1
|
Matsuki T, Hamada N, Ito H, Sugawara R, Iwamoto I, Nakayama A, Nagata KI. Expression analysis of type I ARF small GTPases ARF1-3 during mouse brain development. Mol Biol Rep 2024; 51:106. [PMID: 38227057 DOI: 10.1007/s11033-023-09142-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND ARF (ADP-ribosylation factor) GTPases are major regulators of intracellular trafficking, and classified into 3 groups (Type I - III), among which the type I group members, ARF1 and 3, are responsible genes for neurodevelopmental disorders. METHODS In this study, we analysed the expression of Type I ARFs ARF1-3 during mouse brain development using biochemical and morphological methods. RESULTS Western blotting analyses revealed that ARF1-3 are weakly expressed in the mouse brain at embryonic day 13 and gradually increase until postnatal day 30. ARF1-3 appear to be abundantly expressed in various telencephalon regions. Biochemical fractionation studies detected ARF1-3 in the synaptosome fraction of cortical neurons containing both pre- and post-synapses, however ARF1-3 were not observed in post-synaptic compartments. In immunohistochemical analyses, ARF1-3 appeared to be distributed in the cytoplasm and dendrites of cortical and hippocampal neurons as well as in the cerebellar molecular layer including dendrites of Purkinje cells and granule cell axons. Immunofluorescence in primary cultured hippocampal neurons revealed that ARF1-3 are diffusely distributed in the cytoplasm and dendrites with partial colocalization with a pre-synaptic marker, synaptophysin. CONCLUSIONS Overall, our results support the notion that ARF1-3 could participate in vesicle trafficking both in the dendritic shaft (excluding spines) and axon terminals (pre-synaptic compartments).
Collapse
Affiliation(s)
- Tohru Matsuki
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, 480-0392, Japan
| | - Nanako Hamada
- Department of Molecular Neurobiology Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, 480-0392, Japan
| | - Hidenori Ito
- Department of Molecular Neurobiology Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, 480-0392, Japan
| | - Ryota Sugawara
- Department of Molecular Neurobiology Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, 480-0392, Japan
| | - Ikuko Iwamoto
- Department of Molecular Neurobiology Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, 480-0392, Japan
| | - Atsuo Nakayama
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, 480-0392, Japan
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya, 466-8550, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, 480-0392, Japan.
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya, 466-8550, Japan.
| |
Collapse
|
2
|
Nishio Y, Kato K, Tran Mau-Them F, Futagawa H, Quélin C, Masuda S, Vitobello A, Otsuji S, Shawki HH, Oishi H, Thauvin-Robinet C, Takenouchi T, Kosaki K, Takahashi Y, Saitoh S. Gain-of-function MYCN causes a megalencephaly-polydactyly syndrome manifesting mirror phenotypes of Feingold syndrome. HGG ADVANCES 2023; 4:100238. [PMID: 37710961 PMCID: PMC10550848 DOI: 10.1016/j.xhgg.2023.100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
MYCN, a member of the MYC proto-oncogene family, regulates cell growth and proliferation. Somatic mutations of MYCN are identified in various tumors, and germline loss-of-function variants are responsible for Feingold syndrome, characterized by microcephaly. In contrast, one megalencephalic patient with a gain-of-function variant in MYCN, p.Thr58Met, has been reported, and additional patients and pathophysiological analysis are required to establish the disease entity. Herein, we report two unrelated megalencephalic patients with polydactyly harboring MYCN variants of p.Pro60Leu and Thr58Met, along with the analysis of gain-of-function and loss-of-function Mycn mouse models. Functional analyses for MYCN-Pro60Leu and MYCN-Thr58Met revealed decreased phosphorylation at Thr58, which reduced protein degradation mediated by FBXW7 ubiquitin ligase. The gain-of-function mouse model recapitulated the human phenotypes of megalencephaly and polydactyly, while brain analyses revealed excess proliferation of intermediate neural precursors during neurogenesis, which we determined to be the pathomechanism underlying megalencephaly. Interestingly, the kidney and female reproductive tract exhibited overt morphological anomalies, possibly as a result of excess proliferation during organogenesis. In conclusion, we confirm an MYCN gain-of-function-induced megalencephaly-polydactyly syndrome, which shows a mirror phenotype of Feingold syndrome, and reveal that MYCN plays a crucial proliferative role, not only in the context of tumorigenesis, but also organogenesis.
Collapse
Affiliation(s)
- Yosuke Nishio
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Kohji Kato
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan.
| | - Frederic Tran Mau-Them
- Unité Fonctionnelle 6254 d'Innovation en Diagnostique Génomique des Maladies Rares, Pôle de Biologie, CHU Dijon Bourgogne, 21070 Dijon, France; INSERM UMR1231 GAD, 21000 Dijon, France
| | - Hiroshi Futagawa
- Department of Clinical Genetics, Tokyo Metropolitan Children's Medical Center, Tokyo 183-8561, Japan
| | - Chloé Quélin
- Service de Génétique Clinique, CLAD Ouest, CHU Rennes, Hôpital Sud, 35200 Rennes, France
| | - Saori Masuda
- Department of Hematology and Oncology, Tokyo Metropolitan Children's Medical Center, Tokyo 183-8561, Japan
| | - Antonio Vitobello
- Unité Fonctionnelle 6254 d'Innovation en Diagnostique Génomique des Maladies Rares, Pôle de Biologie, CHU Dijon Bourgogne, 21070 Dijon, France; INSERM UMR1231 GAD, 21000 Dijon, France
| | - Shiomi Otsuji
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Hossam H Shawki
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya 467-8601, Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya 467-8601, Japan
| | - Christel Thauvin-Robinet
- Unité Fonctionnelle 6254 d'Innovation en Diagnostique Génomique des Maladies Rares, Pôle de Biologie, CHU Dijon Bourgogne, 21070 Dijon, France; INSERM UMR1231 GAD, 21000 Dijon, France; Centre de Référence Maladies Rares "Anomalies du développement et syndromes malformatifs", Centre de Génétique, FHU TRANSLAD et Institut GIMI, CHU Dijon Bourgogne, 21070 Dijon, France
| | - Toshiki Takenouchi
- Department of Pediatrics, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
| |
Collapse
|
3
|
Taura Y, Tozawa T, Fujimoto T, Ichise E, Chiyonobu T, Itoh K, Iehara T. Myosin Va, a novel interaction partner of STXBP1, is required to transport Syntaxin1A to the plasma membrane. Neuroscience 2023:S0306-4522(23)00251-8. [PMID: 37315734 DOI: 10.1016/j.neuroscience.2023.05.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/20/2023] [Accepted: 05/28/2023] [Indexed: 06/16/2023]
Abstract
Syntaxin-binding protein 1 (STXBP1, also known as Munc18-1) regulates exocytosis as a chaperone protein of Syntaxin1A. The haploinsufficiency of STXBP1 causes early infantile-onset developmental and epileptic encephalopathy, known as STXBP1 encephalopathy. Previously, we reported impaired cellular localization of Syntaxin1A in induced pluripotent stem cell-derived neurons from an STXBP1 encephalopathy patient harboring a nonsense mutation. However, the molecular mechanism of abnormal Syntaxin1A localization in the haploinsufficiency of STXBP1 remains unknown. This study aimed to identify the novel interacting partner of STXBP1 involved in transporting Syntaxin1A to the plasma membrane. Affinity purification coupled with mass spectrometry analysis identified a motor protein Myosin Va as a potential binding partner of STXBP1. Co-immunoprecipitation analysis of the synaptosomal fraction from the mouse and tag-fused recombinant proteins revealed that the STXBP1 short splice variant (STXBP1S) interacted with Myosin Va in addition to Syntaxin1A. These proteins colocalized at the tip of the growth cone and axons in primary cultured hippocampal neurons. Furthermore, RNAi-mediated gene silencing in Neuro2a cells showed that STXBP1 and Myosin Va were required for membrane trafficking of Syntaxin1A. In conclusion, this study proposes a potential role of STXBP1 in the trafficking of the presynaptic protein Syntaxin1A to the plasma membrane in conjunction with Myosin Va.
