1
|
Chan CK, Lim KS, Chan CY, Kumar TS, Audrey C, Narayanan V, Fong SL, Ng CC. A review of epilepsy syndromes and epileptogenic mechanism affiliated with brain tumor related genes. Gene 2025:149531. [PMID: 40294709 DOI: 10.1016/j.gene.2025.149531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 04/14/2025] [Accepted: 04/23/2025] [Indexed: 04/30/2025]
Abstract
Epilepsy is one of the comorbidities often manifested by patients with brain tumors. While there are reviews commenting on the epileptogenicity of brain-tumor-related genes, the reviews are commonly restricted to BRAF, IDH and PIK3CA. According to World Health Organization (WHO), at least 50 genes have been proposed as brain-tumor-related genes. Hence, we aimed to provide a more comprehensive review of the epileptogenicity of the brain-tumor-related genes. We performed an extensive literature search on PubMed, classified the studies, and provided an overview of the associated epilepsy phenotype and epileptogenic mechanism of the brain-tumor-related genes advocated by WHO. Through our analysis, we found a minor overlap between brain-tumor-related genes and epilepsy-associated genes, as some brain-tumor-related genes have been classified as epilepsy-associated genes in earlier studies. Besides reviewing the well-studied genes like TSC1 and TSC2, we identified several under-discovered brain-tumor-related genes, including TP53, CIC, IDH1 and NOTCH1, that warrant future exploration due to the existence of clinical or in vivo evidence substantiating their pathogenic role in epileptogenesis. We also propounded some methodologies that can be applied in future research to enhance the study of the epileptogenic mechanism of brain-tumor-related genes. To date, this article covers the greatest number of brain-tumor-related genes.
Collapse
Affiliation(s)
- Chung-Kin Chan
- Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kheng-Seang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chet-Ying Chan
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Thinisha Sathis Kumar
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia; Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Christine Audrey
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Vairavan Narayanan
- Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Si-Lei Fong
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Ching-Ching Ng
- Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Braune M, Stiller M, Scherlach C, Wilhelmy F, Jähne K, Müller WC, Barrantes-Freer A. VOPP1::EGFR fusion is associated with NFκB pathway activation in a glioneural tumor with histological features of ganglioglioma. Acta Neuropathol Commun 2025; 13:76. [PMID: 40234994 PMCID: PMC12001695 DOI: 10.1186/s40478-025-01994-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/01/2025] [Indexed: 04/17/2025] Open
Abstract
Glioneural tumors are primary brain tumors that consist of both neural and glial neoplastic cells, often presenting with seizures and primarily affecting children and young adults. Specifically, gangliogliomas are composed of neoplastic ganglion and glial cells, accompanied by other characteristic histological features such as lymphoid cuffing, eosinophilic granular bodies, and Rosenthal fibers. Oncogenic driver mutations and gene fusions have been shown to be of prognostic significance in gangliogliomas and can offer potential therapeutic targets. Typical molecular alterations are mitogen-activated protein kinase (MAPK) pathway activations with BRAF p.V600E being the most frequent one. Here, we report for the first time a gene fusion between epidermal growth factor receptor (EGFR) and vesicular, overexpressed in cancer, prosurvival protein 1 (VOPP1) as a potential oncogenic driver in a glioneuronal tumor morphologically resembling ganglioglioma. VOPP1::EGFR fusion associated with the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) signaling. Furthermore, we provide histological and epigenetic findings and clinical outcome. The case expands the known molecular spectrum of oncogenic drivers in glioneuronal tumors and provides a link to potentially prognostic and therapeutically relevant alterations.
Collapse
Affiliation(s)
- Max Braune
- Paul-Flechsig-Institute of Neuropathology, University of Leipzig Medical Center, Liebigstraße 26, 04103, Leipzig, Germany
| | - Mathias Stiller
- Institute of Pathology, University of Leipzig Medical Center, Leipzig, Germany
| | - Cordula Scherlach
- Institute of Neuroradiology, University of Leipzig Medical Center, Leipzig, Germany
| | - Florian Wilhelmy
- Department of Neurosurgery, University of Leipzig Medical Center, Leipzig, Germany
| | - Katja Jähne
- Department of Neurosurgery, University of Leipzig Medical Center, Leipzig, Germany
| | - Wolf C Müller
- Paul-Flechsig-Institute of Neuropathology, University of Leipzig Medical Center, Liebigstraße 26, 04103, Leipzig, Germany
| | - Alonso Barrantes-Freer
- Paul-Flechsig-Institute of Neuropathology, University of Leipzig Medical Center, Liebigstraße 26, 04103, Leipzig, Germany.
| |
Collapse
|
3
|
Ikemachi R, Tomita Y, Otani Y, Ishida J, Fujii K, Higaki F, Ono S, Kanemura Y, Tanaka S. A Rare Case of Adult-onset Gangliocytoma in the Parietal Lobe: Case Report and Surveillance, Epidemiology, and End Results Registry Data Analysis. NMC Case Rep J 2025; 12:153-158. [PMID: 40343355 PMCID: PMC12059295 DOI: 10.2176/jns-nmc.2024-0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/17/2025] [Indexed: 05/11/2025] Open
Abstract
We report a case of adult-onset gangliocytoma in the parietal lobe. A 54-year-old woman presented with sensory disturbance in her right upper limb. A computed tomography scan revealed a cystic and calcified lesion in the left parietal lobe. She underwent a left parietal craniotomy with gross total resection, and the pathological diagnosis was confirmed as gangliocytoma. Gangliocytomas are very rare tumors of the central nervous system, predominantly affecting children and young adults, and are often located in the temporal lobe. Reports of gangliocytomas developing after middle age are uncommon. To assess the epidemiology of gangliocytoma, we utilized data from the Surveillance, Epidemiology, and End Results database. From January 1, 2000, to December 31, 2021, a total of 74 cases were identified, 18 of which were in patients over 50 years of age. While 27 patients had tumors in the temporal lobe, the most frequent site, others had tumors in different locations. Notably, there were no patients over 50 with gangliocytoma in the parietal lobe in the Surveillance, Epidemiology, and End Results registry. These findings suggest that in older patients, although gangliocytomas located outside the temporal lobe are rare, they are kept in mind as one of the differential diagnoses.
Collapse
Affiliation(s)
- Ryosuke Ikemachi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Yusuke Tomita
- Department of Neurosurgery and Neuroendovascular Surgery, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Hiroshima, Japan
| | - Yoshihiro Otani
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Joji Ishida
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Kentaro Fujii
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Fumiyo Higaki
- Department of Radiology, Okayama University Hospital, Okayama, Okayama, Japan
| | - Sawako Ono
- Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research, NHO Osaka National Hospital, Osaka, Osaka, Japan
| | - Shota Tanaka
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| |
Collapse
|
4
|
Hutton DL, Kulkarni J, Syed K, Scott I, Cearns MD, Mills SJ, Jenkinson MD. Clinical outcomes of adults with intracranial grade 1 and 2 ganglioglioma. J Clin Neurosci 2025; 134:111088. [PMID: 39884127 DOI: 10.1016/j.jocn.2025.111088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Ganglioglioma is a rare primary brain tumour that most frequently occurs in children and young adults. They are generally low-grade and have a favourable prognosis, but there is limited literature to guide the optimal management. The aim of this study was to investigate the clinical outcomes of adults with intracranial ganglioglioma, and to determine the frequency and duration of radiological follow-up. Thirteen adult patients with CNS WHO grade 1 and 2 ganglioglioma were identified retrospectively from case records at a tertiary neurosurgical centre between 2010 and 2022. Patient characteristics, magnetic resonance imaging (MRI) features, and clinical outcomes were obtained. Surgery was classified as gross total (GTR) or subtotal (STR) resection. 84.6 % (n = 11) of patients had temporal lobe tumours, with most (69.2 %) presenting with seizures, at a median age of 29.0 years. GTR and STR were achieved in nine and five patients, respectively. No patients received adjuvant radiotherapy. During the median follow-up period of 8.9 years there was no radiological recurrence after GTR, and only one recurrence after STR at 65 months that did not require treatment. There was no patient mortality. Two patients continued to have seizures at last clinical follow-up. Low grade adult intracranial ganglioglioma has an excellent prognosis, with a recurrence rate below 10 % in this series. Long-term surveillance is not necessarily required if GTR has been achieved and patients can be considered for discharge after annual MRI for 5 years. In patients where only STR is achieved, annual MRI is required although the progression/recurrence rate remains low and asymptomatic.
Collapse
Affiliation(s)
- Dana L Hutton
- The Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne NE7 7DN UK.
| | - Janhavi Kulkarni
- The Walton Centre NHS Foundation Trust, Lower Lane, Fazakerley, Liverpool L9 7LJ UK
| | - Khaja Syed
- The Walton Centre NHS Foundation Trust, Lower Lane, Fazakerley, Liverpool L9 7LJ UK
| | - Ian Scott
- The Walton Centre NHS Foundation Trust, Lower Lane, Fazakerley, Liverpool L9 7LJ UK
| | - Michael D Cearns
- The Walton Centre NHS Foundation Trust, Lower Lane, Fazakerley, Liverpool L9 7LJ UK; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Samantha J Mills
- The Walton Centre NHS Foundation Trust, Lower Lane, Fazakerley, Liverpool L9 7LJ UK
| | - Michael D Jenkinson
- The Walton Centre NHS Foundation Trust, Lower Lane, Fazakerley, Liverpool L9 7LJ UK; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
5
|
Cruz AAV, Todo MC, Chahud F, Boasquevisque GS, Neder L, Valera ET. Bilateral V600-E Mutant Ganglioglioma of the Optic Nerve and Entire Optic Pathway: Case Report and Literature Review. Ophthalmic Plast Reconstr Surg 2025:00002341-990000000-00587. [PMID: 40081361 DOI: 10.1097/iop.0000000000002928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
A 2-year-old male patient was presented with a bilateral optic nerve tumor diagnosed as a glioma, which extended to his entire optic pathways bilaterally. Previous treatment with conventional chemotherapy was unsuccessful. As his OS had no light perception, a biopsy of the optic nerve was performed through a transconjunctival approach. Histopathological examination of the specimen was compatible with ganglioglioma, an extremely rare neoplasm of the optic nerve. Genome sequencing of the tumor specimen revealed a BRAF V600E point mutation with activation of the MAPK/ERKkinase signaling pathway. The tumor was significantly reduced 3 months after targeted therapy.
Collapse
Affiliation(s)
| | - Márcia C Todo
- Department of Ophthalmology, Otorhinolaryngology, and Head and Neck Surgery
| | | | | | | | - Elvis T Valera
- Department of Pediatrics, School of Medicine of Ribeirão Preto - University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
6
|
Ali RH, Almanabri M, Ali NY, Alsaber AR, Khalifa NM, Hussein R, Alateeqi M, Mohammed EMA, Jama H, Almarzooq A, Benobaid N, Alqallaf Z, Ahmed AA, Bahzad S, Almurshed M. Clinicopathological analysis of BRAF and non-BRAF MAPK pathway-altered gliomas in paediatric and adult patients: a single-institution study of 40 patients. J Clin Pathol 2025; 78:177-186. [PMID: 38195220 PMCID: PMC11874301 DOI: 10.1136/jcp-2023-209318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Abstract
AIMS Mitogen-activated protein kinase (MAPK) pathway alteration is a major oncogenic driver in paediatric low-grade gliomas (LGG) and some adult gliomas, encompassing BRAF (most common) and non-BRAF alterations. The aim was to determine the frequency, molecular spectrum and clinicopathological features of MAPK-altered gliomas in paediatric and adult patients at our neuropathology site in Kuwait. METHODS We retrospectively searched the data of molecularly sequenced gliomas between 2018 and 2023 for MAPK alterations, revised the pathology in view of the 2021 WHO classification and evaluated the clinicopathological data for possible correlations. RESULTS Of 272 gliomas, 40 (15%) harboured a MAPK pathway alteration in 19 paediatric (median 9.6 years; 1.2-17.6) and 21 adult patients (median 37 years; 18.9-89.2), comprising 42% and 9% of paediatric and adult cases, respectively. Pilocytic astrocytoma and glioblastoma were the most frequent diagnoses in children (47%) and adults (43%), respectively. BRAF V600E (n=17, 43%) showed a wide distribution across age groups, locations and pathological diagnoses while KIAA1549::BRAF fusion (n=8, 20%) was spatially and histologically restricted to cerebellar paediatric LGGs. Non-V600E variants and BRAF amplifications accompanied other molecular aberrations in high-grade tumours. Non-BRAF MAPK alterations (n=8) included mutations and gene fusions involving FGFR1, NTRK2, NF1, ROS1 and MYB. Fusions included KANK1::NTRK2, GOPC::ROS1 (both infant hemispheric gliomas), FGFR1::TACC1 (diffuse LGG), MYB::QKI (angiocentric glioma) and BCR::NTRK2 (glioblastoma). Paradoxical H3 K27M/MAPK co-mutations were observed in two LGGs. CONCLUSION The study provided insights into MAPK-altered gliomas in Kuwait highlighting the differences among paediatric and adult patients and providing a framework for planning therapeutic polices.
