 ± 25.12 mg/g DW) identified and quantitatively evaluated via chromatography was detected in samples of the ‘Searles’ cranberry cultivar. In the studied cranberry samples, the predominant phenolic compounds were hyperoside, quercetin, and procyanidin A2, while the amounts of other compounds were significantly lower. HCA and PCA revealed that ‘Woolman’, ‘Holliston’, ‘Pilgrim, and ‘Searles’ fruit samples had different quantitative content of phenolic compounds from other cranberry cultivars. Meanwhile, fruit of ‘Baiwfay’, ‘Drever’, ‘Bain’, and ‘Bergman’ were similar in their phytochemical profile.
Collapse
|
18
|
Shang A, Liu HY, Luo M, Xia Y, Yang X, Li HY, Wu DT, Sun Q, Geng F, Li HB, Gan RY. Sweet tea (Lithocarpus polystachyus rehd.) as a new natural source of bioactive dihydrochalcones with multiple health benefits. Crit Rev Food Sci Nutr 2020; 62:917-934. [DOI: 10.1080/10408398.2020.1830363] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ao Shang
- National Agricultural Science & Technology Center, Chengdu, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Hong-Yan Liu
- National Agricultural Science & Technology Center, Chengdu, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Min Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Yu Xia
- National Agricultural Science & Technology Center, Chengdu, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Xiao Yang
- National Agricultural Science & Technology Center, Chengdu, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Hang-Yu Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ding-Tao Wu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ren-You Gan
- National Agricultural Science & Technology Center, Chengdu, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
19
|
V S A, S K K. Phloretin Ameliorates Acetic Acid Induced Colitis Through Modulation of Immune and Inflammatory Reactions in Rats. Endocr Metab Immune Disord Drug Targets 2020; 21:163-172. [PMID: 32579511 DOI: 10.2174/1871530320666200624120257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/16/2020] [Accepted: 05/11/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND Adverse effects associated with current therapy for Ulcerative colitis (UC) over prolonged treatment periods and the high relapse rate limit their use. Incorporating fruits as regular diet has beneficial role in the management of UC. Phloretin, a dihydrochalcone of apple is reported for its anti-oxidant and anti-inflammatory effects. Our study aims to evaluate the effectiveness of phloretin on experimentally induced ulcerative colitis in rats. METHODS In vitro study was performed using Raw 264.7 cells stimulated with LPS (1μg/mL) and in in-vivo study, colitis was induced by intra rectal administration of 4% Acetic acid. Phloretin (50 mg/kg) was given orally for 3 days to Wistar rats after induction for the post-treatment group and 1 day before induction to the pre-treatment group. Macroscopical, biochemical and histopathological evaluations were performed to assess the effectiveness. RESULTS A concentration dependent inhibition of MPO and iNOS activity was obtained in LPS stimulated neutrophil cells. Phloretin exerted ameliorative effect in both pre and post-treatment groups by restoring plasma ALP and LDH level and reduce inflammatory markers like myeloperoxidase, nitric oxide and eosinophil peroxidase level as well as downregulates colon ICAM-1 gene in acetic acid induced ulcerative colitis in rats. Antioxidative potency was confirmed by restoring tissue GSH level. Phloretin prevents mucosal damage and it was confirmed by histopathological analysis. CONCLUSION Collectively, our findings provide evidence that phloretin might be useful as a natural therapeutic agent in the management of UC as well as may pose a promising outcome for future clinical usage.
Collapse
Affiliation(s)
- Arya V S
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Kanthlal S K
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| |
Collapse
|
20
|
Abu-Azzam O, Nasr M. In vitro anti-inflammatory potential of phloretin microemulsion as a new formulation for prospective treatment of vaginitis. Pharm Dev Technol 2020; 25:930-935. [PMID: 32363977 DOI: 10.1080/10837450.2020.1764032] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phloretin is a promising polyphenolic compound known for its anti-inflammatory properties, but its poor solubility and low bioavailability hinder its clinical applicability. Till current date, its potential in the treatment of vaginitis has not been explored, and only very few papers reported its formulation as nanoparticles to overcome its pharmaceutical challenges. Therefore, in the current study, phloretin was formulated in microemulsion of 11 nm size, and its in vitro anti-inflammatory properties were explored using histamine and IL-6 release inhibition assays, protease inhibition assay, and membrane stabilization potential. The anti-inflammatory properties of phloretin microemulsion were compared to the drug phloretin, and the reference standard non-steroidal anti-inflammatory drugs (NSAIDs). Results proved that both phloretin and phloretin microemulsion significantly inhibited the release of the inflammatory mediators histamine and IL-6, inhibited protease action, and exhibited membrane stabilization potential. Phloretin microemulsion exhibited comparable anti-inflammatory properties to the NSAIDs diclofenac and indomethacin, and, hence, it can be delineated as a promising therapeutic tool in topical treatment of vaginal inflammation.
