1
|
Huang H, Zhang W, Wu Q, Zhang L, Wu Y, Tong H, Su M. Fucoxanthin Targets β1 Integrin to Disrupt Adhesion and Migration in Human Glioma Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10961-10973. [PMID: 40261208 DOI: 10.1021/acs.jafc.4c10108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Glioblastoma, the most aggressive type of primary brain tumor, is marked by high invasiveness and metastasis, posing significant challenges in treatment. Fucoxanthin, a carotenoid derived from brown macroalgae, has demonstrated therapeutic potential in cancer therapy; however, its precise mechanisms of action remain unclear. In this study, we explored the inhibitory effects of fucoxanthin on integrin-mediated adhesion and migration in human glioma U-87 MG cells, shedding light on its potential antimetastatic properties. Our data indicated that fucoxanthin at 1 μM did not affect cell viability but inhibited integrin-mediated adhesion of human glioma U-87 MG cells to fibronectin, a key extracellular matrix (ECM) ligand for integrins, without affecting adhesion to poly-l-lysine, a nonintegrin ligand, indicating its selective impact on integrin-mediated adhesion. Fucoxanthin treatment significantly reduced the size and number of focal adhesions (FA), which play a central role in cell adhesion and migration. In addition, fucoxanthin significantly impaired U-87 MG cell migratory capacity, including a reduced accumulated migration distance and velocity, determined by time-lapse videomicroscopy. Further, fucoxanthin remarkably inhibited integrin engagement-mediated actin polymerization, Vav3 phosphorylation, and the downstream activation of Rac1, FAK, and paxillin, further supporting its role in disrupting integrin signaling and cytoskeletal remodeling. Additionally, complementary experiments utilizing protein binding assays, competitive ELISA, CETSA, DARTS, and MST collectively confirmed the direct interaction between fucoxanthin and β1 integrin as well as reduced ligand affinity of β1 integrin for fibronectin. The theoretical model of molecular docking and the dynamics simulation align with our experimental findings, providing a plausible mechanism by which fucoxanthin competitively inhibits the binding of β1 integrin to fibronectin. In summary, our study highlights fucoxanthin as a promising therapeutic agent that impairs integrin-mediated adhesion and migration in glioblastoma cells by directly targeting β1 integrin and disrupting integrin signaling pathways. These findings offer valuable insights into the potential of fucoxanthin as an antimetastatic agent in glioblastoma treatment.
Collapse
Affiliation(s)
- Hui Huang
- Department of Pharmacy, Wenzhou Hospital of Intergrated Traditonal Chinese and Western Medicine, Wenzhou 325000, China
| | - Wen Zhang
- Department of Neurosurgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Qifang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Lin Zhang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yu Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China
| | - Meng Su
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| |
Collapse
|
2
|
Brahma M, Barooah P, Maruthi M. Exploring Antimalarial and Cytotoxic Activities of Hibiscus cannabinus and Corchorus capsularis Extracts Through In-Vitro and In-Silico Approaches. Chem Biodivers 2025; 22:e202402366. [PMID: 39564771 DOI: 10.1002/cbdv.202402366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024]
Abstract
Malaria is an infectious disease, endemic to tropical and sub-tropical regions causing half a million people's deaths every year. Bioactive compounds derived from medicinal plants are used to treat malaria disease and its complications. H. cannabinus and C. capsularis are two edible medicinal plants widely cultivated throughout the state of Assam in India. In this study, in-vitro and in-silico investigations were performed to explore the anti-malarial activity of the plant extracts against Plasmodium falciparum with its validation of hemocompatibility on human RBC. We report H. cannabinus and C. capsularis extracts possess highly potent antimalarial activity against Plasmodium falciparum with IC50 values of 3.80 ± 0.3 and 7.90 ± 0.8 µg/mL, respectively. The plant extracts showed growth inhibition of A549 lung adenocarcinoma cells, no toxicity on non-cancerous Vero cells, and no hemolytic activity on human RBCs. The GC-MS analysis detected bioactive compounds 2-pyrazoline-3-carboxylic acid; 5-hydroxy-1-(4-methyl benzoyl)-5-phen 5-oxo-1-phenyl-4H-pyrazole-3-carboxylic acid; 9-oximino-2,7-diethoxyfluorene; and nonane-diamide, n, n'-di-benzoyloxy in H. cannabinus; and, (+)-sesamin; tetrahydropyran-4-carboxylic acid, 4-phenyl-, (3-chloro-4-methylphenyl; and safrole in C. capsularis. In in-silico study, antimalarial compounds in the extracts were predicted to have good binding affinities with docking score of <-7.5 kcal/mol on Falcipain-2, and Cytchrome c2 proteins that promotes the growth and invasion of P. falciparum.