Collapse
Affiliation(s)
- Rola H Ali
- Department of Pathology, College of Medicine, Kuwait University, Jabriya, Hawalli, Kuwait
- Department of Histopathology, Al Sabah Hospital, Shuwaikh, Al Asimah, Kuwait
| | - Mohamad Almanabri
- Department of Neurosurgery, Ibn Sina Hospital, Shuwaikh, Al Asimah, Kuwait
| | - Nawal Y Ali
- Department of Radiology, Ibn Sina Hospital, Shuwaikh, Al Asimah, Kuwait
| | - Ahmad R Alsaber
- Department of Management, College of Business and Economics, American University of Kuwait, Salmiya, Hawalli, Kuwait
| | - Nisreen M Khalifa
- Department of Pediatric Hematology/Oncology, NBK Children's Hospital, Shuwaikh, Al Asimah, Kuwait
| | - Rania Hussein
- Department of Radiation Oncology, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Mona Alateeqi
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Eiman M A Mohammed
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Hiba Jama
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Ammar Almarzooq
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Noelle Benobaid
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Zainab Alqallaf
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Amir A Ahmed
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Shakir Bahzad
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Maryam Almurshed
- Department of Histopathology, Al Sabah Hospital, Shuwaikh, Al Asimah, Kuwait
| |
Collapse
|
7
|
Shirodkar K, Hussein M, Reddy PS, Shah AB, Raniga S, Pal D, Iyengar KP, Botchu R. Imaging of Peripheral Intraneural Tumors: A Comprehensive Review for Radiologists. Cancers (Basel) 2025; 17:246. [PMID: 39858028 PMCID: PMC11763772 DOI: 10.3390/cancers17020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Intraneural tumors (INTs) pose a diagnostic challenge, owing to their varied origins within nerve fascicles and their wide spectrum, which includes both benign and malignant forms. Accurate diagnosis and management of these tumors depends upon the skills of the radiologist in identifying key imaging features and correlating them with the patient's clinical symptoms and examination findings. METHODS This comprehensive review systematically analyzes the various imaging features in the diagnosis of intraneural tumors, ranging from basic MR to advanced MR imaging techniques such as MR neurography (MRN), diffusion tensor imaging (DTI), and dynamic contrast-enhanced (DCE) MRI. RESULTS The article emphasizes the differentiation of benign from malignant lesions using characteristic MRI features, such as the "target sign" and "split-fat sign" for tumor characterization. The role of advanced multiparametric MRI in improving biopsy planning, guiding surgical mapping, and enhancing post-treatment monitoring is also highlighted. The review also underlines the importance of common diagnostic pitfalls and highlights the need for a multi-disciplinary approach to achieve an accurate diagnosis, appropriate treatment strategy, and post-therapy surveillance planning. CONCLUSIONS In this review, we illustrate the main imaging findings of intraneural tumors, focusing on specific MR imaging features that are crucial for an accurate diagnosis and the differentiation between benign and malignant lesions.
Collapse
Affiliation(s)
| | | | | | | | - Sameer Raniga
- Sultan Qaboos University Hospital, Seeb H5QC+4HX, Oman
| | - Devpriyo Pal
- Stoke Mandeville Hospital, Aylesbury HP21 8AL, UK
| | | | | |
Collapse
|
8
|
Rodriguez Almaraz E, Guerra GA, Al-Adli NN, Young JS, Dada A, Quintana D, Taylor JW, Oberheim Bush NA, Clarke JL, Butowski NA, de Groot J, Pekmezci M, Perry A, Bollen AW, Scheffler AW, Glidden DV, Phillips JJ, Costello JF, Chang EF, Hervey-Jumper S, Berger MS, Francis SS, Chang SM, Solomon DA. Longitudinal profiling of IDH-mutant astrocytomas reveals acquired RAS-MAPK pathway mutations associated with inferior survival. Neurooncol Adv 2025; 7:vdaf024. [PMID: 40051658 PMCID: PMC11883348 DOI: 10.1093/noajnl/vdaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
Background Isocitrate dehydrogenase (IDH)-mutant astrocytomas represent the most frequent primary intraparenchymal brain tumor in young adults, which typically arise as low-grade neoplasms that often progress and transform to higher grade despite current therapeutic approaches. However, the genetic alterations underlying high-grade transformation and disease progression of IDH-mutant astrocytomas remain inadequately defined. Methods Genomic profiling was performed on 205 IDH-mutant astrocytomas from 172 patients from both initial treatment-naive and recurrent post-treatment tumor specimens. Molecular findings were integrated with clinical outcomes and pathologic features to define the associations of novel genetic alterations in the RAS-MAPK signaling pathway. Results Likely oncogenic alterations within the RAS-MAPK mitogenic signaling pathway were identified in 13% of IDH-mutant astrocytomas, which involved the KRAS, NRAS, BRAF, NF1, SPRED1, and LZTR1 genes. These included focal amplifications and known activating mutations in oncogenic components (e.g. KRAS, BRAF), as well as deletions and truncating mutations in negative regulatory components (e.g. NF1, SPRED1). These RAS-MAPK pathway alterations were enriched in recurrent tumors and occurred nearly always in high-grade tumors, often co-occurring with CDKN2A homozygous deletion. Patients whose IDH-mutant astrocytomas harbored these oncogenic RAS-MAPK pathway alterations had inferior survival compared to those with RAS-MAPK wild-type tumors. Conclusions These findings highlight novel genetic perturbations in the RAS-MAPK pathway as a likely mechanism contributing to the high-grade transformation and treatment resistance of IDH-mutant astrocytomas that may be a potential therapeutic target for affected patients and used for future risk stratification.
Collapse
Affiliation(s)
- Eduardo Rodriguez Almaraz
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Geno A Guerra
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Nadeem N Al-Adli
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Jacob S Young
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Abraham Dada
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Daniel Quintana
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Jennie W Taylor
- Department of Neurology, University of California, San Francisco, California, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Nancy Ann Oberheim Bush
- Department of Neurology, University of California, San Francisco, California, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Jennifer L Clarke
- Department of Neurology, University of California, San Francisco, California, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Nicholas A Butowski
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - John de Groot
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Melike Pekmezci
- Department of Pathology, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Arie Perry
- Department of Pathology, University of California, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Andrew W Bollen
- Department of Pathology, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Aaron W Scheffler
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - David V Glidden
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Joanna J Phillips
- Department of Pathology, University of California, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Stephen S Francis
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Susan M Chang
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - David A Solomon
- Department of Pathology, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| |
Collapse
|
9
|
Nunno VD, Aprile M, Gatto L, Tosoni A, Ranieri L, Bartolini S, Franceschi E. Novel insights toward diagnosis and treatment of glioneuronal and neuronal tumors in young adults. CNS Oncol 2024; 13:2357532. [PMID: 38873961 PMCID: PMC11181933 DOI: 10.1080/20450907.2024.2357532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 03/26/2024] [Indexed: 06/15/2024] Open
Abstract
Aim: Glioneuronal and neuronal tumors are rare primary central nervous system malignancies with heterogeneous features. Due to the rarity of these malignancies diagnosis and treatment remains a clinical challenge. Methods: Here we performed a narrative review aimed to investigate the principal issues concerning the diagnosis, pathology, and clinical management of glioneuronal tumors. Results: Diagnostic criteria have been recently overturned thanks to a better characterization on a histological and molecular biology level. The study of genomic alterations occurring within these tumors has allowed us to identify potential therapeutic targets including BRAF, FGFR, and PDGFRA. Conclusion: Techniques allowing molecular sequencing DNA methylation assessment of the disease are essential diagnostic tools. Targeting agents should be included in the therapeutic armamentarium after loco-regional treatment failure.
Collapse
Affiliation(s)
- Vincenzo Di Nunno
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Marta Aprile
- Department of Experimental, Diagnostic & Specialty Medicine, University of Bologna, Bologna, Italy
| | - Lidia Gatto
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lucia Ranieri
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
10
|
Ishikura T, Hirono S, Ota M, Yokoyama D, Kobayashi M, Matsutani T, Iwadate Y. Three Years of Progression-free after Biopsy of BRAF V600E-negative Ganglioglioma in the Adult Brainstem: A Case Report and the Literature Review. NMC Case Rep J 2024; 11:427-433. [PMID: 39850766 PMCID: PMC11756899 DOI: 10.2176/jns-nmc.2024-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/10/2024] [Indexed: 01/25/2025] Open
Abstract
Ganglioglioma, a glioneuronal neoplasm, typically presents in adolescents' temporal lobes. While pediatric brainstem gangliogliomas (BSGGs) are well documented, adult BSGGs are limited, resulting in a lack of comprehensive understanding of their pathophysiology and prognosis. A 41-year-old woman who presented with dizziness and numbness in her right upper extremity and right face underwent radiological examination. A dorsally exophytic tumor in the medulla oblongata was identified. Moderate uptake of 11C-methionine on positron emission tomography suggests a low-grade glioma. Histopathological evaluation, following a suboccipital craniotomy and biopsy under neuromonitoring, confirmed the tumor as a mix of neoplastic ganglion cells and glial cells, which exhibited immunoreactivity for chromogranin A and OLIG2, respectively. Eosinophilic granular bodies and Rosenthal fibers were also observed. These findings confirmed the diagnosis of a ganglioglioma. The BRAF V600E mutation tested negative by real-time polymerase chain reaction. No postoperative adjuvant treatment was administered, and no progression of the residual tumor was noted 34 months post-surgery. Increased reporting of adult BSGGs, complete with detailed radiological, molecular, and genetic profiles, as well as their clinical course, is essential for clarifying our understanding of this rare entity's oncogenic pathway, optimal management strategy, and prognosis.
Collapse
Affiliation(s)
- Toshiki Ishikura
- Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chiba, Chiba, Japan
| | - Seiichiro Hirono
- Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chiba, Chiba, Japan
| | - Masayuki Ota
- Diagnostic Pathology, Chiba University Graduate School of Medicine, Chiba, Chiba, Japan
| | - Daiki Yokoyama
- Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chiba, Chiba, Japan
| | - Masayoshi Kobayashi
- Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chiba, Chiba, Japan
| | - Tomoo Matsutani
- Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chiba, Chiba, Japan
| | - Yasuo Iwadate
- Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chiba, Chiba, Japan
| |
Collapse
|
11
|
Repnikova EA, Zhang L, Orr BA, Roberts J, Zinkus T, Gener M, Kats A. Focal cortical dysplasia type IIIb associated with a KRAS-mutant ganglioglioma. Cancer Genet 2024; 288-289:1-4. [PMID: 39146656 DOI: 10.1016/j.cancergen.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/07/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Affiliation(s)
- Elena A Repnikova
- Department of Pathology & Laboratory Medicine Children's Mercy Kansas City, United States; University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, United States.
| | - Lei Zhang
- Department of Pathology & Laboratory Medicine Children's Mercy Kansas City, United States; University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, United States
| | - Brent A Orr
- Department of Pathology St. Jude's Children's Hospital, Memphis, Tennessee, United States
| | - Jennifer Roberts
- Department of Pathology & Laboratory Medicine Children's Mercy Kansas City, United States; University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, United States
| | - Timothy Zinkus
- Department of Radiology Children's Mercy Kansas City, United States; University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, United States
| | - Melissa Gener
- Department of Pathology & Laboratory Medicine Children's Mercy Kansas City, United States; University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, United States
| | - Alexander Kats
- Department of Pathology & Laboratory Medicine Children's Mercy Kansas City, United States; University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, United States
| |
Collapse
|
12
|
Pai V, Laughlin S, Ertl-Wagner B. Imaging of pediatric glioneuronal and neuronal tumors. Childs Nerv Syst 2024; 40:3007-3026. [PMID: 38960918 DOI: 10.1007/s00381-024-06502-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024]
Abstract
Glioneuronal tumors (GNTs) are an expanding group of primary CNS neoplasms, commonly affecting children, adolescents and young adults. Most GNTs are relatively indolent, low-grade, WHO grade I lesions. In the pediatric age group, GNTs have their epicenter in the cerebral cortex and present with seizures. Alterations in the mitogen-activated protein kinase (MAPK) pathway, which regulates cell growth, are implicated in tumorigenesis. Imaging not only plays a key role in the characterization and pre-surgical evaluation of GNTs but is also crucial role in follow-up, especially with the increasing use of targeted inhibitors and immunotherapies. In this chapter, we review the clinical and imaging perspectives of common pediatric GNTs.
Collapse
Affiliation(s)
- Vivek Pai
- Division of Neuroradiology, Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, 170 Elizabeth Street, Toronto, ON, M5G 1E8, Canada
- Department of Medical Imaging, University of Toronto, 263 McCaul St, 4Th Floor, Toronto, ON, M5T 1W7, Canada
| | - Suzanne Laughlin
- Division of Neuroradiology, Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, 170 Elizabeth Street, Toronto, ON, M5G 1E8, Canada
- Department of Medical Imaging, University of Toronto, 263 McCaul St, 4Th Floor, Toronto, ON, M5T 1W7, Canada
| | - Birgit Ertl-Wagner
- Division of Neuroradiology, Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, 170 Elizabeth Street, Toronto, ON, M5G 1E8, Canada.
- Department of Medical Imaging, University of Toronto, 263 McCaul St, 4Th Floor, Toronto, ON, M5T 1W7, Canada.
| |
Collapse
|
13
|
Stone TJ, Merve A, Valerio F, Yasin SA, Jacques TS. Paediatric low-grade glioma: the role of classical pathology in integrated diagnostic practice. Childs Nerv Syst 2024; 40:3189-3207. [PMID: 39294363 PMCID: PMC11511714 DOI: 10.1007/s00381-024-06591-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/23/2024] [Indexed: 09/20/2024]
Abstract
Low-grade gliomas are a cause of severe and often life-long disability in children. Pathology plays a key role in their management by establishing the diagnosis, excluding malignant alternatives, predicting outcomes and identifying targetable genetic alterations. Molecular diagnosis has reshaped the terrain of pathology, raising the question of what part traditional histology plays. In this review, we consider the classification and pathological diagnosis of low-grade gliomas and glioneuronal tumours in children by traditional histopathology enhanced by the opportunities afforded by access to comprehensive genetic and epigenetic characterisation.
Collapse
Affiliation(s)
- Thomas J Stone
- Developmental Biology and Cancer Research and Teaching Department, UCL GOS Institute of Child Health, London, UK
- Department of Histopathology, Great Ormond Street Hospital, London, UK
| | - Ashirwad Merve
- Developmental Biology and Cancer Research and Teaching Department, UCL GOS Institute of Child Health, London, UK
- Department of Histopathology, Great Ormond Street Hospital, London, UK
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Fernanda Valerio
- Department of Histopathology, Great Ormond Street Hospital, London, UK
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Shireena A Yasin
- Developmental Biology and Cancer Research and Teaching Department, UCL GOS Institute of Child Health, London, UK
- Department of Histopathology, Great Ormond Street Hospital, London, UK
| | - Thomas S Jacques
- Developmental Biology and Cancer Research and Teaching Department, UCL GOS Institute of Child Health, London, UK.