Collapse
Affiliation(s)
- Omar Abu-Azzam
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mu'tah University, Mu'tah, Jordan
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
21
|
Kutlu Z, Celik M, Bilen A, Halıcı Z, Yıldırım S, Karabulut S, Karakaya S, Bostanlık DF, Aydın P. Effects of umbelliferone isolated from the Ferulago pauciradiata Boiss. & Heldr. Plant on cecal ligation and puncture-induced sepsis model in rats. Biomed Pharmacother 2020; 127:110206. [PMID: 32407990 DOI: 10.1016/j.biopha.2020.110206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
Sepsis is a pathophysiological event involving systemic inflammatory response syndrome, multiple organ failure syndromes, and tissue damage. Overproduction of free radicals as a result of tissue damage during sepsis contributes to cellular toxicity, organ failure, and even mortality. Antioxidants, which scavenge free radicals, play a protective role against various diseases. Previous studies have shown that umbelliferone (UF) has antioxidant and anti-inflammatory effects. Since oxidative stress is naturally associated with sepsis-induced organ dysfunction, the application of antioxidant compounds could potentially illuminate the pathophysiology of sepsis, which does not yet have an effective treatment. The sepsis model induced by cecal ligation and puncture (CLP) was applied to rats. Different doses of UF (10░mg/kg, 20░mg/kg, and 40░mg/kg) on oxidant-antioxidant in septic rats, mRNA of inflammatory mediators such as tumor necrosis factor- α (TNF-α) and interleukin (IL)-1 its effects on expression levels were evaluated in lung, kidney, and liver tissues. When the lung, kidney, and liver tissues of septic rats were compared with those of the control group, it was found that UF administration increased dose-dependent superoxide dismutase activity and glutathione levels and significantly decreased malondialdehyde levels. The effects of UF administration on oxidative parameters were dose-dependent. The 40░mg/kg UF dose showed greater anti-oxidative properties than the 20░mg/kg and 10░mg/kg doses for all the evaluated parameters. Further, the TNF- α mRNA expression of the CLP +40░mg/kg group was reduced to a level comparable to that of the control group. UF has been found to be an effective molecule in reducing oxidative stress by supporting endogenous antioxidants and enhancing the scavenging effects of free radicals. The potent antioxidant property of UF may also be related to the suppression of the cytokine cascade during sepsis. The results suggest that UF administration may represent a new treatment for the prevention of lung, kidney and liver damage caused by septic conditions.
Collapse
Affiliation(s)
- Z Kutlu
- Department of Biochemistry, Faculty of Pharmacy, Atatürk University, Erzurum, 25240, Turkey.
| | - M Celik
- Department of Biochemistry, Faculty of Medicine, Atatürk University, Erzurum, 25240, Turkey.
| | - A Bilen
- Department of Internal Medicine, Faculty of Medicine, Atatürk University, Erzurum, 25240, Turkey.
| | - Z Halıcı
- Faculty of Medicine, Department of Pharmacology, Atatürk University, Erzurum, 25240, Turkey; Clinical Research, Development and Design Application and Research Center, Ataturk University, 25240, Erzurum, Turkey.
| | - S Yıldırım
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, 25240, Turkey.
| | - S Karabulut
- Health Services Vocational School, Bayburt University, Bayburt, 69000, Turkey.
| | - S Karakaya
- Department of Pharmacognosy, Faculty of Pharmacy, Ataturk University, Erzurum, 25240, Turkey.
| | | | - P Aydın
- Department of Anesthesia, Regional Education and Research Hospital, Erzurum, 25240, Turkey.
| |
Collapse
|
22
|
Malkoç M, Patan H, Yaman SÖ, Türedi S, Kerimoğlu G, Kural BV, Örem A. l-theanine alleviates liver and kidney dysfunction in septic rats induced by cecal ligation and puncture. Life Sci 2020; 249:117502. [PMID: 32142764 DOI: 10.1016/j.lfs.2020.117502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/22/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
AIMS Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response against infection that triggers systemic inflammatory response syndrome. l-theanine (LT), a glutamate derivative, is a non-protein amino acid derived from tea (Camellia sinensis), and a valuable nutraceutical product used as an additive in the food industry. This study we aimed to investigate whether LT would exert any therapeutic effect on liver and kidney tissues in Sprague Dawley rats with sepsis induced with cecal ligation and puncture (CLP). MAIN METHODS Rats were divided into four groups; sham, CLP, CLP+LT1 (2x250 mg/kg) and CLP+LT2 (2 × 750 mg/kg). Liver and kidney tissues were subjected to histopathological examination. Apoptotic index percentages (AI%) were examined using the TUNEL method. The oxidized glutathione to total glutathione (GSSG/TGSH) ratio (as a marker of oxidative stress, levels of caspase-3 (a marker of apoptosis), glutathione peroxidase (GPx) and glutathione S-transferase (GST) (as antioxidant enzymes), inducible nitric oxide synthase (iNOS) and the tumor necrosis factor-α to Interleukin-10 ratio (TNF-α/IL-10) (as markers of inflammation) were investigated using commercial kits. Levels of malondialdehyde (MDA) (a marker of oxidative stress) were determined spectrophotometrically. KEY FINDINGS A high dose of LT exhibited more significant effects in reducing oxidative stress, inflammation and apoptosis than a low dose of LT in liver and kidney tissues with CLP-induced sepsis (p < 0.05). SIGNIFICANCE Our results indicated that LT significantly and dose-dependently inhibited sepsis induced liver and kidney injury. This effect may be attributed to the antioxidant, anti-inflammatory, and anti-apoptotic activities of LT.
Collapse
Affiliation(s)
- Meltem Malkoç
- Vocational School of Health Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey.