Collapse
Affiliation(s)
- Yoshihiro Taura
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takenori Tozawa
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Takahiro Fujimoto
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Eisuke Ichise
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomohiro Chiyonobu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan; Department of Molecular Diagnostics and Therapeutics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Tomoko Iehara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
4
|
Hamada N, Iwamoto I, Nagata KI. MED13L and its disease-associated variants influence the dendritic development of cerebral cortical neurons in the mammalian brain. J Neurochem 2023; 165:334-347. [PMID: 36798993 DOI: 10.1111/jnc.15783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/04/2022] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
The mediator complex comprises multiple subcellular subunits that collectively function as a molecular interface between RNA polymerase II and gene-specific transcription factors. Recently, genetic variants to one subunit of the complex, known as MED13L (mediator complex subunit 13 like), have been implicated in syndromic intellectual disability and distinct facial features, frequently accompanied by congenital heart defects. We investigated the impact of five disease-associated MED13L variants on the subcellular localization and biochemical stability of MED13L protein in vitro and in vivo. In overexpression assays using cortical neurons from embryonic mouse cerebral cortices transduced by in utero electroporation-mediated gene transfer, we found that mouse orthologues of human MED13L-p.P866L and -p.T2162M missense variants accumulated in the nucleus, while the p.S2163L and p.S2177Y variants were diffusely distributed in the cytoplasm. In contrast, we found that the p.Q1922* truncation variant was barely detectable in transduced cells, a phenotype reminiscent of this variant that results in MED13L haploinsufficiency in humans. Next, we analyzed these variants for their effects on neuronal migration, dendritic growth, spine morphology, and axon elongation of cortical neurons in vivo. There, we found that overexpression of the p.P866L variant resulted in reduced number and length of dendrites of cortical layer II/III pyramidal neurons. Furthermore, we show that mMED13L-knockdown abrogated dendritic growth in vivo, and this effect was significantly rescued by co-electroporation of an RNAi-resistant mMED13L, but weakly by the p.T2162M variant, and not at all by the p.S2163L variant. However, overexpression of the p.S2163L variant inhibited mature dendritic spine formation in vivo. Expression of each of the 5 variants did not affect neuronal cell migration and callosal axon elongation in vivo. Taken together, our results demonstrate that MED13L expression is relevant to corticogenesis and influences the dendritic branching characteristics of cortical excitatory neurons. Our study also suggests that disease-associated MED13L variants may directly cause morphological and functional defects in cortical neurons in different ways.
Collapse
Affiliation(s)
- Nanako Hamada
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Ikuko Iwamoto
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan.,Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
5
|
Balagura G, Xian J, Riva A, Marchese F, Ben Zeev B, Rios L, Sirsi D, Accorsi P, Amadori E, Astrea G, Baldassari S, Beccaria F, Boni A, Budetta M, Cantalupo G, Capovilla G, Cesaroni E, Chiesa V, Coppola A, Dilena R, Faggioli R, Ferrari A, Fiorini E, Madia F, Gennaro E, Giacomini T, Giordano L, Iacomino M, Lattanzi S, Marini C, Mancardi MM, Mastrangelo M, Messana T, Minetti C, Nobili L, Papa A, Parmeggiani A, Pisano T, Russo A, Salpietro V, Savasta S, Scala M, Accogli A, Scelsa B, Scudieri P, Spalice A, Specchio N, Trivisano M, Tzadok M, Valeriani M, Vari MS, Verrotti A, Vigevano F, Vignoli A, Toonen R, Zara F, Helbig I, Striano P. Epilepsy Course and Developmental Trajectories in STXBP1-DEE. Neurol Genet 2022; 8:e676. [PMID: 35655584 PMCID: PMC9157582 DOI: 10.1212/nxg.0000000000000676] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 03/14/2022] [Indexed: 01/18/2023]
Abstract
Background and Objectives Clinical manifestations in STXBP1 developmental and epileptic encephalopathy (DEE) vary in severity and outcome, and the genotypic spectrum is diverse. We aim to trace the neurodevelopmental trajectories in individuals with STXBP1-DEE and dissect the relationship between neurodevelopment and epilepsy. Methods Retrospective standardized clinical data were collected through international collaboration. A composite neurodevelopmental score system compared the developmental trajectories in STXBP1-DEE. Results Forty-eight patients with de novo STXBP1 variants and a history of epilepsy were included (age range at the time of the study: 10 months to 35 years, mean 8.5 years). At the time of inclusion, 65% of individuals (31/48) had active epilepsy, whereas 35% (17/48) were seizure free, and 76% of those (13/17) achieved remission within the first year of life. Twenty-two individuals (46%) showed signs of developmental impairment and/or neurologic abnormalities before epilepsy onset. Age at seizure onset correlated with severity of developmental outcome and the developmental milestones achieved, with a later seizure onset associated with better developmental outcome. In contrast, age at seizure remission and epilepsy duration did not affect neurodevelopmental outcomes. Overall, we did not observe a clear genotype-phenotype correlation, but monozygotic twins with de novo STXBP1 variant showed similar phenotype and parallel disease course. Discussion The disease course in STXBP1-DEE presents with 2 main trajectories, with either early seizure remission or drug-resistant epilepsy, and a range of neurodevelopmental outcomes from mild to profound intellectual disability. Age at seizure onset is the only epilepsy-related feature associated with neurodevelopment outcome. These findings can inform future dedicated natural history studies and trial design.
