1
|
Arumugam M, Pachamuthu RS, Rymbai E, Jha AP, Rajagopal K, Kothandan R, Muthu S, Selvaraj D. Gene network analysis combined with preclinical studies to identify and elucidate the mechanism of action of novel irreversible Keap1 inhibitor for Parkinson's disease. Mol Divers 2025; 29:2081-2098. [PMID: 39145879 DOI: 10.1007/s11030-024-10965-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
The cysteine residues of Keap1 such as C151, C273, and C288 are critical for its repressor activity on Nrf2. However, to date, no molecules have been identified to covalently modify all three cysteine residues for Nrf2 activation. Hence, in this study, our goal is to discover new Keap1 covalent inhibitors that can undergo a Michael addition with all three cysteine residues. The Keap1's intervening region was modeled using Modeller v10.4. Covalent docking and binding free energy were calculated using CovDock. Molecular dynamics (MD) was performed using Desmond. Various in-vitro assays were carried out to confirm the neuroprotective effects of the hit molecule in 6-OHDA-treated SH-SY5Y cells. Further, the best hit was evaluated in vivo for its ability to improve rotenone-induced postural instability and cognitive impairment in male rats. Finally, network pharmacology was used to summarize the complete molecular mechanism of the hit molecule. Chalcone and plumbagin were found to form the necessary covalent bonds with all three cysteine residues. However, MD analysis indicated that the binding of plumbagin is more stable than chalcone. Plumbagin displayed neuroprotective effects in 6-OHDA-treated SH-SY5Y cells at concentrations 0.01 and 0.1 μM. Plumbagin at 0.1 µM had positive effects on reactive oxygen species formation and glutathione levels. Plumbagin also improved postural instability and cognitive impairment in rotenone-treated male rats. Our network analysis indicated that plumbagin could also improve dopamine signaling. Additionally, plumbagin could exhibit anti-oxidant and anti-inflammatory activity through the activation of Nrf2. Cumulatively, our study suggests that plumbagin is a novel Keap1 covalent inhibitor for Nrf2-mediated neuroprotection in PD.
Collapse
Affiliation(s)
- Monisha Arumugam
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Ranjith Sanjeeve Pachamuthu
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Aditya Prakash Jha
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Kalirajan Rajagopal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Ram Kothandan
- Bioinformatics Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Santhoshkumar Muthu
- Department of Biochemistry, Kongunadu Arts and Science College, GN Mills, Coimbatore, Tamil Nadu, India.
| | - Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.
| |
Collapse
|
2
|
Ankad GM, Hegde H, Kotturshetti IB. Ayurveda Detoxification Process Reduces Plumbagin from the Roots of Plumbago zeylanica L. - A RP-UFLC Analysis. J Chromatogr Sci 2025; 63:bmae048. [PMID: 39237121 DOI: 10.1093/chromsci/bmae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/16/2024] [Indexed: 09/07/2024]
Abstract
Ayurveda describes purification process of certain herbal drugs to reduce the toxicity and make them suitable for therapeutic purpose. The objective of the study was to evaluate the effect of detoxification process on plumbagin (PG) from the Plumbago zeylanica L. roots in marketed samples. It involved procurement of market samples from five states of India viz. Andhra Pradesh, Gujarat, Maharashtra, Madhya Pradesh and Punjab. The roots were purified in lime water (LW) as mentioned in Ayurveda. Reverse Phase Ultra-Flow Liquid Chromatography method was validated for identification of PG in unprocessed and processed roots and in the media (LW) used for purification after processing. The data was statistically analyzed by Analysis of Variance (ANOVA) and tested for significance by the Dunnett multiple comparison test. Results were expressed as mean ± SD mg/g dry weight of extract. The study indicated that the PG was reduced quantitatively after processing, while the amount of PG found in the LW was observed to be increased, indicating the leaching of PG during the purification process. In conclusion, the detoxification process eliminates PG from its roots and discloses the leaching effect in the media for the first time.
Collapse
Affiliation(s)
- Gireesh M Ankad
- AYUSH Approved Drug Testing Laboratory, RGES Ayurvedic Medical College, Hospital and PG Research Centre, Ron 582209, India
| | - Harsha Hegde
- ICMR National Institute of Traditional Medicine, Belagavi 590010, India
| | - Iranna B Kotturshetti
- RGES Ayurvedic Medical College, Hospital and Post Graduate Research Centre, Ron 582209, India
| |
Collapse
|
3
|
Cervia D, Zecchini S, Pincigher L, Roux-Biejat P, Zalambani C, Catalani E, Arcari A, Del Quondam S, Brunetti K, Ottria R, Casati S, Vanetti C, Barbalace MC, Prata C, Malaguti M, Casati SR, Lociuro L, Giovarelli M, Mocciaro E, Falcone S, Fenizia C, Moscheni C, Hrelia S, De Palma C, Clementi E, Perrotta C. Oral administration of plumbagin is beneficial in in vivo models of Duchenne muscular dystrophy through control of redox signaling. Free Radic Biol Med 2024; 225:193-207. [PMID: 39326684 DOI: 10.1016/j.freeradbiomed.2024.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease. Recently approved molecular/gene treatments do not solve the downstream inflammation-linked pathophysiological issues such that supportive therapies are required to improve therapeutic efficacy and patients' quality of life. Over the years, a plethora of bioactive natural compounds have been used for human healthcare. Among them, plumbagin, a plant-derived analog of vitamin K3, has shown interesting potential to counteract chronic inflammation with potential therapeutic significance. In this work we evaluated the effects of plumbagin on DMD by delivering it as an oral supplement within food to dystrophic mutant of the fruit fly Drosophila melanogaster and mdx mice. In both DMD models, plumbagin show no relevant adverse effect. In terms of efficacy plumbagin improved the climbing ability of the dystrophic flies and their muscle morphology also reducing oxidative stress in muscles. In mdx mice, plumbagin enhanced the running performance on the treadmill and the muscle strength along with muscle morphology. The molecular mechanism underpinning these actions was found to be the activation of nuclear factor erythroid 2-related factor 2 pathway, the re-establishment of redox homeostasis and the reduction of inflammation thus generating a more favorable environment for skeletal muscles regeneration after damage. Our data provide evidence that food supplementation with plumbagin modulates the main, evolutionary conserved, mechanistic pathophysiological hallmarks of dystrophy, thus improving muscle function in vivo; the use of plumbagin as a therapeutic in humans should thus be explored further.