| | - Huriye Patan
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Serap Özer Yaman
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Süleyman Türedi
- Karadeniz Technical University, Faculty of Medicine, Department of Emergency Medicine, 61080 Trabzon, Turkey
| | - Gökçen Kerimoğlu
- Karadeniz Technical University, Faculty of Medicine, Department of Histology, 61080 Trabzon, Turkey
| | - Birgül Vanizor Kural
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Asım Örem
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| |
Collapse
|
23
|
Lin Q, Qu M, Patra HK, He S, Wang L, Hu X, Xiao L, Fu Y, Gong T, He Q, Zhang L, Sun X, Zhang Z. Mechanistic and therapeutic study of novel anti-tumor function of natural compound imperialine for treating non-small cell lung cancer. JOURNAL OF ETHNOPHARMACOLOGY 2020; 247:112283. [PMID: 31605736 DOI: 10.1016/j.jep.2019.112283] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/26/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bulbus Fritillaria cirrhosa D. Don (BFC) is a Chinese traditional herbal medicine that has long been used as an indispensable component in herbal prescriptions for bronchopulmonary diseases due to its well-established strong anti-inflammation and pulmonary harmonizing effects. Interestingly, there are few case reports in traditional Chinese medicine available where they found it to contribute in anti-tumor therapies. Imperialine is one of the most favored active substances extracted from BFC and has been widely recognized as an anti-inflammatory agent. AIM OF THE STUDY The aim of the current work is to provide first-hand evidences both in vitro and in vivo showing that imperialine exerts anti-cancer effects against non-small cell lung cancer (NSCLC), and to explore the molecular mechanism of this anti-tumor activity. It is also necessary to examine its systemic toxicity, and to investigate how to develop strategies for feasible clinical translation of imperialine. MATERIALS AND METHODS To investigate anti-NSCLC efficacy of imperialine using both in vitro and in vivo methods where A549 cell line were chosen as in vitro model NSCLC cells and A549 tumor-bearing mouse model was constructed for in vivo study. The detailed underlying anti-cancer mechanism has been systematically explored for the first time through a comprehensive set of molecular biology methods mainly including immunohistochemistry, western blot and enzyme-linked immunosorbent assays. The toxicity profile of imperialine treatments were evaluated using healthy nude mice by examining hemogram and histopathology. An imperialine-loaded liposomal drug delivery system was developed using thin film hydration method to evaluate target specific delivery. RESULTS The results showed that imperialine could suppress both NSCLC tumor and associated inflammation through an inflammation-cancer feedback loop in which NF-κB activity was dramatically inhibited by imperialine. The NSCLC-targeting liposomal system was successfully developed for targeted drug delivery. The developed platform could favorably enhance imperialine cellular uptake and in vivo accumulation at tumor sites, thus improving overall anti-tumor effect. The toxicity assays revealed imperialine treatments did not significantly disturb blood cell counts in mice or exert any significant damage to the main organs. CONCLUSIONS Imperialine exerts anti-cancer effects against NSCLC both in vitro and in vivo, and this previously unknown function is related to NF-κB centered inflammation-cancer feedback loop. Imperialine mediated anti-cancer activity is not through cytotoxicity and exhibit robust systemic safety. Furthermore, the liposome-based system we commenced would dramatically enhance therapeutic effects of imperialine while exhibiting extremely low side effects both on cellular and in NSCLC model. This work has identified imperialine as a promising novel anti-cancer compound and offered an efficient target-delivery solution that greatly facilitate practical use of imperialine.
Collapse
Affiliation(s)
- Qing Lin
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Pharmaceutics, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, United Kingdom
| | - Mengke Qu
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Pharmaceutics, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Hirak K Patra
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, United Kingdom; Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, 58185, Sweden; Wolfson College, University of Cambridge, Cambridge, CB3 9BB, United Kingdom
| | - Shanshan He
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Pharmaceutics, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Luyao Wang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Pharmaceutics, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Xun Hu
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Pharmaceutics, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China; CQ MEDVT CO., LTD, Chongqing, 401122, PR China
| | - Linyu Xiao
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Pharmaceutics, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Yu Fu
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Pharmaceutics, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Pharmaceutics, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Qin He
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Pharmaceutics, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Ling Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Pharmaceutics, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China.
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Pharmaceutics, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Pharmaceutics, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| |
Collapse
|
24
|
Liu J, He Z, Ma N, Chen ZY. Beneficial Effects of Dietary Polyphenols on High-Fat Diet-Induced Obesity Linking with Modulation of Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:33-47. [PMID: 31829012 DOI: 10.1021/acs.jafc.9b06817] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Obesity is caused by an imbalance of energy intake and expenditure. It is characterized by a higher accumulation of body fat with a chronic low-grade inflammation. Many reports have shown that gut microbiota in the host plays a pivotal role in mediating the interaction between consumption of a high-fat diet (HFD) and onset of obesity. Accumulative evidence has suggested that the changes in the composition of gut microbiota may affect the host's energy homeostasis, systemic inflammation, lipid metabolism, and insulin sensitivity. As one of the major components in human diet, polyphenols have demonstrated to be capable of modulating the composition of gut microbiota and reducing the HFD-induced obesity. The present review summarizes the findings of recent studies on dietary polyphenols regarding their metabolism and interaction with bacteria in the intestine as well as the underlying mechanisms by which they modulate the gut microbiota and alleviate the HFD-induced obesity.