Collapse
Affiliation(s)
- Mettle Brahma
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, India
| | - Prajjalendra Barooah
- Guwahati Biotech Park, Science Technology and Climate Change Department, Government of Assam, Guwahati, Assam, India
| | - Mulaka Maruthi
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, India
| |
Collapse
|
3
|
Lyu B, Gou W, Xu F, Chen L, Wang Z, Ren Z, Liu G, Li Y, Hou W. Target Discovery Driven by Chemical Biology and Computational Biology. CHEM REC 2025; 25:e202400182. [PMID: 39811950 DOI: 10.1002/tcr.202400182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/06/2024] [Indexed: 01/16/2025]
Abstract
Target identification is crucial for drug screening and development because it can reveal the mechanism of drug action and ensure the reliability and accuracy of the results. Chemical biology, an interdisciplinary field combining chemistry and biology, can assist in this process by studying the interactions between active molecular compounds and proteins and their physiological effects. It can also help predict potential drug targets or candidates, develop new biomarker assays and diagnostic reagents, and evaluate the selectivity and range of active compounds to reduce the risk of off-target effects. Chemical biology can achieve these goals using techniques such as changing protein thermal stability, enzyme sensitivity, and molecular structure and applying probes, isotope labeling and mass spectrometry. Concurrently, computational biology employs a diverse array of computational models to predict drug targets. This approach also offers innovative avenues for repurposing existing drugs. In this paper, we review the reported chemical biology and computational biology techniques for identifying different types of targets that can provide valuable insights for drug target discovery.
Collapse
Affiliation(s)
- Bohai Lyu
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wenfeng Gou
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Feifei Xu
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Leyuan Chen
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Zhiyun Wang
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Zhonghao Ren
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Gaiting Liu
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yiliang Li
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Wenbin Hou
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| |
Collapse
|
4
|
Bremers E, Butler JH, Do Amaral LS, Merino EF, Almolhim H, Zhou B, Baptista RP, Totrov M, Carlier PR, Cassera MB. Stereospecific Resistance to N2-Acyl Tetrahydro-β-carboline Antimalarials Is Mediated by a PfMDR1 Mutation That Confers Collateral Drug Sensitivity. ACS Infect Dis 2025; 11:529-542. [PMID: 39808111 PMCID: PMC11828674 DOI: 10.1021/acsinfecdis.4c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025]
Abstract
Half the world's population is at risk of developing a malaria infection, which is caused by parasites of the genus Plasmodium. Currently, resistance has been identified to all clinically available antimalarials, highlighting an urgent need to develop novel compounds and better understand common mechanisms of resistance. We previously identified a novel tetrahydro-β-carboline compound, PRC1590, which potently kills the malaria parasite. To better understand its mechanism of action, we selected for and characterized resistance to PRC1590 in Plasmodium falciparum. Through in vitro selection of resistance to PRC1590, we have identified that a single-nucleotide polymorphism on the parasite's multidrug resistance protein 1 (PfMDR1 G293V) mediates resistance to PRC1590. This mutation results in stereospecific resistance and sensitizes parasites to other antimalarials, such as mefloquine, quinine, and MMV019017. Intraerythrocytic asexual stage specificity assays have revealed that PRC1590 is most potent during the trophozoite stage when the parasite forms a single digestive vacuole (DV) and actively digests hemoglobin. Moreover, fluorescence microscopy revealed that PRC1590 disrupts the function of the DV, indicating a potential molecular target associated with this organelle. Our findings mark a significant step in understanding the mechanism of resistance and the mode of action of this emerging class of antimalarials. In addition, our results suggest a potential link between resistance mediated by PfMDR1 and PRC1590's molecular target. This research underscores the pressing need for future research aimed at investigating the intricate relationship between a compound's chemical scaffold, molecular target, and resistance mutations associated with PfMDR1.
