1
|
Yang W, Cao Y, Li J, Zhang X, Liu X, Tian Y, Shan L, Yang Y. Pathogenesis and treatment strategies of sepsis-induced myocardial injury: modern and traditional medical perspectives. Int J Biol Sci 2025; 21:3478-3504. [PMID: 40520010 PMCID: PMC12160516 DOI: 10.7150/ijbs.111288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/03/2025] [Indexed: 06/18/2025] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Myocardial injury is a common complication in sepsis patients, which accelerates the progression of sepsis, leading to multiple organ dysfunction and poor prognosis. However, there are still many uncertainties about the characteristics, pathogenesis, treatment, and prognosis of sepsis-induced myocardial injury. While modern medical approaches dominate current clinical management of sepsis-induced myocardial injury, emerging evidence highlights the growing therapeutic potential of traditional Chinese medicine in this field, driven by advances in biomedical research. The integration of these two paradigms holds promise for elucidating the pathophysiological mechanisms and identifying novel therapeutic targets for sepsis-induced myocardial injury, which may accelerate the development of innovative treatment strategies. Therefore, this review comprehensively summarizes the pathogenesis and therapeutic interventions of sepsis-induced myocardial injury from both modern medicine and traditional Chinese medicine perspectives, and critically analyzes the two aiming to provide a valuable reference for researchers' understanding of sepsis-induced myocardial injury.
Collapse
Affiliation(s)
- Wenwen Yang
- Department of Internal Medicine, Shaanxi Provincial People's Hospital, 256 Youyi West Road, Xi'an 710068, Shaanxi, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yanting Cao
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Jiayan Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xin Zhang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xiaoyi Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Ye Tian
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Liang Shan
- Department of Internal Medicine, Shaanxi Provincial People's Hospital, 256 Youyi West Road, Xi'an 710068, Shaanxi, China
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| |
Collapse
|
2
|
Mao Y, Chen Q, Jiang Y, Zhang X, Si Q, Xu P, Zhang Z, Zheng C, Lin R. Integrating Transcriptomic and Proteomic Data: IL-27B as a Key Protein in the Development of Septic Cardiomyopathy-A Retrospective Study. Immun Inflamm Dis 2025; 13:e70207. [PMID: 40396598 DOI: 10.1002/iid3.70207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 04/16/2025] [Accepted: 05/07/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Septic cardiomyopathy (SCM) is a potentially fatal complication of sepsis. In this study, transcriptomic and proteomic analyzes of serum samples from sepsis patients were conducted to uncover the underlying pathological mechanisms and identify potential therapeutic targets for SCM. METHODS This retrospective, dual-center study investigated the progression of sepsis to SCM in patients admitted to intensive care units. A total of 50 patients were enrolled and divided into two groups: sepsis with cardiomyopathy (25 cases) and sepsis without cardiomyopathy (25 cases). Co-expression network analysis was employed to elucidate the biological significance of differentially expressed proteins. By integrating proteomic and transcriptomic data, molecular networks were constructed to visualize interactions among key molecules, aiming to enhance data interpretation and support the study's findings. RESULTS Proteomic analysis identified 216 differentially expressed proteins (Fold change > 1.5, p-value < 0.05) between the two groups. Transcriptomic analysis revealed two proteins, including Interleukin-27 subunit beta (IL-27B) and carbonic anhydrase, co-downregulated in patients with septic cardiomyopathy. IL-27B was associated with the immune response, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated its involvement in the cytokine-cytokine receptor interaction signaling pathway. CONCLUSION Comprehensive integrated transcriptomic and proteomic analyzes identified significant changes in protein expression associated with SCM, primarily associated with inflammation-related pathways and amino acid metabolism. These findings provide new insights into the pathological mechanisms of SCM and highlight potential therapeutic targets for its treatment. TRIAL REGISTRATION The Clinical Research Ethics Committee of Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University approved this study, and written informed consent was given by all patients or their legal representatives. (NO.K20201110).
Collapse
Affiliation(s)
- Yifeng Mao
- Department of Critical Care Medicine, Municipal Hospital Affiliated to Taizhou University, Taizhou, ZheJiang Province, China
| | - Qingqing Chen
- Department of Critical Care Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China
- Department of Neurorehabilitation Center, Taizhou Rehabilitation Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang Province, China
| | - Yongpo Jiang
- Department of Critical Care Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China
| | - Xijiang Zhang
- Department of Critical Care Medicine, Municipal Hospital Affiliated to Taizhou University, Taizhou, ZheJiang Province, China
| | - Qin Si
- Department of Critical Care Medicine, Municipal Hospital Affiliated to Taizhou University, Taizhou, ZheJiang Province, China
| | - Panpan Xu
- Department of Critical Care Medicine, Municipal Hospital Affiliated to Taizhou University, Taizhou, ZheJiang Province, China
| | - Zhongheng Zhang
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Cheng Zheng
- Department of Critical Care Medicine, Municipal Hospital Affiliated to Taizhou University, Taizhou, ZheJiang Province, China
| | - Ronghai Lin
- Department of Critical Care Medicine, Municipal Hospital Affiliated to Taizhou University, Taizhou, ZheJiang Province, China
| |
Collapse
|
3
|
Sun H, Qiao X, Peng X, Zhu H, Zhang L, Jiang L, Wang L, Xue C, Yang J, Yi W, Zhang B, Liu J, Duan W. The m6A modification of SOX18 leads to increased PTX3 and cardiomyocyte pyroptosis in sepsis-induced cardiomyopathy. Theranostics 2025; 15:3532-3550. [PMID: 40093897 PMCID: PMC11905121 DOI: 10.7150/thno.103809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/30/2025] [Indexed: 03/19/2025] Open
Abstract
Rationale: Sepsis-induced cardiomyopathy (SIC) is a rapidly progressing condition with poor prognosis in the absence of effective therapeutic interventions. Cardiomyocyte pyroptosis is a critical factor contributing to cardiac dysfunction in SIC. Currently, research on this mechanism remains unclear. Methods: We performed LPS-induced primary mouse cardiomyocyte modeling and mouse SIC modeling. Through mRNA-Seq, we found significant pyroptosis in the cardiac tissue of SIC mice. Further confocal microscopy and immunoprecipitation results confirmed that PTX3 is an important participant in cardiomyocyte pyroptosis. We then used ChIP and dual-luciferase reporter assays to confirm that SOX18 exerts a transcriptional repression effect on PTX3. M6A-Seq and RNA stability assays confirmed that the m6A modification mediated/recognized by RBM15/YTHDF2 is a crucial factor in the changes of SOX18 in SIC. Results: Our experiments demonstrated that the abnormally elevated PTX3 in SIC plays a key role in mediating pyroptosis. Under physiological conditions, PTX3 transcription is repressed by SOX18. However, during septic cardiomyopathy, SOX18 stability is compromised by RBM15/YTHDF2-mediated m6A modification, leading to increased PTX3 levels and the subsequent induction of cardiomyocyte pyroptosis. Conclusion: In summary, we have delineated the RBM15/YTHDF2-SOX18-PTX3 axis in SIC. It provides a new approach for the treatment of cardiomyocyte pyroptosis in SIC and for improving prognosis.
Collapse
Affiliation(s)
- He Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Xinan Qiao
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Xiangyan Peng
- School of Medicine, Northwest University, Xi'an, Shaanxi 710069, China
| | - Hanzhao Zhu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Liyun Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Liqing Jiang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Longteng Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Chao Xue
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Jian Yang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Wei Yi
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Bin Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
- Department of Surgery, The 954th Hospital of the Chinese People's Liberation Army, Shannan, Tibet 856100, China
| | - Jincheng Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Weixun Duan
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| |
Collapse
|
4
|
Pei Y, Guo L, Zhou G, Cao L, Huang W, Yang F, Li D, Chi C, Zhu J. Biomarkers for Predicting of Sepsis-Induced Cardiorenal Syndrome in Emergency Settings. Cardiorenal Med 2025; 15:198-208. [PMID: 39961282 DOI: 10.1159/000543462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/02/2025] [Indexed: 04/01/2025] Open
Abstract
INTRODUCTION Cardiorenal syndrome (CRS) is a common and critical complication of sepsis, with high morbidity and mortality rates. Studies on biomarkers for the early prediction of septic CRS are sporadic. Classic and novel potential biomarkers were identified to explore their diagnostic performance of in patients with septic CRS. METHODS A total of 138 patients with sepsis from Peking University People's Hospital were enrolled in this prospective observational study, which was conducted between May 2019 and June 2022. The patients were divided into non-CRS (n = 106) and CRS (n = 32) groups. Serum levels of cystatin C, KIM-1, neutrophil gelatinase-associated lipocalin (NGAL), and α-Klotho were detected at admission using enzyme-linked immunosorbent assay. The relationship between the biomarker levels and risk factors of CRS were analyzed, as well as discrimination accuracy comparisons were performed. RESULTS The incidence of CRS in patients with sepsis was 23.2% (32/138) during hospitalization, with an obvious mortality. Compared with the non-CRS group, serum cystatin C, brain natriuretic peptide (BNP), troponin-I (TNI), KIM-1, and NGAL levels were both significantly elevated at admission in patients with sepsis complicated with CRS. Logistic regression analysis revealed that BNP, TNI, cystatin C, albumin, Lac, D-dimer were risk factors for CRS in sepsis patients. Compared with other biomarkers, serum cystatin C had moderate discriminative power for predicting septic CRS (area under a receiver operating characteristic curve, 0.746; sensitivity, 0.719; specificity, 0.783). BNP combined with cystatin C and D-dimer demonstrated an excellent discrimination performance, for its AUROC was up to 0.878 (sensitivity, 0.844; specificity, 0.759). CONCLUSION Serum cystatin C, BNP, TNI, KIM-1, and NGAL levels are elevated in patients with septic CRS. Our study provides reliable evidence that cystatin C in combination with BNP and D-dimer might better predict septic CRS upon admission. Further research on sensitive biomarkers is needed.
Collapse
Affiliation(s)
- Yuanyuan Pei
- Department of Emergency, Peking University People's Hospital, Beijing, China,
| | - Liping Guo
- Department of Emergency, Peking University People's Hospital, Beijing, China
| | - Guangping Zhou
- Department of Emergency, Peking University People's Hospital, Beijing, China
| | - Lingjie Cao
- Department of Emergency, Peking University People's Hospital, Beijing, China
| | - Wenfeng Huang
- Department of Emergency, Peking University People's Hospital, Beijing, China
| | - Fengtao Yang
- Department of Emergency, Peking University People's Hospital, Beijing, China
| | - Dilu Li
- Department of Emergency, Peking University People's Hospital, Beijing, China
| | - Cheng Chi
- Department of Emergency, Peking University People's Hospital, Beijing, China
| | - Jihong Zhu
- Department of Emergency, Peking University People's Hospital, Beijing, China
| |
Collapse
|
5
|
Jin Y, Fleishman JS, Ma Y, Jing X, Guo Q, Shang W, Wang H. NLRP3 Inflammasome Targeting Offers a Novel Therapeutic Paradigm for Sepsis-Induced Myocardial Injury. Drug Des Devel Ther 2025; 19:1025-1041. [PMID: 39967903 PMCID: PMC11834678 DOI: 10.2147/dddt.s506537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
Cardiac or myocardial dysfunction induced by sepsis, known as sepsis-induced cardiomyopathy or sepsis-induced myocardial injury (SIMI), is a common complication of sepsis and is associated with poor outcomes. However, the pathogenesis and molecular mechanisms underlying SIMI remain poorly understood, requiring further investigations. Emerging evidence has shown that NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasomes contribute to SIMI. Compounds that inhibit NLRP3-associated pyroptosis may exert therapeutic effects against SIMI. In this review, we first outlined the principal elements of the NLRP3 signaling cascade and summarized the recent studies highlighting how NLRP3 activation contributes to the pathogenesis of SIMI. We outlined selective small-molecule modulators that function as NLRP3 inhibitors and delineated their mechanisms of action to attenuate SIMI. Finally, we discuss the major limitations of the current therapeutic paradigm and propose possible strategies to overcome them. This review highlights the pharmacological inhibition of SIMI as a promising therapeutic strategy.
Collapse
Affiliation(s)
- Yuzi Jin
- Department of Pediatrics, Central Hospital Affiliated to Shenyang Medical College, Shenyang, 110020, People’s Republic of China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, 11439, USA
| | - Yudong Ma
- Department of Critical Care Medicine, Central Hospital Affiliated to Shenyang Medical College, Shenyang, 110020, People’s Republic of China
| | - Xiaoqing Jing
- Department of Pediatrics, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, People’s Republic of China
| | - Qin Guo
- Department of Pediatrics, Central Hospital Affiliated to Shenyang Medical College, Shenyang, 110020, People’s Republic of China
| | - Weiguang Shang
- Department of Pediatrics, Central Hospital Affiliated to Shenyang Medical College, Shenyang, 110020, People’s Republic of China
| | - Hongquan Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, People’s Republic of China
| |
Collapse
|
6
|
Zakynthinos GE, Giamouzis G, Xanthopoulos A, Oikonomou E, Kalogeras K, Karavidas N, Dimeas IE, Gialamas I, Gounaridi MI, Siasos G, Vavuranakis M, Zakynthinos E, Tsolaki V. Septic Cardiomyopathy: Difficult Definition, Challenging Diagnosis, Unclear Treatment. J Clin Med 2025; 14:986. [PMID: 39941657 PMCID: PMC11818464 DOI: 10.3390/jcm14030986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/26/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Sepsis is a systemic inflammatory response syndrome of suspected or confirmed infectious origin, which frequently culminates in multiorgan failure, including cardiac involvement. Septic cardiomyopathy (SCM) remains a poorly defined clinical entity, lacking a formal or consensus definition and representing a significant knowledge gap in critical care medicine. It is an often-underdiagnosed complication of sepsis. The only widely accepted aspect of its definition is that SCM is a transient myocardial dysfunction occurring in patients with sepsis, which cannot be attributed to ischemia or pre-existing cardiac disease. The pathogenesis of SCM appears to be multifactorial, involving inflammatory cytokines, overproduction of nitric oxide, mitochondrial dysfunction, calcium homeostasis dysregulation, autonomic imbalance, and myocardial edema. Diagnosis primarily relies on echocardiography, with advanced tools such as tissue Doppler imaging (TDI) and global longitudinal strain (GLS) providing greater sensitivity for detecting subclinical dysfunction and guiding therapeutic decisions. Traditional echocardiographic findings, such as left ventricular ejection fraction measured by 2D echocardiography, often reflect systemic vasoplegia rather than intrinsic myocardial dysfunction, complicating accurate diagnosis. Right ventricular (RV) dysfunction, identified as a critical component of SCM in many studies, has multifactorial pathophysiology. Factors including septic cardiomyopathy itself, mechanical ventilation, hypoxemia, and hypercapnia-particularly in cases complicated by acute respiratory distress syndrome (ARDS)-increase RV afterload and exacerbate RV dysfunction. The prognostic value of cardiac biomarkers, such as troponins and natriuretic peptides, remains uncertain, as these markers primarily reflect illness severity rather than being specific to SCM. Treatment focuses on the early recognition of sepsis, hemodynamic optimization, and etiological interventions, as no targeted therapies currently exist. Emerging therapies, such as levosimendan and VA-ECMO, show potential in severe SCM cases, though further validation is needed. The lack of standardized diagnostic criteria, combined with the heterogeneity of sepsis presentations, poses significant challenges to the effective management of SCM. Future research should focus on developing cluster-based classification systems for septic shock patients by integrating biomarkers, echocardiographic findings, and clinical parameters. These advancements could clarify the underlying pathophysiology and enable tailored therapeutic strategies to improve outcomes for SCM patients.