Collapse
|
6
|
Perl E, Ravisankar P, Beerens ME, Mulahasanovic L, Smallwood K, Sasso MB, Wenzel C, Ryan TD, Komár M, Bove KE, MacRae CA, Weaver KN, Prada CE, Waxman JS. Stx4 is required to regulate cardiomyocyte Ca 2+ handling during vertebrate cardiac development. HGG ADVANCES 2022; 3:100115. [PMID: 35599850 PMCID: PMC9114686 DOI: 10.1016/j.xhgg.2022.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/22/2022] [Indexed: 12/16/2022] Open
Abstract
Requirements for vesicle fusion within the heart remain poorly understood, despite the multitude of processes that necessitate proper intracellular trafficking within cardiomyocytes. Here, we show that Syntaxin 4 (STX4), a target-Soluble N-ethylmaleimide sensitive factor attachment receptor (t-SNARE) protein, is required for normal vertebrate cardiac conduction and vesicular transport. Two patients were identified with damaging variants in STX4. A patient with a homozygous R240W missense variant displayed biventricular dilated cardiomyopathy, ectopy, and runs of non-sustained ventricular tachycardia, sensorineural hearing loss, global developmental delay, and hypotonia, while a second patient displayed severe pleiotropic abnormalities and perinatal lethality. CRISPR/Cas9-generated stx4 mutant zebrafish exhibited defects reminiscent of these patients' clinical presentations, including linearized hearts, bradycardia, otic vesicle dysgenesis, neuronal atrophy, and touch insensitivity by 3 days post fertilization. Imaging of Vamp2+ vesicles within stx4 mutant zebrafish hearts showed reduced docking to the cardiomyocyte sarcolemma. Optical mapping of the embryonic hearts coupled with pharmacological modulation of Ca2+ handling together support that zebrafish stx4 mutants have a reduction in L-type Ca2+ channel modulation. Transgenic overexpression of zebrafish Stx4R241W, analogous to the first patient's STX4R240W variant, indicated that the variant is hypomorphic. Thus, these data show an in vivo requirement for SNAREs in regulating normal embryonic cardiac function and that variants in STX4 are associated with pleiotropic human disease, including cardiomyopathy.
Collapse
Affiliation(s)
- Eliyahu Perl
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA,Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA,Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Padmapriyadarshini Ravisankar
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Manu E. Beerens
- Cardiovascular Medicine Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Lejla Mulahasanovic
- Praxis für Humangenetik, Tübingen, Baden-Württemberg, Germany,CeGaT GmbH, Tübingen, Baden-Württemberg, Germany
| | - Kelly Smallwood
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Marion Bermúdez Sasso
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Saxony, Germany
| | - Carina Wenzel
- Institute of Pathology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Thomas D. Ryan
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA,Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Matej Komár
- Department of Gynecology and Obstetrics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Saxony, Germany
| | - Kevin E. Bove
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA,Division of Pathology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA,Department of Pathology and Laboratory Medicine, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Calum A. MacRae
- Cardiovascular Medicine Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA,Genetics and Network Medicine Divisions, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA,Harvard Stem Cell Institute, Boston, MA, USA
| | - K. Nicole Weaver
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Carlos E. Prada
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Joshua S. Waxman
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA,Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA,Corresponding author
| |
Collapse
|
7
|
Weir N, Stevens B, Wagner S, Miles A, Ball G, Howard C, Chemmarappally J, McGinnity M, Hargreaves AJ, Tinsley C. Aligned Poly-l-lactic Acid Nanofibers Induce Self-Assembly of Primary Cortical Neurons into 3D Cell Clusters. ACS Biomater Sci Eng 2022; 8:765-776. [PMID: 35084839 DOI: 10.1021/acsbiomaterials.1c01102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Relative to two-dimensional (2D) culture, three-dimensional (3D) culture of primary neurons has yielded increasingly physiological responses from cells. Electrospun nanofiber scaffolds are frequently used as a 3D biomaterial support for primary neurons in neural tissue engineering, while hydrophobic surfaces typically induce aggregation of cells. Poly-l-lactic acid (PLLA) was electrospun as aligned PLLA nanofiber scaffolds to generate a structure with both qualities. Primary cortical neurons from E18 Sprague-Dawley rats cultured on aligned PLLA nanofibers generated 3D clusters of cells that extended highly aligned, fasciculated neurite bundles within 10 days. These clusters were viable for 28 days and responsive to AMPA and GABA. Relative to the 2D culture, the 3D cultures exhibited a more developed profile; mass spectrometry demonstrated an upregulation of proteins involved in cortical lamination, polarization, and axon fasciculation and a downregulation of immature neuronal markers. The use of artificial neural network inference suggests that the increased formation of synapses may drive the increase in development that is observed for the 3D cell clusters. This research suggests that aligned PLLA nanofibers may be highly useful for generating advanced 3D cell cultures for high-throughput systems.
Collapse
Affiliation(s)
- Nick Weir
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K
| | - Bob Stevens
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K
| | - Sarah Wagner
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K
| | - Amanda Miles
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K
| | - Graham Ball
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K
| | - Charlotte Howard
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K
| | - Joseph Chemmarappally
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K
| | - Martin McGinnity
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K
| | - Alan Jeffrey Hargreaves
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K
| | - Chris Tinsley
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K
| |
Collapse
|
8
|
Suo G, Cao X, Zheng Y, Li H, Zhang Q, Tang J, Wu Y. A de novo nonsense mutation of STXBP1 causes early-onset epileptic encephalopathy. Epilepsy Behav 2021; 123:108245. [PMID: 34390894 DOI: 10.1016/j.yebeh.2021.108245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 01/16/2023]
Abstract
Mutations in syntaxin-binding protein 1, STXBP1 (also known as MUNC18-1), are linked to multiple neurodevelopmental disorders, including severe early-onset epileptic encephalopathies (EOEEs). A de novo nonsense mutation of STXBP1 (c. 863G > A, p. W288X) was found in a patient diagnosed with EOEE at the age of 17 days. The electroencephalogram (EEG) showed sharp waves and spikes, while brain magnetic resonance imaging was normal. We generated a zebrafish EOEE model by overexpressing mutant STXBP1(W288X) and studied the behavioral changes further to understand the mechanism of W288X mutation in epileptogenesis. In addition, effective antiepileptic drugs were screened in the zebrafish model. Zebrafish STXBP1 homologs were highly conserved and prominently expressed in the larval zebrafish brain. The Tg(hSTXBP1W288X) zebrafish larvae exhibited hyperactivity compared with the wild-type (WT) controls. The expression of STXBP1 decreased during the development course from 1 to 5 days post fertilization. Spontaneous seizures and increased c-fos expression were observed in the mutant zebrafish larvae. The susceptibility of Tg(hSTXBP1W288X) zebrafish to pentylenetetrazol challenge also dramatically increased. Levetiracetam, clonazepam, and topiramate showed antiepileptic effects in the Tg(hSTXBP1W288X) larvae to different extents. Our findings in the newly generated mutant line of zebrafish suggested that zebrafish recapitulated clinical phenotypes associated with human STXBP1 mutation, which provided an appropriate in vivo model for epilepsy research.