Collapse
Affiliation(s)
- Emily
K. Bremers
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United States
- Center
for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Joshua H. Butler
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United States
- Center
for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Leticia S. Do Amaral
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United States
- Center
for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Emilio F. Merino
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United States
- Center
for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Hanan Almolhim
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Bo Zhou
- Department
of Pharmaceutical Sciences, University of
Illinois Chicago, Chicago, Illinois 60612, United States
| | - Rodrigo P. Baptista
- Department
of Medicine, Houston Methodist Research
Institute, Houston, Texas 77030, United States
| | - Maxim Totrov
- MolSoft
LLC, San Diego, California 92121, United States
| | - Paul R. Carlier
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Pharmaceutical Sciences, University of
Illinois Chicago, Chicago, Illinois 60612, United States
| | - Maria Belen Cassera
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United States
- Center
for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
5
|
Liu Y, Zhu Y, Gu L, Li K, Ma A, Liu L, Meng Y, Zhang J, Shen S, Shi Q, Liu D, Zhang X, Zhang S, Chai X, Gao P, Xing J, Wang Y, Chen H, Liu R, Du Q, Liu H, Dai L, Wang J. Chloroquine Suppresses Colorectal Cancer Progression via Targeting CHKA and PFKM to inhibit the PI3K/AKT Pathway and the Warburg Effect. Int J Biol Sci 2025; 21:1619-1631. [PMID: 39990656 PMCID: PMC11844273 DOI: 10.7150/ijbs.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/24/2024] [Indexed: 02/25/2025] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide and has become a recognized global health problem. Therefore, the search for new anti-CRC agents or the exploration of new effective drug targets for CRC therapy is urgent. Chloroquine (CQ) is a widely-used antimalarial drug and has shown anti-proliferative effects in CRC. However, the underlying mechanisms are not well understood, particularly as the direct targets of CQ have not been identified. In this study, choline kinase alpha (CHKA) and ATP-dependent 6-phosphofructokinase, muscle type (PFKM) were identified and verified as the binding targets of CQ. CQ specifically binds to CHKA, inhibits its expression and enzymatic activity, and downregulates the downstream phosphorylation of PI3K and AKT, thereby suppressing tumor cell proliferation and inducing apoptosis. CQ also binds to PFKM and inhibits its expression and activity, thereby blocking the Warburg effect. In addition, the downregulation of CHKA can decrease the expression of PFKM and inhibit its activity, thereby blocking the Warburg effect. These observations shed new light on the antitumor mechanisms of CQ and provide new evidence for the close relationship between the PI3K/AKT signaling pathway and the Warburg effect, providing new therapeutic targets for treating CRC.
Collapse
Affiliation(s)
- Yanqing Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yongping Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liwei Gu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Kexin Li
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ang Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Li Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuqing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shengnan Shen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiaoli Shi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dandan Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xinwei Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shujie Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xin Chai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Peng Gao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiale Xing
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yaxu Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Honglin Chen
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475000, China
| | - Rui Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Qingfeng Du
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Haitao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Lingyun Dai
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Department of Nuclear Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong 518020, China
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning, Shenyang Pharmaceutical University, Shenyang 110016, China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475000, China
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Department of Nuclear Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong 518020, China
| |
Collapse
|
6
|
Balgera F, Tijani MK, Wennerberg J, Persson KEM, Nordlander E, Ferreira RJ. Evaluation of Au(III) complexes as Plasmodium falciparum aquaglyceroporin (PfAQP) inhibitors by in silico and in vitro methods. J Biol Inorg Chem 2024; 29:821-836. [PMID: 39579246 DOI: 10.1007/s00775-024-02081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/20/2024] [Indexed: 11/25/2024]
Abstract
The onset of resistance to artemisinin for malaria treatment has stimulated the quest for novel antimalarial drugs. Herein, the gold(III) coordination complexes Aubipy [Au(bipy)Cl]+ (bipy = 2,2'-bipyridine), Auphen [Au(phen)Cl]+ (phen = phenanthroline), Auterpy [Au(terpy)Cl]2+ (terpy = 2,2';6',2″-terpyridine), and corresponding hydrolyzed species, have been investigated as inhibitors of the Plasmodium falciparum aquaglyceroporin (PfAQP) protein by computational methods. Through an in-silico approach using an Umbrella Sampling protocol to sample how Aubipy, Auphen, and Auterpy permeate through the PfAQP, their permeability coefficients were estimated using the Inhomogeneous Solubility Diffusion (ISD) model with promising results. The efficacy of the gold complexes was then probed by an in vitro assay testing the growth inhibition in chloroquine sensitive and resistant P. falciparum strains. In accordance with the computational data, Auterpy achieved the highest efficiency with an IC50 in the nanomolar range (590 nM) on resistant strain cultures, additionally revealing a good selectivity as compared to its activity against the human aquaglyceroporin 3.