Collapse
Affiliation(s)
- George E. Zakynthinos
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (K.K.); (I.G.); (M.I.G.); (G.S.); (M.V.)
| | - Grigorios Giamouzis
- Department of Cardiology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece; (G.G.); (A.X.)
| | - Andrew Xanthopoulos
- Department of Cardiology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece; (G.G.); (A.X.)
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (K.K.); (I.G.); (M.I.G.); (G.S.); (M.V.)
| | - Konstantinos Kalogeras
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (K.K.); (I.G.); (M.I.G.); (G.S.); (M.V.)
| | - Nikitas Karavidas
- Critical Care Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Mezourlo, 41335 Larissa, Greece; (N.K.); (I.E.D.); (V.T.)
| | - Ilias E. Dimeas
- Critical Care Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Mezourlo, 41335 Larissa, Greece; (N.K.); (I.E.D.); (V.T.)
| | - Ioannis Gialamas
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (K.K.); (I.G.); (M.I.G.); (G.S.); (M.V.)
| | - Maria Ioanna Gounaridi
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (K.K.); (I.G.); (M.I.G.); (G.S.); (M.V.)
| | - Gerasimos Siasos
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (K.K.); (I.G.); (M.I.G.); (G.S.); (M.V.)
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Manolis Vavuranakis
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (K.K.); (I.G.); (M.I.G.); (G.S.); (M.V.)
| | - Epaminondas Zakynthinos
- Critical Care Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Mezourlo, 41335 Larissa, Greece; (N.K.); (I.E.D.); (V.T.)
| | - Vasiliki Tsolaki
- Critical Care Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Mezourlo, 41335 Larissa, Greece; (N.K.); (I.E.D.); (V.T.)
| |
Collapse
|
7
|
Meng X, Yan X, Xue P, Xi Z. Xuebijing Exerts Protective Effects on Myocardial Cells by Upregulating TRIM16 and Inhibiting Oxidative Stress and Apoptosis. Curr Comput Aided Drug Des 2025; 21:503-516. [PMID: 39623713 DOI: 10.2174/0115734099318323241122184120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/09/2024] [Accepted: 10/19/2024] [Indexed: 05/28/2025]
Abstract
OBJECTIVE This study utilized transcriptomic sequencing combined with cellular and animal models to explore the potential mechanisms of Xuebijing in treating sepsis-induced myocardial dysfunction, also known as sepsis-induced myocardial injury. METHODS We investigated potential targets and regulatory mechanisms of XBJ injection using network pharmacology and RNA sequencing. The effects of XBJ on oxidative stress and apoptosis levels in human cardiac myocytes (AC16) and C57BL/6 mice exposed to lipopolysaccharide (LPS) were evaluated by Enzyme-Linked Immunosorbent Assay (ELISA), fluorescent probe, Fluorescent Quantitative Polymerase Chain Reaction (qPCR), Western Blot, Transmission Electron Microscopy, oxidative stress-related indicators detection kit, flow cytometry, and Immunohistochemistry (IHC). RESULTS First, it was verified that XBJ can reduce the deformation of AC16 cardiomyocytes induced by LPS and the production and secretion of ROS (P <0.01). The transcriptome sequencing results showed that the TRIM16 gene was significantly increased after XBJ treatment, and the data of KEGG and GO analyses demonstrated that XBJ could inhibit the pathway expression of oxidative stress damage in AC16 cells, and PCR verified that XBJ could indeed increase the expression level of TRIM16 gene in AC16 cells (P <0.01). Basic animal and cell experiments showed that LPS could inhibit the expression of TRIM16 and NRF2 in cardiomyocytes (P <0.05) and promote the expression of Keap1 (P <0.01), while XBJ could significantly upregulate the expression levels of TRIM16 and NRF2 (P <0.01) and inhibit the expression of Keap1 (P <0.01), thereby affecting the expression levels of downstream proinflammatory cytokines and alleviating LPS-induced oxidative stress damage. In addition, XBJ also inhibited the expression of the pro-apoptotic proteins Bax and c-caspase3 (P <0.01), promoted the expression of the anti-apoptotic protein Bcl2 (P <0.01), and reduced LPS-induced apoptosis by upregulating TRIM16. CONCLUSION Our comprehensive data demonstrated that TRIM16 is a key gene in the therapeutic action of Xuebijing in sepsis-induced myocardial dysfunction, protecting myocardial cells from injury through antioxidative stress and anti-apoptotic mechanisms.
Collapse
Affiliation(s)
- Xiaoyan Meng
- Department of Emergency Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210002, PR China
- Department of Intensive Care Unit, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 210000, PR China
| | - Xinming Yan
- Department of Emergency Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210002, PR China
- Department of Emergency Medicine, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 210000, PR China
| | - Peng Xue
- Department of Emergency Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210002, PR China
- Department of Intensive Care Unit, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 210000, PR China
| | - Zhaoqing Xi
- Department of Emergency Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210002, PR China
| |
Collapse
|
8
|
Xu L, Yang X, Liu XT, Li XY, Zhu HZ, Xie YH, Wang SW, Li Y, Zhao Y. Carvacrol alleviates LPS-induced myocardial dysfunction by inhibiting the TLR4/MyD88/NF-κB and NLRP3 inflammasome in cardiomyocytes. J Inflamm (Lond) 2024; 21:47. [PMID: 39548566 PMCID: PMC11568595 DOI: 10.1186/s12950-024-00411-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 09/16/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Sepsis-induced myocardial dysfunction (SIMD) may contribute to the poor prognosis of septic patients. Carvacrol (2-methyl-5-isopropyl phenol), a phenolic monoterpene compound extracted from various aromatic plants and fragrance essential oils, has multiple beneficial effects such as antibacterial, anti-inflammatory, and antioxidant properties. These attributes make it potentially useful for treating many diseases. This study aims to investigate the effects of CAR on LPS-induced myocardial dysfunction and explore the underlying mechanism. RESULTS H9c2 cells were stimulated with 10 µg/ml LPS for 12 h, and c57BL/6 mice were intraperitoneally injected with 10 mg/kg LPS to establish a septic-myocardial injury model. Our results showed that CAR could improve cardiac function, significantly reduce serum levels of inflammatory cytokines (including TNF-α, IL-1β, and IL-6), decrease oxidative stress, and inhibit cardiomyocyte apoptosis in LPS-injured mice. Additionally, CAR significantly downregulated the expression of TLR4, MyD88, and NF-κB in LPS-injured mice and H9c2 cells. It also inhibited the upregulation of inflammasome components (such as NLRP3, GSDMD, and IL-1β) in H9c2 cells triggered by LPS. CONCLUSION Taken together, CAR exhibited potential cardioprotective effects against sepsis, which may be mainly attributed to the TLR4/MyD88/NF-κB pathway and the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Lu Xu
- The College of Life Science, Northwest University, Xi'an, China
| | - Xu Yang
- The College of Life Science, Northwest University, Xi'an, China
| | - Xiao-Ting Liu
- The College of Life Science, Northwest University, Xi'an, China
| | - Xia-Yun Li
- The College of Life Science, Northwest University, Xi'an, China
| | - Han-Zhao Zhu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, China
| | - Yan-Hua Xie
- The College of Life Science, Northwest University, Xi'an, China
| | - Si-Wang Wang
- The College of Life Science, Northwest University, Xi'an, China.
| | - Yao Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China.
| | - Ye Zhao
- The College of Life Science, Northwest University, Xi'an, China.
| |
Collapse
|
9
|
Verra C, Paulmann MK, Wegener J, Marzani E, Ferreira Alves G, Collino M, Coldewey SM, Thiemermann C. Spleen tyrosine kinase: a novel pharmacological target for sepsis-induced cardiac dysfunction and multi-organ failure. Front Immunol 2024; 15:1447901. [PMID: 39559354 PMCID: PMC11570271 DOI: 10.3389/fimmu.2024.1447901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Sepsis is a systemic condition caused by a dysregulated host response to infection and often associated with excessive release of proinflammatory cytokines resulting in multi-organ failure (MOF), including cardiac dysfunction. Despite a number of effective supportive treatments (e.g. ventilation, dialysis), there are no specific interventions that prevent or reduce MOF in patients with sepsis. To identify possible intervention targets, we re-analyzed the publicly accessible Gene Expression Omnibus accession GSE131761 dataset, which revealed an increased expression of spleen tyrosine kinase (SYK) in the whole blood of septic patients compared to healthy volunteers. This result suggests a potential involvement of SYK in the pathophysiology of sepsis. Thus, we investigated the effects of the highly selective SYK inhibitor PRT062607 (15mg/kg; i.p.) on sepsis-induced cardiac dysfunction and MOF in a clinically-relevant, murine model of sepsis. PRT062607 or vehicle (saline) was administered to 10-weeks-old C57BL/6 mice at 1h after the onset of sepsis induced by cecal ligation and puncture (CLP). Antibiotics (imipenem/cilastatin; 2mg/kg; s.c.) and analgesic (buprenorphine; 0.05mg/kg; i.p.) were administered at 6h and 18h post-CLP. After 24h, cardiac function was assessed in vivo by echocardiography and, after termination of the experiments, serum and cardiac samples were collected to evaluate the effects of SYK inhibition on the systemic release of inflammatory mediators and the degree of organ injury and dysfunction. Our results show that treatment of CLP-mice with PRT062607 significantly reduces systolic and diastolic cardiac dysfunction, renal dysfunction and liver injury compared to CLP-mice treated with vehicle. In addition, the sepsis-induced systemic inflammation (measured as an increase in inflammatory cytokines and chemokines in the serum) and the cardiac activation of NF-kB (IKK) and the NLRP3 inflammasome were significantly reduced in CLP-mice treated with PRT062607. These results demonstrate, for the first time, that SYK inhibition 1h after the onset of sepsis reduces the systemic inflammation, cardiac dysfunction and MOF, suggesting a potential role of the activation of SYK in the pathophysiology of sepsis. Novel therapeutic strategies that inhibit SYK activity may be of benefit in patients with diseases associated with local or systemic inflammation including sepsis.
Collapse
Affiliation(s)
- Chiara Verra
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Maria Kerstin Paulmann
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Jamila Wegener
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Enrica Marzani
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | | | - Massimo Collino
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Sina Maren Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Christoph Thiemermann
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
10
|
Wang D, Xu L, Liu Y, Wang C, Qi S, Li Z, Bai X, Liao Y, Wang Y. Role of mesenchymal stem cells in sepsis and their therapeutic potential in sepsis‑associated myopathy (Review). Int J Mol Med 2024; 54:92. [PMID: 39219272 PMCID: PMC11374154 DOI: 10.3892/ijmm.2024.5416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Sepsis‑induced myopathy (SIM) is one of the leading causes of death in critically ill patients. SIM mainly involves the respiratory and skeletal muscles of patients, resulting in an increased risk of lung infection, aggravated respiratory failure, and prolonged mechanical ventilation and hospital stay. SIM is also an independent risk factor associated with increased mortality in critically ill patients. At present, no effective treatment for SIM has yet been established. However, mesenchymal stem cells (MSCs) have emerged as a promising therapeutic approach and have been utilized in the treatment of various clinical conditions. A significant body of basic and clinical research supports the efficacy of MSCs in managing sepsis and muscle‑related diseases. This literature review aims to explore the relationship between MSCs and sepsis, as well as their impact on skeletal muscle‑associated diseases. Additionally, the present review discusses the potential mechanisms and therapeutic benefits of MSCs in the context of SIM.
Collapse
Affiliation(s)
- Dongfang Wang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ligang Xu
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yukun Liu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Chuntao Wang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Siyuan Qi
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhanfei Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiangjun Bai
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yiliu Liao
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yuchang Wang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
11
|
Shen S, Li J, Wei Z, Liu Y, Kang L, Gu R, Sun X, Xu B, Li Q. Immune-response gene 1 deficiency aggravates inflammation-triggered cardiac dysfunction by inducing M1 macrophage polarization and aggravating Ly6C high monocyte recruitment. Biol Direct 2024; 19:86. [PMID: 39350193 PMCID: PMC11441264 DOI: 10.1186/s13062-024-00521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
The immune response gene 1 (IRG1) and its metabolite itaconate are implicated in modulating inflammation and oxidative stress, with potential relevance to sepsis-induced myocardial dysfunction (SIMD). This study investigates their roles in SIMD using both in vivo and in vitro models. Mice were subjected to lipopolysaccharide (LPS)-induced sepsis, and cardiac function was assessed in IRG1 knockout (IRG1-/-) and wild-type mice. Exogenous 4-octyl itaconate (4-OI) supplementation was also examined for its protective effects. In vitro, bone marrow-derived macrophages and RAW264.7 cells were treated with 4-OI following Nuclear factor, erythroid 2 like 2 (NRF2)-small interfering RNA administration to elucidate the underlying mechanisms. Our results indicate that IRG1 deficiency exacerbates myocardial injury during sepsis, while 4-OI administration preserves cardiac function and reduces inflammation. Mechanistic insights reveal that 4-OI activates the NRF2/HO-1 pathway, promoting macrophage polarization and attenuating inflammation. These findings underscore the protective role of the IRG1/itaconate axis in SIMD and suggest a therapeutic potential for 4-OI in modulating macrophage responses.
Collapse
Affiliation(s)
- Song Shen
- Department of Cardiology of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jianhui Li
- Department of Cardiology of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhonghai Wei
- Department of Cardiology of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yihai Liu
- Department of Cardiology of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lina Kang
- Department of Cardiology of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Rong Gu
- Department of Cardiology of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xuan Sun
- Department of Cardiology of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Biao Xu
- Department of Cardiology of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - QiaoLing Li
- Department of Cardiology of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
12
|
Bi C, Wang D, Hao B, Yang T. Snhg14/miR-181a-5p axis-mediated "M1" macrophages aggravate LPS-induced myocardial cell injury. Heliyon 2024; 10:e37104. [PMID: 39309894 PMCID: PMC11414504 DOI: 10.1016/j.heliyon.2024.e37104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
An increasing number of studies have suggested that macrophages participate in sepsis-induced myocardial injury. Our study highlights the function and mechanism of the lncRNA Snhg14 in "M1" polarized macrophage-mediated myocardial cell damage. Lipopolysaccharide (LPS) was used to treat H9c2 cells to construct an in vitro myocardial injury model. M1 and M2 polarization of RAW264.7 cells were induced and the exosomes were obtained from the supernatant through ultracentrifugation. Moreover, cecal ligation and puncture (CLP) surgery was implemented to establish a mouse sepsis-induced myocardial injury model, and Snhg14 was knocked down with sh-Snhg14. The results showed that the conditioned medium (CM) and the exosomes (Exo) of M1 macrophages substantially augmented LPS-induced apoptosis and oxidative stress in myocardial cells. Notably, M1-CM and M1-Exo contributed to nearly 50 % of myocardial cell viability decline. Snhg14 was highly expressed in M1 macrophages and exosomes derived from M1-MΦ (M1-Exo). Snhg14 overexpression aggravated myocardial cell damage and increased 10 to 50 times expression of proinflammatory cytokines in MΦ. Snhg14 knockdown reversed M1-Exo-mediated myocardial cell damage and inhibited the production of proinflammatory cytokines (50 %-75 % decline) of MΦ. Moreover, Snhg14 targeted and inhibited miR-181a-5p expression. miR-181a-5p upregulation partly reversed Snhg4 overexpression-mediated myocardial cell damage and MΦ activation. In vivo, sh-Snhg14 dramatically ameliorated cardiac damage in septic mice by enhancing miR-181a-5p and inhibiting the HMGB1/NF-κB pathway. In conclusion, "M1" macrophage-derived exosomal Snhg14 aggravates myocardial cell damage by modulating the miR-181a-5p/HMGB1/NF-κB pathway.