Collapse
Affiliation(s)
- Guihai Suo
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China; Department of Neurology, Children's Hospital of Soochow University, Suzhou, China
| | - Xing Cao
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuqin Zheng
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Haiying Li
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Qi Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jihong Tang
- Department of Neurology, Children's Hospital of Soochow University, Suzhou, China
| | - Youjia Wu
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
9
|
Puntman DC, Arora S, Farina M, Toonen RF, Verhage M. Munc18-1 Is Essential for Neuropeptide Secretion in Neurons. J Neurosci 2021; 41:5980-5993. [PMID: 34103363 PMCID: PMC8276746 DOI: 10.1523/jneurosci.3150-20.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 11/21/2022] Open
Abstract
Neuropeptide secretion from dense-core vesicles (DCVs) controls many brain functions. Several components of the DCV exocytosis machinery have recently been identified, but the participation of a SEC1/MUNC18 (SM) protein has remained elusive. Here, we tested the ability of the three exocytic SM proteins expressed in the mammalian brain, MUNC18-1/2/3, to support neuropeptide secretion. We quantified DCV exocytosis at a single vesicle resolution on action potential (AP) train-stimulation in mouse CNS neurons (of unknown sex) using pHluorin-tagged and/or mCherry-tagged neuropeptide Y (NPY) or brain-derived neurotrophic factor (BDNF). Conditional inactivation of Munc18-1 abolished all DCV exocytosis. Expression of MUNC18-1, but not MUNC18-2 or MUNC18-3, supported DCV exocytosis in Munc18-1 null neurons. Heterozygous (HZ) inactivation of Munc18-1, as a model for reduced MUNC18-1 expression, impaired DCV exocytosis, especially during the initial phase of train-stimulation, when the release was maximal. These data show that neurons critically and selectively depend on MUNC18-1 for neuropeptide secretion. Impaired neuropeptide secretion may explain aspects of the behavioral and neurodevelopmental phenotypes that were observed in Munc18-1 HZ mice.SIGNIFICANCE STATEMENT Neuropeptide secretion from dense-core vesicles (DCVs) modulates synaptic transmission, sleep, appetite, cognition and mood. However, the mechanisms of DCV exocytosis are poorly characterized. Here, we identify MUNC18-1 as an essential component for neuropeptide secretion from DCVs. Paralogs MUNC18-2 or MUNC18-3 cannot compensate for MUNC18-1. MUNC18-1 is the first protein identified to be essential for both neuropeptide secretion and synaptic transmission. In heterozygous (HZ) Munc18-1 neurons, that have a 50% reduced MUNC18-1expression and model the human STXBP1 syndrome, DCV exocytosis is impaired, especially during the initial phase of train-stimulation, when the release is maximal. These data show that MUNC18-1 is essential for neuropeptide secretion and that impaired neuropeptide secretion on reduced MUNC18-1expression may contribute to the symptoms of STXBP1 syndrome.
Collapse
Affiliation(s)
- Daniël C Puntman
- Section Functional genomics, Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Universitair Medisch Centrum, Amsterdam1081 HV, The Netherlands
| | - Swati Arora
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Margherita Farina
- Section Functional genomics, Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Universitair Medisch Centrum, Amsterdam1081 HV, The Netherlands
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Matthijs Verhage
- Section Functional genomics, Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Universitair Medisch Centrum, Amsterdam1081 HV, The Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| |
Collapse
|
10
|
Abramov D, Guiberson NGL, Burré J. STXBP1 encephalopathies: Clinical spectrum, disease mechanisms, and therapeutic strategies. J Neurochem 2021; 157:165-178. [PMID: 32643187 PMCID: PMC7812771 DOI: 10.1111/jnc.15120] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
Mutations in Munc18-1/STXBP1 (syntaxin-binding protein 1) are linked to various severe early epileptic encephalopathies and neurodevelopmental disorders. Heterozygous mutations in the STXBP1 gene include missense, nonsense, frameshift, and splice site mutations, as well as intragenic deletions and duplications and whole-gene deletions. No genotype-phenotype correlation has been identified so far, and patients are treated by anti-epileptic drugs because of the lack of a specific disease-modifying therapy. The molecular disease mechanisms underlying STXBP1-linked disorders are yet to be fully understood, but both haploinsufficiency and dominant-negative mechanisms have been proposed. This review focuses on the current understanding of the phenotypic spectrum of STXBP1-linked disorders, as well as discusses disease mechanisms in the context of the numerous pathways in which STXBP1 functions in the brain. We additionally evaluate the available animal models to study these disorders and highlight potential therapeutic approaches for treating these devastating diseases.
Collapse
Affiliation(s)
- Debra Abramov
- Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Noah Guy Lewis Guiberson
- Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Jacqueline Burré
- Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
11
|
Tang F, Xiao D, Chen L, Gao H, Li X. Role of Munc18-1 in the biological functions and pathogenesis of neurological disorders (Review). Mol Med Rep 2021; 23:198. [PMID: 33495808 PMCID: PMC7821349 DOI: 10.3892/mmr.2021.11837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/30/2020] [Indexed: 11/06/2022] Open
Abstract
The release of neurotransmitters following the fusion of synaptic vesicles and the presynaptic membrane is an important process in the transmission of neuronal information. Syntaxin-binding protein 1 (Munc18-1) is a synaptic fusion protein binding protein, which mainly regulates synaptic vesicle fusion and neurotransmitter release by interacting with soluble N-ethylmaleimide sensitive factor attachment protein receptor. In addition to affecting neurotransmitter transmission, Munc18-1 is also involved in regulating neurosynaptic plasticity, neurodevelopment and neuroendocrine cell release functions (including thyroxine and insulin release). A number of previous studies have demonstrated that Munc18-1 has diverse and vital biological functions, and that its abnormal expression serves an important role in the pathogenesis of a variety of neurological diseases, including epileptic encephalopathy, schizophrenia, autism, Parkinsons disease, Alzheimers disease, multiple sclerosis, Duchennes muscular dystrophy and neuronal ceroid lipofuscinosis. The present review summarizes the function of Munc18-1 and its possible relationship to the pathogenesis of various neurological diseases.