- Department of Histopathology, Great Ormond Street Hospital, London, UK.
| |
Collapse
|
14
|
Lacruz CR, Álvarez F. Cytopathology of glioneuronal and neuronal tumours with histological correlations. Cytopathology 2024; 35:545-555. [PMID: 37740719 DOI: 10.1111/cyt.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/25/2023]
Abstract
Glioneuronal and neuronal tumours constitute a diverse group of tumours that feature neuronal differentiation. In mixed glioneuronal tumours, a glial component is present in addition to the neuronal component. With a few exceptions (eg diffuse leptomeningeal glioneuronal tumour) they are well-circumscribed and slow-growing tumours, which is why their prognosis is intrinsically favourable after gross total resection. Rendering an intraoperative diagnosis of glioneuronal/neuronal tumour is therefore important-neurosurgeons should remove them to prevent the persistence of clinical symptoms and/or recurrence. In this context, cytopathological examination can be especially useful for assessing cellular details when frozen section artefacts render poor-quality preparations, as is the case for this group of tumours, which are frequently mistaken for infiltrating gliomas (eg diffuse astrocytoma infiltrating grey matter, oligodendroglioma) on frozen section slides. The aim of this article is to review the cytomorphological features of glioneuronal and neuronal tumours according to the 2021 World Health Organization classification of central nervous system tumours, 5th edition. Additionally, since interpretation in intraoperative cytology relies on intuiting tissue patterns from cytology preparations, representative histological figures of all discussed entities have been included. Clues for specific diagnoses and the primary diagnostic problems encountered during intraoperative procedures are also discussed.
Collapse
Affiliation(s)
- César R Lacruz
- Department of Pathology, QuironSalud University Hospital, Madrid, Spain
| | - Federico Álvarez
- Department of Pathology, Infanta Leonor University Hospital, Madrid, Spain
| |
Collapse
|
15
|
Gorodezki D, Schuhmann MU, Ebinger M, Schittenhelm J. Dissecting the Natural Patterns of Progression and Senescence in Pediatric Low-Grade Glioma: From Cellular Mechanisms to Clinical Implications. Cells 2024; 13:1215. [PMID: 39056798 PMCID: PMC11274692 DOI: 10.3390/cells13141215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Pediatric low-grade gliomas (PLGGs) comprise a heterogeneous set of low-grade glial and glioneuronal tumors, collectively representing the most frequent CNS tumors of childhood and adolescence. Despite excellent overall survival rates, the chronic nature of the disease bears a high risk of long-term disease- and therapy-related morbidity in affected patients. Recent in-depth molecular profiling and studies of the genetic landscape of PLGGs led to the discovery of the paramount role of frequent upregulation of RAS/MAPK and mTOR signaling in tumorigenesis and progression of these tumors. Beyond, the subsequent unveiling of RAS/MAPK-driven oncogene-induced senescence in these tumors may shape the understanding of the molecular mechanisms determining the versatile progression patterns of PLGGs, potentially providing a promising target for novel therapies. Recent in vitro and in vivo studies moreover indicate a strong dependence of PLGG formation and growth on the tumor microenvironment. In this work, we provide an overview of the current understanding of the multilayered cellular mechanisms and clinical factors determining the natural progression patterns and the characteristic biological behavior of these tumors, aiming to provide a foundation for advanced stratification for the management of these tumors within a multimodal treatment approach.
Collapse
Affiliation(s)
- David Gorodezki
- Department of Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany;
| | - Martin U. Schuhmann
- Section of Pediatric Neurosurgery, Department of Neurosurgery, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Martin Ebinger
- Department of Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany;
| | - Jens Schittenhelm
- Department of Neuropathology, Institute of Pathology, University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
16
|
Iijima K, Fujii H, Suzuki F, Murayama K, Goto YI, Saito Y, Sano T, Suzuki H, Miyata H, Kimura Y, Nakashima T, Suzuki H, Iwasaki M, Sato N. Genotype-relevant neuroimaging features in low-grade epilepsy-associated tumors. Front Neurol 2024; 15:1419104. [PMID: 39081340 PMCID: PMC11286587 DOI: 10.3389/fneur.2024.1419104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/12/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Low-grade epilepsy-associated tumors are the second most common histopathological diagnoses in cases of drug-resistant focal epilepsy. However, the connection between neuroimaging features and genetic alterations in these tumors is unclear, prompting an investigation into genotype-relevant neuroimaging characteristics. Methods This study retrospectively analyzed neuroimaging and surgical specimens from 46 epilepsy patients with low-grade epilepsy-associated neuroepithelial tumors that had genetic mutations identified through panel sequencing to investigate their relationship to genotypes. Results Three distinct neuroimaging groups were established: Group 1 had indistinct borders and iso T1-weighted and slightly high or high T2-weighted signal intensities without a diffuse mass effect, associated with 93.8% sensitivity and 100% specificity to BRAF V600E mutations; Group 2 exhibited sharp borders and very or slightly low T1-weighted and very high T2-weighted signal intensities with a diffuse mass effect and 100% sensitivity and specificity for FGFR1 mutations; and Group 3 displayed various characteristics. Histopathological diagnoses including diffuse low-grade glioma and ganglioglioma showed no clear association with genotypes. Notably, postoperative seizure-free rates were higher in Group 1 tumors (BRAF V600E) than in Group 2 tumors (FGFR1). Discussion These findings suggest that tumor genotype may be predicted by neuroimaging before surgery, providing insights for personalized treatment approaches.
Collapse
Affiliation(s)
- Keiya Iijima
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Hiroyuki Fujii
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Fumio Suzuki
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Kumiko Murayama
- Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yu-ichi Goto
- Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yuko Saito
- Department of Pathology and Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- Department of Neurology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Terunori Sano
- Department of Pathology and Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Hiroyoshi Suzuki
- Department of Pathology and Laboratory Medicine, National Hospital Organization Sendai Medical Center, Sendai, Miyagi, Japan
| | - Hajime Miyata
- Department of Neuropathology, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, Akita, Japan
| | - Yukio Kimura
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Takuma Nakashima
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiromichi Suzuki
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Masaki Iwasaki
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Noriko Sato
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| |
Collapse
|
17
|
Loreto Palacio P, Pan X, Jones D, Otero JJ. Exploring a distinct FGFR2::DLG5 rearrangement in a low-grade neuroepithelial tumor: A case report and mini-review of protein fusions in brain tumors. J Neuropathol Exp Neurol 2024; 83:567-578. [PMID: 38833313 DOI: 10.1093/jnen/nlae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
We report the novel clinical presentation of a primary brain neoplasm in a 30-year-old man with a mass-like area in the anteromedial temporal lobe. Histopathological analysis revealed a low-grade neuroepithelial tumor with cytologically abnormal neurons and atypical glial cells within the cerebral cortex. Molecular analysis showed a previously undescribed FGFR2::DLG5 rearrangement. We discuss the clinical significance and molecular implications of this fusion event, shedding light on its potential impact on tumor development and patient prognosis. Additionally, an extensive review places the finding in this case in the context of protein fusions in brain tumors in general and highlights their diverse manifestations, underlying molecular mechanisms, and therapeutic implications.
Collapse
Affiliation(s)
- Paola Loreto Palacio
- Abigail Wexner Center Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Xiaokang Pan
- James Molecular Laboratory, James Cancer Hospital, Columbus, Ohio, USA
| | - Dan Jones
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - José Javier Otero
- Neuropathology Division, Pathology Department, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
18
|
Vizcaino MA, Giannini C, Lalich D, Nael A, Jenkins RB, Tran Q, Orr BA, Abdullaev Z, Aldape K, Vaubel RA. Ganglioglioma with anaplastic/high-grade transformation: Histopathologic, molecular, and epigenetic characterization of 3 cases. J Neuropathol Exp Neurol 2024; 83:416-424. [PMID: 38699943 DOI: 10.1093/jnen/nlae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
Ganglioglioma (GG) with anaplasia (anaplastic ganglioglioma) is a rare and controversial diagnosis. When present, anaplasia involves the glial component of the tumor, either at presentation or at recurrence. To date, most published cases lack molecular characterization. We describe the histologic and molecular features of 3 patients presenting with BRAF p. V600E-mutant GG (CNS WHO grade 1) with high-grade glial transformation at recurrence. The tumors occurred in pediatric patients (age 9-16 years) with time to recurrence from 20 months to 7 years. At presentation, each tumor was low-grade, with a BRAFV600E-positive ganglion cell component and a glial component resembling pleomorphic xanthoastrocytoma (PXA) or fibrillary astrocytoma. At recurrence, tumors resembled anaplastic PXA or high-grade astrocytomas without neuronal differentiation. CDKN2A homozygous deletion (HD) was absent in all primary tumors. At recurrence, 2 cases acquired CDKN2A HD; the third case showed loss of p16 and MTAP immunoexpression, but no CDKN2A/B HD or mutation was identified. By DNA methylation profiling, all primary and recurrent tumors either grouped or definitely matched to different methylation classes. Our findings indicate that malignant progression of the glial component can occur in GG and suggest that CDKN2A/B inactivation plays a significant role in this process.
Collapse
Affiliation(s)
- M Adelita Vizcaino
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Minnesota, USA
| | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Minnesota, USA
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Daniel Lalich
- Department of Pathology, Robert J. Dole VA Medical Center and Wesley Healthcare Center, Wichita, Kansas, USA
| | - Ali Nael
- Department of Pathology, Children's Hospital of Orange County and University of California Irvine, Orange County, California, USA
| | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Minnesota, USA
| | - Quynh Tran
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Brent A Orr
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Zied Abdullaev
- Laboratory of Pathology, National Cancer Institute/Center for Cancer Research, Bethesda, Maryland, USA
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute/Center for Cancer Research, Bethesda, Maryland, USA
| | - Rachael A Vaubel
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Minnesota, USA
| |
Collapse
|
19
|
Goncalves FG, Mahecha-Carvajal ME, Desa A, Yildiz H, Talbeya JK, Moreno LA, Viaene AN, Vossough A. Imaging of supratentorial intraventricular masses in children: a pictorial review-part 2. Neuroradiology 2024; 66:699-716. [PMID: 38085360 PMCID: PMC11031612 DOI: 10.1007/s00234-023-03253-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/13/2023] [Indexed: 12/22/2023]
Abstract
PURPOSE This article is the second in a two-part series aimed at exploring the spectrum of supratentorial intraventricular masses in children. In particular, this part delves into masses originating from cells of the ventricular lining, those within the septum pellucidum, and brain parenchyma cells extending into the ventricles. The aim of this series is to offer a comprehensive understanding of these supratentorial intraventricular masses, encompassing their primary clinical findings and histological definitions. METHODS We conducted a review and analysis of relevant epidemiological data, the current genetics/molecular classifications as per the fifth edition of the World Health Organization (WHO) Classification of Tumors of the Central Nervous System (WHO CNS5), and imaging findings. Each supratentorial intraventricular mass was individually evaluated, with a detailed discussion on its clinical and histological features. RESULTS This article covers a range of supratentorial intraventricular masses observed in children. These include colloid cysts, subependymal giant cell astrocytomas, ependymomas, gangliogliomas, myxoid glioneuronal tumors, central neurocytomas, high-grade gliomas, pilocytic astrocytomas, cavernous malformations, and other embryonal tumors. Each mass type is characterized both clinically and histologically, offering an in-depth review of their individual imaging characteristics. CONCLUSION The WHO CNS5 introduces notable changes, emphasizing the vital importance of molecular diagnostics in classifying pediatric central nervous system tumors. These foundational shifts have significant potential to impact management strategies and, as a result, the outcomes of intraventricular masses in children.
Collapse
Affiliation(s)
| | | | - Aishwary Desa
- Drexel University College of Medicine Philadelphia, Philadelphia, PA, USA
| | - Harun Yildiz
- Department of Radiology, Dortcelik Children's Hospital, Bursa, Turkey
| | | | - Luz Angela Moreno
- Pediatric Imaging, Department of Radiology, Fundación Hospital La Misericordia, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Angela N Viaene
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Pathology Department, Children´s Hospital of Philadelphia, Philadelphia, USA
| | - Arastoo Vossough
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Radiology Department, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
20
|
Otero JJ. The Cognitive Framework Behind Modern Neuropathology. Arch Pathol Lab Med 2024; 148:e103-e110. [PMID: 37694567 DOI: 10.5858/arpa.2023-0209-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 09/12/2023]
Abstract
CONTEXT In 2021 the World Health Organization distributed a new classification of central nervous system tumors that incorporated modern testing modalities in the diagnosis. Although universally accepted as a scientifically superior system, this schema has created controversy because its deployment globally is challenging in the best of circumstances and impossible in resource-poor health care ecosystems. Compounding this problem is the significant challenge that neuropathologists with expertise in central nervous system tumors are rare. OBJECTIVE To demonstrate diagnostic use of simple unsupervised machine learning techniques using publicly available data sets. I also discuss some potential solutions to the deployment of neuropathology classification in health care ecosystems burdened by this classification schema. DATA SOURCES The Cancer Genome Atlas RNA sequencing data from low-grade and high-grade gliomas. CONCLUSIONS Methylation-based classification will be unable to solve all diagnostic problems in neuropathology. Information theory quantifications generate focused workflows in pathology, resulting in prevention of ordering unnecessary tests and identifying biomarkers that facilitate diagnosis.
Collapse
Affiliation(s)
- José Javier Otero
- From the Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus
| |
Collapse
|
21
|
Gupta A, Lechpammer M, Brossier NM. Germline BRCA2 pathogenic variants in pediatric ganglioglioma: Case report and review of the literature. Childs Nerv Syst 2024; 40:1609-1612. [PMID: 38168858 DOI: 10.1007/s00381-023-06267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND BRCA1 and BRCA2 are tumor suppressor genes associated with increased risk of breast and ovarian cancer in adulthood. Patients with germline pathogenic variants in these genes have also been reported to develop brain tumors, although it is unclear whether these syndromes are associated with significant increased risk of brain tumor formation. RESULTS Here, we report a case of a child with germline BRCA2 pathogenic variant presenting with a symptomatic ganglioglioma. To our knowledge, this is the first such patient to be reported. We discuss prior cases of brain tumors in BRCA1/2 patients and evidence for a potential role for BRCA1/2 pathogenic variants in brain tumor formation. CONCLUSION BRCA2 germline variants may increase the risk of developing some types of pediatric brain tumors, but further study is needed to determine its effect on low-grade glioma formation.