Collapse
Affiliation(s)
- Chenglong Bi
- Department of Cardiology, Shandong University Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Dejin Wang
- Department of Cardiology, Shandong University Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Bin Hao
- Cardiovascular Surgery, Shandong University Zibo Central Hospital, Zibo, 255000, China
| | - Tianxiao Yang
- Department of Cardiology, Shandong University Zibo Central Hospital, Zibo, 255000, Shandong, China
| |
Collapse
|
13
|
Liu W, Dai J, Zhang P, Ni M, Zhang Y, Fang H, Zhang Z. A novel vital sign pattern predicts sepsis-related myocardial injury mortality. iScience 2024; 27:110787. [PMID: 39310753 PMCID: PMC11414694 DOI: 10.1016/j.isci.2024.110787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/06/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Non-invasive, real-time monitorable indicators for early assessment of sepsis-associated myocardial injury (SMI) are still lacking. We aimed to develop non-invasive, real-time indicators for early assessment of SMI using bedside heart rate (HR) and diastolic arterial pressure (DAP) monitors. In this multi-center cohort study, piece-wise exponential additive mixed models were used to estimate the exposure window and time fraction of the hazardous exposure proportion, and secondarily to analyze the exposure characterization on this basis to identify high-risk exposure pattern. In total, 20,043 patients were finally included; we found that SMI patients had the highest survival rate when HR was <90 bpm or DAP was between 50 and 70 mmHg. Further investigation revealed that the SMI high-risk exposure pattern was the H1D-1 (HR ≥ 90 bpm and DAP ≤ 50 mmHg, exposure proportion > 0.3 and 0.2, respectively, and exposure window on admission day 1). H1D-1 exposure pattern using glucocorticoids significantly increased the risk of mortality in H1D-1. Validation against various methodologies and data sources demonstrated acceptable consistency.
Collapse
Affiliation(s)
- Wanjun Liu
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jinjin Dai
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Pengyue Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Menglin Ni
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yafei Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Haoshu Fang
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, China
| | - Zhenhua Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
14
|
Favero AM, Rosales TO, Scheschowitsch K, Gonçalves MC, Benedet PO, Sordi R, Nardi GM, Assreuy J. Blockade of sympathetic ganglia improves vascular dysfunction in septic shock. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6551-6562. [PMID: 38457039 DOI: 10.1007/s00210-024-03032-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
Sepsis/septic shock activates the sympathetic nervous system (SNS) to deal with the infection stress. However, an imbalanced or maladaptive response due to excessive or uncontrolled activation characterizes autonomic dysfunction. Our hypothesis was that reducing this excessive activation of the autonomic nervous system would impact positively in sepsis. Using ganglionic blockers as a pharmacological approach, the main aim of the present report was to assess the role of ganglionic transmission in the vascular dysfunction associated with sepsis.Sepsis was induced in rats by cecal ligation and puncture (CLP). One hour after CLP surgery, rats were treated subcutaneously with hexamethonium (15 mg/kg; ganglionic blocker), pentolinium (5 mg/kg; a blocker with a higher selectivity for sympathetic ganglia compared to hexamethonium), or vehicle (PBS). Basal blood pressure and the response to adrenergic agonists were evaluated at 6 and 24 h after CLP surgery. Reactivity to vasoconstrictors, nitric oxide (NO) synthase 2 (NOS-2) expression, IL-1 and TNF plasma levels, and density of α1 adrenergic receptors were evaluated in the aorta 24 h after CLP.Septic shock resulted in hypotension and hyporesponsiveness to norepinephrine and phenylephrine, increased plasma cytokine levels and NOS-2 expression in the aorta, and decreased α1 receptor density in the same vessel. Pentolinium but not hexamethonium recovered responsiveness and α1 adrenergic receptor density in the aorta. Both blockers normalized the in vivo response to vasoconstrictors, and reduced plasma IL-1 and NOx levels and NOS-2 expression in the aorta.Blockade of ganglionic sympathetic transmission reduced the vascular dysfunction in experimental sepsis. This beneficial effect seems to be, at least in part, due to the preservation of α1 adrenergic receptor density and to reduced NOS-2 expression and may lead to adjuvant ways to treat human sepsis.
Collapse
MESH Headings
- Animals
- Shock, Septic/physiopathology
- Shock, Septic/drug therapy
- Shock, Septic/metabolism
- Male
- Ganglia, Sympathetic/drug effects
- Ganglia, Sympathetic/physiopathology
- Ganglia, Sympathetic/metabolism
- Ganglionic Blockers/pharmacology
- Rats, Wistar
- Nitric Oxide Synthase Type II/metabolism
- Rats
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, alpha-1/drug effects
- Blood Pressure/drug effects
- Tumor Necrosis Factor-alpha/metabolism
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Ana Maria Favero
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | | | - Karin Scheschowitsch
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Muryel Carvalho Gonçalves
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Patricia Oliveira Benedet
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Regina Sordi
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Geisson Marcos Nardi
- Department of Morphological Sciences, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Jamil Assreuy
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil.
| |
Collapse
|
15
|
Hu K, Jiang P, Hu J, Song B, Hou Y, Zhao J, Chen H, Xie J. Dapagliflozin attenuates LPS-induced myocardial injury by reducing ferroptosis. J Bioenerg Biomembr 2024; 56:361-371. [PMID: 38743190 DOI: 10.1007/s10863-024-10020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Septic cardiomyopathy is a severe cardiovascular disease with a poor prognosis. Previous studies have reported the involvement of ferroptosis in the pathogenesis of septic cardiomyopathy. SGLT2 inhibitors such as dapagliflozin have been demonstrated to improve ischemia-reperfusion injury by alleviating ferroptosis in cardiomyocyte. However, the role of dapagliflozin in sepsis remains unclear. Therefore, our study aims to investigate the therapeutic effects of dapagliflozin on LPS-induced septic cardiomyopathy. Our results indicate that dapagliflozin improved cardiac function in septic cardiomyopathy experimental mice. Mechanistically, dapagliflozin works by inhibiting the translation of key proteins involved in ferroptosis, such as GPX4, FTH1, and SLC7A11. It also reduces the transcription of lipid peroxidation-related mRNAs, including PTGS2 and ACSL4, as well as iron metabolism genes TFRC and HMOX1.
Collapse
Affiliation(s)
- Ke Hu
- The Affiliated Drum Tower Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Pin Jiang
- Department of General Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Jiaxin Hu
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, 445000, Hubei, China
| | - Bing Song
- Department of Cardiology, National Cardiovascular Disease Regional Center for Anhui, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Ya Hou
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Jinxuan Zhao
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, 210008, Jiangsu, China.
| | - Haiting Chen
- Department of Cardiology, National Cardiovascular Disease Regional Center for Anhui, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| | - Jun Xie
- The Affiliated Drum Tower Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.
- Department of Cardiology, National Cardiovascular Disease Regional Center for Anhui, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|
16
|
Li X, Chen Y, Yuan Q, Zhou H, Lu L, Guo R. Neutrophil-to-lymphocyte ratio, monocyte-to-lymphocyte ratio, platelet-to-lymphocyte ratio associated with 28-day all-cause mortality in septic patients with coronary artery disease: a retrospective analysis of MIMIC-IV database. BMC Infect Dis 2024; 24:749. [PMID: 39075364 PMCID: PMC11288105 DOI: 10.1186/s12879-024-09516-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/17/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND High Neutrophil-to-Lymphocyte Ratio (NLR), Monocyte-to-Lymphocyte Ratio (MLR), Platelet-to-Lymphocyte Ratio (PLR) were associated with worse prognosis of patients with sepsis. In-hospital mortality has been reported to be higher in patients with coronary artery disease (CAD) and sepsis than those with sepsis alone. However, the relationship between NLR, MLR, PLR and mortality in septic patients with coronary artery disease (CAD) remains unclear. The study aimed to explore the association between NLR, MLR, PLR and 28-day all-cause mortality in septic patients with CAD. METHODS We performed an observational cohort study of septic patients with CAD from the Medical Information Mart for Intensive Care (MIMIC)-IV database between 2008 and 2019. The patients were categorized by three group (Q1: low levels, Q2: medium levels, Q3: high levels) based on tertiles of NLR, MLR, and PLR. The associations between NLR, MLR, PLR and 28-day all-cause mortality were examined using the Cox proportional hazards model. Subsequently, we applied receiver operating characteristic (ROC) analysis for predicting 28-day mortality in septic patients with CAD by combining NLR, MLR and PLR with the modified sequential organ failure assessment (mSOFA) scores. RESULTS Overall 1,175 septic patients with CAD were included in the study. Observed all-cause mortality rates in 28 days were 27.1%. Multivariate Cox proportional hazards regression analysis results showed that 28-day all-cause mortality of septic patients with CAD was significantly related to rising NLR levels (adjusted hazard ratio [aHR]: 1.02; 95% confidence interval [CI]: 1.01-1.02; P < 0.001), MLR levels (aHR: 1.29; 95%CI: 1.18-1.41; P < 0.001), and PLR levels (aHR: 1.0007; 95%CI: 1.0004-1.0011; P < 0.001). Meanwhile, the higher levels (Q3) group of NLR, MLR, and PLR also had a higher risk of 28-day all-cause mortality than the lower (Q1) group. The area under the ROC curve of NLR, MLR, PLR, and mSOFA score were 0.630 (95%CI 0.595-0.665), 0.611 (95%CI 0.576-0.646), 0.601 (95%CI 0.567-0.636) and 0.718 (95%CI 0.689-0.748), respectively. Combining NLR, MLR, and PLR with mSOFA scores may improve ability of predicting 28-day mortality (AUC: 0.737, 95%CI 0.709-0.766). CONCLUSION Higher levels of NLR, MLR and PLR were associated with 28-day all-cause mortality in septic patients with CAD. Further investigation will be needed to improve understanding of the pathophysiology of this relationship.
Collapse
Affiliation(s)
- Xicong Li
- Department of Cardiology, the 920th Hospital, Kunming Medical University, Kunming, 650032, Yunnan, China
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650032, Yunnan, China
| | - Yubiao Chen
- State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Qi Yuan
- Department of Cardiology, the 920th Hospital, Kunming Medical University, Kunming, 650032, Yunnan, China
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650032, Yunnan, China
| | - Hongya Zhou
- Department of Cardiology, the 920th Hospital, Kunming Medical University, Kunming, 650032, Yunnan, China
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650032, Yunnan, China
| | - Lifei Lu
- State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, China.
| | - Ruiwei Guo
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650032, Yunnan, China.
| |
Collapse
|
17
|
Leger KJ, Absalon MJ, Demissei BG, Smith AM, Gerbing RB, Alonzo TA, Narayan HK, Hirsch BA, Pollard JA, Razzouk BI, Getz KD, Aplenc R, Kolb EA, Ky B, Cooper TM. Cardiotoxicity of CPX-351 in children and adolescents with relapsed AML: a Children's Oncology Group report. Front Cardiovasc Med 2024; 11:1347547. [PMID: 38947228 PMCID: PMC11211570 DOI: 10.3389/fcvm.2024.1347547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/07/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction Anthracyclines are effective in treating acute myeloid leukemia (AML) but limited by cardiotoxicity. CPX-351, a liposomal daunorubicin and cytarabine, may provide therapeutic benefit with less cardiotoxicity. Acute changes in left ventricular systolic function and cardiac biomarkers were evaluated after a cycle of CPX-351 in children with relapsed AML treated on the phase 1/2 Children's Oncology Group study, AAML1421. Methods Subjects received 135 units/m2/dose of CPX-351 on days 1, 3, and 5 as cycle 1. Echocardiograms were performed and centrally quantitated at baseline and at the end of cycle 1 (day 29 +/- 1 week). High sensitivity troponin (hs-cTnT) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) were measured at baseline and serially through the end of cycle 1 (days 5, 8, 15, 22 and 29). Differences between baseline and post-CPX-351 echo/biomarker measures were analyzed using Wilcoxon signed rank tests. Linear regression was used to model post-CPX-351 left ventricular ejection fraction (LVEF) with cTnT/NT-proBNP at each time point, controlling for baseline LVEF. Cancer therapy related cardiac dysfunction (CTRCD) was defined as a decline in LVEF of ≥10%-<50%. Results Twenty-five of 38 heavily anthracycline pre-treated (median 348 mg/m2 daunorubicin equivalents) subjects enrolled on AAML1421 were included in the cardiac analyses. At baseline, centrally quantitated LVEF was <50% in 8 of 25 subjects (32%) with a median LVEF of 53.8% [48.0, 56.9]. Following CPX-351, LVEF declined significantly (ΔLVEF -3.3% [-7.8, 0]) and 6 of 25 subjects (24%) experienced CTRCD. Amongst all subjects, hs-cTnT was modestly increased at end of cycle 1 compared to baseline [baseline hs-cTnT 7.2 (3, 10.6); ΔcTnT 1.80 (0, 6.1), p = 0.03]. NT-proBNP remained stably elevated without significant change. No significant associations were seen between NT-proBNP or cTnT levels and post-CPX-351 LVEF. Discussion In this single arm study of anthracycline pre-treated children exposed to CPX-351, baseline abnormalities in cardiovascular function were prevalent. Following CPX-351, LVEF decreased, cTnT increased, and NT-proBNP did not change. Longer follow-up is needed to determine whether these changes result in clinically meaningful long-term decrements in cardiac function. An ongoing randomized trial of CPX-351 compared to standard anthracyclines in anthracycline naïve patients will provide further insight into the cardiac effects of CPX-351 (ClinicalTrials.gov; NCT04293562).