Collapse
Affiliation(s)
- Fajuan Tang
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dongqiong Xiao
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lin Chen
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hu Gao
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xihong Li
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
12
|
Abramov D, Guiberson NGL, Daab A, Na Y, Petsko GA, Sharma M, Burré J. Targeted stabilization of Munc18-1 function via pharmacological chaperones. EMBO Mol Med 2021; 13:e12354. [PMID: 33332765 PMCID: PMC7799358 DOI: 10.15252/emmm.202012354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/01/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022] Open
Abstract
Heterozygous de novo mutations in the neuronal protein Munc18-1 cause syndromic neurological symptoms, including severe epilepsy, intellectual disability, developmental delay, ataxia, and tremor. No disease-modifying therapy exists to treat these disorders, and while chemical chaperones have been shown to alleviate neuronal dysfunction caused by missense mutations in Munc18-1, their required high concentrations and potential toxicity necessitate a Munc18-1-targeted therapy. Munc18-1 is essential for neurotransmitter release, and mutations in Munc18-1 have been shown to cause neuronal dysfunction via aggregation and co-aggregation of the wild-type protein, reducing functional Munc18-1 levels well below hemizygous levels. Here, we identify two pharmacological chaperones via structure-based drug design, that bind to wild-type and mutant Munc18-1, and revert Munc18-1 aggregation and neuronal dysfunction in vitro and in vivo, providing the first targeted treatment strategy for these severe pediatric encephalopathies.
Collapse
Affiliation(s)
- Debra Abramov
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | - Noah Guy Lewis Guiberson
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | - Andrew Daab
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
- Present address:
University of BathBathUK
| | - Yoonmi Na
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | - Gregory A Petsko
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
- Present address:
Ann Romney Center for Neurologic DiseasesDepartment of NeurologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonMA, USA
| | - Manu Sharma
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | - Jacqueline Burré
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
13
|
Yoo DY, Jung HY, Kim W, Hahn KR, Kwon HJ, Nam SM, Chung JY, Yoon YS, Kim DW, Hwang IK. Entacapone Treatment Modulates Hippocampal Proteins Related to Synaptic Vehicle Trafficking. Cells 2020; 9:cells9122712. [PMID: 33352833 PMCID: PMC7765944 DOI: 10.3390/cells9122712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 11/29/2022] Open
Abstract
Entacapone, a reversible inhibitor of catechol-O-methyl transferase, is used for patients in Parkinson’s disease because it increases the bioavailability and effectiveness of levodopa. In the present study, we observed that entacapone increases novel object recognition and neuroblasts in the hippocampus. In the present study, two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry were performed to compare the abundance profiles of proteins expressed in the hippocampus after entacapone treatment in mice. Results of 2-DE, MALDI-TOF mass spectrometry, and subsequent proteomic analysis revealed an altered protein expression profile in the hippocampus after entacapone treatment. Based on proteomic analysis, 556 spots were paired during the image analysis of 2-DE gels and 76 proteins were significantly changed more than two-fold among identified proteins. Proteomic analysis indicated that treatment with entacapone induced expressional changes in proteins involved in synaptic transmission, cellular processes, cellular signaling, the regulation of cytoskeletal structure, energy metabolism, and various subcellular enzymatic reactions. In particular, entacapone significantly increased proteins related to synaptic trafficking and plasticity, such as dynamin 1, synapsin I, and Munc18-1. Immunohistochemical staining showed the localization of the proteins, and western blot confirmed the significant increases in dynamin I (203.5% of control) in the hippocampus as well as synapsin I (254.0% of control) and Munc18-1 (167.1% of control) in the synaptic vesicle fraction of hippocampus after entacapone treatment. These results suggest that entacapone can enhance hippocampal synaptic trafficking and plasticity against various neurological diseases related to hippocampal dysfunction.
Collapse
Affiliation(s)
- Dae Young Yoo
- Department of Anatomy and Cell Biology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (D.Y.Y.); (H.Y.J.); (W.K.); (K.R.H.); (Y.S.Y.)
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (D.Y.Y.); (H.Y.J.); (W.K.); (K.R.H.); (Y.S.Y.)
| | - Woosuk Kim
- Department of Anatomy and Cell Biology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (D.Y.Y.); (H.Y.J.); (W.K.); (K.R.H.); (Y.S.Y.)
- Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Kyu Ri Hahn
- Department of Anatomy and Cell Biology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (D.Y.Y.); (H.Y.J.); (W.K.); (K.R.H.); (Y.S.Y.)
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea;
| | - Sung Min Nam
- Department of Anatomy, School of Medicine and Institute for Environmental Science, Wonkwang University, Iksan 54538, Korea;
| | - Jin Young Chung
- Department of Veterinary Internal Medicine and Geriatrics, College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea;
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (D.Y.Y.); (H.Y.J.); (W.K.); (K.R.H.); (Y.S.Y.)
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea;
- Correspondence: (D.W.K.); (I.K.H.)
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (D.Y.Y.); (H.Y.J.); (W.K.); (K.R.H.); (Y.S.Y.)
- Correspondence: (D.W.K.); (I.K.H.)
| |
Collapse
|
14
|
Banne E, Falik-Zaccai T, Brielle E, Kalfon L, Ladany H, Klinger D, Schneidman-Duhovny D, Linial M. De novo STXBP1 mutation in a child with developmental delay and spasticity reveals a major structural alteration in the interface with syntaxin 1A. Am J Med Genet B Neuropsychiatr Genet 2020; 183:412-422. [PMID: 32815282 DOI: 10.1002/ajmg.b.32816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 06/09/2020] [Accepted: 07/08/2020] [Indexed: 01/19/2023]
Abstract
STXBP1, also known as Munc-18, is a master regulator of neurotransmitter release and synaptic function in the human brain through its direct interaction with syntaxin 1A. STXBP1 binds syntaxin 1A is an inactive conformational state. STXBP1 decreases its binding affinity to syntaxin upon phosphorylation, enabling syntaxin 1A to engage in the SNARE complex, leading to neurotransmitter release. STXBP1-related disorders are well characterized by encephalopathy with epilepsy, and a diverse range of neurological and neurodevelopmental conditions. Through exome sequencing of a child with developmental delay, hypotonia, and spasticity, we found a novel de novo insertion mutation of three nucleotides in the STXBP1 coding region, resulting in an additional arginine after position 39 (R39dup). Inconclusive results from state-of-the-art variant prediction tools mandated a structure-based approach using molecular dynamics (MD) simulations of the STXBP1-syntaxin 1A complex. Comparison of the interaction interfaces of the wild-type and the R39dup complexes revealed a reduced interaction surface area in the mutant, leading to destabilization of the protein complex. Moreover, the decrease in affinity toward syntaxin 1A is similar for the phosphorylated STXBP1 and the R39dup. We applied the same MD methodology to seven additional previously reported STXBP1 mutations and reveal that the stability of the STXBP1-syntaxin 1A interface correlates with the reported clinical phenotypes. This study provides a direct link between the outcome of a novel variant in STXBP1 and protein structure and dynamics. The structural change upon mutation drives an alteration in synaptic function.