Collapse
Affiliation(s)
- Jianhui Liu
- College of Food Science and Engineering , Nanjing University of Finance & Economics , Nanjing , China
- School of Life Sciences , The Chinese University of Hong Kong , Shatin NT , Hong Kong , China
| | - Zouyan He
- School of Life Sciences , The Chinese University of Hong Kong , Shatin NT , Hong Kong , China
| | - Ning Ma
- College of Food Science and Engineering , Nanjing University of Finance & Economics , Nanjing , China
- School of Life Sciences , The Chinese University of Hong Kong , Shatin NT , Hong Kong , China
| | - Zhen-Yu Chen
- School of Life Sciences , The Chinese University of Hong Kong , Shatin NT , Hong Kong , China
| |
Collapse
|
25
|
Chen Y, Fan X. Use of Chou's 5-Steps Rule to Reveal Active Compound and Mechanism of Shuangshen Pingfei San on Idiopathic Pulmonary Fibrosis. Curr Mol Med 2019; 20:220-230. [PMID: 31612829 DOI: 10.2174/1566524019666191011160543] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Shuangshen Pingfei San (SPS) is the derivative from the classic formula Renshen Pingfei San in treating idiopathic pulmonary fibrosis (IPF). METHODS In this study, Chou's 5-steps rule was performed to explore the potential active compound and mechanism of SPS on IPF. Compound-target network, target- pathway network, herb-target network and the core gene target interaction network were established and analyzed. A total of 296 compounds and 69 candidate therapeutic targets of SPS in treating IPF were obtained. Network analysis revealed that the main active compounds were flavonoids (such as apigenin, quercetin, naringenin, luteolin), other clusters (such as ginsenoside Rh2, diosgenin, tanshinone IIa), which might also play significant roles. SPS regulated multiple IPF relative genes, which affect fibrosis (PTGS2, KDR, FGFR1, TGFB, VEGFA, MMP2/9) and inflammation (PPARG, TNF, IL13, IL4, IL1B, etc.). CONCLUSION In conclusion, anti-pulmonary fibrosis effect of SPS might be related to the regulation of inflammation and pro-fibrotic signaling pathways. These findings revealed that the potential active compounds and mechanisms of SPS on IPF were a benefit to further study.
Collapse
Affiliation(s)
- Yeqing Chen
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Xinsheng Fan
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| |
Collapse
|
26
|
Mariadoss AVA, Vinyagam R, Rajamanickam V, Sankaran V, Venkatesan S, David E. Pharmacological Aspects and Potential Use of Phloretin: A Systemic Review. Mini Rev Med Chem 2019; 19:1060-1067. [PMID: 30864525 DOI: 10.2174/1389557519666190311154425] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 07/18/2018] [Accepted: 08/08/2018] [Indexed: 12/27/2022]
Abstract
Over the past two decades, many researchers have concluded that a diet rich in polyphenolic compounds plays an important therapeutic role in reducing the risk of cancer, cardiovascular disease, inflammation, diabetes, and other degenerative diseases. Polyphenolic compounds have been reported to be involved in neutralization of reactive oxygen species and charged radicals, and have anticarcinogenic effects, hepatoprotective effects, low-glycaemic response, and other benefits. The benefits of fruits and vegetables may be partly attributable to polyphenolic compounds, which have antioxidant and free radical scavenging properties. Fruits such as apples contain a variety of phytochemicals, including (+)-catechin and (-)-epicatechin, phlorizin, phloretin quercetin, cyanidin-3-Ogalactoside, chlorogenic acid, and p-coumaric acid, all of which are strong antioxidants. Phloretin, a natural phenolic compound, is a dihydrochalcone, which is present in the apple. It exhibits a wide variety of activities such as antioxidative, anti-inflammatory, anti-microbial, anti-allergic, anticarcinogenic, anti-thrombotic, and hepatoprotective, besides being involved in the activation of apoptotic associated gene expression and signal transduction in molecular pathways. Despite a multitude of clinical studies, new efforts are needed in clinical research to determine the complete therapeutic potential of phloretin.
Collapse
Affiliation(s)
- Arokia V A Mariadoss
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore- 632115 Tamil Nadu, India
| | - Ramachandran Vinyagam
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore- 632115 Tamil Nadu, India
| | - Vinothkumar Rajamanickam
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Vijayalakshmi Sankaran
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore- 632115 Tamil Nadu, India
| | - Sathish Venkatesan
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore- 632115 Tamil Nadu, India
| | - Ernest David
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore- 632115 Tamil Nadu, India
| |
Collapse
|
27
|
Bi W, Lan X, Zhang J, Xiao S, Cheng X, Wang H, Lu D, Zhu L. USP8 ameliorates cognitive and motor impairments via microglial inhibition in a mouse model of sepsis-associated encephalopathy. Brain Res 2019; 1719:40-48. [PMID: 31075263 DOI: 10.1016/j.brainres.2019.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 02/08/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is a common and serious complication of sepsis, which is thought to be caused by neuroinflammation. In our previous study, ubiquitin-specific protease 8 (USP8), was reported to regulate inflammation in vitro. In the current study, we investigated whether increased USP8 expression would ameliorate the cognitive and motor impairments induced by cecal ligation and puncture (CLP) in mice, a model of SAE. Male adult mice were randomly divided into four groups: control, sham, CLP, and CLP + USP8 groups. The CLP + USP8 mice showed reduced weight loss on day 4 post-CLP, with a slight increase noted on day 7. The mortality rate in the CLP group was 70% 48 h after CLP; however, USP8 significantly improved survival after CLP. USP8 modulated the neurobehavioral scores in CLP mice. Our results also indicate that USP8 attenuated the CLP-induced cognitive and motor impairments, based on the performance of mice in the Morris water maze (MWM), pole-climbing, and wire suspension tests. USP8 suppressed the release of pro-inflammatory mediators, including prostaglandin E2(PGE2) in the serum and nitric oxide (NO) in brain tissue, as well as levels of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in brain tissue. Immunofluorescence experiments revealed that USP8 inhibited CLP-induced increases in microglial size and density in the hippocampus, and protected hippocampal neurons. Our findings indicate that neuroinflammation occurs in the brains of CLP mice, and that USP8 exerts protective effects against CLP-induced neuroinflammation and cognitive and motor impairments, which may aid in the development of novel therapeutic strategies for SAE.