Collapse
Affiliation(s)
- Kasey J. Leger
- Division of Pediatric Hematology/Oncology, Seattle Children’s Hospital, University of Washington, Seattle, WA, United States
| | - Michael J. Absalon
- Department of Pediatrics, Oregon Health Sciences University, Portland, OR, United States
| | - Biniyam G. Demissei
- Division of Cardiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Amanda M. Smith
- Division of Cardiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Todd A. Alonzo
- Children’s Oncology Group, Monrovia, CA, United States
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, United States
| | - Hari K. Narayan
- Department of Pediatrics, University of California San Diego, Rady Children’s Hospital San Diego, La Jolla, CA, United States
| | - Betsy A. Hirsch
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Jessica A. Pollard
- Division of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Bassem I. Razzouk
- Department of Pediatrics, Peyton Manning Children’s Hospital at Ascension St. Vincent, Indianapolis, IN, United States
| | - Kelly D. Getz
- Departments of Biostatistics, Epidemiology & Informatics and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Richard Aplenc
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - E. Anders Kolb
- Nemours Center for Cancer and Blood Disorders, A.I. DuPont Hospital for Children, Wilmington, DE, United States
| | - Bonnie Ky
- Division of Cardiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Todd M. Cooper
- Division of Pediatric Hematology/Oncology, Seattle Children’s Hospital, University of Washington, Seattle, WA, United States
| |
Collapse
|
18
|
Li J, Teng D, Jia W, Gong L, Dong H, Wang C, Zhang L, Xu B, Wang W, Zhong L, Wang J, Yang J. PLD2 deletion ameliorates sepsis-induced cardiomyopathy by suppressing cardiomyocyte pyroptosis via the NLRP3/caspase 1/GSDMD pathway. Inflamm Res 2024; 73:1033-1046. [PMID: 38630134 PMCID: PMC11106193 DOI: 10.1007/s00011-024-01881-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/27/2024] [Accepted: 04/05/2024] [Indexed: 05/22/2024] Open
Abstract
OBJECTIVE Sepsis-induced cardiomyopathy (SICM) is a life-threatening complication. Phospholipase D2 (PLD2) is crucial in mediating inflammatory reactions and is associated with the prognosis of patients with sepsis. Whether PLD2 is involved in the pathophysiology of SICM remains unknown. This study aimed to investigate the effect of PLD2 knockout on SICM and to explore potential mechanisms. METHODS The SICM model was established using cecal ligation and puncture in wild-type and PLD2-knockout mice and lipopolysaccharide (LPS)-induced H9C2 cardiomyocytes. Transfection with PLD2-shRNA lentivirus and a PLD2 overexpression plasmid were used to interfere with PLD2 expression in H9C2 cells. Cardiac pathological alterations, cardiac function, markers of myocardial injury, and inflammatory factors were used to evaluate the SICM model. The expression of pyroptosis-related proteins (NLRP3, cleaved caspase 1, and GSDMD-N) was assessed using western blotting, immunofluorescence, and immunohistochemistry. RESULTS SICM mice had myocardial tissue damage, increased inflammatory response, and impaired heart function, accompanied by elevated PLD2 expression. PLD2 deletion improved cardiac histological changes, mitigated cTNI production, and enhanced the survival of the SICM mice. Compared with controls, PLD2-knockdown H9C2 exhibits a decrease in inflammatory markers and lactate dehydrogenase production, and scanning electron microscopy results suggest that pyroptosis may be involved. The overexpression of PLD2 increased the expression of NLRP3 in cardiomyocytes. In addition, PLD2 deletion decreased the expression of pyroptosis-related proteins in SICM mice and LPS-induced H9C2 cells. CONCLUSION PLD2 deletion is involved in SICM pathogenesis and is associated with the inhibition of the myocardial inflammatory response and pyroptosis through the NLRP3/caspase 1/GSDMD pathway.
Collapse
Affiliation(s)
- Jun Li
- School of Basic Medical Sciences, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong, China
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Da Teng
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Wenjuan Jia
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Lei Gong
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Haibin Dong
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Chunxiao Wang
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Lihui Zhang
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Bowen Xu
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Wenlong Wang
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Lin Zhong
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China.
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong, China.
| | - Jun Yang
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China.
| |
Collapse
|
19
|
Xu J, Li X, Lu Q, Li X, Shan H. HMGA1 regulates the mitochondrial apoptosis pathway in sepsis-induced cardiomyopathy. Cell Biochem Biophys 2024; 82:849-858. [PMID: 38430408 PMCID: PMC11344717 DOI: 10.1007/s12013-024-01236-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/12/2024] [Indexed: 03/03/2024]
Abstract
High mobility group protein AT-hook 1 (HMGA1), an architectural transcription factor, has previously been reportedto play an essential role in architectural remodeling processes. However, its effects on cardiovascular diseases, particularly sepsis-induced cardiomyopathy, have remained unclear. The study aimed to investigate the role of HMGA1 in lipopolysaccharide-induced cardiomyopathy. Mice subjected to lipopolysaccharide for 12 h resulted in cardiac dysfunction. We used an adeno-associated virus 9 delivery system to achieve cardiac-specific expression of the HMGA1 gene in the mice. H9c2 cardiomyocytes were infected with Ad-HMGA1 to overexpress HMGA1 or transfected with si-HMGA1 to knock down HMGA1. Echocardiography was applied to measure cardiac function. RT-PCR was used to detect the transcriptional level of inflammatory cytokines. CD45 and CD68 immunohistochemical staining were used to detect inflammatory cell infiltration and TUNEL staining to evaluate the cardiomyocyte apoptosis, MitoSox was used to detect mitochondrial reactive oxygen species, JC-1 was used todetect Mitochondrial membrane potential. Our findings revealed that the overexpression of HMGA1 exacerbated myocardial inflammation and apoptosis in response to lipopolysaccharide treatment. Additionally, we also observed that H9c2 cardiomyocytes with HMGA1 overexpression exhibited enhanced inflammation and apoptosis upon stimulation with lipopolysaccharide for 12 h. Conversely, HMGA1 knockdown in H9c2 cardiomyocytes attenuated lipopolysaccharide-induced cardiomyocyte inflammation and apoptosis. Further investigations into the molecular mechanisms underlying these effects showed that HMGA1 promoted lipopolysaccharide-induced mitochondrial-dependent cardiomyocyte apoptosis. The study reveals that HMGA1 worsens myocardial inflammation and apoptosis in response to lipopolysaccharide treatment. Mechanically, HMGA1 exerts its effects by regulating the mitochondria-dependent apoptotic pathway.
Collapse
Affiliation(s)
- Jing Xu
- The First Affiliated Hospital of Shihezi University, Xinjiang, China
| | - Xinwei Li
- Changji Branch, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Qianqian Lu
- The First Affiliated Hospital of Shihezi University, Xinjiang, China
| | - Xiaohua Li
- Medical School of Shihezi University, Xinjiang, China
| | - Hongying Shan
- The First Affiliated Hospital of Shihezi University, Xinjiang, China.
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
20
|
Wakeley ME, Denning NL, Jiang J, De Paepe ME, Chung CS, Wang P, Ayala A. Herpes virus entry mediator signaling blockade produces mortality in neonatal sepsis through induced cardiac dysfunction. Front Immunol 2024; 15:1365174. [PMID: 38774873 PMCID: PMC11106455 DOI: 10.3389/fimmu.2024.1365174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/15/2024] [Indexed: 05/24/2024] Open
Abstract
Introduction Sepsis remains a major source of morbidity and mortality in neonates, and characterization of immune regulation in the neonatal septic response remains limited. HVEM is a checkpoint regulator which can both stimulate or inhibit immune responses and demonstrates altered expression after sepsis. We hypothesized that signaling via HVEM would be essential for the neonatal response to sepsis, and that therefore blockade of this pathway would improve survival to septic challenge. Methods To explore this, neonatal mice were treated with cecal slurry (CS), CS with Anti-HVEM antibody (CS-Ab) or CS with isotype (CS-IT) and followed for 7-day survival. Mice from all treatment groups had thymus, lung, kidney and peritoneal fluid harvested, weighed, and stained for histologic evaluation, and changes in cardiac function were assessed with echocardiography. Results Mortality was significantly higher for CS-Ab mice (72.2%) than for CS-IT mice (22.2%). CS resulted in dysregulated alveolar remodeling, but CS-Ab lungs demonstrated significantly less dysfunctional alveolar remodeling than CS alone (MCL 121.0 CS vs. 87.6 CS-Ab), as well as increased renal tubular vacuolization. No morphologic differences in alveolar septation or thymic karyorrhexis were found between CS-Ab and CS-IT. CS-Ab pups exhibited a marked decrease in heart rate (390.3 Sh vs. 342.1 CS-Ab), stroke volume (13.08 CS-IT vs. 8.83 CS-Ab) and ultimately cardiac output (4.90 Sh vs. 3.02 CS-Ab) as well as a significant increase in ejection fraction (73.74 Sh vs. 83.75 CS-Ab) and cardiac strain (40.74 Sh vs. 51.16 CS-Ab) as compared to CS-IT or Sham animals. Discussion While receptor ligation of aspects of HVEM signaling, via antibody blockade, appears to mitigate aspects of lung injury and thymic involution, stimulatory signaling via HVEM still seems to be necessary for vascular and hemodynamic resilience and overall neonatal mouse survival in response to this experimental polymicrobial septic insult. This dissonance in the activity of anti-HVEM neutralizing antibody in neonatal animals speaks to the differences in how septic cardiac dysfunction should be considered and approached in the neonatal population.
Collapse
Affiliation(s)
- Michelle E. Wakeley
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Naomi-Liza Denning
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Jihong Jiang
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, RI, United States
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Monique E. De Paepe
- Department of Pathology, Women and Infants Hospital, Providence, RI, United States
| | - Chun-Shiang Chung
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Alfred Ayala
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, RI, United States
| |
Collapse
|
21
|
Chen B, Li YF, Fang Z, Cai WY, Tian ZQ, Li D, Wang ZM. Epigallocatechin-3-gallate protects sepsis-induced myocardial dysfunction by inhibiting the nuclear factor-κB signaling pathway. Heliyon 2024; 10:e27163. [PMID: 38449632 PMCID: PMC10915574 DOI: 10.1016/j.heliyon.2024.e27163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
Sepsis-induced myocardial dysfunction (SIMD) has become one of the most lethal complications of sepsis, while the treatment was limited by a shortage of pertinent drugs. Epigallocatechin-3-gallate (EGCG) is the highest content of active substances in green tea, and its application in cardiovascular diseases has broad prospects. This study was conducted to test the hypothesis that EGCG was able to inhibit lipopolysaccharide (LPS) induced myocardial dysfunction and investigate the underlying molecular mechanisms. The cardiac systolic function was assessed by echocardiography. The cardiomyocyte apoptosis was determined by TUNEL staining. The expression of inflammatory factors and apoptosis-related protein, cardiac markers were examined by Western Blot and qRT-PCR. EGCG effectively improve LPS-induced cardiac function damage, enhance left ventricular systolic function, and restore myocardial cell vitality. It can effectively inhibit the upregulation of TLR4 expression induced by LPS and inhibit IκB α/NF- κB/p65 signaling pathway, thereby inhibiting cardiomyocyte apoptosis and improving myocarditis. In conclusion, EGCG protects against SIMD through anti-inflammatory and anti-apoptosis effects; it was mediated by the inhibition of the TLR4/NF-κB signal pathway. Our results demonstrated that EGCG might be a possible medicine for SIMD prevention and treatment.
Collapse
Affiliation(s)
- Bei Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Ya-Fei Li
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215000, Jiangsu Province, China
| | - Zhang Fang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Wen-Yi Cai
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Zhi-Qiang Tian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Dianfu Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Ze-Mu Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| |
Collapse
|
22
|
Chen H, Huang L, Xing B, Gao Y, Zhang J, Zhang B. Prognostic value of right ventricular free wall strain in patients with sepsis. Front Cardiovasc Med 2024; 11:1334759. [PMID: 38450378 PMCID: PMC10915020 DOI: 10.3389/fcvm.2024.1334759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Background Right ventricular systolic dysfunction (RVSD) in patients with sepsis is an area of growing interest, but its prognostic significance remains unclear and additional tools are needed to improve our understanding. Right ventricular free wall strain (RV-FWS) is a relatively new parameter to assess RV function. This study aimed to investigate the potential correlation between impaired RV-FWS and prognostic outcomes in patients with sepsis. Methods We prospectively assessed right ventricular function in patients with sepsis within the initial 24 h of their hospital admission. RV-FWS, right ventricular global strain (RV-GS), fractional area change (FAC), and tricuspid annular plane systolic excursion (TAPSE) were examined. RVSD was defined as impaired RV-FWS. Moreover, the association between RVSD and 30-day mortality rate was assessed. Results This study included 89 patients. Among them, 27 (30.3%) succumbed to their illness within 30 days. The nonsurviving patients demonstrated significantly lower absolute RV-FWS (-19.7% ± 2.4% vs. -21.1% ± 2.1%, P = 0.008) and RV-GS (-17.7% ± 1.2% vs. -18.4% ± 1.4%, P = 0.032) values than the surviving patients. However, TAPSE and FAC values were not significantly different between the two groups. The optimal cutoff values for RV-FWS, RV-GS, FAC, and TAPSE were -19.0%, -17.9%, 36.5%, and 1.55 cm, respectively. Kaplan-Meier survival curves revealed that patients with impaired RV-FWS and RV-GS demonstrated lower 30-day survival rates, and the predictive performance of RV-FWS (hazard ratio [HR]: 3.97, 95% confidence interval [CI]: 1.85-8.51, P < 0.001) was slightly higher than FAC and TAPSE. However, multivariable Cox regression analysis revealed no association between impaired RV-FWS and mortality outcomes (HR: 1.85, 95% CI: 0.56-6.14, P = 0.316). Conclusions Impaired RV-FWS is not associated with short-term mortality outcomes, and RV strain imaging is of limited value in assessing the prognosis of sepsis.