Collapse
Affiliation(s)
- Ehud Banne
- The Genetics Institute, Kaplan Medical Center - Rehovot, Hebrew University and Hadassah Medical School, Jerusalem, Israel
| | - Tzipora Falik-Zaccai
- Institute of Human Genetics, Galilee Medical Center, Naharia, Israel.,Azrieli Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel
| | - Esther Brielle
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Limor Kalfon
- Institute of Human Genetics, Galilee Medical Center, Naharia, Israel
| | - Hagay Ladany
- Institute of Human Genetics, Galilee Medical Center, Naharia, Israel
| | - Danielle Klinger
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dina Schneidman-Duhovny
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Linial
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
15
|
Tang BL. SNAREs and developmental disorders. J Cell Physiol 2020; 236:2482-2504. [PMID: 32959907 DOI: 10.1002/jcp.30067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Members of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family mediate membrane fusion processes associated with vesicular trafficking and autophagy. SNAREs mediate core membrane fusion processes essential for all cells, but some SNAREs serve cell/tissue type-specific exocytic/endocytic functions, and are therefore critical for various aspects of embryonic development. Mutations or variants of their encoding genes could give rise to developmental disorders, such as those affecting the nervous system and immune system in humans. Mutations to components in the canonical synaptic vesicle fusion SNARE complex (VAMP2, STX1A/B, and SNAP25) and a key regulator of SNARE complex formation MUNC18-1, produce variant phenotypes of autism, intellectual disability, movement disorders, and epilepsy. STX11 and MUNC18-2 mutations underlie 2 subtypes of familial hemophagocytic lymphohistiocytosis. STX3 mutations contribute to variant microvillus inclusion disease. Chromosomal microdeletions involving STX16 play a role in pseudohypoparathyroidism type IB associated with abnormal imprinting of the GNAS complex locus. In this short review, I discuss these and other SNARE gene mutations and variants that are known to be associated with a variety developmental disorders, with a focus on their underlying cellular and molecular pathological basis deciphered through disease modeling. Possible pathogenic potentials of other SNAREs whose variants could be disease predisposing are also speculated upon.
Collapse
Affiliation(s)
- Bor L Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
16
|
Neuropathophysiological significance of the c.1449T>C/p.(Tyr64Cys) mutation in the CDC42 gene responsible for Takenouchi-Kosaki syndrome. Biochem Biophys Res Commun 2020; 529:1033-1037. [PMID: 32819561 DOI: 10.1016/j.bbrc.2020.06.104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/21/2020] [Indexed: 11/21/2022]
Abstract
Takenouchi-Kosaki syndrome (TKS) is an autosomal dominant congenital syndrome, of which pathogenesis is not well understood. Recently, a heterozygous mutation c.1449T > C/p.(Tyr64Cys) in the CDC42 gene, encoding a Rho family small GTPase, has been demonstrated to contribute to the TKS clinical features, including developmental delay with intellectual disability (ID). However, specific molecular mechanisms underlying the neuronal pathophysiology of TKS remain largely unknown. In this study, biochemical analyses revealed that the mutation moderately activates Cdc42. In utero electroporation-based acute expression of Cdc42-Y64C in ventricular zone progenitor cells in embryonic mice cerebral cortex resulted in migration defects and cluster formation of excitatory neurons. Expression the mutant in primary cultured hippocampal neurons caused impaired axon elongation. These data suggest that the c.1449T > C/p.(Tyr64Cys) mutation causes altered CDC42 function and results in defects in neuronal morphology and migration during brain development, which is likely to be responsible for pathophysiology of psychomotor delay and ID in TKS.
Collapse
|
17
|
Verhage M, Sørensen JB. SNAREopathies: Diversity in Mechanisms and Symptoms. Neuron 2020; 107:22-37. [PMID: 32559416 DOI: 10.1016/j.neuron.2020.05.036] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/29/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
Neuronal SNAREs and their key regulators together drive synaptic vesicle exocytosis and synaptic transmission as a single integrated membrane fusion machine. Human pathogenic mutations have now been reported for all eight core components, but patients are diagnosed with very different neurodevelopmental syndromes. We propose to unify these syndromes, based on etiology and mechanism, as "SNAREopathies." Here, we review the strikingly diverse clinical phenomenology and disease severity and the also remarkably diverse genetic mechanisms. We argue that disease severity generally scales with functional redundancy and, conversely, that the large effect of mutations in some SNARE genes is the price paid for extensive integration and exceptional specialization. Finally, we discuss how subtle differences in components being rate limiting in different types of neurons helps to explain the main symptoms.
Collapse
Affiliation(s)
- Matthijs Verhage
- Department of Functional Genomics, Vrije Universiteit (VU) Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands; Department of Clinical Genetics, UMC Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands.
| | - Jakob B Sørensen
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
18
|
Herath M, Hosie S, Bornstein JC, Franks AE, Hill-Yardin EL. The Role of the Gastrointestinal Mucus System in Intestinal Homeostasis: Implications for Neurological Disorders. Front Cell Infect Microbiol 2020; 10:248. [PMID: 32547962 PMCID: PMC7270209 DOI: 10.3389/fcimb.2020.00248] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/29/2020] [Indexed: 12/19/2022] Open
Abstract
Mucus is integral to gut health and its properties may be affected in neurological disease. Mucus comprises a hydrated network of polymers including glycosylated mucin proteins. We propose that factors that influence the nervous system may also affect the volume, viscosity, porosity of mucus composition and subsequently, gastrointestinal (GI) microbial populations. The gut has its own intrinsic neuronal network, the enteric nervous system, which extends the length of the GI tract and innervates the mucosal epithelium. The ENS regulates gut function including mucus secretion and renewal. Both dysbiosis and gut dysfunction are commonly reported in several neurological disorders such as Parkinson's and Alzheimer's disease as well in patients with neurodevelopmental disorders including autism. Since some microbes use mucus as a prominent energy source, changes in mucus properties could alter, and even exacerbate, dysbiosis-related gut symptoms in neurological disorders. This review summarizes existing knowledge of the structure and function of the mucus of the GI tract and highlights areas to be addressed in future research to better understand how intestinal homeostasis is impacted in neurological disorders.