Collapse
MESH Headings
- Naphthoquinones/administration & dosage
- Naphthoquinones/pharmacology
- Animals
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/genetics
- Mice
- Administration, Oral
- Mice, Inbred mdx
- Oxidation-Reduction/drug effects
- Signal Transduction/drug effects
- Disease Models, Animal
- Drosophila melanogaster
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/pathology
- Oxidative Stress/drug effects
- NF-E2-Related Factor 2/metabolism
- NF-E2-Related Factor 2/genetics
- Humans
- Male
Collapse
Affiliation(s)
- Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Luca Pincigher
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-Università di Bologna, Bologna, 40126, Italy
| | - Paulina Roux-Biejat
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Chiara Zalambani
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-Università di Bologna, Bologna, 40126, Italy
| | - Elisabetta Catalani
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Alessandro Arcari
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Simona Del Quondam
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Kashi Brunetti
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Roberta Ottria
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Sara Casati
- Department of Biomedical, Surgical, and Dental Science (DISBIOC), Università Degli Studi di Milano, Milano, 20133, Italy
| | - Claudia Vanetti
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; Department of Pathophysiology and Transplantation (DEPT), Università Degli Studi di Milano, Milano, 20122, Italy
| | - Maria Cristina Barbalace
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-Università di Bologna, Bologna, 40126, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Silvia Rosanna Casati
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università Degli Studi di Milano, 20054, Segrate, Italy
| | - Laura Lociuro
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Matteo Giovarelli
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Emanuele Mocciaro
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milano, 20132, Italy
| | - Sestina Falcone
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, F-75013, France
| | - Claudio Fenizia
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; Department of Pathophysiology and Transplantation (DEPT), Università Degli Studi di Milano, Milano, 20122, Italy
| | - Claudia Moscheni
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università Degli Studi di Milano, 20054, Segrate, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; IRCCS Eugenio Medea, Bosisio Parini, 23842, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy.
| |
Collapse
|
4
|
Kamsu GT, Ndebia EJ. Usefulness of Natural Phenolic Compounds in the Fight against Esophageal Cancer: A Systematic Review. FUTURE PHARMACOLOGY 2024; 4:626-650. [DOI: 10.3390/futurepharmacol4030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Esophageal cancer (EC) is a very common form of cancer in developing countries, and its exponential progression is a cause for concern. Available treatments face the phenomenon of multi-drug resistance, as well as multiple disabling side effects. The number of deaths is expected to double by 2030 if nothing is done. Due to their high representativeness in plants, phenolic compounds are a potential alternative for halting the spread of this disease, which bereaves many thousands of families every year. This study aims to identify phenolic compounds with activity against esophageal cancer, assess their toxicological profiles, and explore future perspectives. To achieve this, the literature search was meticulously carried out in the Google Scholar, Scopus, Web of Sciences, and Pub-Med/Medline databases, in accordance with the PRISMA 2020 guidelines. The results show that proanthocyanidin and curcumin represent promising therapeutic options, given their significant in vitro and in vivo activity, and their safety in human subjects in clinical trials. Moscatilin, Genistein, and pristimerin have anticancer activities (≤10 µM) very close to those of doxorubicin and 5-FU, although their safety has not yet been fully established. The compounds identified in vivo exhibit highly significant activities compared with the results obtained in vitro, and are sometimes more effective than the molecules conventionally used to treat EC. Generally, with the exceptions of plumbagin, lapachol, and β-lapachone, all other molecules are relatively non-toxic to normal human cells and represent a therapeutic avenue to be explored by pharmaceutical companies in the fight against esophageal cancer. However, more detailed toxicological studies of certain molecules remain a priority.
Collapse
Affiliation(s)
- Gabriel Tchuente Kamsu
- Department of Human Biology, Faculty of Medicine and Health Sciences, Walter Sisulu University, Mthatha 5100, South Africa
| | - Eugene Jamot Ndebia
- Department of Human Biology, Faculty of Medicine and Health Sciences, Walter Sisulu University, Mthatha 5100, South Africa
| |
Collapse
|
5
|
Sharma B, Dhiman C, Hasan GM, Shamsi A, Hassan MI. Pharmacological Features and Therapeutic Implications of Plumbagin in Cancer and Metabolic Disorders: A Narrative Review. Nutrients 2024; 16:3033. [PMID: 39275349 PMCID: PMC11397539 DOI: 10.3390/nu16173033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024] Open
Abstract
Plumbagin (PLB) is a naphthoquinone extracted from Plumbago indica. In recent times, there has been a growing body of evidence suggesting the potential importance of naphthoquinones, both natural and artificial, in the pharmacological world. Numerous studies have indicated that PLB plays a vital role in combating cancers and other disorders. There is substantial evidence indicating that PLB may have a significant role in the treatment of breast cancer, brain tumours, lung cancer, hepatocellular carcinoma, and other conditions. Moreover, its potent anti-oxidant and anti-inflammatory properties offer promising avenues for the treatment of neurodegenerative and cardiovascular diseases. A number of studies have identified various pathways that may be responsible for the therapeutic efficacy of PLB. These include cell cycle regulation, apoptotic pathways, ROS induction pathways, inflammatory pathways, and signal transduction pathways such as PI3K/AKT/mTOR, STAT3/PLK1/AKT, and others. This review aims to provide a comprehensive analysis of the diverse pharmacological roles of PLB, examining the mechanisms through which it operates and exploring its potential applications in various medical conditions. In addition, we have conducted a review of the various formulations that have been reported in the literature with the objective of enhancing the efficacy of the compound. However, the majority of the reviewed data are based on in vitro and in vivo studies. To gain a comprehensive understanding of the safety and efficacy of PLB in humans and to ascertain its potential integration into therapeutic regimens for cancer and chronic diseases, rigorous clinical trials are essential. Finally, by synthesizing current research and identifying gaps in knowledge, this review seeks to enhance our understanding of PLB and its therapeutic prospects, paving the way for future studies and clinical applications.
Collapse
Affiliation(s)
- Bhoomika Sharma
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Chitra Dhiman
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Md Imtiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
6
|
Lv S, Zhang G, Lu Y, Zhong X, Huang Y, Ma Y, Yan W, Teng J, Wei S. Pharmacological mechanism of natural antidepressants: The role of mitochondrial quality control. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155669. [PMID: 38696923 DOI: 10.1016/j.phymed.2024.155669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND Depression is a mental illness characterized by persistent sadness and a reduced capacity for pleasure. In clinical practice, SSRIs and other medications are commonly used for therapy, despite their various side effects. Natural products present distinct advantages, including synergistic interactions among multiple components and targeting multiple pathways, suggesting their tremendous potential in depression treatment. Imbalance in mitochondrial quality control (MQC) plays a significant role in the pathology of depression, emphasizing the importance of regulating MQC as a potential intervention strategy in addressing the onset and progression of depression. However, the role and mechanism through which natural products regulate MQC in depression treatments still need to be comprehensively elucidated, particularly in clinical and preclinical settings. PURPOSE This review was aimed to summarize the findings of recent studies and outline the pharmacological mechanisms by which natural products modulate MQC to exert antidepressant effects. Additionally, it evaluated current research limitations and proposed new strategies for future preclinical and clinical applications in the depression domain. METHODS To study the main pharmacological mechanisms underlying the regulation of MQC by natural products in the treatment of depression, we conducted a thorough search across databases such as PubMed, Web of Science, and ScienceDirect databases to classify and summarize the relationship between MQC and depression, as well as the regulatory mechanisms of natural products. RESULTS Numerous studies have shown that irregularities in the MQC system play an important role in the pathology of depression, and the regulation of the MQC system is involved in antidepressant treatments. Natural products mainly regulate the MQC system to induce antidepressant effects by alleviating oxidative stress, balancing ATP levels, promoting mitophagy, maintaining calcium homeostasis, optimizing mitochondrial dynamics, regulating mitochondrial membrane potential, and enhancing mitochondrial biogenesis. CONCLUSIONS We comprehensively summarized the regulation of natural products on the MQC system in antidepressants, providing a unique perspective for the application of natural products within antidepressant therapy. However, extensive efforts are imperative in clinical and preclinical investigations to delve deeper into the mechanisms underlying how antidepressant medications impact MQC, which is crucial for the development of effective antidepressant treatments.