Collapse
Affiliation(s)
- Federico Balgera
- Red Glead Discovery AB, Medicon Village, Scheelevägen 10, 223 63, Lund, Sweden
- Chemical Physics, Department of Chemistry, Lund University, Box 124, 221 00, Lund, Sweden
| | | | - Johan Wennerberg
- Red Glead Discovery AB, Medicon Village, Scheelevägen 10, 223 63, Lund, Sweden
- Organic Chemistry, Faculty of Engineering, Lund University, Box 124, 221 00, Lund, Sweden
| | - Kristina E M Persson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Chemistry and Pharmacology, Laboratory Medicine, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Ebbe Nordlander
- Chemical Physics, Department of Chemistry, Lund University, Box 124, 221 00, Lund, Sweden
| | - Ricardo J Ferreira
- Red Glead Discovery AB, Medicon Village, Scheelevägen 10, 223 63, Lund, Sweden.
| |
Collapse
|
7
|
Liu J, Bao C, Zhang J, Han Z, Fang H, Lu H. Artificial intelligence with mass spectrometry-based multimodal molecular profiling methods for advancing therapeutic discovery of infectious diseases. Pharmacol Ther 2024; 263:108712. [PMID: 39241918 DOI: 10.1016/j.pharmthera.2024.108712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Infectious diseases, driven by a diverse array of pathogens, can swiftly undermine public health systems. Accurate diagnosis and treatment of infectious diseases-centered around the identification of biomarkers and the elucidation of disease mechanisms-are in dire need of more versatile and practical analytical approaches. Mass spectrometry (MS)-based molecular profiling methods can deliver a wealth of information on a range of functional molecules, including nucleic acids, proteins, and metabolites. While MS-driven omics analyses can yield vast datasets, the sheer complexity and multi-dimensionality of MS data can significantly hinder the identification and characterization of functional molecules within specific biological processes and events. Artificial intelligence (AI) emerges as a potent complementary tool that can substantially enhance the processing and interpretation of MS data. AI applications in this context lead to the reduction of spurious signals, the improvement of precision, the creation of standardized analytical frameworks, and the increase of data integration efficiency. This critical review emphasizes the pivotal roles of MS based omics strategies in the discovery of biomarkers and the clarification of infectious diseases. Additionally, the review underscores the transformative ability of AI techniques to enhance the utility of MS-based molecular profiling in the field of infectious diseases by refining the quality and practicality of data produced from omics analyses. In conclusion, we advocate for a forward-looking strategy that integrates AI with MS-based molecular profiling. This integration aims to transform the analytical landscape and the performance of biological molecule characterization, potentially down to the single-cell level. Such advancements are anticipated to propel the development of AI-driven predictive models, thus improving the monitoring of diagnostics and therapeutic discovery for the ongoing challenge related to infectious diseases.