Collapse
Affiliation(s)
- Hongmin Chen
- Department of Ultrasound, The First College of Clinical Medical Science, China Three Gorges University and Yichang Central People’s Hospital, Yichang, China
| | - Lei Huang
- Department of Critical Care Medicine, The First College of Clinical Medical Science, China Three Gorges University and Yichang Central People’s Hospital, Yichang, China
| | - Boyuan Xing
- Department of Ultrasound, The First College of Clinical Medical Science, China Three Gorges University and Yichang Central People’s Hospital, Yichang, China
| | - Yang Gao
- Department of Ultrasound, The First College of Clinical Medical Science, China Three Gorges University and Yichang Central People’s Hospital, Yichang, China
| | - Jie Zhang
- Department of Ultrasound, The First College of Clinical Medical Science, China Three Gorges University and Yichang Central People’s Hospital, Yichang, China
| | - Bingyi Zhang
- Department of Ultrasound, The First College of Clinical Medical Science, China Three Gorges University and Yichang Central People’s Hospital, Yichang, China
| |
Collapse
|
23
|
Huang L, Wang X, Huang B, Chen Y, Wu X. Bisphosphoglycerate mutase predicts myocardial dysfunction and adverse outcome in sepsis: an observational cohort study. BMC Infect Dis 2024; 24:173. [PMID: 38326761 PMCID: PMC10848385 DOI: 10.1186/s12879-024-09008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Sepsis not only causes inflammation, but also damages the heart and increases the risk of death. The glycolytic pathway plays a crucial role in the pathogenesis of sepsis-induced cardiac injury. This study aims to investigate the value of bisphosphoglycerate mutase (BPGM), an intermediate in the glycolytic pathway, in evaluating cardiac injury in septic patients and predicting poor prognosis in sepsis. METHODS This prospective study included 85 patients with sepsis. Serum BPGM was measured at the time of enrollment, and the patients were divided into a BPGM-positive group (n = 35) and a BPGM-negative group (n = 50) according to their serum BPGM levels. Baseline clinical and echocardiographic parameters, and clinical outcomes were analyzed and compared between the two groups. Kaplan-Meier analysis was used to compare the 28-day survival rate between BPGM-negative and BPGM-positive patients. Multivariate logistic regression analysis was conducted to explore the independent risk factors for 28-day mortality in septic patients. The predictive value of serum BPGM for sepsis-induced myocardial injury and poor prognosis in sepsis was evaluated using receiver operating characteristic (ROC)curve analysis. RESULT The serum level of BPGM was significantly higher in patients who died within 28 days compared to survivors (p < 0.001). Kaplan-Meier analysis showed that serum BPGM-positive sepsis patients had a significantly shorter 28-day survival time (p < 0.001). Multivariate logistic regression analysis showed that serum BPGM (OR = 9.853, 95%CI 1.844-52.655, p = 0.007) and left ventricular ejection fraction-simpson(LVEF-S) (OR = 0.032, 95% CI 0.002-0.43, p = 0.009) were independent risk factors for 28-day mortality in sepsis patients. Furthermore, BPGM levels was negatively correlated with LVEF-S (p = 0.005) and positively correlated with the myocardial performance (Tei) index (p < 0.001) in sepsis patients. ROC curve analysis showed that serum BPGM was a good predictor of septic myocardial injury and 28-day mortality in sepsis patients. CONCLUSION The level of BPGM in the serum of sepsis patients can serve as a monitoring indicator for myocardial injury, with its high level indicating the occurrence of secondary myocardial injury events and adverse outcomes in sepsis patients.
Collapse
Affiliation(s)
- Long Huang
- Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provicial Hospital, Fuzhou, China
| | - Xincai Wang
- Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provicial Hospital, Fuzhou, China.
| | - Bawei Huang
- Medical Department, Shengli Clinical Medical College of Fujian Medical University, Fujian Provicial Hospital, Fuzhou, China
| | - Yu Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provicial Hospital, Fuzhou, China
| | - Xiaodan Wu
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provicial Hospital, Fuzhou, China.
| |
Collapse
|
24
|
Li Z, Wu B, Chen J, Ye N, Ma R, Song C, Sun Y, Zhang X, Sun G. WWP2 protects against sepsis-induced cardiac injury through inhibiting cardiomyocyte ferroptosis. J Transl Int Med 2024; 12:35-50. [PMID: 38591063 PMCID: PMC11000860 DOI: 10.2478/jtim-2024-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Background and Objectives Cardiac injury plays a critical role in contributing to the mortality associated with sepsis, a condition marked by various forms of programmed cell deaths. Previous studies hinted at the WW domain-containing E3 ubiquitin protein ligase 2 (WWP2) involving in heart failure and endothelial injury. However, the precise implications of WWP2 in sepsis-induced cardiac injury, along with the underlying mechanisms, remain enigmatic. Methods Sepsis induced cardiac injury were constructed by intraperitoneal injection of lipopolysaccharide. To discover the function of WWP2 during this process, we designed and performed loss/gain-of-function studies with cardiac-specific vectors and WWP2 knockout mice. Combination experiments were performed to investigate the relationship between WWP2 and downstream signaling in septic myocardium injury. Results The protein level of WWP2 was downregulated in cardiomyocytes during sepsis. Cardiac-specific overexpression of WWP2 protected heart from sepsis induced mitochondrial oxidative stress, programmed cell death and cardiac injury, while knockdown or knockout of WWP2 exacerbated this process. The protective potency of WWP2 was predominantly linked to its ability to suppress cardiomyocyte ferroptosis rather than apoptosis. Mechanistically, our study revealed a direct interaction between WWP2 and acyl-CoA synthetase long-chain family member 4 (FACL4), through which WWP2 facilitated the ubiquitin-dependent degradation of FACL4. Notably, we observed a notable reduction in ferroptosis and cardiac injury within WWP2 knockout mice after FACL4 knockdown during sepsis. Conclusions WWP2 assumes a critical role in safeguarding the heart against injury induced by sepsis via regulating FACL4 to inhibit LPS-induced cardiomyocytes ferroptosis.
Collapse
Affiliation(s)
- Zhi Li
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Boquan Wu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Jie Chen
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Ning Ye
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Rui Ma
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Chunyu Song
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Xingang Zhang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| |
Collapse
|
25
|
Fang Z, Wang G, Huang R, Liu C, Yushanjiang F, Mao T, Li J. Astilbin protects from sepsis-induced cardiac injury through the NRF2/HO-1 and TLR4/NF-κB pathway. Phytother Res 2024; 38:1044-1058. [PMID: 38153125 DOI: 10.1002/ptr.8093] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
Cardiac dysfunction and arrhythmia are severe complications of sepsis-induced cardiomyopathy and are associated with an increased risk of morbidity and mortality. Currently, the precise mechanism for sepsis-induced myocardial damage remains unclear. Astilbin, a flavonoid, is reported to have anti-inflammatory, antioxidative, and antiapoptotic properties. However, the effects of astilbin on sepsis-induced cardiomyopathy have not been studied so far. This study aims to investigate the effect of astilbin in sepsis-induced myocardial injury and elucidate the underlying mechanism. In vivo and in vitro sepsis models were created using lipopolysaccharide (LPS) as an inducer in H9C2 cardiomyocytes and C57BL/6 mice, respectively. Our results demonstrated that astilbin reduced myocardial injury and improved cardiac function. Moreover, astilbin prolonged the QT and corrected QT intervals, attenuated myocardial electrical remodeling, and promoted gap junction protein (Cx43) and ion channels expression, thereby reducing the susceptibility of ventricular fibrillation. In addition, astilbin alleviated LPS-induced inflammation, oxidative stress, and apoptosis. Astilbin suppressed the toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) pathway in vivo and in vitro models. Astilbin remarkedly upregulated the nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxygenase 1 (HO-1) expression. The in vitro treatment with an NRF2 inhibitor reversed the inhibition of the TLR4/NF-κB pathway and antioxidant properties of astilbin. Astilbin attenuated LPS-induced myocardial injury, cardiac dysfunction, susceptibility to VF, inflammation, oxidative stress, and apoptosis by activating the NRF2/HO-1 pathway and inhibiting TLR4/ NF-κB pathway. These results suggest that astilbin could be an effective and promising therapeutics target for the treatment of sepsis-induced cardiomyopathy.
Collapse
Affiliation(s)
- Zhao Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Guangji Wang
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Huang
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Hubei Provincial Key Lab of Selenium Resources and Bioapplications, Enshi, China
| | - Chengyin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Feierkaiti Yushanjiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Tuohua Mao
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
26
|
张 晓, 赵 品, 蒯 建, 常 超, 袁 庆. [Spermidine alleviates lipopolysaccharide-induced myocardial injury in mice by suppressing apoptosis, ROS production and ferroptosis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:166-172. [PMID: 38293988 PMCID: PMC10878897 DOI: 10.12122/j.issn.1673-4254.2024.01.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Indexed: 02/01/2024]
Abstract
OBJECTIVE To investigate the protective effect of spermidine against lipopolysaccharide (LPS)-induced myocardial injury in mice and the underlying mechanism. METHODS C57BL/6 mice subjected to intraperitoneal LPS injection with or without pretreatment with daily gavage of spermidine for 2 weeks were examined for myocardial pathologies using HE staining and transmission electron microscopy. In the cell experiment, cultured rat cardiomyocytes (H9c2 cells) were pretreated with 10 or 20 μmol/L spermidine before LPS exposure for 2 h, and the changes in cell viability and levels of lactate dehydrogenase (LDH) and cardiac troponin Ⅰ (cTNI) were assessed using CCK-8 kit, LDH detection kit and ELISA, respectively. Western blotting was performed to detect the changes in the expressions of Bax, Bcl-2, cleaved caspase-3, SLC7A11 and GPX4; the changes in reactive oxygen species (ROS) and Fe2+ levels were detected using fluorescent probes, and mitochondrial membrane potential of the cells was measured using JC-1 staining. RESULTS Treatment of the mice with LPS induced obvious myocardial and mitochondrial damages, which were significantly alleviated by pretreatment with spermidine. In H9c2 cells, LPS exposure significantly lowered the cell viability, increased LDH and cTNI levels and expressions of Bax and cleaved caspase-3 levels, decreased expressions of Bcl-2, SLC7A11 and GPX4, increased ROS production and Fe2+ level (P < 0.05), and lowered mitochondrial membrane potential (all P < 0.05). These effects were significantly alleviated by SPD pretreatment of the cells prior to LPS exposure. CONCLUSION Spermidine alleviates LPS-induced myocardial injury by suppressing cell apoptosis and inhibiting cellular ROS production and ferroptosis.
Collapse
Affiliation(s)
- 晓红 张
- 西北大学生命科学学院,陕西 西安 710069College of Life Sciences, Northwest University, Xi'an 710069, China
| | - 品 赵
- 西北大学附属医院//西安市第三医院麻醉科,陕西 西安 710018Department of Anesthesiology, Xi'an Third Hospital/Affiliated Hospital of Northwest University, Xi'an 710018, China
| | - 建科 蒯
- 西北大学附属医院//西安市第三医院麻醉科,陕西 西安 710018Department of Anesthesiology, Xi'an Third Hospital/Affiliated Hospital of Northwest University, Xi'an 710018, China
| | - 超 常
- 西北大学生命科学与医学部,陕西 西安 710069Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069
| | - 庆 袁
- 西北大学生命科学与医学部,陕西 西安 710069Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069
| |
Collapse
|
27
|
Estrada-Méndez A, Alducín-Téllez CR, Gómez-Alayola DJ, Collí-Heredia JP, Gómez-Cruz AP. Doble estrés cardiaco en el periodo postparto. Reporte de un caso de cardiomiopatía inducida por sepsis complicada con embolismo pulmonar agudo. CARDIOVASCULAR AND METABOLIC SCIENCE 2024; 35:54-64. [DOI: 10.35366/116275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
28
|
Fang J, Guan H. γ-Secretase inhibitor alleviates lipopolysaccharide-induced myocardial injury through regulating JAK2/STAT3 signaling. ENVIRONMENTAL TOXICOLOGY 2024; 39:135-147. [PMID: 37671635 DOI: 10.1002/tox.23962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/17/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND Septic myocardial injury is one of the most life-threatening organ dysfunction. The γ-secretase-based approaches have been developed as potential strategies for diverse diseases management. Unfortunately, the role of γ-secretase inhibitor in septic myocardial injury is unclarified. The present study aims to investigate the effect of γ-secretase inhibitor in septic myocardial injury and reveal its mechanism. METHODS The mouse model of septic myocardial injury was established by intraperitoneally injection of lipopolysaccharide (LPS), and γ-secretase inhibitor MW167 was applied in this model. RNA-sequencing analysis and further bioinformatics analyses were used to screen differential expressed genes (DEGs) and potentially enriched pathways between LPS and LPS + MW167 mice. Pathological examination was performed using haematoxylin and eosin (HE) staining. SD-1029 was used to block JAK2/STAT3 signaling in H9C2 cells and western blot analysis quantified JAK2/STAT3-related proteins. RESULTS LPS induced myocardial injury accompanied with significant inflammatory infiltration and more apoptotic cells. Transcriptome sequencing screened 36 DEGs and bioinformatics identified JAK2/STAT3 signaling pathway was significantly enriched. Further in vitro experiments showed that γ-secretase inhibitor MW167 activated JAK2/STAT3 pathway. Additionally, MW167 restored cell viability, decreased myocardial injury markers including cardiac troponin I (cTnI) and brain natriuretic peptide (BNP), inhibited pro-inflammatory cytokines such as interleukin (IL)-1β and tumor necrosis factor-α (TNF-α) and reduced nitric oxide (NO), cyclooxygenase-2 (COX2) and inducible nitric oxide synthase (iNOS) release. Application of SD-1029 reversely deteriorated LPS-induced myocardial injury and inflammatory response in γ-secretase inhibitor-treated myocardial cells. CONCLUSION The results demonstrate that γ-secretase inhibitor alleviates septic myocardial injury via activating JAK2/STAT3 signaling, and provide novel therapeutic direction for septic myocardial injury.
Collapse
Affiliation(s)
- Jingyun Fang
- Department of Emergency, Ganzhou People's Hospital, Ganzhou, China
| | - Huan Guan
- Department of Emergency, Ganzhou People's Hospital, Ganzhou, China
| |
Collapse
|
29
|
Liu AB, Li SJ, Yu YY, Zhang JF, Ma L. Current insight on the mechanisms of programmed cell death in sepsis-induced myocardial dysfunction. Front Cell Dev Biol 2023; 11:1309719. [PMID: 38161332 PMCID: PMC10754983 DOI: 10.3389/fcell.2023.1309719] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Sepsis is a clinical syndrome characterized by a dysregulated host response to infection, leading to life-threatening organ dysfunction. It is a high-fatality condition associated with a complex interplay of immune and inflammatory responses that can cause severe harm to vital organs. Sepsis-induced myocardial injury (SIMI), as a severe complication of sepsis, significantly affects the prognosis of septic patients and shortens their survival time. For the sake of better administrating hospitalized patients with sepsis, it is necessary to understand the specific mechanisms of SIMI. To date, multiple studies have shown that programmed cell death (PCD) may play an essential role in myocardial injury in sepsis, offering new strategies and insights for the therapeutic aspects of SIMI. This review aims to elucidate the role of cardiomyocyte's programmed death in the pathophysiological mechanisms of SIMI, with a particular focus on the classical pathways, key molecules, and signaling transduction of PCD. It will explore the role of the cross-interaction between different patterns of PCD in SIMI, providing a new theoretical basis for multi-target treatments for SIMI.
Collapse
Affiliation(s)
- An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shu-Jing Li
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuan-Yuan Yu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lei Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
30
|
Hu S, Huang M, Mao S, Yang M, Ju H, Liu Z, Cheng M, Wu G. Serinc2 deficiency exacerbates sepsis-induced cardiomyopathy by enhancing necroptosis and apoptosis. Biochem Pharmacol 2023; 218:115903. [PMID: 37918695 DOI: 10.1016/j.bcp.2023.115903] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
In critical care medicine, sepsis is a potentially fatal syndrome characterized by multi-organ dysfunction and eventual failure. Sepsis-induced cardiomyopathy (SIC) is characterized by decreased venstricular contractility. Serine incorporator 2 (Serinc2) is a protein involved in phosphatidylserine biosynthesis and membrane incorporation. It may also be a protective factor in septic lung injury. However, it is unknown whether Serinc2 influences SIC onset or progression. In the present study, we found that Serinc2 was downregulated in the cardiomyocytes of cecal ligation and puncture (CLP)-induced SIC and in neonatal rat cardiomyocytes (NRCMs) exposed to lipopolysaccharides (LPS). Serinc2 knockout (KO) exacerbated sepsis-induced myocardial inflammation, necroptosis, apoptosis, myocardial damage, and contractility impairment. Furthermore, the lack of Serinc2 in cardiomyocytes aggravated LPS-induced cardiomyopathic inflammation, necroptosis, and apoptosis. An adenovirus overexpressing Serinc2 inhibited the inflammatory response and favored cardiomyocyte survival. A mechanistic analysis revealed that Serinc2 deficiency exacerbated LPS-induced cardiac dysfunction by inhibiting the protein kinase B (Akt)/glycogen synthase kinase 3 beta (GSK-3β) signaling pathway that regulates necrotic complex formation and apoptotic pathways in cardiomyopathy. The findings of the present work demonstrated that Serinc2 plays an essential role in SIC and is, therefore, promising as a prophylactic and therapeutic target for this condition.