Collapse
Affiliation(s)
- Anya Gupta
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | | | - Nicole M Brossier
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA.
| |
Collapse
|
22
|
Du Y, Li R, Fu D, Zhang B, Cui A, Shao Y, Lai Z, Chen R, Chen B, Wang Z, Zhang W, Chu L. Multi-omics technologies and molecular biomarkers in brain tumor-related epilepsy. CNS Neurosci Ther 2024; 30:e14717. [PMID: 38641945 PMCID: PMC11031674 DOI: 10.1111/cns.14717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/04/2024] [Accepted: 03/29/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Brain tumors are one of the leading causes of epilepsy, and brain tumor-related epilepsy (BTRE) is recognized as the major cause of intractable epilepsy, resulting in huge treatment cost and burden to patients, their families, and society. Although optimal treatment regimens are available, the majority of patients with BTRE show poor resolution of symptoms. BTRE has a very complex and multifactorial etiology, which includes several influencing factors such as genetic and molecular biomarkers. Advances in multi-omics technologies have enabled to elucidate the pathophysiological mechanisms and related biomarkers of BTRE. Here, we reviewed multi-omics technology-based research studies on BTRE published in the last few decades and discussed the present status, development, opportunities, challenges, and prospects in treating BTRE. METHODS First, we provided a general review of epilepsy, BTRE, and multi-omics techniques. Next, we described the specific multi-omics (including genomics, transcriptomics, epigenomics, proteomics, and metabolomics) techniques and related molecular biomarkers for BTRE. We then presented the associated pathogenetic mechanisms of BTRE. Finally, we discussed the development and application of novel omics techniques for diagnosing and treating BTRE. RESULTS Genomics studies have shown that the BRAF gene plays a role in BTRE development. Furthermore, the BRAF V600E variant was found to induce epileptogenesis in the neuronal cell lineage and tumorigenesis in the glial cell lineage. Several genomics studies have linked IDH variants with glioma-related epilepsy, and the overproduction of D2HG is considered to play a role in neuronal excitation that leads to seizure occurrence. The high expression level of Forkhead Box O4 (FOXO4) was associated with a reduced risk of epilepsy occurrence. In transcriptomics studies, VLGR1 was noted as a biomarker of epileptic onset in patients. Several miRNAs such as miR-128 and miRNA-196b participate in BTRE development. miR-128 might be negatively associated with the possibility of tumor-related epilepsy development. The lncRNA UBE2R2-AS1 inhibits the growth and invasion of glioma cells and promotes apoptosis. Quantitative proteomics has been used to determine dynamic changes of protein acetylation in epileptic and non-epileptic gliomas. In another proteomics study, a high expression of AQP-4 was detected in the brain of GBM patients with seizures. By using quantitative RT-PCR and immunohistochemistry assay, a study revealed that patients with astrocytomas and oligoastrocytomas showed high BCL2A1 expression and poor seizure control. By performing immunohistochemistry, several studies have reported the relationship between D2HG overproduction and seizure occurrence. Ki-67 overexpression in WHO grade II gliomas was found to be associated with poor postoperative seizure control. According to metabolomics research, the PI3K/AKT/mTOR pathway is associated with the development of glioma-related epileptogenesis. Another metabolomics study found that SV2A, P-gb, and CAD65/67 have the potential to function as biomarkers for BTRE. CONCLUSIONS Based on the synthesized information, this review provided new research perspectives and insights into the early diagnosis, etiological factors, and personalized treatment of BTRE.
Collapse
Affiliation(s)
- Yaoqiang Du
- Laboratory Medicine Center, Department of Transfusion MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Rusong Li
- The Second School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Danqing Fu
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Biqin Zhang
- Cancer Center, Department of HematologyZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
| | - Ailin Cui
- Cancer Center, Department of Ultrasound MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
| | - Yutian Shao
- Zhejiang BioAsia Life Science InstitutePinghuChina
| | - Zeyu Lai
- The Second School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Rongrong Chen
- School of Clinical MedicineHangzhou Normal UniversityHangzhouChina
| | - Bingyu Chen
- Laboratory Medicine Center, Department of Transfusion MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
| | - Zhen Wang
- Laboratory Medicine Center, Department of Transfusion MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
| | - Wei Zhang
- The Second School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Lisheng Chu
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
23
|
Nakashima T, Yamamoto R, Ohno M, Sugino H, Takahashi M, Funakoshi Y, Nambu S, Uneda A, Yanagisawa S, Uzuka T, Arakawa Y, Hanaya R, Ishida J, Yoshimoto K, Saito R, Narita Y, Suzuki H. Development of a rapid and comprehensive genomic profiling test supporting diagnosis and research for gliomas. Brain Tumor Pathol 2024; 41:50-60. [PMID: 38332448 DOI: 10.1007/s10014-023-00476-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/25/2023] [Indexed: 02/10/2024]
Abstract
A prompt and reliable molecular diagnosis for brain tumors has become crucial in precision medicine. While Comprehensive Genomic Profiling (CGP) has become feasible, there remains room for enhancement in brain tumor diagnosis due to the partial lack of essential genes and limitations in broad copy number analysis. In addition, the long turnaround time of commercially available CGPs poses an additional obstacle to the timely implementation of results in clinics. To address these challenges, we developed a CGP encompassing 113 genes, genome-wide copy number changes, and MGMT promoter methylation. Our CGP incorporates not only diagnostic genes but also supplementary genes valuable for research. Our CGP enables us to simultaneous identification of mutations, gene fusions, focal and broad copy number alterations, and MGMT promoter methylation status, with results delivered within a minimum of 4 days. Validation of our CGP, through comparisons with whole-genome sequencing, RNA sequencing, and pyrosequencing, has certified its accuracy and reliability. We applied our CGP for 23 consecutive cases of intracranial mass lesions, which demonstrated its efficacy in aiding diagnosis and prognostication. Our CGP offers a comprehensive and rapid molecular profiling for gliomas, which could potentially apply to clinical practices and research primarily in the field of brain tumors.
Collapse
Affiliation(s)
- Takuma Nakashima
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Ryo Yamamoto
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Makoto Ohno
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Hirokazu Sugino
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Masamichi Takahashi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Yusuke Funakoshi
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Shohei Nambu
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Atsuhito Uneda
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Shunsuke Yanagisawa
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Takeo Uzuka
- Department of Neurosurgery, Dokkyo Medical University, 880 Kitakobaya-Shi, Mibu, Shimotsuga-Gun, Tochigi, 321-0293, Japan
| | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho Shogoin Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Ryosuke Hanaya
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Joji Ishida
- Department of Neurosurgery, Okayama University Graduate School of Medicine, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Science, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka City, 812-8582, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Hiromichi Suzuki
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
24
|
Gooley S, Perucca P, Tubb C, Hildebrand MS, Berkovic SF. Somatic mosaicism in focal epilepsies. Curr Opin Neurol 2024; 37:105-114. [PMID: 38235675 DOI: 10.1097/wco.0000000000001244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
PURPOSE OF REVIEW Over the past decade, it has become clear that brain somatic mosaicism is an important contributor to many focal epilepsies. The number of cases and the range of underlying pathologies with somatic mosaicism are rapidly increasing. This growth in somatic variant discovery is revealing dysfunction in distinct molecular pathways in different focal epilepsies. RECENT FINDINGS We briefly summarize the current diagnostic yield of pathogenic somatic variants across all types of focal epilepsy where somatic mosaicism has been implicated and outline the specific molecular pathways affected by these variants. We will highlight the recent findings that have increased diagnostic yields such as the discovery of pathogenic somatic variants in novel genes, and new techniques that allow the discovery of somatic variants at much lower variant allele fractions. SUMMARY A major focus will be on the emerging evidence that somatic mosaicism may contribute to some of the more common focal epilepsies such as temporal lobe epilepsy with hippocampal sclerosis, which could lead to it being re-conceptualized as a genetic disorder.
Collapse
Affiliation(s)
- Samuel Gooley
- Epilepsy Research Centre, Department of Medicine, University of Melbourne
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Heidelberg
| | - Piero Perucca
- Epilepsy Research Centre, Department of Medicine, University of Melbourne
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Heidelberg
- Department of Neuroscience, Central Clinical School, Monash University
- Department of Neurology, Alfred Health, Melbourne
- Department of Neurology, The Royal Melbourne Hospital
| | - Caitlin Tubb
- Epilepsy Research Centre, Department of Medicine, University of Melbourne
| | - Michael S Hildebrand
- Epilepsy Research Centre, Department of Medicine, University of Melbourne
- Neuroscience Group, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Heidelberg
| |
Collapse
|
25
|
Iijima K, Komatsu K, Miyashita S, Suyama K, Murayama K, Hashizume K, Tabe NK, Miyata H, Iwasaki M, Taya S, Hoshino M. Transcriptional features of low-grade neuroepithelial tumors with the BRAF V600E mutation associated with epileptogenicity. Genes Cells 2024; 29:192-206. [PMID: 38269481 DOI: 10.1111/gtc.13096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024]
Abstract
Low-grade neuroepithelial tumors are major causes of drug-resistant focal epilepsy. Clinically, these tumors are defined as low-grade epilepsy-associated neuroepithelial tumors (LEATs). The BRAF V600E mutation is frequently observed in LEAT and linked to poor seizure outcomes. However, its molecular role in epileptogenicity remains elusive. To understand the molecular mechanism underlying the epileptogenicity in LEAT with the BRAF V600E genetic mutation (BRAF V600E-LEAT), we conducted RNA sequencing (RNA-seq) analysis using surgical specimens of BRAF V600E-LEAT obtained and stored at a single institute. We obtained 21 BRAF V600E-LEAT specimens and 4 control specimens, including 24 from Japanese patients and 1 from a patient of Central Asian origin, along with comprehensive clinical data. We submitted the transcriptome dataset of 21 BRAF V600E-LEAT plus 4 controls, as well as detailed clinical information, to a public database. Preliminary bioinformatics analysis using this dataset identified 2134 differentially expressed genes between BRAF V600E-LEAT and control. Additionally, gene set enrichment analysis provided novel insights into the association between estrogen response-related pathways and the epileptogenicity of BRAF V600E-LEAT patients. Our datasets and findings will contribute toward the understanding of the pathology of epilepsy caused by LEAT and the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Keiya Iijima
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Kanako Komatsu
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Satoshi Miyashita
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Kyoka Suyama
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Kumiko Murayama
- Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Koichi Hashizume
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Nao K Tabe
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Hajime Miyata
- Department of Neuropathology, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, Akita City, Akita, Japan
| | - Masaki Iwasaki
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Shinichiro Taya
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- Division of Behavioral Neuropharmacology, International Center for Brain Science (ICBS), Fujita Health University, Toyoake, Aichi, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| |
Collapse
|
26
|
Pereira BJA, de Almeida AN, Paiva WS, Tzu WH, Marie SKN. Natural history and neuro-oncological approach in spinal gangliogliomas: a systematic review. Neurosurg Rev 2024; 47:93. [PMID: 38403664 DOI: 10.1007/s10143-024-02327-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
To describe the natural history of spinal gangliogliomas (GG) in order to determine the most appropriate neuro-oncological management. A Medline search for relevant publications up to July 2023 using the key phrase "ganglioglioma spinal" and "ganglioglioma posterior fossa" led to the retrieval of 178 studies. This corpus provided the basis for the present review. As an initial selection step, the following inclusion criteria were adopted: (i) series and case reports on spinal GG; (ii) clinical outcomes were reported specifically for GG; (iii) GG was the only pathological diagnosis for the evaluation of the tumor; (iv) papers written only in English was evaluated; and (v) papers describing each case in the series were included. The World Health Organization (WHO) 2021 grading criteria for gangliogliomas were applied. A total of 107 tumors were evaluated (63 from male patients and 44 from female patients; 1.43 male/1.0 female ratio, mean age 18.34 ± 15.84 years). The most common site was the cervical spine, accounting for 43 cases (40.18%); GTR was performed in 35 cases (32.71%) and STR in 71 cases (66.35%), while this information was not reported in 1 case (0.94%). 8 deaths were reported (7.47%) involving 2 males (25%) and 6 females (75%) aged 4-78 years (mean 34.27 ± 18.22) years. GGs located on the spine displayed the same gender ratio as these tumors in general. The most frequent symptom was pain and motor impairment, while the most prevalent location was the cervical spinal cord. GTR of the tumor posed a challenge for neurosurgeons, due to the difficulty of resecting the lesion without damaging the spinal eloquent area, explaining the lower rate of cure for this tumor type.
Collapse
Affiliation(s)
- Benedito Jamilson Araújo Pereira
- Laboratory of Molecular and Cellular Biology (LIM15), Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Avenida Dr Arnaldo, 455/ 4º Andar/ sala 4110, São Paulo, SP, Cep: 01246-903, Brazil.
| | - Antônio Nogueira de Almeida
- Neurosurgery Division, Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Wellingson Silva Paiva
- Neurosurgery Division, Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Wen Hung Tzu
- Neurosurgery Division, Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Suely Kazue Nagahashi Marie
- Laboratory of Molecular and Cellular Biology (LIM15), Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Avenida Dr Arnaldo, 455/ 4º Andar/ sala 4110, São Paulo, SP, Cep: 01246-903, Brazil
| |
Collapse
|
27
|
Auffret L, Ajlil Y, Tauziède-Espariat A, Kergrohen T, Puiseux C, Riffaud L, Blouin P, Bertozzi AI, Leblond P, Blomgren K, Froelich S, Picca A, Touat M, Sanson M, Beccaria K, Blauwblomme T, Dangouloff-Ros V, Boddaert N, Varlet P, Debily MA, Grill J, Castel D. A new subtype of diffuse midline glioma, H3 K27 and BRAF/FGFR1 co-altered: a clinico-radiological and histomolecular characterisation. Acta Neuropathol 2023; 147:2. [PMID: 38066305 PMCID: PMC10709479 DOI: 10.1007/s00401-023-02651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023]
Abstract
Diffuse midline gliomas (DMG) H3 K27-altered are incurable grade 4 gliomas and represent a major challenge in neuro-oncology. This tumour type is now classified in four subtypes by the 2021 edition of the WHO Classification of the Central Nervous System (CNS) tumours. However, the H3.3-K27M subgroup still appears clinically and molecularly heterogeneous. Recent publications reported that rare patients presenting a co-occurrence of H3.3K27M with BRAF or FGFR1 alterations tended to have a better prognosis. To better study the role of these co-driver alterations, we assembled a large paediatric and adult cohort of 29 tumours H3K27-altered with co-occurring activating mutation in BRAF or FGFR1 as well as 31 previous cases from the literature. We performed a comprehensive histological, radiological, genomic, transcriptomic and DNA methylation analysis. Interestingly, unsupervised t-distributed Stochastic Neighbour Embedding (tSNE) analysis of DNA methylation profiles regrouped BRAFV600E and all but one FGFR1MUT DMG in a unique methylation cluster, distinct from the other DMG subgroups and also from ganglioglioma (GG) or high-grade astrocytoma with piloid features (HGAP). This new DMG subtype harbours atypical radiological and histopathological profiles with calcification and/or a solid tumour component both for BRAFV600E and FGFR1MUT cases. The analyses of a H3.3-K27M BRAFV600E tumour at diagnosis and corresponding in vitro cellular model showed that mutation in H3-3A was the first event in the oncogenesis. Contrary to other DMG, these tumours occur more frequently in the thalamus (70% for BRAFV600E and 58% for FGFR1MUT) and patients have a longer overall survival with a median above three years. In conclusion, DMG, H3 K27 and BRAF/FGFR1 co-altered represent a new subtype of DMG with distinct genotype/phenotype characteristics, which deserve further attention with respect to trial interpretation and patient management.