Collapse
Affiliation(s)
- Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xia Zhong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Yufei Huang
- Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yuexiang Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355,China
| | - Wei Yan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Sheng Wei
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine (PTMBD), Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
7
|
Gutiérrez-Wong JR, Rosado-Aguilar JA, Rodríguez-Vivas RI. First report of acaricidal efficacy from plumbagin on larvae of Rhipicephalus microplus and Rhipicephalus sanguineus resistant to conventional acaricides. Exp Parasitol 2023; 255:108632. [PMID: 37832775 DOI: 10.1016/j.exppara.2023.108632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/15/2023]
Abstract
The problem of resistance to acaricides in ticks such as Rhipicephalus microplus and R. sanguineus has motivated the search for control alternatives, such as the use of extracts and secondary metabolites from plants. Plumbagin is a natural product present in plants such as Plumbago zeylanica L., Diospyros kaki, and D. anisandra, of which acaricidal activity has been reported. Therefore, the objective of this study was to evaluate in vitro the acaricidal efficacy of plumbagin on larvae of R. microplus and R. sanguineus resistant to conventional acaricides. Larvae from engorged female ticks, collected from naturally infested dairy cattle and domiciled dogs, in Yucatan, Mexico, were used. The larval packet test and the larval immersion test were performed to detect acaricide susceptibility. Both tick populations were detected as resistant to cypermethrin and amitraz. Then, the modified larval immersion test was used and plumbagin was evaluated at concentrations of 1%, 0.5%, 0.25%, and 0.125% (%w/v), obtaining a mortality of 100% in the four concentrations for both tick species. Subsequently, lower doses of plumbagin were evaluated at concentrations of 0.0625%, 0.03125%, 0.015625% and 0.0078125%, obtaining mortalities of 100 to 36.26% for R. microplus and 100%-5.33% for R. sanguineus. Using Probit analysis, lethal concentrations at 50% (LC50), 99% (LC99) and confidence intervals at 95% (CI95%) were calculated. R. microplus showed a LC50 of 0.011% (CI95%: 0.010-0.011) and LC99 of 0.019% (CI95%: 0.018-0.022). R. sanguineus presented a LC50 of 0.017% (CI95%: 0.015-0.018) and CL99 of 0.031% (CI95%: 0.027-0.036). It was concluded that plumbagin has high acaricidal efficacy against larvae of R. microplus and R. sanguineus resistant to amitraz and cypermethrin. R. microplus larvae were significantly more susceptible to LC50 and LC99 compared to R. sanguineus. This is the first report on the acaricidal efficacy of plumbagin on larvae of R. microplus and R. sanguineus resistant to conventional acaricides.
Collapse
Affiliation(s)
- J R Gutiérrez-Wong
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Km15.5, Carretera Mérida-Xmatkuil, C.P. 97000, Mérida, Yucatán, Mexico
| | - J A Rosado-Aguilar
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Km15.5, Carretera Mérida-Xmatkuil, C.P. 97000, Mérida, Yucatán, Mexico.
| | - R I Rodríguez-Vivas
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Km15.5, Carretera Mérida-Xmatkuil, C.P. 97000, Mérida, Yucatán, Mexico
| |
Collapse
|
8
|
Silva LMN, França WWM, Santos VHB, Souza RAF, Silva AM, Diniz EGM, Aguiar TWA, Rocha JVR, Souza MAA, Nascimento WRC, Lima Neto RG, Cruz Filho IJ, Ximenes ECPA, Araújo HDA, Aires AL, Albuquerque MCPA. Plumbagin: A Promising In Vivo Antiparasitic Candidate against Schistosoma mansoni and In Silico Pharmacokinetic Properties (ADMET). Biomedicines 2023; 11:2340. [PMID: 37760782 PMCID: PMC10525874 DOI: 10.3390/biomedicines11092340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
Schistosomiasis, a potentially fatal chronic disease whose etiological agents are blood trematode worms of the genus Schistosoma spp., is one of the most prevalent and debilitating neglected diseases. The treatment of schistosomiasis depends exclusively on praziquantel (PZQ), a drug that has been used since the 1970s and that already has reports of reduced therapeutic efficacy, related with the development of Schistosoma-resistant or -tolerant strains. Therefore, the search for new therapeutic alternatives is an urgent need. Plumbagin (PLUM), a naphthoquinone isolated from the roots of plants of the genus Plumbago, has aroused interest in research due to its antiparasitic properties against protozoa and helminths. Here, we evaluated the in vivo schistosomicidal potential of PLUM against Schistosoma mansoni and the in silico pharmacokinetic parameters. ADMET parameters and oral bioavailability were evaluated using the PkCSM and SwissADME platforms, respectively. The study was carried out with five groups of infected mice and divided as follows: an untreated control group, a control group treated with PZQ, and three groups treated orally with 8, 16, or 32 mg/kg of PLUM. After treatment, the Kato-Katz technique was performed to evaluate a quantity of eggs in the feces (EPG). The animals were euthanized for worm recovery, intestine samples were collected to evaluate the oviposition pattern, the load of eggs was determined on the hepatic and intestinal tissues and for the histopathological and histomorphometric evaluation of tissue and hepatic granulomas. PLUM reduced EPG by 65.27, 70.52, and 82.49%, reduced the total worm load by 46.7, 55.25, and 72.4%, and the female worm load by 44.01, 52.76, and 71.16%, for doses of 8, 16, and 32 mg/kg, respectively. PLUM also significantly reduced the number of immature eggs and increased the number of dead eggs in the oogram. A reduction of 36.11, 46.46, and 64.14% in eggs in the hepatic tissue, and 57.22, 65.18, and 80.5% in the intestinal tissue were also observed at doses of 8, 16, and 32 mg/kg, respectively. At all doses, PLUM demonstrated an effect on the histopathological and histomorphometric parameters of the hepatic granuloma, with a reduction of 41.11, 48.47, and 70.55% in the numerical density of the granulomas and 49.56, 57.63, and 71.21% in the volume, respectively. PLUM presented itself as a promising in vivo antiparasitic candidate against S. mansoni, acting not only on parasitological parameters but also on hepatic granuloma. Furthermore, in silico, PLUM showed good predictive pharmacokinetic profiles by ADMET.