Collapse
Affiliation(s)
- Shan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Department of Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Department of Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Min Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Department of Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Department of Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Shuai Mao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Department of Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Department of Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Manqi Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Department of Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Department of Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Hao Ju
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Department of Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Department of Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Zheyu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Department of Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Department of Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Mian Cheng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Gang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Department of Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Department of Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| |
Collapse
|
31
|
Wang C, Shang H, Zhang S, Wang X, Shen M, Li N, Liu D, Jiang Y, Wei K, Zhu R. Inhibitions inflammatory response in clicks alleviates LPS induced myocardial injury by total polysaccharides of Pinus massoniana Lamb. pollen. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023; 6:100372. [DOI: 10.1016/j.carpta.2023.100372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
32
|
Liu G, Chen S, Yuan X, Chen G, Xu L, Meng X, Wu K, Guo D. Mesencephalic Astrocyte-Derived Neurotrophic Factor (MANF) Alleviates Sepsis-Induced Cardiomyopathy by Inhibiting Pyroptosis. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:2380-2389. [PMID: 38106831 PMCID: PMC10719710 DOI: 10.18502/ijph.v52i11.14052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/14/2023] [Indexed: 12/19/2023]
Abstract
Background Sepsis-induced cardiomyopathy (SIC) is a common complication of sepsis accompanied by high prevalence and mortality in sepsis patients. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a neurotrophic factor, and it exerts critical functions in various diseases, including heart diseases, while its effect on SIC remains elusive. Hence, we aimed to investigate the action of MANF on SIC. Methods This study was under the guidance of Gongli Hospital, Shanghai, China from January 2021 to December 2021. H9c2 cells and mice were induced by LPS to establish SIC in vitro and in vivo models. qRT-PCR and Western blot were used to determine gene and protein expressions. The levels of MANF, Interleukin-1β (IL-1β), Interleukin 18 (IL-18), creatine kinase-MB (CK-MB), and cardiac troponin I (cTn I) were detected using ELISA assay. Cell pyroptosis determination was performed by flow cytometry. The DCFDA assay kit was used to determine ROS production. Results In SIC in vitro model, LPS induced cell pyroptosis (P<0.001) and ROS accumulation (P<0.001). Besides, MANF was decreased in LPS-induced H9c2 cells (P<0.001) and SIC patients (P<0.001). In addition, overexpression of MANF ameliorated SIC-induced injury in H9C2 cells (P<0.001). Furthermore, inhibition of NLRP3 rescued the function of MANF on SIC-induced injury in H9C2 cells (P<0.001). Moreover, enforced MANF suppressed the SIC-induced injury in vivo model (P<0.001). Conclusion MANF was down-regulated in SIC. Overexpressed MANF ameliorated the SIC injury by inhibiting NLRP3-mediated pyroptosis.
Collapse
Affiliation(s)
- Guorong Liu
- Department of Emergency Medicine, Gongli Hospital, Pudong New Area, Shanghai, China
| | - Saifeng Chen
- Department of Emergency Medicine, Gongli Hospital, Pudong New Area, Shanghai, China
- Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiaoyan Yuan
- Department of Emergency Medicine, Gongli Hospital, Pudong New Area, Shanghai, China
| | - Guo Chen
- Department of Emergency Medicine, Gongli Hospital, Pudong New Area, Shanghai, China
| | - Lei Xu
- Department of Emergency Medicine, Gongli Hospital, Pudong New Area, Shanghai, China
| | - Xinmeichen Meng
- Department of Emergency Medicine, Gongli Hospital, Pudong New Area, Shanghai, China
- Ningxia Medical University, Yinchuan, Ningxia, China
| | - Kun Wu
- Department of Emergency Medicine, Gongli Hospital, Pudong New Area, Shanghai, China
| | - Dongfeng Guo
- Department of Emergency Medicine, Gongli Hospital, Pudong New Area, Shanghai, China
| |
Collapse
|
33
|
Peng J, Li S, Han M, Gao F, Qiao L, Tian Y. SNHG1/miR-21 axis mediates the cardioprotective role of aloin in sepsis through modulating cardiac cell viability and inflammatory responses. J Clin Lab Anal 2023; 37:e24985. [PMID: 37950500 PMCID: PMC10749494 DOI: 10.1002/jcla.24985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Aloin has cardioprotective effects, however, its cardioprotective role in sepsis remains unclear. This study aimed to analyze whether aloin could prevent sepsis-related myocardial damage and explore the underlying mechanisms by examining the expression of long-noncoding RNA (lncRNA) SNHG1 and microRNA-21 (miR-21). METHODS The interaction of SNHG1 with miR-21 was identified by dual-luciferase reporter assay. The levels of SNHG1 and miR-21 were measured by real-time quantitative PCR. The cardioprotective function of aloin was assessed in a sepsis animal model, which was induced by cecal ligation and puncture, and in a myocardial injury cell model in H9C2 cells stimulated by lipopolysaccharide. Myocardial injury biomarker levels and hemodynamic indicators in mice model were measured to evaluate cardiac function. The viability of H9C2 cells was assessed by cell counting kit-8 assay. Inflammatory cytokine levels were examined by an ELISA method. RESULTS Decreased SNHG1 and increased miR-21 were found in sepsis patients with cardiac dysfunction, and they were negatively correlated. Aloin significantly attenuated myocardial damage and inflammatory responses of mice model, and increased the viability and suppressed inflammation in H9C2 cell model. In addition, SNHG1 expression was upregulated and miR-21 expression was downregulated by aloin in both mice and cell models. Moreover, in mice and cell models, SNHG1/miR-21 axis affected sepsis-related myocardial damage, and mediated the cardioprotective effects of aloin. CONCLUSION Our findings indicated that aloin exerts protective effects in sepsis-related myocardial damage through regulating cardiac cell viability and inflammatory responses via regulating the SNHG1/miR-21 axis.
Collapse
Affiliation(s)
- Jin Peng
- Intensive Care UnitShengli Oilfield Central HospitalDongyingShandongChina
| | - Shuyuan Li
- Intensive Care UnitShengli Oilfield Central HospitalDongyingShandongChina
| | - Maozhi Han
- Department of PharmacyThe 80th Army HospitalWeifangShandongChina
| | - Feng Gao
- Applied Pharmacology LaboratoryWeifang Medical CollegeWeifangShandongChina
| | - Lujun Qiao
- Intensive Care UnitShengli Oilfield Central HospitalDongyingShandongChina
| | - Yonggang Tian
- Intensive Care UnitShengli Oilfield Central HospitalDongyingShandongChina
| |
Collapse
|
34
|
Putri M, Rastiarsa BM, Djajanagara RATM, Ramli GA, Anggraeni N, Sutadipura N, Atik N, Syamsunarno MRAA. Effect of cogon grass root ethanol extract on fatty acid binding protein 4 and oxidative stress markers in a sepsis mouse model. F1000Res 2023; 10:1161. [PMID: 38559341 PMCID: PMC10980860 DOI: 10.12688/f1000research.73561.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 04/04/2024] Open
Abstract
Background: Sepsis causes several immunological and metabolic alterations that induce oxidative stress. The modulation of fatty acid-binding protein 4 (FABP4) has been shown to worsen this condition. Extract of cogon grass root (ECGR) contains flavonoids and isoeugenol compounds that exhibit anti-inflammatory and antioxidant properties. This study aimed to assess the effects of ECGR on FABP4 and oxidative stress-related factors in a sepsis mouse model. Methods: Twenty-nine male mice ( Mus musculus) of the Deutsche Denken Yoken strain were divided into four groups: group 1, control; group 2, mice treated with 10 μL/kg body weight (BW) lipopolysaccharide (LPS); and groups 3 and 4, mice pre-treated with 90 and 115 mg/kg BW, respectively, and then treated with 10 μL/kg BW LPS for 14 d. Blood, liver, lymph, and cardiac tissue samples were collected and subjected to histological and complete blood examinations. Antioxidant (Glutathione peroxidase 3 (GPx3) and superoxide dismutase), FABP4 levels, and immune system-associated biomarker levels (TNF-α, IL-6 and IL-1β) were measured. Results: Significant increases in platelet levels (p = 0.03), cardiomyocyte counts (p =0.004), and hepatocyte counts (p = 0.0004) were observed in group 4 compared with those in group 2. Conversely, compared with those in group 2, there were significant decreases in TNF-α expression in group 3 (p = 0.004), white pulp length and width in group 4 (p = 0.001), FABP4 levels in groups 3 and 4 (p = 0.015 and p = 0.012, respectively), lymphocyte counts in group 4 (p = 0.009), and monocyte counts (p = 0.000) and polymorphonuclear cell counts in the livers (p = 0.000) and hearts (p = 0.000) of groups 3 and 4. Gpx3 activity was significantly higher in group 3 than in group 1 (p = 0.04). Conclusions: ECGR reduces FABP4 level and modulating oxidative stress markers in sepsis mouse model.
Collapse
Affiliation(s)
- Mirasari Putri
- Department of Biochemistry, Nutrition and Biomolecular, Faculty of medicine. Universitas Islam Bandung, Bandung, West-Java, 40616, Indonesia
| | | | | | - Ghaliby Ardhia Ramli
- Faculty of Medicine, Universitas Islam Bandung, Bandung, West-Java, 40616, Indonesia
| | - Neni Anggraeni
- Medical Laboratorium Technologist, Bakti Asih School of Analyst, Bandung, West-Java, 40192, Indonesia
| | - Nugraha Sutadipura
- Department of Biochemistry, Nutrition and Biomolecular, Faculty of medicine. Universitas Islam Bandung, Bandung, West-Java, 40616, Indonesia
| | - Nur Atik
- Department of Biomedicine Sciences, Faculty of Medicine, Universitas Padjadjaran, West Java, 45363, Indonesia
| | - Mas Rizky A. A. Syamsunarno
- Department of Biomedicine Sciences, Faculty of Medicine, Universitas Padjadjaran, West Java, 45363, Indonesia
| |
Collapse
|
35
|
Ning W, Chen Y, Lu J, Zhu J, Li L. The influence of metoprolol in patients with sepsis-induced cardiomyopathy: A retrospective study. Saudi Med J 2023; 44:1030-1036. [PMID: 37777259 PMCID: PMC10541977 DOI: 10.15537/smj.2023.44.10.20230149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/31/2023] [Indexed: 10/02/2023] Open
Abstract
OBJECTIVES To focus on evaluating the clinical influence of metoprolol on sepsis-induced cardiomyopathy (SICM). METHODS A total of 90 patients with SICM was enrolled from December 2018 to February 2021 and divided into 2 groups according to the use of metoprolol during hospitalization in Suzhou Municipal Hospital in Suzhou, China. We compared them with the cardiac function, sequential organ failure assessment score, and clinical outcomes. RESULTS Between the 2 groups, the oxygenation indices and Glasgow coma scale in the metoprolol group were higher on the first day of treatment, with Glasgow coma scale higher on the third day of treatment. However, the doses of norepinephrine in patients with metoprolol showed no significant differences with the control group. The all-causemortality at 28 days in the metoprolol group was lower, and the time of removing from ventilator support as well as the number of failured organs also significantly differed between the 2 groups. CONCLUSION Metoprolol can reduce the 28-day mortality and shorten the duration of mechanical ventilation in SICM. It can also reduce the number of organ failures and improve the oxygenation index and Glasgow coma scale of these patients. Meanwhile, metoprolol did not affect the norepinephrine dose in patients with SICM.
Collapse
Affiliation(s)
- Wenna Ning
- From the Department of Intensive Care, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| | - Yaou Chen
- From the Department of Intensive Care, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| | - Jian Lu
- From the Department of Intensive Care, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| | - Jinwei Zhu
- From the Department of Intensive Care, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| | - Longgang Li
- From the Department of Intensive Care, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| |
Collapse
|
36
|
Verra C, Mohammad S, Alves GF, Porchietto E, Coldewey SM, Collino M, Thiemermann C. Baricitinib protects mice from sepsis-induced cardiac dysfunction and multiple-organ failure. Front Immunol 2023; 14:1223014. [PMID: 37781388 PMCID: PMC10536262 DOI: 10.3389/fimmu.2023.1223014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/07/2023] [Indexed: 10/03/2023] Open
Abstract
Sepsis is one of the major complications of surgery resulting in high morbidity and mortality, but there are no specific therapies for sepsis-induced organ dysfunction. Data obtained under Gene Expression Omnibus accession GSE131761 were re-analyzed and showed an increased gene expression of Janus Kinase 2 (JAK2) and Signal Transducer and Activator of Transcription 3 (STAT3) in the whole blood of post-operative septic patients. Based on these results, we hypothesized that JAK/STAT activation may contribute to the pathophysiology of septic shock and, hence, investigated the effects of baricitinib (JAK1/JAK2 inhibitor) on sepsis-induced cardiac dysfunction and multiple-organ failure (MOF). In a mouse model of post-trauma sepsis induced by midline laparotomy and cecal ligation and puncture (CLP), 10-week-old male (n=32) and female (n=32) C57BL/6 mice received baricitinib (1mg/kg; i.p.) or vehicle at 1h or 3h post-surgery. Cardiac function was assessed at 24h post-CLP by echocardiography in vivo, and the degree of MOF was analyzed by determination of biomarkers in the serum. The potential mechanism underlying both the cardiac dysfunction and the effect of baricitinib was analyzed by western blot analysis in the heart. Trauma and subsequent sepsis significantly depressed the cardiac function and induced multiple-organ failure, associated with an increase in the activation of JAK2/STAT3, NLRP3 inflammasome and NF- κβ pathways in the heart of both male and female animals. These pathways were inhibited by the administration of baricitinib post the onset of sepsis. Moreover, treatment with baricitinib at 1h or 3h post-CLP protected mice from sepsis-induced cardiac injury and multiple-organ failure. Thus, baricitinib may be repurposed for trauma-associated sepsis.