Collapse
Affiliation(s)
- Lucie Auffret
- Molecular Predictors and New Targets in Oncology, Inserm, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Yassine Ajlil
- Molecular Predictors and New Targets in Oncology, Inserm, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Arnault Tauziède-Espariat
- Department of Neuropathology, GHU Paris-Psychiatrie et Neurosciences, Sainte-Anne Hospital, Paris, France
- UMR 1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Inserm, Paris, France
| | - Thomas Kergrohen
- Molecular Predictors and New Targets in Oncology, Inserm, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Département de Cancérologie de L'Enfant et de L'Adolescent, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Chloé Puiseux
- Department of Pediatric Oncology, Rennes University Hospital, Rennes, France
| | - Laurent Riffaud
- Department of Pediatric Neurosurgery, Rennes University Hospital, Rennes, France
| | - Pascale Blouin
- Department of Pediatric Hematology, CHRU de Tours, Tours, France
| | | | - Pierre Leblond
- Institute of Pediatric Hematology and Oncology, Centre Léon Bérard, Lyon, France
| | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Sébastien Froelich
- Service de Neurochirurgie-Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Alberto Picca
- Inserm U1127, CNRS UMR 7225, Institut du Cerveau, ICM, Charles Foix, Service de Neurologie 2-Mazarin, Sorbonne Université, AP-HP, Hôpitaux Universitaires la Pitié Salpêtrière, Paris, France
| | - Mehdi Touat
- Inserm U1127, CNRS UMR 7225, Institut du Cerveau, ICM, Charles Foix, Service de Neurologie 2-Mazarin, Sorbonne Université, AP-HP, Hôpitaux Universitaires la Pitié Salpêtrière, Paris, France
| | - Marc Sanson
- Inserm U1127, CNRS UMR 7225, Institut du Cerveau, ICM, Charles Foix, Service de Neurologie 2-Mazarin, Sorbonne Université, AP-HP, Hôpitaux Universitaires la Pitié Salpêtrière, Paris, France
| | - Kévin Beccaria
- Molecular Predictors and New Targets in Oncology, Inserm, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Department of Pediatric Neurosurgery, Hôpital Necker-Enfants Malades, AP-HP, Université Paris Cité, Paris, France
| | - Thomas Blauwblomme
- Department of Pediatric Neurosurgery, Hôpital Necker-Enfants Malades, AP-HP, Université Paris Cité, Paris, France
| | - Volodia Dangouloff-Ros
- Department of Pediatric Radiology, Hôpital Necker-Enfants Malades, AP-HP, Université Paris-Cité, Paris, France
- INSERM U1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Nathalie Boddaert
- Department of Pediatric Radiology, Hôpital Necker-Enfants Malades, AP-HP, Université Paris-Cité, Paris, France
- INSERM U1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Pascale Varlet
- Department of Neuropathology, GHU Paris-Psychiatrie et Neurosciences, Sainte-Anne Hospital, Paris, France
- UMR 1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Inserm, Paris, France
| | - Marie-Anne Debily
- Molecular Predictors and New Targets in Oncology, Inserm, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Département de Biologie, Université Évry Paris-Saclay, Évry, France
| | - Jacques Grill
- Molecular Predictors and New Targets in Oncology, Inserm, Gustave Roussy, Université Paris-Saclay, Villejuif, France.
- Département de Cancérologie de L'Enfant et de L'Adolescent, Gustave Roussy, Université Paris-Saclay, Villejuif, France.
| | - David Castel
- Molecular Predictors and New Targets in Oncology, Inserm, Gustave Roussy, Université Paris-Saclay, Villejuif, France.
- Département de Cancérologie de L'Enfant et de L'Adolescent, Gustave Roussy, Université Paris-Saclay, Villejuif, France.
| |
Collapse
|
28
|
Meredith DM, Pisapia DJ. 2021 World Health Organization Classification of Brain Tumors. Continuum (Minneap Minn) 2023; 29:1638-1661. [PMID: 38085892 DOI: 10.1212/con.0000000000001355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
OBJECTIVE The classification of brain tumors is a rapidly evolving field that requires extensive integration of molecular diagnostic findings from an expanding set of platforms and assays. This article summarizes the schema presented in the 5th edition of the World Health Organization (WHO) classification of central nervous system (CNS) tumors while highlighting diagnostic molecular findings and discussing the strengths and weaknesses of commonly available testing modalities. LATEST DEVELOPMENTS Several major changes in practice were introduced with the 5th edition of the CNS WHO classification, including molecular grading of adult diffuse gliomas, the introduction of many new entities within the spectrum of pediatric gliomas and glioneuronal tumors, and the widespread adoption of methylation classes as useful or even necessary diagnostic criteria. Additionally, several revisions to nomenclature (eg, IDH-mutant gliomas) were introduced for simplicity and to disambiguate from other tumor types. ESSENTIAL POINTS The classification of brain tumors continues to grow in complexity alongside our improved understanding of their nuanced molecular underpinnings.
Collapse
|
29
|
Bian Y, Hahn H, Uhmann A. The hidden hedgehog of the pituitary: hedgehog signaling in development, adulthood and disease of the hypothalamic-pituitary axis. Front Endocrinol (Lausanne) 2023; 14:1219018. [PMID: 37476499 PMCID: PMC10355329 DOI: 10.3389/fendo.2023.1219018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Hedgehog signaling plays pivotal roles in embryonic development, adult homeostasis and tumorigenesis. However, its engagement in the pituitary gland has been long underestimated although Hedgehog signaling and pituitary embryogenic development are closely linked. Thus, deregulation of this signaling pathway during pituitary development results in malformation of the gland. Research of the last years further implicates a regulatory role of Hedgehog signaling in the function of the adult pituitary, because its activity is also interlinked with homeostasis, hormone production, and most likely also formation of neoplasms of the gland. The fact that this pathway can be efficiently targeted by validated therapeutic strategies makes it a promising candidate for treating pituitary diseases. We here summarize the current knowledge about the importance of Hedgehog signaling during pituitary development and review recent data that highlight the impact of Hedgehog signaling in the healthy and the diseased adult pituitary gland.
Collapse
|
30
|
Cantor E, Berkovich R, Navalkele P, Brossier NM. Rapid symptomatic improvement in two patients with ganglioglioma after restarting BRAF inhibitor therapy. Pediatr Blood Cancer 2023; 70:e30296. [PMID: 36916822 PMCID: PMC10500853 DOI: 10.1002/pbc.30296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023]
Affiliation(s)
- Evan Cantor
- Division of Hematology and Oncology, Connecticut Children’s Medical Center, Hartford, Connecticut, USA
- Department of Pediatrics, UCONN School of Medicine, Farmington, Connecticut, USA
| | - Rachel Berkovich
- Departments of Radiology, Children’s Mercy Hospital, Kansas City, Missouri, USA
| | - Pournima Navalkele
- Division of Pediatric Oncology, Children’s Hospital of Orange County, Orange, California, USA
| | - Nicole M. Brossier
- Departments of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
31
|
Gilani A, Siddiq Z, Kissell E, Kasson J, Kleinschmidt-DeMasters BK. Genomic and epigenomic re-categorization of congenital glioblastoma and desmoplastic infantile ganglioglioma. Childs Nerv Syst 2023; 39:1861-1868. [PMID: 36707425 DOI: 10.1007/s00381-023-05848-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/14/2023] [Indexed: 01/29/2023]
Abstract
INTRODUCTION The recently updated World Health Organization classification of central nervous system (CNS) tumors, 5th edition, (CNS5) reclassifies pediatric tumors according to their distinct molecular drivers, recognizing a new entity-infant-type hemispheric glioma (IHG). Defined by its unique epigenetic signature, and/or genomic fusions in ALK, ROS1, NTRK, or MET gene, IHG subsumes many cases previously classified as congenital glioblastoma (cGBM). Histologic features of IHG are still poorly defined with known overlap with a clinic radiologically similar entity-desmoplastic infantile ganglioglioma/astrocytoma (DIG). METHODS We revisited our cohort of cGBMs and DIGs, now reclassifying them according to CNS5 and compared the clinical, radiologic, molecular and histologic features between the two. RESULTS 3/6 cases of cGBM that underwent targeted NGS fusion mutation panel were positive for ALK fusions (involving MAP4, MZT2Bex2, and EML4 genes as fusion partners), and 1/6 showed GOPC:ROS1 fusion. Interestingly, GOPC:ROS1 fusion was also shared by 1/5 cases of histologically defined DIG. DNA methylation profiling using the Heidelberg classifier (v12.3) recategorized 2/5 DIG cases as IHG (including the case with ROS1 alteration). CONCLUSION In conclusion, histology alone is insufficient to distinguish IHG from DIG, necessitating epigenomic and genomic testing for the diagnosis of early-life gliomas.
Collapse
Affiliation(s)
- Ahmed Gilani
- Children's Hospital Colorado, Aurora, CO, USA.
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Zainab Siddiq
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | | | - B K Kleinschmidt-DeMasters
- Departments of Pathology, Neurology and Neurosurgery University of Colorado Anschutz Medical Campus, 13123 East 16th Ave, Aurora, CO, 80045, USA
| |
Collapse
|
32
|
Damayanti NP, Saadatzadeh MR, Dobrota E, Ordaz JD, Bailey BJ, Pandya PH, Bijangi-Vishehsaraei K, Shannon HE, Alfonso A, Coy K, Trowbridge M, Sinn AL, Zhang ZY, Gallagher RI, Wulfkuhle J, Petricoin E, Richardson AM, Marshall MS, Lion A, Ferguson MJ, Balsara KE, Pollok KE. Establishment and characterization of patient-derived xenograft of a rare pediatric anaplastic pleomorphic xanthoastrocytoma (PXA) bearing a CDC42SE2-BRAF fusion. Sci Rep 2023; 13:9163. [PMID: 37280243 PMCID: PMC10244396 DOI: 10.1038/s41598-023-36107-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/30/2023] [Indexed: 06/08/2023] Open
Abstract
Pleomorphic xanthoastrocytoma (PXA) is a rare subset of primary pediatric glioma with 70% 5-year disease free survival. However, up to 20% of cases present with local recurrence and malignant transformation into more aggressive type anaplastic PXA (AXPA) or glioblastoma. The understanding of disease etiology and mechanisms driving PXA and APXA are limited, and there is no standard of care. Therefore, development of relevant preclinical models to investigate molecular underpinnings of disease and to guide novel therapeutic approaches are of interest. Here, for the first time we established, and characterized a patient-derived xenograft (PDX) from a leptomeningeal spread of a patient with recurrent APXA bearing a novel CDC42SE2-BRAF fusion. An integrated -omics analysis was conducted to assess model fidelity of the genomic, transcriptomic, and proteomic/phosphoproteomic landscapes. A stable xenoline was derived directly from the patient recurrent tumor and maintained in 2D and 3D culture systems. Conserved histology features between the PDX and matched APXA specimen were maintained through serial passages. Whole exome sequencing (WES) demonstrated a high degree of conservation in the genomic landscape between PDX and matched human tumor, including small variants (Pearson's r = 0.794-0.839) and tumor mutational burden (~ 3 mutations/MB). Large chromosomal variations including chromosomal gains and losses were preserved in PDX. Notably, chromosomal gain in chromosomes 4-9, 17 and 18 and loss in the short arm of chromosome 9 associated with homozygous 9p21.3 deletion involving CDKN2A/B locus were identified in both patient tumor and PDX sample. Moreover, chromosomal rearrangement involving 7q34 fusion; CDC42SE-BRAF t (5;7) (q31.1, q34) (5:130,721,239, 7:140,482,820) was identified in the PDX tumor, xenoline and matched human tumor. Transcriptomic profile of the patient's tumor was retained in PDX (Pearson r = 0.88) and in xenoline (Pearson r = 0.63) as well as preservation of enriched signaling pathways (FDR Adjusted P < 0.05) including MAPK, EGFR and PI3K/AKT pathways. The multi-omics data of (WES, transcriptome, and reverse phase protein array (RPPA) was integrated to deduce potential actionable pathways for treatment (FDR < 0.05) including KEGG01521, KEGG05202, and KEGG05200. Both xenoline and PDX were resistant to the MEK inhibitors trametinib or mirdametinib at clinically relevant doses, recapitulating the patient's resistance to such treatment in the clinic. This set of APXA models will serve as a preclinical resource for developing novel therapeutic regimens for rare anaplastic PXAs and pediatric high-grade gliomas bearing BRAF fusions.
Collapse
Affiliation(s)
- Nur P Damayanti
- Neuro-Oncology Program, Pediatric Neurosurgery, Department of Neurosurgery, Indiana University, Indianapolis, IN, 46202, USA
- Department of Neurosurgery, Indiana University, Indianapolis, IN, 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
| | - M Reza Saadatzadeh
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Erika Dobrota
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Josue D Ordaz
- Department of Neurosurgery, Indiana University, Indianapolis, IN, 46202, USA
| | - Barbara J Bailey
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana University Simon Comprehensive Cancer Center Preclinical Modeling and Therapeutics Core, Indianapolis, USA
| | - Pankita H Pandya
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Khadijeh Bijangi-Vishehsaraei
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Translational Research Integrated Biology Laboratory/Indiana Pediatric Biobank, Riley Children Hospital, Indianapolis, IN, 46202, USA
| | - Harlan E Shannon
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | - Kathy Coy
- Indiana University Simon Comprehensive Cancer Center Preclinical Modeling and Therapeutics Core, Indianapolis, USA
| | - Melissa Trowbridge
- Indiana University Simon Comprehensive Cancer Center Preclinical Modeling and Therapeutics Core, Indianapolis, USA
| | - Anthony L Sinn
- Indiana University Simon Comprehensive Cancer Center Preclinical Modeling and Therapeutics Core, Indianapolis, USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, IN, 47907, USA
| | - Rosa I Gallagher
- Center for Applied Proteomics and Molecular Medicine, Institute for Biomedical Innovation, George Mason University, Manassas, VA, 20110, USA
| | - Julia Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, Institute for Biomedical Innovation, George Mason University, Manassas, VA, 20110, USA
| | - Emanuel Petricoin
- Center for Applied Proteomics and Molecular Medicine, Institute for Biomedical Innovation, George Mason University, Manassas, VA, 20110, USA
| | - Angela M Richardson
- Department of Neurosurgery, Indiana University, Indianapolis, IN, 46202, USA
- Indiana University Simon Comprehensive Cancer Center Preclinical Modeling and Therapeutics Core, Indianapolis, USA
| | - Mark S Marshall
- Pediatric Cancer Precision Genomics Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Alex Lion
- Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Michael J Ferguson
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Pediatric Cancer Precision Genomics Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Karl E Balsara
- Neuro-Oncology Program, Pediatric Neurosurgery, Department of Neurosurgery, Indiana University, Indianapolis, IN, 46202, USA.