Collapse
Affiliation(s)
- Wei Bi
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, PR China
| | - Xin Lan
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - JiaWei Zhang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - Shu Xiao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - XiaoFeng Cheng
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, PR China
| | - HuaDong Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - DaXiang Lu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - Lihong Zhu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
28
|
Portincasa P, Calamita G. Phytocompounds modulating Aquaporins: Clinical benefits are anticipated. Food Chem 2019; 274:642-650. [PMID: 30372989 DOI: 10.1016/j.foodchem.2018.09.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 08/03/2018] [Accepted: 09/03/2018] [Indexed: 12/16/2022]
Abstract
A series of plant-derived bioactive compounds belonging to the class of polyphenols, terpenes and capsaicinoids, interact with important pathophysiological pathways at a molecular, cellular and systemic level. Mechanisms of action include altering cell growth and differentiation, apoptosis, autophagy, inflammation, redox balance and metabolic and energy homeostasis. These effects might also involve the expression and function of Aquaporins (AQPs), a family of membrane channel proteins, involved in several body functions. The ultimate translational beneficial effect of such phytocompounds on AQPs in health and disease is a matter of intensive research. Results might provide novel therapeutic approaches to a number of human diseases. Here, we give an updated overview of this fast growing and promising field, discussing a number of phytocompounds and their action on AQPs and related potential clinical achievements.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, Medical School, University of Bari "Aldo Moro", Bari, Italy.
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|
29
|
Zhang Z, Li S, Cao H, Shen P, Liu J, Fu Y, Cao Y, Zhang N. The protective role of phloretin against dextran sulfate sodium-induced ulcerative colitis in mice. Food Funct 2019; 10:422-431. [PMID: 30604787 DOI: 10.1039/c8fo01699b] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Phloretin, a dihydrogen chalcone flavonoid, is mainly isolated from apples and strawberries. Phloretin has been proven to have many biological activities such as anti-inflammatory and anti-oxidative. Herein, we investigated the protective efficacy and potential mechanism of phloretin in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice. The results showed that phloretin resulted in a reduced DSS-induced disease activity index (DAI), colon length shortening and colonic pathological damage. The levels of pro-inflammatory cytokines in the colon were also decreased by the administration of phloretin. Exploration of the potential mechanism demonstrated that phloretin suppressed the inflammatory response by regulating the nuclear factor-κB (NF-κB), toll-like receptor 4 (TLR4) and peroxisome proliferator-activated receptor γ (PPARγ) pathways. Phloretin also inhibited the DSS-induced (NOD)-like receptor family and pyrin domain containing 3 (NLRP3) inflammasome activations. Further studies found that phloretin reduced key markers of oxidative stress as well as regulated the expression of zonula occludens-1 (ZO-1) and occludin. Interestingly, the concentration of serum lipopolysaccharide (LPS) was significantly decreased. Escherichia coli (E. coli) and Lactobacillus levels were also re-balanced after phloretin treatment. These results indicate that phloretin might be a new dietary strategy for the treatment of UC.
Collapse
Affiliation(s)
- Zecai Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Cataldo I, Maggio A, Gena P, de Bari O, Tamma G, Portincasa P, Calamita G. Modulation of Aquaporins by Dietary Patterns and Plant Bioactive Compounds. Curr Med Chem 2019; 26:3457-3470. [PMID: 28545373 DOI: 10.2174/0929867324666170523123010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 12/14/2022]
Abstract
Healthful dietary patterns and bioactive compounds supplementation can be adopted as simple and easy intervention to prevent, attenuate or cure clinical disorders, especially when it comes to degenerative and chronic diseases. In the recent years, a growing body of evidence indicates Aquaporins (AQPs), a family of membrane channel proteins widely expressed in the human body, among the targets underlying the beneficial action played by some food nutrients and phytochemical compounds. Here, we provide an overview of what is known regarding the AQP modulation exerted by healthful dietary patterns and plant polyphenols.
Collapse
Affiliation(s)
- Ilaria Cataldo
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Anna Maggio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Patrizia Gena
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Ornella de Bari
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, Medical School, University of Bari "Aldo Moro", Bari, Italy
| | - Grazia Tamma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, Medical School, University of Bari "Aldo Moro", Bari, Italy
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
31
|
Identification of active compound combination contributing to anti-inflammatory activity of Xiao-Cheng-Qi Decoction via human intestinal bacterial metabolism. Chin J Nat Med 2018; 16:513-524. [PMID: 30080651 DOI: 10.1016/s1875-5364(18)30088-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Indexed: 12/26/2022]
Abstract
Human intestinal bacteria play an important role in the metabolism of herbal medicines, leading to the variations in their pharmacological profile. The present study aimed to investigate the metabolism of Xiao-Cheng-Qi decoction (XCQD) by human intestinal bacteria and to discover active component combination (ACC) contributing to the anti-inflammatory activity of XCQD. The water extract of XCQD was anaerobically incubated with human intestinal bacteria suspensions for 48 h at 37 °C. A liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-Q-TOF/MS) method was performed for identification of the metabolites. In addition, the anti-inflammatory effects of XCQD and biotransformed XCQD (XCQD-BT) were evaluated in vitro with cytokines in RAW264.7 cells induced by lipopolysaccharide (LPS). A total of 51 compounds were identified in XCQD and XCQD-BT. Among them, 20 metabolites were proven to be transformed by human intestinal bacteria. Significantly, a combination of 14 compounds was identified as ACC from XCQD-BT, which was as effective as XCQD in cell models of inflammation. In conclusion, this study provided an applicable method, based on intestinal bacterial metabolism, for identifying combinatory compounds responsible for a certain pharmacological activity of herbal medicines.