Collapse
Affiliation(s)
- Chiara Verra
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Shireen Mohammad
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Elisa Porchietto
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Sina Maren Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Massimo Collino
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Christoph Thiemermann
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
37
|
Zheng P, Wang X, Guo T, Gao W, Huang Q, Yang J, Gao H, Liu Q. Cardiac troponin as a prognosticator of mortality in patients with sepsis: A systematic review and meta-analysis. Immun Inflamm Dis 2023; 11:e1014. [PMID: 37773717 PMCID: PMC10515504 DOI: 10.1002/iid3.1014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND The impact of cardiac troponin on the short-term and long-term prognosis of patients with sepsis remains uncertain. Therefore, we conducted a meta-analysis to investigate the role of cardiac troponin as a potential indicator for sepsis mortality. METHODS We performed a comprehensive search for articles published before November 2022 using Google Scholar, PubMed, and Web of Science. Inclusion criteria for the studies were: (1) investigation of cardiac troponin, and (2) investigation of sepsis. Exclusion criteria included: (1) inability to obtain or calculate hazard ratio (HR) and 95% confidence interval (CI) for the relationship between cardiac troponin level and sepsis mortality, and (2) reviews, meta-analyses, and case reports. Analysis of HRs and 95% CIs for the association between cardiac troponin level and sepsis mortality was conducted using STATA 12.0 software. RESULTS Our study included 24 prospective studies (comprising 20,457 sepsis patients) and 4 retrospective studies (comprising 1416 sepsis patients). Meta-analysis demonstrated that elevated cardiac troponin levels were significantly associated with increased sepsis mortality using a random effects model (HR = 1.57, 95% CI 1.41-1.75). Moreover, elevated cardiac troponin levels were also significantly associated with increased hospital mortality of sepsis (HR = 1.35, 95% CI 1.19-1.53) and long-term mortality of sepsis (HR = 1.96, 95% CI 1.51-2.55) using the random effects model. CONCLUSIONS Overall, our finding revealed that elevated cardiac troponin for sepsis patients was a predictor of hospital and long-term mortality. Clinicians may treat septic patients with elevated cardiac troponin more cautious to avoid extra death. Moreover, large clinical studies are warranted to validate this association.
Collapse
Affiliation(s)
- Peiqiu Zheng
- Department of EmergencyLiyang Hospital of Chinese MedicineChangzhouJiangsuChina
| | - Xing Wang
- Department of Critical Care MedicineAffiliated Hospital of Nanjing University of Chinese MedicineNanjingJiangsuChina
| | - Tao Guo
- Department of EmergencyAffiliated Hospital of Nanjing University of Chinese MedicineNanjingJiangsuChina
| | - Wei Gao
- Department of Critical Care MedicineJiangsu Province Hospital on Integration of Chinese and Western MedicineNanjingJiangsuChina
| | - Qiang Huang
- Department of EmergencyLiyang Hospital of Chinese MedicineChangzhouJiangsuChina
| | - Jie Yang
- Department of Critical Care MedicineLiyang Hospital of Chinese MedicinChangzhouJiangsuChina
| | - Hui Gao
- Department of Critical Care MedicineLiyang Hospital of Chinese MedicinChangzhouJiangsuChina
| | - Qian Liu
- Department of Critical Care MedicineLiyang Hospital of Chinese MedicinChangzhouJiangsuChina
| |
Collapse
|
38
|
Kang XF, Lu XL, Bi CF, Hu XD, Li Y, Li JK, Yang LS, Liu J, Ma L, Zhang JF. Xuebijing injection protects sepsis induced myocardial injury by mediating TLR4/NF-κB/IKKα and JAK2/STAT3 signaling pathways. Aging (Albany NY) 2023; 15:8501-8517. [PMID: 37650558 PMCID: PMC10496990 DOI: 10.18632/aging.204990] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/20/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVE Compelling evidence has demonstrated that Xuebijing (XBJ) exerted protective effects against SIMI. The aims of this study were to investigate whether TLR4/IKKα-mediated NF-κB and JAK2/STAT3 pathways were involved in XBJ's cardio-protection during sepsis and the mechanisms. METHODS In this study, rats were randomly assigned to three groups: Sham group; CLP group; XBJ group. Rats were treated with XBJ or sanitary saline after CLP. Echocardiography, myocardial enzymes and HE were used to detect cardiac function. IL-1β, IL-6 and TNF-α in serum were measured using ELISA kits. Cardiomyocyte apoptosis were tested by TUNEL staining. The protein levels of Bax, Bcl-2, Bcl-xl, Cleaved-Caspase 3, Cleaved-Caspase 9, Cleaved-PARP, TLR4, p-NF-κB, p-IKKα, p-JAK2 and p-STAT3 in the myocardium were assayed by western blotting. And finally, immunofluorescence was used to assess the level of p-JAK2 and p-STAT3 in heart tissue. RESULTS The results of echocardiography, myocardial enzyme and HE test showed that XBJ could significantly improve SIMI. The IL-1β, IL-6 and TNF-α levels in the serum were markedly lower in the XBJ group than in the CLP group (p<0.05). TUNEL staining's results showed that XBJ ameliorated CLP-induced cardiomyocyte apoptosis. Meanwhile, XBJ downregulated the protein levels of Bax, Cleaved-Caspase 3, Cleaved-Caspase 9, Cleaved-PARP, TLR4, p-NF-κB, p-IKKα, p-JAK2 and p-STAT3, as well as upregulated the protein levels of Bcl-2, Bcl-xl (p <0.05). CONCLUSIONS In here, we observed that XBJ's cardioprotective advantages may be attributable to its ability to suppress inflammation and apoptosis via inhibiting the TLR4/ IKKα-mediated NF-κB and JAK2/STAT3 pathways during sepsis.
Collapse
Affiliation(s)
- Xiang-Fei Kang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Xiao-Li Lu
- Laboratory Animal Centre, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Cheng-Fei Bi
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Xiao-Dong Hu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Ying Li
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jin-Kui Li
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Li-Shan Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jia Liu
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Lei Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| |
Collapse
|
39
|
Wei Y, Xiao P, Wu B, Chen F, Shi X. Significance of sTREM-1 and sST2 combined diagnosis for sepsis detection and prognosis prediction. Open Life Sci 2023; 18:20220639. [PMID: 37601077 PMCID: PMC10436778 DOI: 10.1515/biol-2022-0639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 08/22/2023] Open
Abstract
The diagnosis of sepsis still lacks a practical and reliable gold standard. The purpose of this study was to confirm the effect of soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) combined with soluble suppression of tumorigenicity 2 (sST2) in the diagnosis of sepsis through the correlation between sTREM-1, sST2, and sequential organ failure assessment (SOFA) scores. Baseline data of 91 patients with sepsis in the intensive care unit were collected, sTREM-1 and sST2 were detected, and the correlation between markers and SOFA score was analyzed. Besides, the prognostic value of baseline and postadmission indicators for sepsis was analyzed with death as the outcome. The results showed that the expressions of sST2 and sTREM-1 in death group and survival group were higher than those in the survival group (p < 0.05). Correlation analysis showed that sST2, sTREM-1, and the joint diagnosis model had a high correlation with SOFA score (p < 0.05), but poor correlation with Acute Physiology and Chronic Health Evaluation Ⅱ score (p > 0.05). Among them, joint diagnosis model has the highest correlation. Receiver operating characteristic curve analysis showed that combined diagnosis had higher area under curve values. sTREM-1/sST2 can be better used in the diagnosis of sepsis than the single biomarker detection, and the combination of the above two biomarkers has potential application value in the detection and prognosis prediction of sepsis.
Collapse
Affiliation(s)
- Yongjun Wei
- Department of Emergency, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Ping Xiao
- Department of Emergency, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Benjuan Wu
- Department of Emergency, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Fuxi Chen
- Department of Emergency, Tianjin Beichen Hospital, Tianjin, 300400, China
| | - Xiaofeng Shi
- Department of Emergency, Tianjin First Central Hospital, Tianjin, 300192, China
| |
Collapse
|
40
|
Muniz-Santos R, Lucieri-Costa G, de Almeida MAP, Moraes-de-Souza I, Brito MADSM, Silva AR, Gonçalves-de-Albuquerque CF. Lipid oxidation dysregulation: an emerging player in the pathophysiology of sepsis. Front Immunol 2023; 14:1224335. [PMID: 37600769 PMCID: PMC10435884 DOI: 10.3389/fimmu.2023.1224335] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 08/22/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by abnormal host response to infection. Millions of people are affected annually worldwide. Derangement of the inflammatory response is crucial in sepsis pathogenesis. However, metabolic, coagulation, and thermoregulatory alterations also occur in patients with sepsis. Fatty acid mobilization and oxidation changes may assume the role of a protagonist in sepsis pathogenesis. Lipid oxidation and free fatty acids (FFAs) are potentially valuable markers for sepsis diagnosis and prognosis. Herein, we discuss inflammatory and metabolic dysfunction during sepsis, focusing on fatty acid oxidation (FAO) alterations in the liver and muscle (skeletal and cardiac) and their implications in sepsis development.
Collapse
Affiliation(s)
- Renan Muniz-Santos
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giovanna Lucieri-Costa
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matheus Augusto P. de Almeida
- Neuroscience Graduate Program, Federal Fluminense University, Niteroi, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Isabelle Moraes-de-Souza
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Adriana Ribeiro Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
- Neuroscience Graduate Program, Federal Fluminense University, Niteroi, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
41
|
Zhu MY, Tang XK, Gao Y, Xu JJ, Gong YQ. Impact of heart failure on outcomes in patients with sepsis: A systematic review and meta-analysis. World J Clin Cases 2023; 11:3511-3521. [PMID: 37383893 PMCID: PMC10294198 DOI: 10.12998/wjcc.v11.i15.3511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 04/06/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Heart failure (HF) often affects the progress of sepsis patients, although its impact on outcomes is inconsistent and inconclusive.
AIM To conduct a systematic review and meta-analysis of the impact of HF on mortality in patients with sepsis.
METHODS PubMed, Embase, Web of Science, and the Cochrane Library databases were searched to compare the outcomes of sepsis patients with HF. A random effect model was used to summarize the mortality data, and the odds ratio (OR) and 95% confidence interval (CI) were calculated as effect indicators.
RESULTS Among 18001 records retrieved in the literature search, 35712 patients from 10 separate studies were included. The results showed that sepsis patients with HF were associated with increased total mortality (OR = 1.80, 95%CI: 1.34-2.43; I2 = 92.1%), with high heterogeneity between studies. Significant subgroup differences according to age, geographical location, and HF patient sample were observed. HF did not increase the 1-year mortality of patients (OR = 1.11, 95%CI: 0.75-1.62; I2 = 93.2%), and the mortality of patients with isolated right ventricular dysfunction (OR=2.32, 95%CI: 1.29-4.14; I2 = 91.5%) increased significantly.
CONCLUSION In patients with sepsis, HF is often associated with adverse outcomes and mortality. Our results call for more high-quality research and strategies to improve outcomes for sepsis patients with HF.
Collapse
Affiliation(s)
- Ming-Yu Zhu
- Department of the Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiao-Kai Tang
- Department of the Orthopaedic, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yi Gao
- Department of the Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jing-Jing Xu
- Department of the Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yuan-Qi Gong
- Department of the Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
42
|
Nong Y, Wei X, Yu D. Inflammatory mechanisms and intervention strategies for sepsis-induced myocardial dysfunction. Immun Inflamm Dis 2023; 11:e860. [PMID: 37249297 PMCID: PMC10187025 DOI: 10.1002/iid3.860] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/30/2022] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Sepsis-induced myocardial dysfunction (SIMD) is the leading cause of death in patients with sepsis in the intensive care units. The main manifestations of SIMD are systolic and diastolic dysfunctions of the myocardium. Despite our initial understanding of the SIMD over the past three decades, the incidence and mortality of SIMD remain high. This may be attributed to the large degree of heterogeneity among the initiating factors, disease processes, and host states involved in SIMD. Previously, organ dysfunction caused by sepsis was thought to be an impairment brought about by an excessive inflammatory response. However, many recent studies have shown that SIMD is a consequence of a combination of factors shaped by the inflammatory responses between the pathogen and the host. In this article, we review the mechanisms of the inflammatory responses and potential novel therapeutic strategies in SIMD.
Collapse
Affiliation(s)
- Yuxin Nong
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Xuebiao Wei
- Department of Geriatric Intensive Medicine, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Danqing Yu
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| |
Collapse
|
43
|
Zou HX, Hu T, Zhao JY, Qiu BQ, Zou CC, Xu QR, Liu JC, Lai SQ, Huang H. Exploring Dysregulated Ferroptosis-Related Genes in Septic Myocardial Injury Based on Human Heart Transcriptomes: Evidence and New Insights. J Inflamm Res 2023; 16:995-1015. [PMID: 36923465 PMCID: PMC10010745 DOI: 10.2147/jir.s400107] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/25/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction Sepsis is currently a common condition in emergency and intensive care units, and is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Cardiac dysfunction caused by septic myocardial injury (SMI) is associated with adverse prognosis and has significant economic and human costs. The pathophysiological mechanisms underlying SMI have long been a subject of interest. Recent studies have identified ferroptosis, a form of programmed cell death associated with iron accumulation and lipid peroxidation, as a pathological factor in the development of SMI. However, the current understanding of how ferroptosis functions and regulates in SMI remains limited, particularly in the absence of direct evidence from human heart. Methods We performed a sequential comprehensive bioinformatics analysis of human sepsis cardiac transcriptome data obtained through the GEO database. The lipopolysaccharide-induced mouse SMI model was used to validate the ferroptosis features and transcriptional expression of key genes. Results We identified widespread dysregulation of ferroptosis-related genes (FRGs) in SMI based on the human septic heart transcriptomes, deeply explored the underlying biological mechanisms and crosstalks, followed by the identification of key functional modules and hub genes through the construction of protein-protein interaction network. Eight key FRGs that regulate ferroptosis in SMI, including HIF1A, MAPK3, NOX4, PPARA, PTEN, RELA, STAT3 and TP53, were identified, as well as the ferroptosis features. All the key FRGs showed excellent diagnostic capability for SMI, part of them was associated with the prognosis of sepsis patients and the immune infiltration in the septic hearts, and potential ferroptosis-modulating drugs for SMI were predicted based on key FRGs. Conclusion This study provides human septic heart transcriptome-based evidence and brings new insights into the role of ferroptosis in SMI, which is significant for expanding the understanding of the pathobiological mechanisms of SMI and exploring promising diagnostic and therapeutic targets for SMI.