- Department of Neurosurgery, University of Oklahoma School of Medicine, Oklahoma City, OH, 73104, USA.
| | - Karen E Pollok
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA.
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Indiana University Simon Comprehensive Cancer Center Preclinical Modeling and Therapeutics Core, Indianapolis, USA.
- Pediatric Cancer Precision Genomics Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
33
|
D'Gama AM, Poduri A. Brain somatic mosaicism in epilepsy: Bringing results back to the clinic. Neurobiol Dis 2023; 181:106104. [PMID: 36972791 DOI: 10.1016/j.nbd.2023.106104] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/28/2023] Open
Abstract
Over the past decade, there has been tremendous progress in understanding brain somatic mosaicism in epilepsy in the research setting. Access to resected brain tissue samples from patients with medically refractory epilepsy undergoing epilepsy surgery has been key to making these discoveries. In this review, we discuss the gap between making discoveries in the research setting and bringing results back to the clinical setting. Current clinical genetic testing mainly uses clinically accessible tissue samples, like blood and saliva, and can detect inherited and de novo germline variants and potentially non-brain-limited mosaic variants that have resulted from post-zygotic mutation (also called "somatic mutations"). Methods developed in the research setting to detect brain-limited mosaic variants using brain tissue samples need to be further translated and validated in the clinical setting, which will allow post-resection brain tissue genetic diagnoses. However, obtaining a genetic diagnosis after surgery for refractory focal epilepsy, when brain tissue samples are available, is arguably "too late" to guide precision management. Emerging methods using cerebrospinal fluid (CSF) and stereoelectroencephalography (SEEG) electrodes hold promise for establishing genetic diagnoses pre-resection without the need for actual brain tissue. In parallel, development of curation rules for interpreting the pathogenicity of mosaic variants, which have unique considerations compared to germline variants, will assist clinically accredited laboratories and epilepsy geneticists in making genetic diagnoses. Returning results of brain-limited mosaic variants to patients and their families will end their diagnostic odyssey and advance epilepsy precision management.
Collapse
Affiliation(s)
- Alissa M D'Gama
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, United States of America; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, United States of America; Epilepsy Genetics Program, Boston Children's Hospital, Boston, MA 02115, United States of America
| | - Annapurna Poduri
- Epilepsy Genetics Program, Boston Children's Hospital, Boston, MA 02115, United States of America; Department of Neurology, Boston Children's Hospital, Boston, MA 02115, United States of America; Department of Neurology, Harvard Medical School, Boston, MA 02115, United States of America.
| |
Collapse
|
34
|
Santoro A, D'Alessandris N, Scaglione G, Zannoni GF. Ganglioglioma arising in an ovarian teratoma. Int J Gynecol Cancer 2023; 33:845-847. [PMID: 37028806 DOI: 10.1136/ijgc-2022-004090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Affiliation(s)
- Angela Santoro
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | | | - Giulia Scaglione
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Gian Franco Zannoni
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
- Pathology, Catholic University, Rome, Italy
| |
Collapse
|
35
|
Leclerc A, Gohel H, Malczuk J, Anzalone L, Emery E, Gaberel T. Systematic Review of Meningiomas Revealed by Spontaneous Intracranial Hemorrhage: Clinicopathological Features, Outcomes, and Rebleeding Rate. World Neurosurg 2023; 172:e625-e639. [PMID: 36738963 DOI: 10.1016/j.wneu.2023.01.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Meningiomas are rarely revealed by an intracranial hemorrhage (ICH). Rebleeding occurrence rate and time of onset are unknown. Here, we performed a systematic review of the literature of meningiomas revealed by ICH. METHODS We retrospectively collected all meningiomas revealed by spontaneous ICH published between January 1980 and December 2021. We reported clinicopathological features of meningiomas revealed by ICH. We also estimated rebleeding rate and time to onset. RESULTS Ninety-two studies met all inclusion criteria, led to a total of 120 cases. The mean age was 56.3 years, with 66 (55%) female. Seventy-nine (66%) cases were conscious before surgery, 20 (17%) were in coma, and 17 (14%) were unconscious after deterioration. The most frequent bleeding type was subdural hemorrhage (N = 49, 41%) followed by intraparenchymal hemorrhage (IPH) (N = 44, 37%), subarachnoid hemorrhage (SAH) (N = 22, 18%), and intraventricular hemorrhage (IVH) (N = 5, 4%). IPH and hindbrain/ventricular locations are associated with poor outcomes (P = 0.031 and < 0.001, respectively). Among the 19 patients who did not undergo surgical resection of the meningioma, 14 (74%) experienced rebleeding with a median occurrence of 120 days (interquartile, [90; -]). Rebleeding occurs earlier if the type of bleeding is SAH or IVH and for hindbrain location (both P < 0.01). CONCLUSIONS ICH is a rare presentation of meningiomas. Hindbrain and ventricular tumor location and IPH are associated with poor outcomes. Rebleeding rate is high and premature. It occurs earlier if the first bleeding was SAH or IVH and for hindbrain location.
Collapse
Affiliation(s)
- Arthur Leclerc
- Department of Neurosurgery, CHU de Caen-Normandie, Caen, France; Normandie Université, UNICAEN, Caen, France.
| | | | - Joséphine Malczuk
- Department of Neurosurgery, CHU de Caen-Normandie, Caen, France; Normandie Université, UNICAEN, Caen, France
| | - Louis Anzalone
- Department of Neurosurgery, CHU de Caen-Normandie, Caen, France; Normandie Université, UNICAEN, Caen, France
| | - Evelyne Emery
- Department of Neurosurgery, CHU de Caen-Normandie, Caen, France; Normandie Université, UNICAEN, Caen, France; Normandie Université, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Thomas Gaberel
- Department of Neurosurgery, CHU de Caen-Normandie, Caen, France; Normandie Université, UNICAEN, Caen, France; Normandie Université, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| |
Collapse
|
36
|
Regal JA, Guerra García ME, Jain V, Chandramohan V, Ashley DM, Gregory SG, Thompson EM, López GY, Reitman ZJ. Ganglioglioma deep transcriptomics reveals primitive neuroectoderm neural precursor-like population. Acta Neuropathol Commun 2023; 11:50. [PMID: 36966348 PMCID: PMC10039537 DOI: 10.1186/s40478-023-01548-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/06/2023] [Indexed: 03/27/2023] Open
Abstract
Gangliogliomas are brain tumors composed of neuron-like and macroglia-like components that occur in children and young adults. Gangliogliomas are often characterized by a rare population of immature astrocyte-appearing cells expressing CD34, a marker expressed in the neuroectoderm (neural precursor cells) during embryogenesis. New insights are needed to refine tumor classification and to identify therapeutic approaches. We evaluated five gangliogliomas with single nucleus RNA-seq, cellular indexing of transcriptomes and epitopes by sequencing, and/or spatially-resolved RNA-seq. We uncovered a population of CD34+ neoplastic cells with mixed neuroectodermal, immature astrocyte, and neuronal markers. Gene regulatory network interrogation in these neuroectoderm-like cells revealed control of transcriptional programming by TCF7L2/MEIS1-PAX6 and SOX2, similar to that found during neuroectodermal/neural development. Developmental trajectory analyses place neuroectoderm-like tumor cells as precursor cells that give rise to neuron-like and macroglia-like neoplastic cells. Spatially-resolved transcriptomics revealed a neuroectoderm-like tumor cell niche with relative lack of vascular and immune cells. We used these high resolution results to deconvolute clinically-annotated transcriptomic data, confirming that CD34+ cell-associated gene programs associate with gangliogliomas compared to other glial brain tumors. Together, these deep transcriptomic approaches characterized a ganglioglioma cellular hierarchy-confirming CD34+ neuroectoderm-like tumor precursor cells, controlling transcription programs, cell signaling, and associated immune cell states. These findings may guide tumor classification, diagnosis, prognostication, and therapeutic investigations.
Collapse
Affiliation(s)
- Joshua A Regal
- Department of Radiation Oncology, Duke University, Durham, NC, 27710, USA
| | | | - Vaibhav Jain
- Duke Molecular Physiology Institute, Duke University, Durham, NC, 27710, USA
| | | | - David M Ashley
- Department of Neurosurgery, Duke University, Durham, NC, 27710, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University, Durham, NC, 27710, USA
| | - Eric M Thompson
- Department of Neurosurgery, Duke University, Durham, NC, 27710, USA
| | - Giselle Y López
- Department of Neurosurgery, Duke University, Durham, NC, 27710, USA
- Department of Pathology, Duke University, Durham, NC, 27710, USA
| | - Zachary J Reitman
- Department of Radiation Oncology, Duke University, Durham, NC, 27710, USA.
- Department of Neurosurgery, Duke University, Durham, NC, 27710, USA.
- Department of Pathology, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
37
|
Bogumil H, Sill M, Schrimpf D, Ismer B, Blume C, Rahmanzade R, Hinz F, Cherkezov A, Banan R, Friedel D, Reuss DE, Selt F, Ecker J, Milde T, Pajtler KW, Schittenhelm J, Hench J, Frank S, Boldt HB, Kristensen BW, Scheie D, Melchior LC, Olesen V, Sehested A, Boué DR, Abdullaev Z, Satgunaseelan L, Kurth I, Seidlitz A, White CL, Ng HK, Shi ZF, Haberler C, Deckert M, Timmer M, Goldbrunner R, Tauziède-Espariat A, Varlet P, Brandner S, Alexandrescu S, Snuderl M, Aldape K, Korshunov A, Witt O, Herold-Mende C, Unterberg A, Wick W, Pfister SM, von Deimling A, Jones DTW, Sahm F, Sievers P. Glioneuronal tumor with ATRX alteration, kinase fusion and anaplastic features (GTAKA): a molecularly distinct brain tumor type with recurrent NTRK gene fusions. Acta Neuropathol 2023; 145:667-680. [PMID: 36933012 PMCID: PMC10119244 DOI: 10.1007/s00401-023-02558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023]
Abstract
Glioneuronal tumors are a heterogenous group of CNS neoplasms that can be challenging to accurately diagnose. Molecular methods are highly useful in classifying these tumors-distinguishing precise classes from their histological mimics and identifying previously unrecognized types of tumors. Using an unsupervised visualization approach of DNA methylation data, we identified a novel group of tumors (n = 20) that formed a cluster separate from all established CNS tumor types. Molecular analyses revealed ATRX alterations (in 16/16 cases by DNA sequencing and/or immunohistochemistry) as well as potentially targetable gene fusions involving receptor tyrosine-kinases (RTK; mostly NTRK1-3) in all of these tumors (16/16; 100%). In addition, copy number profiling showed homozygous deletions of CDKN2A/B in 55% of cases. Histological and immunohistochemical investigations revealed glioneuronal tumors with isomorphic, round and often condensed nuclei, perinuclear clearing, high mitotic activity and microvascular proliferation. Tumors were mainly located supratentorially (84%) and occurred in patients with a median age of 19 years. Survival data were limited (n = 18) but point towards a more aggressive biology as compared to other glioneuronal tumors (median progression-free survival 12.5 months). Given their molecular characteristics in addition to anaplastic features, we suggest the term glioneuronal tumor with ATRX alteration, kinase fusion and anaplastic features (GTAKA) to describe these tumors. In summary, our findings highlight a novel type of glioneuronal tumor driven by different RTK fusions accompanied by recurrent alterations in ATRX and homozygous deletions of CDKN2A/B. Targeted approaches such as NTRK inhibition might represent a therapeutic option for patients suffering from these tumors.