Collapse
Affiliation(s)
- Lucas M. N. Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil; (L.M.N.S.); (V.H.B.S.); (R.A.F.S.); (E.C.P.A.X.); (M.C.P.A.A.)
| | - Wilza W. M. França
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Programa de Pós-Graduação em Medicina Tropical, Departamento de Medicina Tropical Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil;
| | - Victor H. B. Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil; (L.M.N.S.); (V.H.B.S.); (R.A.F.S.); (E.C.P.A.X.); (M.C.P.A.A.)
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
| | - Renan A. F. Souza
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil; (L.M.N.S.); (V.H.B.S.); (R.A.F.S.); (E.C.P.A.X.); (M.C.P.A.A.)
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
| | - Adriana M. Silva
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
| | - Emily G. M. Diniz
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Programa de Pós-Graduação em Medicina Tropical, Departamento de Medicina Tropical Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil;
| | - Thierry W. A. Aguiar
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil
| | - João V. R. Rocha
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Programa de Pós-Graduação em Medicina Tropical, Departamento de Medicina Tropical Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil;
| | - Mary A. A. Souza
- Programa de Pós-Graduação em Morfotecnologia, Departamento de Histologia e Embriologia, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil; (M.A.A.S.); (I.J.C.F.)
| | - Wheverton R. C. Nascimento
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Programa de Pós-Graduação em Morfotecnologia, Departamento de Histologia e Embriologia, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil; (M.A.A.S.); (I.J.C.F.)
- Centro de Ciências Médicas—Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Reginaldo G. Lima Neto
- Programa de Pós-Graduação em Medicina Tropical, Departamento de Medicina Tropical Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil;
- Centro de Ciências Médicas—Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Iranildo J. Cruz Filho
- Programa de Pós-Graduação em Morfotecnologia, Departamento de Histologia e Embriologia, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil; (M.A.A.S.); (I.J.C.F.)
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Eulália C. P. A. Ximenes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil; (L.M.N.S.); (V.H.B.S.); (R.A.F.S.); (E.C.P.A.X.); (M.C.P.A.A.)
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Hallysson D. A. Araújo
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil
| | - André L. Aires
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Programa de Pós-Graduação em Medicina Tropical, Departamento de Medicina Tropical Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil;
- Programa de Pós-Graduação em Morfotecnologia, Departamento de Histologia e Embriologia, Universidade Federal de Pernambuco, Recife 50670-420, PE, Brazil; (M.A.A.S.); (I.J.C.F.)
- Centro de Ciências Médicas—Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | - Mônica C. P. A. Albuquerque
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil; (L.M.N.S.); (V.H.B.S.); (R.A.F.S.); (E.C.P.A.X.); (M.C.P.A.A.)
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-465, PE, Brazil; (W.W.M.F.); (A.M.S.); (E.G.M.D.); (T.W.A.A.); (J.V.R.R.); (W.R.C.N.); (H.D.A.A.)
- Centro de Ciências Médicas—Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| |
Collapse
|
9
|
Pandey DK, Katoch K, Das T, Majumder M, Dhama K, Mane AB, Gopalakrishnan AV, Dey A. Approaches for in vitro propagation and production of plumbagin in Plumbago spp. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12511-6. [PMID: 37199750 DOI: 10.1007/s00253-023-12511-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 05/19/2023]
Abstract
The genus Plumbago (family Plumbaginaceae), commonly known as leadwort, is a sub-tropical shrub that produces secondary metabolite plumbagin, which is employed by pharmaceutical companies and in clinical research. Plumbagin is a potent pharmaceutical because of its anti-microbial, anti-malarial, antifungal, anti-inflammatory, anti-carcinogenic, anti-fertility, anti-plasmodium, antioxidant, anti-diabetic, and other effects. This review documents the biotechnological innovations used to produce plumbagin. The use of modern biotechnological techniques can lead to a variety of benefits, including better yield, increased extraction efficiency, mass production of plantlets, genetic stability, increased biomass, and more. Large-scale in vitro propagation is necessary to minimize over-exploitation of the natural population and allow the use of various biotechnological techniques to improve the plant species and secondary metabolite production. During in vitro culture, optimum conditions are requisites for explant inoculation and plant regeneration. In this review, we provide information on various aspects of plumbagin, depicting its structure, biosynthesis, and biotechnological aspects (both conventional and advanced) along with the future prospects. KEY POINTS: • Critical assessment on in vitro biotechnology in Plumbago species • In vitro propagation of Plumbago and elicitation of plumbagin • Biosynthesis and sustainable production of plumbagin.
Collapse
Affiliation(s)
- Devendra Kumar Pandey
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Kajal Katoch
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Tuyelee Das
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | | | - Kuldeep Dhama
- Division of Pathology, Indian Veterinary Research Institute (IVRI), Izatnagar, 243122, Bareilly, Uttar Pradesh, India
| | - Abhijit Bhagwan Mane
- Department of Zoology, Dr. Patangrao Kadam Mahavidhyalaya, Ramanandnagar (Burli), Palus, Sangli, Maharashtra, 416308, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
10
|
Liang S, Liu L, He B, Zhao W, Zhang W, Xiao L, Deng M, Zhong X, Zeng S, Qi X, Lü M. Activation of xanthine oxidase by 1,4-naphthoquinones: A novel potential research topic for diet management and risk assessment. Food Chem 2023; 424:136264. [PMID: 37207599 DOI: 10.1016/j.foodchem.2023.136264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/03/2023] [Accepted: 04/26/2023] [Indexed: 05/21/2023]
Abstract
Oral intake of 1,4-naphthoquinones could be a potential risk factor for hyperuricemia and gout via activation of xanthine oxidase (XO). Herein, 1,4-naphthoquinones derived from food and food-borne pollutants were selected to investigate the structure and activity relationship (SAR) and the relative mechanism for activating XO in liver S9 fractions from humans (HLS9) and rats (RLS9). The SAR analysis showed that introduction of electron-donating substituents on the benzene ring or electron-withdrawing substituents on the quinone ring improved the XO-activating effect of 1,4-naphthoquinones. Different activation potential and kinetics behaviors were observed for activating XO by 1,4-naphthoquinones in HLS9/RLS9. Molecular docking simulation and density functional theory calculations showed a good correlation between -LogEC50 and docking free energy or HOMO-LUMO energy gap. The risk of exposure to the 1,4-naphthoquinones was evaluated and discussed. Our findings are helpful to guide diet management in clinic and avoid adverse events attributable to exposure to food-derived 1,4-naphthoquinones.