Collapse
|
32
|
Grape seed procyanidin extract protects against Pb-induced lung toxicity by activating the AMPK/Nrf2/p62 signaling axis. Food Chem Toxicol 2018; 116:59-69. [DOI: 10.1016/j.fct.2018.03.034] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 03/11/2018] [Accepted: 03/23/2018] [Indexed: 02/07/2023]
|
33
|
Dkhil MA, Kassab RB, Al-Quraishy S, Abdel-Daim MM, Zrieq R, Abdel Moneim AE. Ziziphus spina-christi (L.) leaf extract alleviates myocardial and renal dysfunction associated with sepsis in mice. Biomed Pharmacother 2018; 102:64-75. [PMID: 29549730 DOI: 10.1016/j.biopha.2018.03.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 02/06/2023] Open
Abstract
Ziziphus spina-christi (L.), a traditional Arabian medicinal herb, has been used by Egyptians (Bedouin and Nubian) to treat inflammatory symptoms and swellings, pain, and heat since long. We aimed to investigate whether Ziziphus spina-christi leaf extract (ZSCLE) exerted a myocardial and renal protective effect on mice in which sepsis had been induced with cecal ligation and puncture (CLP). Male C57BL/6 mice were divided randomly into six groups (n = 7): sham-operated group, sham-operated mice treated with ZSCLE (300 mg/kg), CLP-induced sepsis group, ZSCLE (100 mg/kg)-treated group, ZSCLE (200 mg/kg)-treated group, and ZSCLE (300 mg/kg)-treated group. Pretreatment with ZSCLE (100, 200, and 300 mg/kg) restored the normal heart rate (HR); decreased the elevated levels of malondialdehyde; the activity of myeloperoxidase, nitric oxide (NO), and inducible NO synthase; and the expression of nuclear factor kappa B (NF-κB), but increased the content of glutathione and antioxidant enzyme activities in mice with sepsis. Moreover, the results of biochemical analyses and qRT-PCR indicated that ZSCLE treatment lowered the level of cytokines, including tumor necrosis factor alpha and interleukin (IL)-1β. Additionally, ZSCLE reduced myocardial and renal apoptosis by inducing the downregulation of caspase-3 and Bax mRNA and upregulation of the expression of Bcl-2. Based on these results, we suggest that ZSCLE has a protective effect against multiple-organ impairment that follows sepsis. This effect may be attributed to the antioxidant, anti-inflammatory, and anti-apoptotic activities of ZSCLE.
Collapse
Affiliation(s)
- Mohamed A Dkhil
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia; Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Mohamed M Abdel-Daim
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt.
| | - Rafat Zrieq
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia.
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|
34
|
Tesse A, Grossini E, Tamma G, Brenner C, Portincasa P, Marinelli RA, Calamita G. Aquaporins as Targets of Dietary Bioactive Phytocompounds. Front Mol Biosci 2018; 5:30. [PMID: 29721498 PMCID: PMC5915544 DOI: 10.3389/fmolb.2018.00030] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022] Open
Abstract
Plant-derived bioactive compounds have protective role for plants but may also modulate several physiological processes of plant consumers. In the last years, a wide spectrum of phytochemicals have been found to be beneficial to health interacting with molecular signaling pathways underlying critical functions such as cell growth and differentiation, apoptosis, autophagy, inflammation, redox balance, cell volume regulation, metabolic homeostasis, and energy balance. Hence, a large number of biologically active phytocompounds of foods have been isolated, characterized, and eventually modified representing a natural source of novel molecules to prevent, delay or cure several human diseases. Aquaporins (AQPs), a family of membrane channel proteins involved in many body functions, are emerging among the targets of bioactive phytochemicals in imparting their beneficial actions. Here, we provide a comprehensive review of this fast growing topic focusing especially on what it is known on the modulatory effects played by several edible plant and herbal compounds on AQPs, both in health and disease. Phytochemical modulation of AQP expression may provide new medical treatment options to improve the prognosis of several diseases.
Collapse
Affiliation(s)
- Angela Tesse
- Centre National de La Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, l'Institut du Thorax, Universitè de Nantes, Nantes, France
| | - Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, University East Piedmont, Novara, Italy
| | - Grazia Tamma
- Department of Biosciences, Biotecnhologies and Biopharmaceutics, University of Bari “Aldo Moro”, Bari, Italy
| | - Catherine Brenner
- Institut National de la Santé et de la Recherche Médicale UMR-S 1180-LabEx LERMIT, Université Paris-Sud, Université Paris-Saclay, Châtenay Malabry, France
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, Medical School, University of Bari “Aldo Moro”, Bari, Italy
| | - Raul A. Marinelli
- Instituto de Fisiología Experimental, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Giuseppe Calamita
- Department of Biosciences, Biotecnhologies and Biopharmaceutics, University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
35
|
Aquaporin Membrane Channels in Oxidative Stress, Cell Signaling, and Aging: Recent Advances and Research Trends. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1501847. [PMID: 29770164 PMCID: PMC5892239 DOI: 10.1155/2018/1501847] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/29/2018] [Accepted: 02/20/2018] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are produced as a result of aerobic metabolism and as by-products through numerous physiological and biochemical processes. While ROS-dependent modifications are fundamental in transducing intracellular signals controlling pleiotropic functions, imbalanced ROS can cause oxidative damage, eventually leading to many chronic diseases. Moreover, increased ROS and reduced nitric oxide (NO) bioavailability are main key factors in dysfunctions underlying aging, frailty, hypertension, and atherosclerosis. Extensive investigation aims to elucidate the beneficial effects of ROS and NO, providing novel insights into the current medical treatment of oxidative stress-related diseases of high epidemiological impact. This review focuses on emerging topics encompassing the functional involvement of aquaporin channel proteins (AQPs) and membrane transport systems, also allowing permeation of NO and hydrogen peroxide, a major ROS, in oxidative stress physiology and pathophysiology. The most recent advances regarding the modulation exerted by food phytocompounds with antioxidant action on AQPs are also reviewed.