Collapse
Affiliation(s)
- Hua-Xi Zou
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Tie Hu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Jia-Yi Zhao
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Experimental Program, Huan Kui College, Nanchang University, Nanchang, People’s Republic of China
| | - Bai-Quan Qiu
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Chen-Chao Zou
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Qi-Rong Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Ji-Chun Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Song-Qing Lai
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Huang Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
44
|
Xia Y, Zhang W, He K, Bai L, Miao Y, Liu B, Zhang X, Jin S, Wu Y. Hydrogen sulfide alleviates lipopolysaccharide-induced myocardial injury through TLR4-NLRP3 pathway. Physiol Res 2023; 72:15-25. [PMID: 36545872 PMCID: PMC10069815 DOI: 10.33549/physiolres.934928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
Abstract
To investigate the effect of hydrogen sulfide (H2S) on myocardial injury in sepsis-induced myocardial dysfunction (SIMD), male C57BL/6 mice were intraperitoneally injected with lipopolysaccharide (LPS) (10 mg/kg, i.p.) to induce cardiac dysfunction without or with the H2S donor sodium hydrosulfide (NaHS) (50 µmol/kg, i.p.) administration 3 h after LPS injection. Six hours after the LPS injection, echocardiography, cardiac hematoxylin and eosin (HE) staining, myocardial damage and inflammatory biomarkers and Western blot results were analyzed. In mice, the administration of LPS decreased left ventricular ejection fraction (LVEF) by 30 % along with lowered H2S levels (35 % reduction). It was observed that cardiac troponin I (cTnI), tumor necrosis factor-alpha (TNF-alpha), and interleukin-1beta (IL-1beta) levels were all increased (by 0.22-fold, 2000-fold and 0.66-fold respectively). HE staining revealed structural damage and inflammatory cell infiltration in the myocardial tissue after LPS administration. Moreover, after 6 h of LPS treatment, toll-like receptor 4 (TLR4) and nod-like receptor protein 3 (NLRP3) expressions were up-regulated 2.7-fold and 1.6-fold respectively. When compared to the septic mice, NaHS enhanced ventricular function (by 0.19-fold), decreased cTnI, TNF-alpha, and IL-1beta levels (by 11 %, 33 %, and 16 % respectively) and downregulated TLR4 and NLRP3 expressions (by 64 % and 31 % respectively). Furthermore, NaHS did not further improve cardiac function and inflammation in TLR4-/- mice or mice in which NLRP3 activation was inhibited by MCC950, after LPS injection. In conclusion, these findings imply that decreased endogenous H2S promotes the progression of SIMD, whereas exogenous H2S alleviates SIMD by inhibiting inflammation via the TLR4-NLRP3 pathway suppression.
Collapse
Affiliation(s)
- Y Xia
- Department of Physiology, Hebei Medical University, Hebei, China. ;
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lima MR, Silva D. Septic cardiomyopathy: A narrative review. Rev Port Cardiol 2023; 42:471-481. [PMID: 36893835 DOI: 10.1016/j.repc.2021.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/03/2021] [Accepted: 05/01/2021] [Indexed: 03/09/2023] Open
Abstract
Sepsis is a systemic inflammatory response syndrome of suspected or documented infectious origin, whose outcome is multiorgan failure. Sepsis-induced myocardial dysfunction (SIMD), present in more than 50% of septic patients, is characterized by (i) left ventricular (LV) dilatation with normal or low filling pressure, (ii) right and/or LV (systolic and/or diastolic) dysfunction and (iii) reversibility. Since the first definition proposed by Parker et al. in 1984, attempts have been made to define SIMD. Many parameters are used to assess cardiac function in septic patients, sometimes making it more difficult to measure due to the intrinsic hemodynamical changes in this condition. Nevertheless, with advanced echocardiographic techniques, such as speckle tracking analysis, it is possible to diagnose and assess systolic and diastolic dysfunction, even in the earliest stages of sepsis. Cardiac magnetic resonance imaging brings new insights into the reversibility of this condition. Many uncertainties still remain regarding the mechanisms, characteristics, treatment and even prognosis of this condition. There are also inconsistent conclusions from studies, therefore this review attempts to summarize our current knowledge of SIMD.
Collapse
Affiliation(s)
- Maria Rita Lima
- Internal Medicine Department, Egas Moniz Hospital, Lisbon Ocidental Hospital Center, Lisbon, Portugal.
| | - Doroteia Silva
- Intensive Care Department, Santa Maria University Hospital, Lisbon North Hospital Center, Lisbon, Portugal; CCUL, Lisbon Academic Medical Center, Faculty of Medicine of Lisbon, Lisbon, Portugal
| |
Collapse
|
46
|
Alnfakh ZA, Al-Nafakh RT, Hameed AMA, Abdelhussain MA, Hadi NR. LUNG PROTECTIVE POTENTIAL EFFECT OF ZILEUTON DURING ENDOTOXAEMIA MODEL IN MALE MICE. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 75:3066-3073. [PMID: 36723329 DOI: 10.36740/wlek202212130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim: This study was undertaken to investigatethe possible lung protective potential effect of zileuton during polymicrobial sepsis, through modulation of inflammatory and oxidative stress pathway. PATIENTS AND METHODS Materials and methods: 24 adult male Swiss-albino mice aged 8-12 weeks, with a weight of 25-35g, were randomized into 4 equal groups n=6, sham (laparotomy without CLP), CLP (laparotomy with CLP), vehicle (equivalent volume of DMSO 1 hour prior to CLP), and Zileuton (5 mg/kg 1 hour prior to CLP) group. After 24 hrs. of sepsis, the lung tissue harvested and used to assess IL-6, IL-1B, IL-17, LTB-4,12(S) HETE and F2-isoprostane as well as histological examination. RESULTS Results: Lung tissue inflammatory mediators IL-6, IL-1B, IL-17, LTB, 12 (S) HETE) and oxidative stress were carried out via ELISA. Lung tissue levels of IL-6, IL-1B, IL-17, LTB4, 12(S) HETE and oxidative stress (F2 isoprostan)level were significantly higher in sepsis group (p<0.05) as compared with sham group, while zileuton combination showed significant (p<0.05) lower level in these inflammatory mediators and oxidative stress as comparedto sepsis group. Histologically, All mice in sepsis group showed a significant (p<0.05) lung tissue injury, while in zileuton pretreated group showed significantly (p<0.05) reduced lung tissue injury. CONCLUSION Conclusions: The results of the present study revealed that zileuton has the ability to attenuate lung dysfunction during CLP induced polymicrobial sepsis in male mice through their modulating effects on LTB4,12(S) HETE and oxidative stress downstream signaling pathways and subsequently decreased lungtissue levelsof proinflammatory cytokines (IL-1β, and IL-6,IL-17).
Collapse
Affiliation(s)
- Zainab Ali Alnfakh
- DEPARTMENT OF PHARMACOLOGY & THERAPEUTICS, FACULTY OF MEDICINE, UNIVERSITY OF KUFA, NAJAF, IRAQ
| | - Rana Talib Al-Nafakh
- DEPARTMENT OF PHARMACOLOGY & THERAPEUTICS, FACULTY OF MEDICINE, UNIVERSITY OF KUFA, NAJAF, IRAQ
| | - Ahmed M Abdul Hameed
- DEPARTMENT OF PHARMACOLOGY AND THERAPEUTICS, FACULTY OF MEDICINE, JABIR IBN HAYYAN MEDICAL UNIVERSITY, AL NAJAF AL-ASHRAF, IRAQ
| | | | - Najah R Hadi
- DEPARTMENT OF PHARMACOLOGY & THERAPEUTICS, FACULTY OF MEDICINE, UNIVERSITY OF KUFA, NAJAF, IRAQ
| |
Collapse
|
47
|
Yao H, Liu S, Zhang Z, Xiao Z, Li D, Yi Z, Huang Y, Zhou H, Yang Y, Zhang W. A bibliometric analysis of sepsis-induced myocardial dysfunction from 2002 to 2022. Front Cardiovasc Med 2023; 10:1076093. [PMID: 36793476 PMCID: PMC9922860 DOI: 10.3389/fcvm.2023.1076093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
Background Sepsis-induced myocardial dysfunction (SIMD) has a significant contribution to sepsis-caused death in critically ill patients. In recent years, the number of published articles related to SIMD has increased rapidly. However, there was no literature that systematically analyzed and evaluated these documents. Thus, we aimed to lay a foundation for researchers to quickly understand the research hotspots, evolution processes and development trends in the SIMD field via a bibliometric analysis. Methods Articles related to SIMD were retrieved and extracted from the Web of Science Core Collection on July 19th, 2022. CiteSpace (version 6.1.R2) and VOSviewer (version 1.6.18) were used for performing visual analysis. Results A total of 1,076 articles were included. The number of SIMD-related articles published each year has increased significantly. These publications mainly came from 56 countries, led by China and the USA, and 461 institutions, but without stable and close cooperation. As authors, Li Chuanfu published the most articles, while Rudiger Alain had the most co-citations. Shock was the journal with the most studies, and Critical Care Medicine was the most commonly cited journal. All keywords were grouped into six clusters, some of which represented the current and developing research directions of SIMD as the molecular mechanisms. Conclusion Research on SIMD is flourishing. It is necessary to strengthen cooperation and exchanges between countries and institutions. The molecular mechanisms of SIMD, especially oxidative stress and regulated cell death, will be critical subjects in the future.
Collapse
Affiliation(s)
- Hanyi Yao
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shufang Liu
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiyu Zhang
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zixi Xiao
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dongping Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhangqing Yi
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuyang Huang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haojie Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weizhi Zhang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Weizhi Zhang,
| |
Collapse
|
48
|
Mueen RM, Hadi NR. LUNG PROTECTIVE EFFECTS OF CLOPIDOGREL IN POLYMICROBIAL SEPSIS. POLSKI MERKURIUSZ LEKARSKI : ORGAN POLSKIEGO TOWARZYSTWA LEKARSKIEGO 2023; 51:321-329. [PMID: 37756450 DOI: 10.36740/merkur202304104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
OBJECTIVE Aim: The goal of this experiment was to examine if Clopidogrel might protect the lungs during sepsis by modulating the inflammatory and oxidative stress markers. PATIENTS AND METHODS Materials and Methods: Twenty-four adult male Swiss-albino mice aged 8-12 weeks, with a weighing of 20-30 g, were randomized into 4 equal groups (n=6): sham (Laparotomy without cecal ligation and puncture [CLP]), CLP (laparotomy plus CLP), vehicle (DMSO 1 hour prior to CLP), Clopidogrel (50 mg/g IP 1 hour before to CLP). ELISA was used to assess Lung tissue levels of pro-inflammatory and oxidative stress markers. RESULTS Results: F2 isoprostane levels were significantly higher in the sepsis group (p<0.05) in comparison with sham group, while Clopidogrel was considerably lower (p<0.05) in the inflammatory and oxidative stress markers in comparison to sepsis group. Histologically, all mice in the sepsis group had considerable (p=0.05) lung tissue damage, but Clopidogrel considerably decreased lung tissue injury (p=0.05). CONCLUSION Conclusion: Clopidogrel was found to reduce lung tissue cytokine concentrations (IL-1, TNF a, IL-6, F2 isoprostane, GPR 17, MIF) in male mice during CLP-induced polymicrobial sepsis by modulation of pro-inflammatory and oxidative stress cascade signaling pathways, to the best of our abilities, no study has looked at the effect of Clopidogrel on MIF levels.
Collapse
Affiliation(s)
- Ruaa Murtada Mueen
- DEPARTMENT OF PHARMACOLOGY & THERAPEUTICS, FACULTY OF MEDICINE, UNIVERSITY OF KUFA, KUFA, IRAQ
| | - Najah R Hadi
- DEPARTMENT OF PHARMACOLOGY & THERAPEUTICS, FACULTY OF MEDICINE, UNIVERSITY OF KUFA, KUFA, IRAQ
| |
Collapse
|
49
|
Liu C, Liu Y, Chen H, Yang X, Lu C, Wang L, Lu J. Myocardial injury: where inflammation and autophagy meet. BURNS & TRAUMA 2023; 11:tkac062. [PMID: 36873283 PMCID: PMC9977361 DOI: 10.1093/burnst/tkac062] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/23/2022] [Indexed: 03/04/2023]
Abstract
Autophagy is a highly conserved bulk degradation mechanism that degrades damaged organelles, aged proteins and intracellular contents to maintain the homeostasis of the intracellular microenvironment. Activation of autophagy can be observed during myocardial injury, during which inflammatory responses are strongly triggered. Autophagy can inhibit the inflammatory response and regulate the inflammatory microenvironment by removing invading pathogens and damaged mitochondria. In addition, autophagy may enhance the clearance of apoptotic and necrotic cells to promote the repair of damaged tissue. In this paper, we briefly review the role of autophagy in different cell types in the inflammatory microenvironment of myocardial injury and discuss the molecular mechanism of autophagy in regulating the inflammatory response in a series of myocardial injury conditions, including myocardial ischemia, ischemia/reperfusion injury and sepsis cardiomyopathy.
Collapse
Affiliation(s)
- Chunping Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 51080, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, 510080, China
| | - Yanjiao Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 51080, China
| | - Huiqi Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 51080, China
| | - Xiaofei Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 51080, China
| | - Chuanjian Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 51080, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, 510080, China
| | - Lei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 51080, China
| | - Jiahong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
50
|
Ghafil FA, Majeed SA, Qassam H, Mardan HW, Hadi NR. NEPHROPROTECTIVE EFFECT OF GAMMA-SECRETASE INHIBITOR ON SEPSIS- INDUCED RENAL INJURY IN MOUSE MODEL OF CLP. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 76:122-130. [PMID: 36883500 DOI: 10.36740/wlek202301117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
OBJECTIVE The aim: This study was set out to assess the potential protective impact of MK0752 (a gamma secretase inhibitor) on sepsis-induced renal injury through modulation of inflammatory and oxidative stress pathways. PATIENTS AND METHODS Materials and methods: Twenty-four Swiss-albino mice aged between eight and twelve week and weighted twenty to thirty-seven grams were randomly allocated into four groups (n=6 in each group). Sham group (laparotomy without cecal ligation and puncture (CLP), sepsis group (laparotomy with CLP), vehicle-treated group (equivalent volume of DMSO before the CLP), MK0752 treated group (5 mg/kg) single daily dose for three days before the CLP. Blood samples were used to assess the serum levels of urea and creatinine. The kidneys were used to assess tissue levels of the TNF-α, IL-10, IL-6, TNFR1, VEGF, notch1, jagged1 and tissue damage by histopathological analysis. RESULTS Results: The current study shows that pretreatment with MK0752 ameliorates the renal damage by significantly reducing the proinflammatory cytokines and notch1 signaling. CONCLUSION Conclusions: Taken together, these results suggest that MK0752 could be protective against the renal injury induced by sepsis through its ameliorative impact on renal architecture and modulating cytokines and Notch1 singling pathway. Further studies regarding the role of Notch signaling pathways would be worthwhile.
Collapse
Affiliation(s)
- Fadha Abdulameer Ghafil
- DEPARTMENT OF PHARMACOLOGY AND THERAPEUTICS, FACULTY OF MEDICINE, UNIVERSITY OF KUFA, NAJAF, IRAQ
| | - Sahar A Majeed
- DEPARTMENT OF PHARMACOLOGY AND THERAPEUTICS, FACULTY OF MEDICINE, UNIVERSITY OF KUFA, NAJAF, IRAQ
| | - Heider Qassam
- DEPARTMENT OF PHARMACOLOGY AND THERAPEUTICS, FACULTY OF MEDICINE, UNIVERSITY OF KUFA, NAJAF, IRAQ
| | - Haider W Mardan
- MIDDLE EUPHRATES CENTER OF NEUROSCIENCES, AL-SADDER TEACHING HOSPITAL, NAJAF, IRAQ
| | - Najah R Hadi
- MIDDLE EUPHRATES CENTER OF NEUROSCIENCES, AL-SADDER TEACHING HOSPITAL, NAJAF, IRAQ
| |
Collapse
|