Collapse
Affiliation(s)
- Sicheng Liang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; The Public Platform of Advanced Detecting Instruments, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, China; Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou 646000, China; Cardiovascular and Metabolic Diseases of Sichuan Key Laboratory, Luzhou 646000, China.
| | - Li Liu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Bing He
- The Public Platform of Advanced Detecting Instruments, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, China
| | - Wenjing Zhao
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Wei Zhang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Lijun Xiao
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Mingming Deng
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiaoling Zhong
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang University, Hangzhou, China
| | - Xiaoyi Qi
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Muhan Lü
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou 646000, China; Cardiovascular and Metabolic Diseases of Sichuan Key Laboratory, Luzhou 646000, China.
| |
Collapse
|
11
|
Mukherjee S, Sawant AV, Prassanawar SS, Panda D. Copper-Plumbagin Complex Produces Potent Anticancer Effects by Depolymerizing Microtubules and Inducing Reactive Oxygen Species and DNA Damage. ACS OMEGA 2023; 8:3221-3235. [PMID: 36713695 PMCID: PMC9878539 DOI: 10.1021/acsomega.2c06691] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Here, we have synthesized a copper complex of plumbagin (Cu-PLN) and investigated its antiproliferative activities in different cancer cells. The crystal structure of Cu-PLN showed that the complex was square planar with a binding stoichiometry of 1:2 (Cu/Plumbagin). Cu-PLN inhibited the proliferation of human cervical carcinoma (HeLa), human breast cancer (MCF-7), and murine melanoma (B16F10) cells with half-maximal inhibitory concentrations (IC50) of 0.85 ± 0.05, 2.3 ± 0.1, and 1.1 ± 0.1 μM, respectively. Plumbagin inhibited the proliferation of HeLa, MCF-7, and B16F10 cells with IC50 of 7 ± 0.1, 8.2 ± 0.2, and 6.2 ± 0.4 μM, respectively, showing that Cu-PLN is a stronger antiproliferative agent than plumbagin. Interestingly, Cu-PLN showed much stronger toxicity against breast carcinoma and skin melanoma cells than noncancerous breast epithelial and skin fibroblast cells, indicating its specific cytotoxicity toward cancer cells. A short exposure of Cu-PLN triggered microtubule disassembly in cultured cancer cells, and the complex also inhibited the polymerization of purified tubulin much more strongly than plumbagin. Furthermore, Cu-PLN inhibited the binding of colchicine to tubulin. In addition to microtubule depolymerization, the antiproliferative mechanism of Cu-PLN involved induction of reactive oxygen species, reduction of the mitochondrial membrane potential, and DNA damage. Moreover, the cytotoxic effects of Cu-PLN reduced significantly in cells pre-treated with N-acetyl cysteine, suggesting that reactive oxygen species generation is crucial in Cu-PLN's mode of action. Thus, the complexation of plumbagin with copper yields a promising antitumor agent having a stronger antiproliferative activity than cisplatin, a widely used anticancer drug.
Collapse
Affiliation(s)
- Sandipan Mukherjee
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Bombay, Mumbai 400076, India
| | - Avishkar V. Sawant
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Bombay, Mumbai 400076, India
| | - Shweta S. Prassanawar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Bombay, Mumbai 400076, India
| | - Dulal Panda
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Bombay, Mumbai 400076, India
- National
Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab 160062, India
| |
Collapse
|
12
|
Muhamad N, Plengsuriyakarn T, Na-Bangchang K. Atractylodes lancea for cholangiocarcinoma: Modulatory effects on CYP1A2 and CYP3A1 and pharmacokinetics in rats and biodistribution in mice. PLoS One 2022; 17:e0277614. [PMID: 36374864 PMCID: PMC9662714 DOI: 10.1371/journal.pone.0277614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Atractylodes lancea (Thunb.) DC. (A. lancea: AL) is a promising candidate for the treatment of cholangiocarcinoma (bile duct cancer). The study investigated (i) the propensity of capsule formulation of the standardized extract of AL (formulated AL) to modulate mRNA and protein expression and activities of CYP1A2 and CYP3A1 in rats after long- and short-term exposure, (ii) the pharmacokinetics of atractylodin (ATD: active constituent) after long-term administration of formulated AL, and (iii) the biodistribution of atractylodin-loaded polylactic-co-glycolic acid (ATD-PLGA-NPs) in mice. To investigate CYP1A2 and CYP3A1 modulatory activities following long-term exposure, rats of both genders received oral doses of the formulated AL at 1,000 (low dose), 3,000 (medium dose), and 5,000 (high dose) mg/kg body weight daily for 12 months. For short-term effects, male rats were orally administered the formulated AL at the dose of 5,000 mg/kg body weight daily for 1, 7, 14 and 21 days. The pharmacokinetic study was conducted in male rats after administration of the formulated AL at the dose of 5,000 mg/kg body weight daily for 9 months. The biodistribution study was conducted in a male mouse receiving ATD-PLGA-NPs at the equivalent dose to ATD of 100 mg/kg body weight. The high dose of formulated AL produced an inducing effect on CYP1A2 but an inhibitory effect on CYP3A1 activities in male rats. The low dose, however, did not inhibit or induce the activities of both enzymes in male and female rats. ATD reached maximum plasma concentration (Cmax) of 359.73 ng/mL at 3 h (tmax). Mean residence time (MRT) and terminal phase elimination half-life (t1/2z) were 3.03 and 0.56 h, respectively. The extent of biodistribution of ATD in mouse livers receiving ATD-PLGA-NPs was 5-fold of that receiving free ATD. Clinical use of low-dose AL should be considered to avoid potential herb-drug interactions after long-term use. ATD-PLGA-NPs is a potential drug delivery system for cholangiocarcinoma treatment.