Collapse
|
36
|
Phloretin attenuates mucus hypersecretion and airway inflammation induced by cigarette smoke. Int Immunopharmacol 2017; 55:112-119. [PMID: 29245072 DOI: 10.1016/j.intimp.2017.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/10/2017] [Accepted: 12/06/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUNDS Cigarette smoke (CS)-induced airway mucus hypersecretion and inflammation are the prominent features of chronic obstructive pulmonary disease (COPD). As an anti-inflammatory flavonoid, phloretin was found to be involved in various inflammatory disorders such as sepsis. In this study, the effects of phloretin on CS-induced airway mucin secretion and inflammation were investigated in vivo and in vitro. METHODS Phloretin dissolved in 1% DMSO was daily injected intraperitoneally to mice, which were then exposed to CS for four weeks. Mouse lung histologic changes were evaluated, the expression of mucin 5ac (MUC5AC) was measured, bronchoalveolar lavage fluid (BALF) total cells, neutrophils, and macrophages were counted. BALF and lung levels of tumor necrosis factor-alpha and interleukin-1 beta (IL-1β) were quantified. Moreover, the effects of phloretin on cigarette smoke extract (CSE)-induced expression of MUC5AC and IL-1β were investigated in NCI-H292 cells. Then, to explore the potential mechanisms, the signaling molecules including epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK) and P38 were evaluated. RESULTS Phloretin pretreatment dramatically suppressed the mucins secretion, inflammatory cell infiltration and inflammatory cytokine release in mouse lungs induced by CS, and it also suppressed CSE-induced expression of MUC5AC and IL-1β in NCI-H292 bronchial epithelial cells. Furthermore, western blot showed that phloretin attenuated the activation of EGFR, ERK and P38 both in vivo and in vitro. CONCLUSIONS This study highlights the protective effect of phloretin on CS-related airway mucus hypersecretion and inflammation, where EGFR, ERK and P38 might be involved. These findings suggest that phloretin could be a potential therapeutic drug for COPD.
Collapse
|
37
|
Khalifa MMA, Bakr AG, Osman AT. Protective effects of phloridzin against methotrexate-induced liver toxicity in rats. Biomed Pharmacother 2017; 95:529-535. [PMID: 28866420 DOI: 10.1016/j.biopha.2017.08.121] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Liver is the largest internal organ concerning with metabolism, hormonal balance and clarifying of the toxins. One of the main complications of methotrexate (MTX) therapy was the hepatic injury. OBJECTIVE This study was conducted to elucidate the possible protective effects of phloridzin (PHL) against MTX-induced hepatotoxicity as compared to standard agent N-acetylcysteine (NAC). MATERIALS AND METHODS Rats were randomly divided into a normal control group, a respective group (PHL 40mg/kg/day orally (p.o.) for 10 consecutive days), a hepatotoxicity control group (MTX 20mg/kg, i.p., once), and three treated groups received NAC (150mg/kg/day; a reference standard), PHL (40mg/kg/day) and PHL (80mg/kg/day) p.o. for 10 consecutive days, at the end of the day 3 of the experiment rats were administered MTX. Assessed biomarkers included serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) as liver function parameters, serum tumor necrosis factor-α (TNF-α) and cyclooxygenase-II (COX-II), as inflammatory biomarkers, hepatic total antioxidant capacity (TAC), thiobarbituric acid reactive substances (TBARS), glutathione reduced (GSH), nitrite (NO2-), catalase (CAT), glutathione-S-transferase (GST) and superoxide dismutase (SOD) as oxidative stress biomarkers. Furthermore, hepatic caspase-3 expression was assessed. Biochemical and molecular estimations reinforced by histopathological findings. RESULTS Rats pre-treated with PHL significantly reduced hepatic injury, evidenced by significant reductions in ALT, AST and LDH, TNF-α and COX-II levels, significant reductions in hepatic NO2- and TBARS levels, and significant elevations in hepatic TAC, GSH, GST, CAT and SOD levels. Additionally, downregulation of hepatic caspase-3 expression. Finally, histopathological results consistent with our previous findings. CONCLUSION PHL protects against hepatic injury in rats mainly through mitigation of oxidative stress, inflammation and apoptosis in hepatic tissues and may be promising to alleviate and early treatment of MTX-induced hepatoxicity in man.
Collapse
Affiliation(s)
- Mohamed M A Khalifa
- Faculty of Pharmacy, Department of Pharmacology & Toxicology, Minia University, Minia 61511, Egypt
| | - Adel G Bakr
- Faculty of Pharmacy, Department of Pharmacology & Toxicology, Al-Azhar University, Assiut 71524, Egypt.
| | - Adel T Osman
- Faculty of Pharmacy, Department of Pharmacology & Toxicology, Al-Azhar University, Assiut 71524, Egypt
| |
Collapse
|
38
|
Xu D, Lv Y, Wang J, Yang M, Kong L. Deciphering the mechanism of Huang-Lian-Jie-Du-Decoction on the treatment of sepsis by formula decomposition and metabolomics: Enhancement of cholinergic pathways and inhibition of HMGB-1/TLR4/NF-κB signaling. Pharmacol Res 2017; 121:94-113. [PMID: 28434923 DOI: 10.1016/j.phrs.2017.04.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/18/2017] [Accepted: 04/13/2017] [Indexed: 02/07/2023]
Abstract
Sepsis is the major cause of morbidity and mortality in surgical patients. Huang-Lian-Jie-Du-Decoction (HLJDD), a well-known Chinese herb formula, has long been used for the treatment of sepsis. In this investigation, by leaving one herb out each time, the four component herbs of HLJDD were reformulated to four HLJDD variants Form1-4, corresponding to the removal of Phellodendri Chinensis Cortex, Scutellariae Radix, Gardeniae Fructu and Coptidis Rhizoma, respectively. Metabolomics approach combined with histological inspection, biochemical measurement and molecular biology was used to investigate the treatment effects of HLJDD and its four variants on cecal ligation and puncture (CLP) model of sepsis, which were compared to decipher the formulating principles of HLJDD. Our results showed that HLJDD exhibit the strongest therapeutic effects in the CLP models as compared with the four variants, which could be ascribed to its most significant enhancement of cholinergic anti-inflammatory pathway and inhibition of HMGB-1/TLR4/NF-κB signaling pathway. Most of all, metabolites changed specifically between groups of HLJDD and its four variants were related with the exceptional treatment effects of HLJDD.