Collapse
Affiliation(s)
- Henri Bogumil
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Sill
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Schrimpf
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Britta Ismer
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Christina Blume
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ramin Rahmanzade
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Hinz
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Asan Cherkezov
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rouzbeh Banan
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dennis Friedel
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David E Reuss
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Florian Selt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, University Hospital Heidelberg, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jonas Ecker
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, University Hospital Heidelberg, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, University Hospital Heidelberg, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Kristian W Pajtler
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jens Schittenhelm
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard-Karls-University Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK), DKFZ Partner Site Tübingen, Tübingen, Germany.,Department of Neuropathology, University Hospital Tübingen, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Jürgen Hench
- Division of Neuropathology, Institute for Pathology, University Hospital Basel, Basel, Switzerland
| | - Stephan Frank
- Division of Neuropathology, Institute for Pathology, University Hospital Basel, Basel, Switzerland
| | - Henning B Boldt
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Bjarne Winther Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Pathology, The Bartholin Institute, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine and Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - David Scheie
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Linea C Melchior
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Viola Olesen
- Spine Unit, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Astrid Sehested
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | - Daniel R Boué
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital and the Ohio State University, Columbus, OH, USA
| | - Zied Abdullaev
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Ina Kurth
- Division of Radiooncology-Radiobiology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Annekatrin Seidlitz
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg and German Consortium for Translational Cancer Research (DKTK) Partner Site, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Christine L White
- Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Australia.,Victorian Clinical Genetics Services, Parkville, Australia
| | - Ho-Keung Ng
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China.,Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, China
| | - Zhi-Feng Shi
- Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, China.,Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Martina Deckert
- Institute of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Marco Timmer
- Laboratory for Neurooncology and Experimental Neurosurgery, Department of General Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Roland Goldbrunner
- Laboratory for Neurooncology and Experimental Neurosurgery, Department of General Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Arnault Tauziède-Espariat
- Department of Neuropathology, GHU Paris - Psychiatry and Neuroscience, Sainte-Anne Hospital, Paris, France.,Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR S1266, INSERM, IMA-BRAIN, Paris, France
| | - Pascale Varlet
- Department of Neuropathology, GHU Paris - Psychiatry and Neuroscience, Sainte-Anne Hospital, Paris, France.,Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR S1266, INSERM, IMA-BRAIN, Paris, France
| | - Sebastian Brandner
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | | | - Matija Snuderl
- Department of Pathology, NYU Langone Medical Center, New York, NY, USA
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrey Korshunov
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, University Hospital Heidelberg, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology and Neurooncology Program, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, University Hospital Heidelberg, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Philipp Sievers
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany. .,Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
38
|
Molecular Heterogeneity in BRAF-Mutant Gliomas: Diagnostic, Prognostic, and Therapeutic Implications. Cancers (Basel) 2023; 15:cancers15041268. [PMID: 36831610 PMCID: PMC9954401 DOI: 10.3390/cancers15041268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/25/2023] [Accepted: 02/04/2023] [Indexed: 02/19/2023] Open
Abstract
Over the last few decades, deciphering the alteration of molecular pathways in brain tumors has led to impressive changes in diagnostic refinement. Among the molecular abnormalities triggering and/or driving gliomas, alterations in the MAPK pathway reign supreme in the pediatric population, as it is encountered in almost all low-grade pediatric gliomas. Activating abnormalities in the MAPK pathway are also present in both pediatric and adult high-grade gliomas. Across those alterations, BRAF p.V600E mutations seem to define homogeneous groups of tumors in terms of prognosis. The recent development of small molecules inhibiting this pathway retains the attention of neurooncologists on BRAF-altered tumors, as conventional therapies showed no significant effect, nor prolonged efficiency on the high-grade or low-grade unresectable forms. Nevertheless, tumoral heterogeneity and especially molecular alteration(s) associated with MAPK-pathway abnormalities are not fully understood with respect to how they might lead to the specific dismal prognosis of those gliomas and/or affect their response to targeted therapies. This review is an attempt to provide comprehensive information regarding molecular alterations related to the aggressiveness modulation in BRAF-mutated gliomas and the current knowledge on how to use those targeted therapies in such situations.
Collapse
|
39
|
Ion Channels in Gliomas-From Molecular Basis to Treatment. Int J Mol Sci 2023; 24:ijms24032530. [PMID: 36768856 PMCID: PMC9916861 DOI: 10.3390/ijms24032530] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Ion channels provide the basis for the nervous system's intrinsic electrical activity. Neuronal excitability is a characteristic property of neurons and is critical for all functions of the nervous system. Glia cells fulfill essential supportive roles, but unlike neurons, they also retain the ability to divide. This can lead to uncontrolled growth and the formation of gliomas. Ion channels are involved in the unique biology of gliomas pertaining to peritumoral pathology and seizures, diffuse invasion, and treatment resistance. The emerging picture shows ion channels in the brain at the crossroads of neurophysiology and fundamental pathophysiological processes of specific cancer behaviors as reflected by uncontrolled proliferation, infiltration, resistance to apoptosis, metabolism, and angiogenesis. Ion channels are highly druggable, making them an enticing therapeutic target. Targeting ion channels in difficult-to-treat brain tumors such as gliomas requires an understanding of their extremely heterogenous tumor microenvironment and highly diverse molecular profiles, both representing major causes of recurrence and treatment resistance. In this review, we survey the current knowledge on ion channels with oncogenic behavior within the heterogeneous group of gliomas, review ion channel gene expression as genomic biomarkers for glioma prognosis and provide an update on therapeutic perspectives for repurposed and novel ion channel inhibitors and electrotherapy.
Collapse
|
40
|
Xie M, Wang X, Duan Z, Luan G. Low-grade epilepsy-associated neuroepithelial tumors: Tumor spectrum and diagnosis based on genetic alterations. Front Neurosci 2023; 16:1071314. [PMID: 36699536 PMCID: PMC9868944 DOI: 10.3389/fnins.2022.1071314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Brain tumors can always result in seizures when involving the cortical neurons or their circuits, and they were found to be one of the most common etiologies of intractable focal seizures. The low-grade epilepsy-associated neuroepithelial tumors (LEAT), as a special group of brain tumors associated with seizures, share common clinicopathological features, such as seizure onsets at a young age, a predilection for involving the temporal lobe, and an almost benign course, including a rather slow growth pattern and thus a long-term history of seizures. Ganglioglioma (GG) and dysembryoplastic neuroepithelial tumor (DNET) are the typical representatives of LEATs. Surgical treatments with complete resection of tumors and related epileptogenic zones are deemed the optimal way to achieve postoperative seizure control and lifetime recurrence-free survival in patients with LEATs. Although the term LEAT was originally introduced in 2003, debates on the tumor spectrum and the diagnosis or classification of LEAT entities are still confusing among epileptologists and neuropathologists. In this review, we would further discuss these questions, especially based on the updated classification of central nervous system tumors in the WHO fifth edition and the latest molecular genetic findings of tumor entities in LEAT entities.
Collapse
Affiliation(s)
- Mingguo Xie
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xiongfei Wang
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Zejun Duan
- Department of Pathology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Guoming Luan
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China,Chinese Institute for Brain Research, Beijing, China,*Correspondence: Guoming Luan,
| |
Collapse
|
41
|
Di Nunno V, Gatto L, Tosoni A, Bartolini S, Franceschi E. Implications of BRAF V600E mutation in gliomas: Molecular considerations, prognostic value and treatment evolution. Front Oncol 2023; 12:1067252. [PMID: 36686797 PMCID: PMC9846085 DOI: 10.3389/fonc.2022.1067252] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Gliomas are molecularly heterogeneous brain tumors responsible for the most years of life lost by any cancer. High-grade gliomas have a poor prognosis and despite multimodal treatment including surgery, radiotherapy, and chemotherapy, exhibit a high recurrence rate. There is a need for new therapeutic approaches based on precision medicine informed by biomarker assessment and BRAF, a key regulator of MAPK signaling pathway, influencing cell differentiation, proliferation, migration and pro-tumorigenic activity, is emerging as a promising molecular target. V600E, is the most frequent BRAF alteration in gliomas, especially in pediatric low-grade astrocytomas, pleomorphic xanthoastrocytoma, papillary craniopharyngioma, epithelioid glioblastoma and ganglioglioma. The possible application of BRAF-targeted therapy in gliomas is continuously growing and there is preliminary evidence of prolonged disease control obtained by BRAF inhibitors in tumors harboring BRAF V600E mutation. The possibility of introducing targeted therapies into the treatment algorithm represents a paradigm shift for patients with BRAF V600E mutant recurrent high-grade and low-grade glioma and BRAF routine testing should be considered in clinical practice. The focus of this review is to summarize the molecular landscape of BRAF across glioma subtypes and the novel therapeutic strategies for BRAF V600E mutated tumors.
Collapse
Affiliation(s)
| | - Lidia Gatto
- Department of Oncology, AUSL Bologna, Bologna, Italy,*Correspondence: Lidia Gatto,
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
42
|
Trinder SM, McKay C, Power P, Topp M, Chan B, Valvi S, McCowage G, Govender D, Kirby M, Ziegler DS, Manoharan N, Hassall T, Kellie S, Heath J, Alvaro F, Wood P, Laughton S, Tsui K, Dodgshun A, Eisenstat DD, Endersby R, Luen SJ, Koh ES, Sim HW, Kong B, Gottardo NG, Whittle JR, Khuong-Quang DA, Hansford JR. BRAF-mediated brain tumors in adults and children: A review and the Australian and New Zealand experience. Front Oncol 2023; 13:1154246. [PMID: 37124503 PMCID: PMC10140567 DOI: 10.3389/fonc.2023.1154246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway signaling pathway is one of the most commonly mutated pathways in human cancers. In particular, BRAF alterations result in constitutive activation of the rapidly accelerating fibrosarcoma-extracellular signal-regulated kinase-MAPK significant pathway, leading to cellular proliferation, survival, and dedifferentiation. The role of BRAF mutations in oncogenesis and tumorigenesis has spurred the development of targeted agents, which have been successful in treating many adult cancers. Despite advances in other cancer types, the morbidity and survival outcomes of patients with glioma have remained relatively stagnant. Recently, there has been recognition that MAPK dysregulation is almost universally present in paediatric and adult gliomas. These findings, accompanying broad molecular characterization of gliomas, has aided prognostication and offered opportunities for clinical trials testing targeted agents. The use of targeted therapies in this disease represents a paradigm shift, although the biochemical complexities has resulted in unexpected challenges in the development of effective BRAF inhibitors. Despite these challenges, there are promising data to support the use of BRAF inhibitors alone and in combination with MEK inhibitors for patients with both low-grade and high-grade glioma across age groups. Safety and efficacy data demonstrate that many of the toxicities of these targeted agents are tolerable while offering objective responses. Newer clinical trials will examine the use of these therapies in the upfront setting. Appropriate duration of therapy and durability of response remains unclear in the glioma patient cohort. Longitudinal efficacy and toxicity data are needed. Furthermore, access to these medications remains challenging outside of clinical trials in Australia and New Zealand. Compassionate access is limited, and advocacy for mechanism of action-based drug approval is ongoing.
Collapse
Affiliation(s)
- Sarah M. Trinder
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands, WA, Australia
| | - Campbell McKay
- Children’s Cancer Centre, Royal Children’s Hospital, Melbourne, VIC, Australia
| | - Phoebe Power
- Sydney Children’s Hospital, Children’s Cancer Institute, University of New South Wales, Randwick, NSW, Australia
- School of Women’s and Children’s Health, University of New South Wales, Randwick, NSW, Australia
| | - Monique Topp
- Department of Medical Oncology, Peter MacCallum Cancer Center, Melbourne, VIC, Australia
| | - Bosco Chan
- Michael Rice Cancer Centre, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| | - Santosh Valvi
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands, WA, Australia
| | - Geoffrey McCowage
- Department of Oncology, Children’s Hospital at Westmead, Sydney, NSW, Australia
- Australasian Children’s Cancer Trials, Clayton, VIC, Australia
| | - Dinisha Govender
- Department of Oncology, Children’s Hospital at Westmead, Sydney, NSW, Australia
| | - Maria Kirby
- Michael Rice Cancer Centre, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| | - David S. Ziegler
- Sydney Children’s Hospital, Children’s Cancer Institute, University of New South Wales, Randwick, NSW, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, University of New South Wales (UNSW) Medicine and Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Neevika Manoharan
- Sydney Children’s Hospital, Children’s Cancer Institute, University of New South Wales, Randwick, NSW, Australia
- School of Clinical Medicine, University of New South Wales (UNSW) Medicine and Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Tim Hassall
- Queensland Children’s Hospital, University of Queensland, Brisbane, QLD, Australia
| | - Stewart Kellie
- Westmead Children’s Hospital, University of Sydney, Westmead, NSW, Australia
| | - John Heath
- Department of Pediatric Oncology, Royal Hobart Hospital, Hobart, TAS, Australia
| | - Frank Alvaro
- Department of Pediatric Oncology, John Hunter Children's Hospital, Newcastle, NSW, Australia
| | - Paul Wood
- Monash Medical Centre, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Stephen Laughton
- Starship Blood and Cancer Centre, Starship Children’s Hospital, Auckland, New Zealand
| | - Karen Tsui
- Starship Blood and Cancer Centre, Starship Children’s Hospital, Auckland, New Zealand
| | - Andrew Dodgshun
- Children’s Haematology/Oncology Centre, Christchurch Hospital, Christchurch, New Zealand
| | - David D. Eisenstat
- Children’s Cancer Centre, Royal Children’s Hospital, Melbourne, VIC, Australia
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Raelene Endersby
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Nedlands, WA, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA, Australia
| | - Stephen J. Luen
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Eng-Siew Koh
- Department of Radiation Oncology, Liverpool and Macarther Cancer Therapy Centres, Liverpool, NSW, Australia
- Department of Medicine, University of New South Wales, Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Hao-Wen Sim
- National Health and Medical Research Council (NHMRC) Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Medical Oncology, The Kinghorn Cancer Centre, Sydney, NSW, Australia
- Department of Medical Oncology, Chris O’Brien Lifehouse, Sydney, NSW, Australia
| | - Benjamin Kong
- National Health and Medical Research Council (NHMRC) Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
- Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Nicholas G. Gottardo
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands, WA, Australia
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Nedlands, WA, Australia
| | - James R. Whittle
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | | | - Jordan R. Hansford
- Michael Rice Cancer Centre, Women’s and Children’s Hospital, North Adelaide, SA, Australia
- South Australian Health and Medical Research Institute South Australia, Adelaide, SA, Australia
- South Australia ImmunoGENomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia
- *Correspondence: Jordan R. Hansford,
| |
Collapse
|
43
|
Dang H, Khan AB, Gadgil N, Prablek M, Lin FY, Blessing MM, Aldave G, Bauer D. Primary spinal intramedullary anaplastic ganglioglioma in a pediatric patient. Surg Neurol Int 2023; 14:55. [PMID: 36895253 PMCID: PMC9990802 DOI: 10.25259/sni_825_2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/31/2023] [Indexed: 02/19/2023] Open
Abstract
Background Gangliogliomas (GGs) are rare tumors of the central nervous system composed of neoplastic neural and glial cells and are typically low-grade. Intramedullary spinal anaplastic GGs (AGG) are rare, poorly understood, and often aggressive tumors that can result in widespread progression along the craniospinal axis. Due to the rarity of these tumors, data are lacking to guide clinical and pathologic diagnosis and standard of care treatment. Here, we present a case of pediatric spinal AGG to provide information on our institutional approach to work-up and to highlight unique molecular pathology. Case Description A 13-year-old female presented with signs of spinal cord compression including right sided hyperreflexia, weakness, and enuresis. Magnetic resonance imaging (MRI) revealed a C3-C5 cystic and solid mass which was treated surgically with osteoplastic laminoplasty and tumor resection. Histopathologic diagnosis was consistent with AGG, and molecular testing identified mutations in H3F3A (K27M), TP53, and NF1. She received adjuvant radiation therapy and her neurological symptoms improved. However, at 6-month follow-up, she developed new symptoms. MRI revealed metastatic recurrence of tumor with leptomeningeal and intracranial spread. Conclusion Primary spinal AGGs are rare tumors, but a growing body of literature shows some trends that may improve diagnosis and management. These tumors generally present in adolescence and early adulthood with motor/sensory impairment and other spinal cord symptoms. They are most commonly treated by surgical resection but frequently recur due to their aggressive nature. Further reports of these primary spinal AGGs along with characterization of their molecular profile will be important in developing more effective treatments.