Collapse
Affiliation(s)
- Nadda Muhamad
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathumthani, Thailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University (Rangsit Campus), Pathumthani, Thailand
| | - Tullayakorn Plengsuriyakarn
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathumthani, Thailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University (Rangsit Campus), Pathumthani, Thailand
| | - Kesara Na-Bangchang
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathumthani, Thailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University (Rangsit Campus), Pathumthani, Thailand
- Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University (Rangsit Campus), Pathumthani, Thailand
- * E-mail:
| |
Collapse
|
13
|
Li H, Wang YJ, Geng XN, Kang YR, Wang YL, Qiu XJ. Pharmacokinetics of Herb-Drug Interactions of Plumbagin and Tazemetostat in Rats by UPLC-MS/MS. Drug Des Devel Ther 2022; 16:3385-3394. [PMID: 36199632 PMCID: PMC9529013 DOI: 10.2147/dddt.s384156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Objective A sensitive and rapid UPLC-MS/MS method for determination of tazemetostat in rat plasma was developed, and the pharmacokinetics of herb-drug interactions (HDIs) of plumbagin (PLB) and tazemetostat was investigated. Methods After the rat plasma samples were precipitated by acetonitrile, tazemetostat and verubecestat (ISTD) were detected. Gradient elution was performed with 0.1% formic acid and acetonitrile as mobile phases. The multi-reaction monitoring was used with ESI+ source, and the ion pairs for tazemetostat and ISTD were m/z 573.12→135.99 and m/z 410.10→124.00, respectively. 12 SD rats were randomly divided into the control group and the experimental group, 6 rats in each group. The rats in the experimental group were given PLB 100 mg/kg by gavage once a day for 7 consecutive days. The rats in the control group were given the same amount of 0.1% sodium carboxymethyl cellulose solution by gavage once a day for 7 consecutive days. At the seventh day, tazemetostat (80 mg/kg) was given and the blood was collected at different time points. The main parameters of pharmacokinetics were calculated and the herb-drug interactions (HDIs) were evaluated. Results In the calibrated range of 1–1000 ng/mL, tazemetostat had a good linearity. The extraction recovery was more than 84%, and the RSD of intra-batch and inter-batch precision were both less than 15%. The Cmax of tazemetostat in the experimental group was 32.48% higher than that in the control group, and the AUC(0-t) and AUC(0−∞) of tazemetostat in the experimental group were 46.24% and 46.67% higher than that in the control group, respectively, and the t1/2 was prolonged from 10.56 h to 11.73 h. Conclusion A simple, rapid and sensitive UPLC-MS/MS method for the determination of tazemetostat in rat plasma was established. PLB can inhibit the metabolism of tazemetostat and increase the plasma exposure of tazemetostat in rats.
Collapse
Affiliation(s)
- Heng Li
- Department of Pharmacy, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471023, People’s Republic of China
| | - Ying-Jie Wang
- Department of Pharmacy, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471023, People’s Republic of China
| | - Xiao-Nan Geng
- Department of Pharmacy, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471023, People’s Republic of China
| | - Yao-Ren Kang
- Department of Pharmacy, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471023, People’s Republic of China
| | - Yi-Lin Wang
- Department of Pharmacy, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471023, People’s Republic of China
| | - Xiang-Jun Qiu
- Department of Pharmacy, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471023, People’s Republic of China
- Functional Experiment Teaching Center, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471023, People’s Republic of China
- Correspondence: Xiang-Jun Qiu, Functional Experiment Teaching Center, School of Basic Medical Sciences, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, Henan, People’s Republic of China, Email
| |
Collapse
|
14
|
Wang Y, Sun X, Wang Y. Synthesis of pH-responsive covalent organic frameworks nanocarrier for plumbagin delivery. RSC Adv 2022; 12:16046-16050. [PMID: 35733662 PMCID: PMC9136960 DOI: 10.1039/d2ra03127b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 11/21/2022] Open
Abstract
Covalent organic frameworks have attracted increasing attention in the fields of nanotechnology and nanoscience. However, the biomedical applications of COFs still remain less explored. Here, a new type of nanoscale covalent organic framework (COF-366) composite was prepared by a facile solvothermal method. The obtained material was characterized by powder X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The results showed that the COF-366 nanocarriers possess uniform spherical morphology with a diameter of 150 nm, which make them favourable for drug delivery. After the plumbagin encapsulation, an effective pH responsive release, high adsorption capacity, and good biocompatibility were achieved. These characteristics make nanoscale COF-366 an ideal material for drug delivery and reveal its promising application in biomedical applications.
Collapse
Affiliation(s)
- Yang Wang
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou 325024 China .,School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 China
| | - Xin Sun
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou 325024 China
| | - Yi Wang
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 China
| |
Collapse
|
15
|
Xu L, Zhou Y, Niu S, Liu Z, Zou Y, Yang Y, Feng H, Liu D, Niu X, Deng X, Wang Y, Wang J. A novel inhibitor of monooxygenase reversed the activity of tetracyclines against tet(X3)/tet(X4)-positive bacteria. EBioMedicine 2022; 78:103943. [PMID: 35306337 PMCID: PMC8933826 DOI: 10.1016/j.ebiom.2022.103943] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Tigecycline is one of the few last-resort antibiotics for the treatment of carbapenem-resistant Enterobacteriaceae infection, the incidence of which has been rapidly increasing. However, the emergence and spread of tigecycline resistance genes tet(X) (including tet(X3) and tet(X4)) has largely compromised the efficient usage of tetracyclines in the clinical settings. METHODS The synergistic effect was determined by a checkerboard minimum inhibitory concentration (MIC) assay, a time-killing assay and scanning electron microscopy (SEM) analysis. In-depth mechanisms were defined using an enzyme inhibition assay, western blotting, RT-PCR analysis, molecular dynamics (MD) simulations, biolayer interferometry (BLI) assay and metabolomics analysis. FINDINGS Herein, our work identified a natural compound, plumbagin, as an effective broad-spectrum inhibitor of Tet(X) (also known as monooxygenase) by simultaneously inhibiting the activity and the production of Tet(X3)/Tet(X4). Plumbagin in combination with tetracyclines showed a synergistic bactericidal effect against Tet(X3)/Tet(X4)-producing bacteria. Mechanistic studies revealed that direct engagement of plumbagin with the catalytic pocket of Tet(X3)/Tet(X4) induced an alternation in its secondary structure to inhibit the activity of these monooxygenases. As a consequence, monotherapy or combination therapy with plumbagin increases the oxidative stress and metabolism in bacteria. Moreover, in a mouse systemic infection model of tet(X4)-positive E. coli, the combination of plumbagin and methacycline exhibited remarkable treatment benefits, as shown by a reduced bacterial load and the alleviation of pathological injury. INTERPRETATION Plumbagin, as an inhibitor of Tet(X3)/Tet(X4), represents a promising lead drug, as well as an adjunct with tetracyclines to treat bacterial infections, especially for extensively drug-resistant bacteria harbouring Tet(X3)/Tet(X4). FUNDING The National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yonglin Zhou
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Sen Niu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhiying Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yinuo Zou
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yanan Yang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Haihua Feng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Dejun Liu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaodi Niu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Jianfeng Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
16
|
Akhilraj AR, Bhat S, Priyalatha B, Vimala KS. Comparative hepatoprotective activity of detoxified roots of Plumbago zeylanica L. and Plumbago rosea L. in Wistar rats. J Ayurveda Integr Med 2021; 12:452-457. [PMID: 34366166 PMCID: PMC8377173 DOI: 10.1016/j.jaim.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/23/2020] [Accepted: 04/03/2021] [Indexed: 11/17/2022] Open
Abstract
Background Paracetamol (acetaminophen) toxicity is considered to be one of the major causes of drug-induced hepatic failure. Citraka (Plumbago rosea L. and Plumbago zeylanica L.) was mentioned in Ayurveda classics as a remedy in liver disorders. Objective(s) The aim of the study was to experimentally evaluate the comparative effect of hepatoprotective activity of detoxified root decoction of the two species of Citraka against paracetamol-induced hepatotoxicity in male Wistar albino rats. Materials and methods The hepatoprotective effect of Citraka decoction of two species was evaluated by the assessment of biochemical parameters such as SGOT, SGPT, alkaline phosphatase, total bilirubin, direct bilirubin, and serum creatinine. The study was also supported by histopathological assessment of liver sections. Results The results showed the elevated concentration of biochemical markers and histopathological degenerative changes in animals treated with paracetamol indicating severe hepatic damage; whereas, the treatment with decoction of both the species of Citraka showed significant reduction in the serum markers and regenerative changes in the histopathological specimens pointing towards its effectiveness as a hepatoprotective drug. Conclusion The present study showed Citraka’s effectiveness as a hepatoprotective drug and proved that the detoxified root decoction of P. rosea L. has a significant protective activity against paracetamol-induced hepatotoxicity than P. zeylanica L.