Collapse
Affiliation(s)
- Jingjing Liu
- School of Chinese Medicine, Hong Kong Traditional Chinese Medicine Phenome Research Center, State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, China
| | - Chaohui Bao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiaxin Zhang
- School of Chinese Medicine, Hong Kong Traditional Chinese Medicine Phenome Research Center, State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, China
| | - Zeguang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Haitao Lu
- School of Chinese Medicine, Hong Kong Traditional Chinese Medicine Phenome Research Center, State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, China; Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
8
|
Zhang L, Wang Y, Zheng C, Zhou Z, Chen Z. Cellular thermal shift assay: an approach to identify and assess protein target engagement. Expert Rev Proteomics 2024; 21:387-400. [PMID: 39317941 DOI: 10.1080/14789450.2024.2406785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION A comprehensive and global knowledge of protein target engagement is of vital importance for mechanistic studies and in drug development. Since its initial introduction, the cellular thermal shift assay (CETSA) has proven to be a reliable and flexible technique that can be widely applied to multiple contexts and has profound applications in facilitating the identification and assessment of protein target engagement. AREAS COVERED This review introduces the principle of CETSA, elaborates on western blot-based CETSA and MS-based thermal proteome profiling (TPP) as well as the major applications and prospects of these approaches. EXPERT OPINION CETSA primarily evaluates a given ligand binding to a particular target protein in cells and tissues with the protein thermal stabilities analyzed by western blot. When coupling mass spectrometry with CETSA, thermal proteome profiling allows simultaneous proteome-wide experiment that greatly increased the efficiency of target engagement evaluation, and serves as a promising strategy to identify protein targets and off-targets as well as protein-protein interactions to uncover the biological effects. The CETSA approaches have broad applications and potentials in drug development and clinical research.
Collapse
Affiliation(s)
- Liying Zhang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yuchuan Wang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Chang Zheng
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zihan Zhou
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zhe Chen
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| |
Collapse
|
9
|
Liu X, Zhang Q, Wang P, Peng X, An Y, Chen J, Huang J, Qin S, He H, Hao M, Tian J, Yi L, Lei M, Luo P, Wang J, Zhang X. Dissection of Targeting Molecular Mechanisms of Celastrol-induced Nephrotoxicity via A Combined Deconvolution Strategy of Chemoproteomics and Metabolomics. Int J Biol Sci 2024; 20:4601-4617. [PMID: 39309437 PMCID: PMC11414378 DOI: 10.7150/ijbs.91751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/05/2024] [Indexed: 09/25/2024] Open
Abstract
Celastrol (Cel), derived from the traditional herb Tripterygium wilfordii Hook. f., has anti-inflammatory, anti-tumor, and immunoregulatory activities. Renal dysfunction, including acute renal failure, has been reported in patients following the administration of Cel-relative medications. However, the functional mechanism of nephrotoxicity caused by Cel is unknown. This study featured combined use of activity-based protein profiling and metabolomics analysis to distinguish the targets of the nephrotoxic effects of Cel. Results suggest that Cel may bind directly to several critical enzymes participating in metabolism and mitochondrial functions. These enzymes include voltage-dependent anion-selective channel protein 1 (essential for maintaining mitochondrial configurational and functional stability), pyruvate carboxylase (involved in sugar isomerization and the tricarboxylic acid cycle), fatty acid synthase (related to β-oxidation of fatty acids), and pyruvate kinase M2 (associated with aerobic respiration). Proteomics and metabolomics analysis confirmed that Cel-targeted proteins disrupt some metabolic biosynthetic processes and promote mitochondrial dysfunction. Ultimately, Cel aggravated kidney cell apoptosis. These cumulative results deliver an insight into the potential mechanisms of Cel-caused nephrotoxicity. They may also facilitate development of antagonistic drugs to mitigate the harmful effects of Cel on the kidneys and improve its clinical applications.