Collapse
Affiliation(s)
- Dingqiao Xu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Yan Lv
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Junsong Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210014, People's Republic of China.
| | - Minghua Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
39
|
Huang WC, Fang LW, Liou CJ. Phloretin Attenuates Allergic Airway Inflammation and Oxidative Stress in Asthmatic Mice. Front Immunol 2017; 8:134. [PMID: 28243240 PMCID: PMC5303714 DOI: 10.3389/fimmu.2017.00134] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/26/2017] [Indexed: 12/15/2022] Open
Abstract
Phloretin (PT), isolated from the apple tree, was previously demonstrated to have antioxidative and anti-inflammatory effects in macrophages and anti-adiposity effects in adipocytes. Inflammatory immune cells generate high levels of reactive oxygen species (ROS) for stimulated severe airway hyperresponsiveness (AHR) and airway inflammation. In this study, we investigated whether PT could reduce oxidative stress, airway inflammation, and eosinophil infiltration in asthmatic mice, and ameliorate oxidative and inflammatory responses in tracheal epithelial cells. BALB/c mice were sensitized with ovalbumin (OVA) to induce asthma symptoms. Mice were randomly assigned to the five experimental groups: normal controls; OVA-induced asthmatic mice; and OVA-induced mice injected intraperitoneally with one of the three PT doses (5, 10, or 20 mg/kg). In addition, we treated inflammatory human tracheal epithelial cells (BEAS-2B cells) with PT to assess oxidative responses and the levels of proinflammatory cytokines and chemokines. We found that PT significantly reduced goblet cell hyperplasia and eosinophil infiltration, which decreased AHR, inflammation, and oxidative responses in the lungs of OVA-sensitized mice. PT also decreased malondialdehyde levels in the lung and reduced Th2 cytokine production in bronchoalveolar lavage fluids. Furthermore, PT reduced ROS, proinflammatory cytokines, and eotaxin production in BEAS-2B cells. PT also suppressed monocyte cell adherence to inflammatory BEAS-2B cells. These findings suggested that PT alleviated pathological changes, inflammation, and oxidative stress by inhibiting Th2 cytokine production in asthmatic mice. PT showed therapeutic potential for ameliorating asthma symptoms in the future.
Collapse
Affiliation(s)
- Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Li-Wen Fang
- Department of Nutrition, I-Shou University , Kaohsiung , Taiwan
| | - Chian-Jiun Liou
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Nursing, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| |
Collapse
|
40
|
Liu XY, Fan ML, Wang HY, Yu BY, Liu JH. Metabolic profile and underlying improved bio-activity of Fructus aurantii immaturus by human intestinal bacteria. Food Funct 2017; 8:2193-2201. [DOI: 10.1039/c6fo01851c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fructus aurantii immaturus (FAI) is the dried young fruit of Citrus aurantium L. or Citrus sinensis L. Osbeck.
Collapse
Affiliation(s)
- Xing Yan Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Meng Lin Fan
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Huai You Wang
- Division of Life Science and Center for Chinese Medicine
- The Hong Kong University of Science and Technology
- China
| | - Bo yang Yu
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Ji Hua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- China Pharmaceutical University
- Nanjing 211198
- China
| |
Collapse
|
41
|
Phloretin attenuates LPS-induced acute lung injury in mice via modulation of the NF-κB and MAPK pathways. Int Immunopharmacol 2016; 40:98-105. [PMID: 27588909 DOI: 10.1016/j.intimp.2016.08.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/11/2016] [Accepted: 08/26/2016] [Indexed: 12/29/2022]
Abstract
Phloretin, which can be isolated from apple trees, has demonstrable anti-inflammatory and anti-oxidant effects in macrophages. We previously reported that phloretin could inhibit the inflammatory response and reduce intercellular adhesion molecule 1 (ICAM-1) expression in interleukin (IL)-1β-activated human lung epithelial cells. In the present study we now evaluate whether phloretin exposure could ameliorate lipopolysaccharide (LPS)-induced acute lung injury in mice. Intra-peritoneal injections of phloretin were administered to mice for 7 consecutive days, prior to the induction of lung injury by intra-tracheal administration of LPS. Our subsequent analyses demonstrated that phloretin could significantly suppress LPS-induced neutrophil infiltration of lung tissue, and reduce the levels of IL-6 and tumor necrosis factor (TNF)-α in serum and bronchoalveolar lavage fluid. We also found that phloretin modulated myeloperoxidase activity and superoxide dismutase activity, with decreased gene expression levels for chemokines, proinflammatory cytokines, and ICAM-1 in inflamed lung tissue. Phloretin also significantly reduced the phosphorylation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK), thus limiting the inflammatory response, while promoting expression of heme oxygenase (HO)-1 and nuclear factor erythroid 2-related factor 2, both of which are cytoprotective. Our findings suggest that, mechanistically, phloretin attenuates the inflammatory and oxidative stress pathways that accompany lung injury in mice via blockade of the NF-κB and MAPK pathways.
Collapse
|