Collapse
Affiliation(s)
- A R Akhilraj
- Department of Dravyaguna (Ayurvedic Pharmacology), Amrita School of Ayurveda, Amritapuri, Amrita Vishwa Vidyapeetham, India.
| | - Sudhakar Bhat
- Department of Pharmacology, Sri Dharmasthala Manjunatheshwara Centre for Research in Ayurveda and Allied Science, Udupi, India
| | - B Priyalatha
- Department of Dravyaguna (Ayurvedic Pharmacology), Amrita School of Ayurveda, Amritapuri, Amrita Vishwa Vidyapeetham, India
| | - K S Vimala
- Department of Dravyaguna (Ayurvedic Pharmacology), Amrita School of Ayurveda, Amritapuri, Amrita Vishwa Vidyapeetham, India
| |
Collapse
|
17
|
Kaur UJ, Chopra A, Preet S, Raj K, Kondepudi KK, Gupta V, Rishi P. Potential of 1-(1-napthylmethyl)-piperazine, an efflux pump inhibitor against cadmium-induced multidrug resistance in Salmonella enterica serovar Typhi as an adjunct to antibiotics. Braz J Microbiol 2021; 52:1303-1313. [PMID: 33851343 DOI: 10.1007/s42770-021-00492-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 04/06/2021] [Indexed: 01/30/2023] Open
Abstract
This study was focused on elucidating inhibition of antibiotic efflux mechanism of cadmium adapted (CdA) Salmonella Typhi Ty2 cells. Herein, upregulated expression of efflux genes (acrB, tolC) and their regulators (soxS, marA) was observed in CdA Ty2 cells by qRT-PCR. The pathogen further elevated the expression of these genes even in the presence of three efflux pump inhibitors (EPIs), i.e., Phe-Arg-β-naphthylamide, 1-(1-naphthyl-methyl)piperazine, and 5-hydroxy-2-methyl-1,4-naphthoquinone, perhaps by sensing the pressure of the latter in addition to cadmium stress. Interaction of different EPIs with efflux pumps of CdA Ty2 cells was confirmed using ethidium bromide (EtBr) accumulation and efflux assay. All the EPIs could cause retention of EtBr which was indicated by increased fluorescence units. Considering this potential of EPIs, retention of antibiotics was evaluated in CdA Ty2 cells wherein EPIs were used in combination with selected antibiotics (instead of EtBr). A decrease in the effective concentration of antibiotics was observed. This was further validated using the clinical isolates. The data revealed the efficiency of EPIs as they could inhibit the efflux potential of even the overexpressed efflux pumps. Thus, combination of EPI(s)-antibiotics may be exploited in future as one of the strategies for combating metal induced antibiotic resistance.
Collapse
Affiliation(s)
- Ujjwal Jit Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Adity Chopra
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Simran Preet
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Khem Raj
- Department of Microbiology, Panjab University, Chandigarh, India
| | | | - Varsha Gupta
- Government Medical College and Hospital, Sector- 32, Chandigarh, India
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
18
|
Chen X, Yin L, Peng L, Liang Y, Lv H, Ma T. Synergistic Effect and Mechanism of Plumbagin with Gentamicin Against Carbapenem-Resistant Klebsiella pneumoniae. Infect Drug Resist 2020; 13:2751-2759. [PMID: 32884304 PMCID: PMC7432958 DOI: 10.2147/idr.s265753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/24/2020] [Indexed: 11/30/2022] Open
Abstract
Background Aminoglycosides are one of a few susceptible antimicrobials available for carbapenem-resistant Enterobacteriaceae (CRE). However, the altered pharmacokinetics and increasing drug resistance of aminoglycosides will make them hardly effective if used in monotherapy. The purpose of this study was to identify herbal compounds that potentiate the antibacterial effect of gentamicin against carbapenem-resistant Klebsiella pneumoniae (CRKp) with gentamicin resistance and explore the action mechanisms. Methods A collection of 280 Chinese herbal compounds was screened for synergistic effect with gentamicin against CRKp by broth microdilution method according to the standard of the Clinical and Laboratory Standards Institute (CLSI). Intracellular gentamicin was measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The membrane potential was evaluated by BacLightTM Bacterial Membrane Potential Kit. Plumbagin-induced metabolite changes of vital metabolic pathways were measured by an optimized untargeted metabolomics method based on gas chromatography-mass spectrometer (GC/MS). Intracellular nicotinamide adenine dinucleotide (NADH) was detected via EnzyChrom NAD/NADH assay kit. Results We identified plumbagin to remarkably potentiate the antimicrobial activity of gentamicin against the CRKp with gentamicin resistance. Plumbagin at 100 μM could bring the MIC of gentamicin from >16 μg/mL to ~4 μg/mL despite its minimal inhibitory effect on the CRKp. A similar synergistic effect with gentamicin was also observed in an antibiotics-susceptible strain of Klebsiella pneumoniae. Compared with gentamicin monotreatment, the combination group showed a higher intracellular concentration of gentamicin and increased membrane potential in CRKp. Metabolomics analysis indicated remarkable increases of malate and α-ketoglutarate in the tricarboxylic acid (TCA) cycle in the CRKp upon plumbagin treatment. Further analysis revealed higher intracellular NADH concentration in plumbagin-treated CRKp, supporting increased proton-motive force (PMF) that facilitates aminoglycosides uptake. Conclusion Herbal compound plumbagin was identified to stimulate gentamicin uptake by CRKp via enhancing TCA efflux and PMF to achieve a synergistic antibacterial effect. Plumbagin may be used in combination with aminoglycosides for severe CRKp infection by potentiating their therapeutic efficacy and lowering dosage.