Collapse
Affiliation(s)
- Huy Dang
- Department of Neurosurgery, Baylor College of Medicine, Houston, United States
| | - Abdul Basit Khan
- Department of Neurosurgery, Baylor College of Medicine, Houston, United States
| | - Nisha Gadgil
- Department of Neurosurgery, Baylor College of Medicine/Texas Children's Hospital, Houston, United States
| | - Marc Prablek
- Department of Neurosurgery, Baylor College of Medicine, Houston, United States
| | - Frank Y Lin
- Department of Pediatric Hematology-Oncology, Baylor College of Medicine, Texas Children's Cancer Center, Dan L Duncan Cancer Center, Houston, United States
| | - Melissa M Blessing
- Department of Pathology, Baylor College of Medicine/Texas Children's Hospital, Houston, United States
| | - Guillermo Aldave
- Department of Neurosurgery, Baylor College of Medicine/Texas Children's Hospital, Houston, United States
| | - David Bauer
- Department of Neurosurgery, Baylor College of Medicine/Texas Children's Hospital, Houston, United States
| |
Collapse
|
44
|
Wu PB, Filley AC, Miller ML, Bruce JN. Benign Glioma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:31-71. [PMID: 37452934 DOI: 10.1007/978-3-031-23705-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Benign glioma broadly refers to a heterogeneous group of slow-growing glial tumors with low proliferative rates and a more indolent clinical course. These tumors may also be described as "low-grade" glioma (LGG) and are classified as WHO grade I or II lesions according to the Classification of Tumors of the Central Nervous System (CNS) (Louis et al. in Acta Neuropathol 114:97-109, 2007). Advances in molecular genetics have improved understanding of glioma tumorigenesis, leading to the identification of common mutation profiles with significant treatment and prognostic implications. The most recent WHO 2016 classification system has introduced several notable changes in the way that gliomas are diagnosed, with a new emphasis on molecular features as key factors in differentiation (Wesseling and Capper in Neuropathol Appl Neurobiol 44:139-150, 2018). Benign gliomas have a predilection for younger patients and are among the most frequently diagnosed tumors in children and young adults (Ostrom et al. in Neuro Oncol 22:iv1-iv96, 2020). These tumors can be separated into two clinically distinct subgroups. The first group is of focal, well-circumscribed lesions that notably are not associated with an increased risk of malignant transformation. Primarily diagnosed in pediatric patients, these WHO grade I tumors may be cured with surgical resection alone (Sturm et al. in J Clin Oncol 35:2370-2377, 2017). Recurrence rates are low, and the prognosis for these patients is excellent (Ostrom et al. in Neuro Oncol 22:iv1-iv96, 2020). Diffuse gliomas are WHO grade II lesions with a more infiltrative pattern of growth and high propensity for recurrence. These tumors are primarily diagnosed in young adult patients, and classically present with seizures (Pallud et al. Brain 137:449-462, 2014). The term "benign" is a misnomer in many cases, as the natural history of these tumors is with malignant transformation and recurrence as grade III or grade IV tumors (Jooma et al. in J Neurosurg 14:356-363, 2019). For all LGG, surgery with maximal safe resection is the treatment of choice for both primary and recurrent tumors. The goal of surgery should be for gross total resection (GTR), as complete tumor removal is associated with higher rates of tumor control and seizure freedom. Chemotherapy and radiation therapy (RT), while not typically a component of first-line treatment in most cases, may be employed as adjunctive therapy in high-risk or recurrent tumors and in some select cases. The prognosis of benign gliomas varies widely; non-infiltrative tumor subtypes generally have an excellent prognosis, while diffusely infiltrative tumors, although slow-growing, are eventually fatal (Sturm et al. in J Clin Oncol 35:2370-2377, 2017). This chapter reviews the shared and unique individual features of the benign glioma including diffuse glioma, pilocytic astrocytoma and pilomyxoid astrocytoma (PMA), subependymal giant cell astrocytoma (SEGA), pleomorphic xanthoastrocytoma (PXA), subependymoma (SE), angiocentric glioma (AG), and chordoid glioma (CG). Also discussed is ganglioglioma (GG), a mixed neuronal-glial tumor that represents a notable diagnosis in the differential for other LGG (Wesseling and Capper 2018). Ependymomas of the brain and spinal cord, including major histologic subtypes, are discussed in other chapters.
Collapse
Affiliation(s)
- Peter B Wu
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, USA
| | - Anna C Filley
- Department of Neurosurgery, Columbia University Medical Center, New York, USA
| | - Michael L Miller
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, USA
| | - Jeffrey N Bruce
- Department of Neurosurgery, Columbia University Medical Center, New York, USA.
| |
Collapse
|
45
|
Brain and Spinal Cord Tumors Among the Life-Threatening Health Problems: An Introduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1394:1-18. [PMID: 36587378 DOI: 10.1007/978-3-031-14732-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
As one of the global concerns, cancers, including brain and spinal cord tumors, are responsible for mortalities and irreversible morbidities in the affected patients. Although advancements in molecular pathology and imaging of tumors may have influenced the incidence rate due to higher diagnosis in early stages, exposure to environmental risk factors could be another explanation for increased incidence of these tumors over the past decades. Similar to many other tumors, the CNS tumors begin in cellular dimension with activation of different molecular pathways. Several genetic, epigenetic, and immunologic pathways and processes are already discovered to play roles in pathophysiology of these tumors, which mostly will eventually become symptomatic. Each of these tumors may exhibit imaging characteristics, making it possible to list a series of differential diagnosis before histopathologic examination. Advances in molecular pathology have resulted in better understanding and categorization of CNS tumors, leading to better decision-making on the most appropriate therapeutic approach for each category, as well as proposing new therapeutic modalities to treat these tumors. As an introduction to the 2-volume book, this chapter addressed different types of human brain and spinal cord tumors based on the fifth version of WHO classification of CNS tumors.
Collapse
|
46
|
Martinoni M, Fabbri VP, La Corte E, Zucchelli M, Toni F, Asioli S, Giannini C. Glioneuronal and Neuronal Tumors of the Central Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:253-280. [PMID: 37452941 DOI: 10.1007/978-3-031-23705-8_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Glioneuronal and neuronal tumors (GNTs) are rare neoplasms composed of neural and glial elements frequently located in the temporal lobe. Epilepsy is the main symptom and diagnosis mostly occurs before adulthood. The great majority of GNTs are WHO grade I tumors, but anaplastic transformations and forms exist. Their common association with focal cortical dysplasia is well recognized and should be taken into consideration during neurophysiological presurgical and surgical planning since the aim of surgery should be the removal of the tumor and of the entire epileptogenic zone according to anatomo-electrophysiological findings. Surgery still remains the cornerstone of symptomatic GNT, while radiotherapy, chemotherapy, and new target therapies are generally reserved for anaplastic, unresectable, or evolving tumors. Furthermore, since many GNTs show overlapping clinical and neuroradiological features, the definition of specific histopathological, genetic, and molecular characteristics is crucial. Epileptological, oncological, neurosurgical, and pathological issues of these tumors make a multidisciplinary management mandatory.
Collapse
Affiliation(s)
- Matteo Martinoni
- Division of Neurosurgery, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.
| | - Viscardo Paolo Fabbri
- Surgical Pathology Section, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Emanuele La Corte
- Division of Neurosurgery, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Mino Zucchelli
- Pediatric Neurosurgery, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Francesco Toni
- Division of Neurosurgery, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Programma di neuroradiologia con tecniche ad elevata complessità, IRCCS Istituto delle Scienze Neurologiche di Bologna ETC, Bologna, Italy
| | - Sofia Asioli
- Surgical Pathology Section, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM) - Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Caterina Giannini
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Division of Anatomic Pathology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
47
|
Cronin C, McLaughlin R, Lane L, Brett FM, Jansen M, Bermingham N, Wyse G, Grogan L, Morris PG, O’Reilly S. Case report: BRAF-inhibitor therapy in BRAF-mutated primary CNS tumours including one case of BRAF-mutated Rosai-Dorfman disease. Front Med (Lausanne) 2022; 9:1070828. [PMID: 36619621 PMCID: PMC9813211 DOI: 10.3389/fmed.2022.1070828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
BRAF V600E oncogene mutations have been reported in multiple central nervous system (CNS) tumor types, and emerging evidence supports the use of targeted therapy in BRAF-mutated gliomas. BRAF oncogene mutations have been recently identified in Rosai-Dorfman disease (RDD)-a rare non-Langerhans cell histiocytosis. This series describes three patients from two neurosurgical centers in Ireland with BRAF V600E-mutated CNS tumors. The study participants include a 19-year-old male patient with ganglioglioma with anaplastic features, a 21-year-old male patient with CNS involvement of RDD, and a 28-year-old female patient with ganglioglioma with anaplastic features. Two patients received radiation with concurrent temozolomide before BRAF-targeted therapy. This case series describes clinical and radiological responses to BRAF-targeted therapy in BRAF V600E-mutated gliomas across multiple tumor grades and is only the second published report of response to targeted therapy in BRAF-mutated RDD. The durability of disease control with BRAF-targeted therapy was generally superior to that achieved with chemoradiation; one patient has experienced ongoing disease control for 5 years. The reported case of treatment response in BRAF-mutated RDD supports the strategy of genotyping and utilization of targeted therapy in this rare disease. The optimal sequencing of BRAF-targeted therapy in BRAF-mutated gliomas/glioneuronal tumors remains unclear, and further prospective studies are required to guide the use of genome-matched therapy in this patient population.
Collapse
Affiliation(s)
| | - Ronan McLaughlin
- Department of Medical Oncology, Beaumont Hospital, Dublin, Ireland
| | - Louise Lane
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | | | - Michael Jansen
- Department of Neuropathology, Cork University Hospital, Cork, Ireland
| | - Niamh Bermingham
- Department of Neuropathology, Cork University Hospital, Cork, Ireland
| | - Gerald Wyse
- Department of Radiology, Cork University Hospital, Cork, Ireland
| | - Liam Grogan
- Department of Medical Oncology, Beaumont Hospital, Dublin, Ireland
| | | | - Seamus O’Reilly
- Department of Medical Oncology, Cork University Hospital, Cork, Ireland
| |
Collapse
|
48
|
Jesus-Ribeiro J, Rebelo O, Ribeiro IP, Pires LM, Melo JD, Sales F, Santana I, Freire A, Melo JB. The landscape of common genetic drivers and DNA methylation in low-grade (epilepsy-associated) neuroepithelial tumors: A review. Neuropathology 2022; 42:467-482. [PMID: 35844095 DOI: 10.1111/neup.12846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/05/2022] [Accepted: 06/05/2022] [Indexed: 12/15/2022]
Abstract
Low-grade neuroepithelial tumors (LNETs) represent an important group of central nervous system neoplasms, some of which may be associated to epilepsy. The concept of long-term epilepsy-associated tumors (LEATs) includes a heterogenous group of low-grade, cortically based tumors, associated to drug-resistant epilepsy, often requiring surgical treatment. LEATs entities can sometimes be poorly discriminated by histological features, precluding a confident classification in the absence of additional diagnostic tools. This study aimed to provide an updated review on the genomic findings and DNA methylation profiling advances in LNETs, including histological entities of LEATs. A comprehensive search strategy was conducted on PubMed, Embase, and Web of Science Core Collection. High-quality peer-reviewed original manuscripts and review articles with full-text in English, published between 2003 and 2022, were included. Results were screened based on titles and abstracts to determine suitability for inclusion, and when addressed the topic of the review was screened by full-text reading. Data extraction was performed through a qualitative content analysis approach. Most LNETs appear to be driven mainly by a single genomic abnormality and respective affected signaling pathway, including BRAF p.V600E mutations in ganglioglioma, FGFR1 abnormalities in dysembryoplastic neuroepithelial tumor, MYB alterations in angiocentric glioma, BRAF fusions in pilocytic astrocytoma, PRKCA fusions in papillary glioneuronal tumor, between others. However, these molecular alterations are not exclusive, with some overlap amongst different tumor histologies. Also, clustering analysis of DNA methylation profiles allowed the identification of biologically similar molecular groups that sometimes transcend conventional histopathological classification. The exciting developments on the molecular basis of these tumors reinforce the importance of an integrative histopathological and (epi)genetic classification, which can be translated into precision medicine approaches.
Collapse
Affiliation(s)
- Joana Jesus-Ribeiro
- Neurology Department, Centro Hospitalar de Leiria, Leiria, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Olinda Rebelo
- Neuropathology Laboratory, Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Ilda Patrícia Ribeiro
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Laboratory of Cytogenetics and Genomics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Luís Miguel Pires
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Laboratory of Cytogenetics and Genomics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - João Daniel Melo
- Internal Medicine Department, CUF Coimbra Hospital, Coimbra, Portugal
| | - Francisco Sales
- Epilepsy and Sleep Monitoring Unit, Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - António Freire
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Neurology Department, Coimbra Luz Hospital, Coimbra, Portugal
| | - Joana Barbosa Melo
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Laboratory of Cytogenetics and Genomics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
49
|
Ould Ismail AA, Parra O, Hughes EG, Green DC, Loo E, Zanazzi G, Lin CC. Novel FGFR2::ZCCHC24 Fusion in Dysembryoplastic Neuroepithelial Tumor. J Neuropathol Exp Neurol 2022; 81:1029-1032. [PMID: 36164838 PMCID: PMC9960002 DOI: 10.1093/jnen/nlac087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Abdol Aziz Ould Ismail
- From the Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Ourania Parra
- From the Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Edward G Hughes
- From the Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Donald C Green
- From the Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Eric Loo
- From the Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - George Zanazzi
- From the Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Chun-Chieh Lin
- From the Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| |
Collapse
|
50
|
Kopachev DN, Shishkina LV, Shkatova AM, Golovteev AL, Troitsky AA, Grinenko OA, Sharkova SM, Petrosyan DV, Gushcha AO. Epilepsy-Associated Glioneuronal Tumors. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2022; 52:1199-1206. [DOI: 10.1007/s11055-023-01348-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/29/2021] [Indexed: 01/03/2025]
|