Collapse
Affiliation(s)
- Madushani Herath
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Suzanne Hosie
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Joel C Bornstein
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Ashley E Franks
- School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Elisa L Hill-Yardin
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
19
|
Chen W, Cai ZL, Chao ES, Chen H, Longley CM, Hao S, Chao HT, Kim JH, Messier JE, Zoghbi HY, Tang J, Swann JW, Xue M. Stxbp1/Munc18-1 haploinsufficiency impairs inhibition and mediates key neurological features of STXBP1 encephalopathy. eLife 2020; 9:e48705. [PMID: 32073399 PMCID: PMC7056272 DOI: 10.7554/elife.48705] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Mutations in genes encoding synaptic proteins cause many neurodevelopmental disorders, with the majority affecting postsynaptic apparatuses and much fewer in presynaptic proteins. Syntaxin-binding protein 1 (STXBP1, also known as MUNC18-1) is an essential component of the presynaptic neurotransmitter release machinery. De novo heterozygous pathogenic variants in STXBP1 are among the most frequent causes of neurodevelopmental disorders including intellectual disabilities and epilepsies. These disorders, collectively referred to as STXBP1 encephalopathy, encompass a broad spectrum of neurologic and psychiatric features, but the pathogenesis remains elusive. Here we modeled STXBP1 encephalopathy in mice and found that Stxbp1 haploinsufficiency caused cognitive, psychiatric, and motor dysfunctions, as well as cortical hyperexcitability and seizures. Furthermore, Stxbp1 haploinsufficiency reduced cortical inhibitory neurotransmission via distinct mechanisms from parvalbumin-expressing and somatostatin-expressing interneurons. These results demonstrate that Stxbp1 haploinsufficient mice recapitulate cardinal features of STXBP1 encephalopathy and indicate that GABAergic synaptic dysfunction is likely a crucial contributor to disease pathogenesis.
Collapse
Affiliation(s)
- Wu Chen
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Zhao-Lin Cai
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Eugene S Chao
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Hongmei Chen
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Colleen M Longley
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
| | - Shuang Hao
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Hsiao-Tuan Chao
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- McNair Medical Institute, The Robert and Janice McNair FoundationHoustonUnited States
| | - Joo Hyun Kim
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Jessica E Messier
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Huda Y Zoghbi
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Howard Hughes Medical Institute, Baylor College of MedicineHoustonUnited States
| | - Jianrong Tang
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - John W Swann
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Mingshan Xue
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
20
|
Hamada N, Ogaya S, Nakashima M, Nishijo T, Sugawara Y, Iwamoto I, Ito H, Maki Y, Shirai K, Baba S, Maruyama K, Saitsu H, Kato M, Matsumoto N, Momiyama T, Nagata KI. De novo PHACTR1 mutations in West syndrome and their pathophysiological effects. Brain 2019; 141:3098-3114. [PMID: 30256902 DOI: 10.1093/brain/awy246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022] Open
Abstract
Trio-based whole exome sequencing identified two de novo heterozygous missense mutations [c.1449T > C/p.(Leu500Pro) and c.1436A > T/p.(Asn479Ile)] in PHACTR1, encoding a molecule critical for the regulation of protein phosphatase 1 (PP1) and the actin cytoskeleton, in unrelated Japanese individuals with West syndrome (infantile spasms with intellectual disability). We then examined the role of Phactr1 in the development of mouse cerebral cortex and the pathophysiological significance of these two mutations and others [c.1561C > T/p.(Arg521Cys) and c.1553T > A/p.(Ile518Asn)], which had been reported in undiagnosed patients with intellectual disability. Immunoprecipitation analyses revealed that actin-binding activity of PHACTR1 was impaired by the p.Leu500Pro, p.Asn479Ile and p.Ile518Asn mutations while the p.Arg521Cys mutation exhibited impaired binding to PP1. Acute knockdown of mouse Phactr1 using in utero electroporation caused defects in cortical neuron migration during corticogenesis, which were rescued by an RNAi-resistant PHACTR1 but not by the four mutants. Experiments using knockdown combined with expression mutants, aimed to mimic the effects of the heterozygous mutations under conditions of haploinsufficiency, suggested a dominant negative effect of the mutant allele. As for dendritic development in vivo, only the p.Arg521Cys mutant was determined to have dominant negative effects, because the three other mutants appeared to be degraded with these experimental conditions. Electrophysiological analyses revealed abnormal synaptic properties in Phactr1-deficient excitatory cortical neurons. Our data show that the PHACTR1 mutations may cause morphological and functional defects in cortical neurons during brain development, which is likely to be related to the pathophysiology of West syndrome and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nanako Hamada
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya, Kasugai, Aichi, Japan.,Research Fellow of Japan Society for the Promotion of Science, Japan
| | - Shunsuke Ogaya
- Department of Pediatric Neurology, Central Hospital, Aichi Human Service Center, 713-8 Kamiya, Kasugai, Aichi, Japan
| | - Mitsuko Nakashima
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Japan
| | - Takuma Nishijo
- Department of Pharmacology, Jikei University School of Medicine, 3-19-18 Nishishimbashi, Minato-ku, Tokyo, Japan
| | - Yuji Sugawara
- Department of Pediatrics, Soka Municipal Hospital, 2-21-1 Soka, Soka, Saitama, Japan
| | - Ikuko Iwamoto
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya, Kasugai, Aichi, Japan
| | - Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya, Kasugai, Aichi, Japan
| | - Yuki Maki
- Department of Pediatric Neurology, Central Hospital, Aichi Human Service Center, 713-8 Kamiya, Kasugai, Aichi, Japan
| | - Kentaro Shirai
- Department of Pediatrics, Tsuchiura Kyodo Hospital, 4-1-1 Ootsuno, Tsuchiura, Ibaraki, Japan
| | - Shimpei Baba
- Department of Child Neurology, Comprehensive Epilepsy Center, Seirei-Hamamatsu General Hospital, 2-12-12 Sumiyoshi, Naka-ku, Hamamatsu, Shizuoka, Japan
| | - Koichi Maruyama
- Department of Pediatric Neurology, Central Hospital, Aichi Human Service Center, 713-8 Kamiya, Kasugai, Aichi, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Japan
| | - Toshihiko Momiyama
- Department of Pharmacology, Jikei University School of Medicine, 3-19-18 Nishishimbashi, Minato-ku, Tokyo, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya, Kasugai, Aichi, Japan.,Department of Neurochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| |
Collapse
|
21
|
Lanoue V, Chai YJ, Brouillet JZ, Weckhuysen S, Palmer EE, Collins BM, Meunier FA. STXBP1 encephalopathy. Neurology 2019; 93:114-123. [DOI: 10.1212/wnl.0000000000007786] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/18/2019] [Indexed: 11/15/2022] Open
Abstract
De novo pathogenic variants in STXBP1 encoding syntaxin1-binding protein (STXBP1, also known as Munc18-1) lead to a range of early-onset neurocognitive conditions, most commonly early infantile epileptic encephalopathy type 4 (EIEE4, also called STXBP1 encephalopathy), a severe form of epilepsy associated with developmental delay/intellectual disability. Other neurologic features include autism spectrum disorder and movement disorders. The progression of neurologic symptoms has been reported in a few older affected individuals, with the appearance of extrapyramidal features, reminiscent of early onset parkinsonism. Understanding the pathologic process is critical to improving therapies, as currently available antiepileptic drugs have shown limited success in controlling seizures in EIEE4 and there is no precision medication approach for the other neurologic features of the disorder. Basic research shows that genetic knockout of STXBP1 or other presynaptic proteins of the exocytic machinery leads to widespread perinatal neurodegeneration. The mechanism that regulates this effect is under scrutiny but shares intriguing hallmarks with classical neurodegenerative diseases, albeit appearing early during brain development. Most critically, recent evidence has revealed that STXBP1 controls the self-replicating aggregation of α-synuclein, a presynaptic protein involved in various neurodegenerative diseases that are collectively known as synucleinopathies, including Parkinson disease. In this review, we examine the tantalizing link among STXBP1 function, EIEE, and the neurodegenerative synucleinopathies, and suggest that neural development in EIEE could be further affected by concurrent synucleinopathic mechanisms.