Collapse
Affiliation(s)
- Xiuli Chen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, People's Republic of China
| | - Liyuan Yin
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, People's Republic of China
| | - Linxiu Peng
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, People's Republic of China
| | - Yanshan Liang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, People's Republic of China
| | - Hang Lv
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, People's Republic of China
| | - Tonghui Ma
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, People's Republic of China
| |
Collapse
|
19
|
Sakunrangsit N, Ketchart W. Plumbagin inhibits cancer stem-like cells, angiogenesis and suppresses cell proliferation and invasion by targeting Wnt/β-catenin pathway in endocrine resistant breast cancer. Pharmacol Res 2019; 150:104517. [PMID: 31693936 DOI: 10.1016/j.phrs.2019.104517] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 10/02/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022]
Abstract
Fifty percent of advanced stage ER-positive breast cancer patients develop endocrine resistance. Aberrant activation of Wnt/β-catenin is associated with stem-like phenotypes and epithelial-mesenchymal transition (EMT) process which confers resistance to endocrine therapy. Cancer stem-like cells (CSLCs) can be a vital source of proangiogenic factors including fibroblast growth factor 2 (FGF2) which drives angiogenesis and leads to tumor growth and metastasis. Therefore, targeting Wnt and FGF2 may provide effective treatment for endocrine resistant breast cancer. Our previous in vitro study reported that plumbagin (PLB) was a potent anticancer agent and was able to inhibit EMT in endocrine-resistant cells. This study aimed to further investigate the inhibitory effects of PLB on cancer stem-like phenotypes, tumorigenicity and angiogenesis. The results demonstrated Wnt/β-catenin signaling was activated and was able to form mammospheres with increased cancer stem cell markers (ALDH1, NANOG, and OCT4) in endocrine-resistant cells. PLB significantly inhibited colony-forming, mammosphere formation and decreased cancer stem cell markers. The inhibitory effects of PLB on cell proliferation and invasion were mediated by Wnt signaling pathway. PLB also significantly reduced Wnt responsive genes and β-catenin. Moreover, PLB treatment at doses of 2 and 4 mg/kg/day inhibited tumor growth, angiogenesis and metastasis without any adverse effects on body weight and blood coagulation in orthotopic xenograft nude mice. In conclusion, PLB exerted anti-cancer activity and eliminated stem-like properties by attenuating Wnt/β-catenin signaling and FGF2 expression. These findings suggest that PLB could be a promising agent to treat endocrine resistant breast cancer.
Collapse
Affiliation(s)
- Nithidol Sakunrangsit
- Overcoming Cancer Drug Resistance Research Unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wannarasmi Ketchart
- Overcoming Cancer Drug Resistance Research Unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
20
|
Zhong J, Li J, Wei J, Huang D, Huo L, Zhao C, Lin Y, Chen W, Wei Y. Plumbagin Restrains Hepatocellular Carcinoma Angiogenesis by Stromal Cell-Derived Factor (SDF-1)/CXCR4-CXCR7 Axis. Med Sci Monit 2019; 25:6110-6119. [PMID: 31415486 PMCID: PMC6707097 DOI: 10.12659/msm.915782] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Anti-angiogenic therapy has recently emerged as a highly promising therapeutic strategy for treating hepatocellular carcinoma (HCC). MATERIAL AND METHODS We assessed cellular proliferation, invasion, and activation of growth factors (VEGF and IL-8) with SDF-1 induced in the hepatocellular carcinoma cell line SMMC-7721, and this progression was limited by plumbagin (PL). The human umbilical vein endothelial cell line HUVEC was co-cultured with SDF-1-induced SMMC-7721, and the expressions of CXCR7, CXCR4, and PI3K/Akt pathways after PL treatment were detected by RT-PCR and Western blot analysis. RESULTS The treatment of the hepatoma cell line SMMC-7721 with SDF-1 resulted in enhanced secretion of the angiogenic factors, IL-8 and VEGF, and shows that these stimulatory effects are abolished by PL. The study further demonstrated that PL not only abolishes SDF-1-induced formation of endothelial tubes, but also inhibits expression of CXCR4 and CXCR7, and partially prevents activation of angiogenic signaling pathways. CONCLUSIONS The effect of PL on the SDF-1-CXCR4/CXCR7 axis has become an attractive target for inhibiting angiogenesis in hepatoma cells. Our results provide more evidence for the clinical application of PL as part of traditional Chinese medicine in modern cancer treatment.
Collapse
Affiliation(s)
- Jing Zhong
- Department of Physiology, Faculty of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, P.R. China
| | - Junxuan Li
- Department of Physiology, Faculty of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, P.R. China
| | - Jiexiao Wei
- Department of Physiology, Faculty of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, P.R. China
| | - Delun Huang
- Department of Physiology, Faculty of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, P.R. China
| | - Lini Huo
- Department of Organic Chemistry, Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, P.R. China
| | - Chuan Zhao
- Department of Physiology, Faculty of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, P.R. China
| | - Yuning Lin
- Department of Physiology, Faculty of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, P.R. China
| | - Wanjun Chen
- Department of Physiology, Faculty of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, P.R. China
| | - Yanfei Wei
- Department of Physiology, Faculty of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, P.R. China
| |
Collapse
|
21
|
Tripathi SK, Panda M, Biswal BK. Emerging role of plumbagin: Cytotoxic potential and pharmaceutical relevance towards cancer therapy. Food Chem Toxicol 2019; 125:566-582. [PMID: 30685472 DOI: 10.1016/j.fct.2019.01.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/04/2019] [Accepted: 01/20/2019] [Indexed: 12/24/2022]
Abstract
Plumbagin is a naphthoquinone derived yellow crystalline phytochemical. Plumbagin has a wide range of biological effects including cytotoxicity against cancer cells both in vitro and in vivo. Due to the pleiotropic nature of plumbagin, it shows the anticancer effect by targeting several molecular mechanisms including apoptosis and autophagic pathways, cell cycle arrest, anti-angiogenic pathways, anti-invasion and anti-metastasis pathways. Among many signaling pathways the key regulatory genes regulated by plumbagin are NF-kβ, STAT3, and AKT, etc. Plumbagin is also a potent inducer of ROS, suppressor of cellular glutathione, and causes DNA strand break by oxidative DNA base damages. In vivo studies suggested that plumbagin significantly reduces the tumor weight and volume in dose-dependent manner without any side effects in tested model organisms. Another exciting aspect of plumbagin is the ability to re-sensitize the chemo and radioresistant cancer cells when used in combination or alone. Nano encapsulation of plumbagin overcomes the poor water solubility and bioavailability obstacles, enhancing the pharmaceutical relevance with better therapeutic efficacy. Moreover, plumbagin can be introduced as a future phytotherapeutic anticancer drug after fully satisfied preclinical and clinical trials.
Collapse
Affiliation(s)
- Surya Kant Tripathi
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, 769008, Sundergarh, Odisha, India
| | - Munmun Panda
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, 769008, Sundergarh, Odisha, India
| | - Bijesh K Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, 769008, Sundergarh, Odisha, India.
| |
Collapse
|
22
|
Lee HP, Chen PC, Wang SW, Fong YC, Tsai CH, Tsai FJ, Chung JG, Huang CY, Yang JS, Hsu YM, Li TM, Tang CH. Plumbagin suppresses endothelial progenitor cell-related angiogenesis in vitro and in vivo. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.040] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|