Collapse
|
22
|
Kato K, Miya F, Hamada N, Negishi Y, Narumi-Kishimoto Y, Ozawa H, Ito H, Hori I, Hattori A, Okamoto N, Kato M, Tsunoda T, Kanemura Y, Kosaki K, Takahashi Y, Nagata KI, Saitoh S. MYCN de novo gain-of-function mutation in a patient with a novel megalencephaly syndrome. J Med Genet 2018; 56:388-395. [PMID: 30573562 DOI: 10.1136/jmedgenet-2018-105487] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 11/07/2018] [Accepted: 11/30/2018] [Indexed: 01/31/2023]
Abstract
BACKGROUND In this study, we aimed to identify the gene abnormality responsible for pathogenicity in an individual with an undiagnosed neurodevelopmental disorder with megalencephaly, ventriculomegaly, hypoplastic corpus callosum, intellectual disability, polydactyly and neuroblastoma. We then explored the underlying molecular mechanism. METHODS Trio-based, whole-exome sequencing was performed to identify disease-causing gene mutation. Biochemical and cell biological analyses were carried out to elucidate the pathophysiological significance of the identified gene mutation. RESULTS We identified a heterozygous missense mutation (c.173C>T; p.Thr58Met) in the MYCN gene, at the Thr58 phosphorylation site essential for ubiquitination and subsequent MYCN degradation. The mutant MYCN (MYCN-T58M) was non-phosphorylatable at Thr58 and subsequently accumulated in cells and appeared to induce CCND1 and CCND2 expression in neuronal progenitor and stem cells in vitro. Overexpression of Mycn mimicking the p.Thr58Met mutation also promoted neuronal cell proliferation, and affected neuronal cell migration during corticogenesis in mouse embryos. CONCLUSIONS We identified a de novo c.173C>T mutation in MYCN which leads to stabilisation and accumulation of the MYCN protein, leading to prolonged CCND1 and CCND2 expression. This may promote neurogenesis in the developing cerebral cortex, leading to megalencephaly. While loss-of-function mutations in MYCN are known to cause Feingold syndrome, this is the first report of a germline gain-of-function mutation in MYCN identified in a patient with a novel megalencephaly syndrome similar to, but distinct from, CCND2-related megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome. The data obtained here provide new insight into the critical role of MYCN in brain development, as well as the consequences of MYCN defects.
Collapse
Affiliation(s)
- Kohji Kato
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fuyuki Miya
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Laboratory for Medical Science Mathematics, Center for Integrative Medical Sciences, Tokyo, Japan
| | - Nanako Hamada
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Yutaka Negishi
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | - Hiroshi Ozawa
- Department of Pediatrics, Shimada Ryoiku Center Hachiouji, Tokyo, Japan
| | - Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Ikumi Hori
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ayako Hattori
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Tatsuhiko Tsunoda
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Laboratory for Medical Science Mathematics, Center for Integrative Medical Sciences, Tokyo, Japan
| | - Yonehiro Kanemura
- Division of Biomedical Research and Innovation, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Osaka, Japan.,Department of Neurosurgery, Osaka National Hospital, National Hospital Organization, Osaka, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
23
|
Ibaraki K, Mizuno M, Aoki H, Niwa A, Iwamoto I, Hara A, Tabata H, Ito H, Nagata KI. Biochemical and Morphological Characterization of a Guanine Nucleotide Exchange Factor ARHGEF9 in Mouse Tissues. Acta Histochem Cytochem 2018; 51:119-128. [PMID: 30083020 PMCID: PMC6066644 DOI: 10.1267/ahc.18009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/24/2018] [Indexed: 01/01/2023] Open
Abstract
ARHGEF9, also known as Collybistin, a guanine nucleotide exchange factor for Rho family GTPases, is thought to play an essential role in the mammalian brain. In this study, we prepared a specific polyclonal antibody against ARHGEF9, anti-ARHGEF9, and carried out expression analyses with mouse tissues especially brain. Western blotting analyses demonstrated tissue-dependent expression profiles of ARHGEF9 in the young adult mouse, and strongly suggested a role during brain development. Immunohistochemical analyses revealed developmental stage-dependent expression profiles of ARHGEF9 in cerebral cortex, hippocampus and cerebellum. ARHGEF9 exhibited partial localization at dendritic spines in cultured hippocampal neurons. From the obtained results, anti-ARHGEF9 was found to be a useful tool for biochemical and cell biological analyses of ARHGEF9.
Collapse
Affiliation(s)
- Kyoko Ibaraki
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center
| | - Makoto Mizuno
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center
| | - Hitomi Aoki
- Department of Tissue and Organ Development, Gifu University Graduate School of Medicine
| | - Ayumi Niwa
- Department of Tumor Pathology, Gifu University Graduate School of Medicine
| | - Ikuko Iwamoto
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine
| | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center
| | - Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center
| | - Koh-ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center
- Department of Neurochemistry, Nagoya University Graduate School of Medicine
| |
Collapse
|