Collapse
Affiliation(s)
- Xueying Liu
- Department of Nephrology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
- Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Qian Zhang
- Department of Nephrology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peili Wang
- Department of Nephrology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xin Peng
- Department of Nephrology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
- Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 310060, China
| | - Yehai An
- Department of Nephrology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Junhui Chen
- Department of Nephrology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
| | - Jingnan Huang
- Department of Nephrology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
| | - Shuanglin Qin
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, TCM Precision Medicine Research Department, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410007, China
| | - Hengkai He
- Department of Nephrology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
| | - Mingjing Hao
- Department of Nephrology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
| | - Jiahang Tian
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Letai Yi
- Department of Nephrology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
- Inner Mongolia Medical University, Hohhot, 010107, China
| | - Ming Lei
- Department of Nephrology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
- Department of Nephrology, Guangzhou Eighth People's Hospital, Guangzhou, Guangdong 510440, China
| | - Piao Luo
- Department of Nephrology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, TCM Precision Medicine Research Department, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410007, China
| | - Jigang Wang
- Department of Nephrology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 310060, China
| | - Xinzhou Zhang
- Department of Nephrology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
- Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| |
Collapse
|
10
|
Gao P, Wang J, Qiu C, Zhang H, Wang C, Zhang Y, Sun P, Chen H, Wong YK, Chen J, Zhang J, Tang H, Shi Q, Zhu Y, Shen S, Han G, Xu C, Dai L, Wang J. Photoaffinity probe-based antimalarial target identification of artemisinin in the intraerythrocytic developmental cycle of Plasmodium falciparum. IMETA 2024; 3:e176. [PMID: 38882489 PMCID: PMC11170969 DOI: 10.1002/imt2.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 06/18/2024]
Abstract
Malaria continues to pose a serious global health threat, and artemisinin remains the core drug for global malaria control. However, the situation of malaria resistance has become increasingly severe due to the emergence and spread of artemisinin resistance. In recent years, significant progress has been made in understanding the mechanism of action (MoA) of artemisinin. Prior research on the MoA of artemisinin mainly focused on covalently bound targets that are alkylated by artemisinin-free radicals. However, less attention has been given to the reversible noncovalent binding targets, and there is a paucity of information regarding artemisinin targets at different life cycle stages of the parasite. In this study, we identified the protein targets of artemisinin at different stages of the parasite's intraerythrocytic developmental cycle using a photoaffinity probe. Our findings demonstrate that artemisinin interacts with parasite proteins in vivo through both covalent and noncovalent modes. Extensive mechanistic studies were then conducted by integrating target validation, phenotypic studies, and untargeted metabolomics. The results suggest that protein synthesis, glycolysis, and oxidative homeostasis are critically involved in the antimalarial activities of artemisinin. In summary, this study provides fresh insights into the mechanisms underlying artemisinin's antimalarial effects and its protein targets.
Collapse
Affiliation(s)
- Peng Gao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics Shenzhen People's Hospital; First Affiliated Hospital of Southern University of Science and Technology Shenzhen China
| | - Jianyou Wang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy Henan University Kaifeng China
| | - Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
| | - Huimin Zhang
- Shandong Academy of Chinese Medicine Jinan China
| | - Chen Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
| | - Ying Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
| | - Peng Sun
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
| | - Honglin Chen
- State Key Laboratory of Antiviral Drugs, School of Pharmacy Henan University Kaifeng China
| | - Yin Kwan Wong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
| | - Jiayun Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
| | - Huan Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
| | - Qiaoli Shi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
| | - Yongping Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
| | - Shengnan Shen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
| | - Guang Han
- State Key Laboratory of Antiviral Drugs, School of Pharmacy Henan University Kaifeng China
| | - Chengchao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics Shenzhen People's Hospital; First Affiliated Hospital of Southern University of Science and Technology Shenzhen China
| | - Lingyun Dai
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics Shenzhen People's Hospital; First Affiliated Hospital of Southern University of Science and Technology Shenzhen China
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics Shenzhen People's Hospital; First Affiliated Hospital of Southern University of Science and Technology Shenzhen China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy Henan University Kaifeng China
- Shandong Academy of Chinese Medicine Jinan China
| |
Collapse
|
11
|
Gao P, Wang J, Tang H, Pang H, Liu J, Wang C, Xia F, Chen H, Xu L, Zhang J, Yuan L, Han G, Wang J, Liu G. Chemoproteomics-based profiling reveals potential antimalarial mechanism of Celastrol by disrupting spermidine and protein synthesis. Cell Commun Signal 2024; 22:139. [PMID: 38378659 PMCID: PMC10877925 DOI: 10.1186/s12964-023-01409-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/24/2023] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Malaria remains a global health burden, and the emergence and increasing spread of drug resistance to current antimalarials poses a major challenge to malaria control. There is an urgent need to find new drugs or strategies to alleviate this predicament. Celastrol (Cel) is an extensively studied natural bioactive compound that has shown potentially promising antimalarial activity, but its antimalarial mechanism remains largely elusive. METHODS We first established the Plasmodium berghei ANKA-infected C57BL/6 mouse model and systematically evaluated the antimalarial effects of Cel in conjunction with in vitro culture of Plasmodium falciparum. The potential antimalarial targets of Cel were then identified using a Cel activity probe based on the activity-based protein profiling (ABPP) technology. Subsequently, the antimalarial mechanism was analyzed by integrating with proteomics and transcriptomics. The binding of Cel to the identified key target proteins was verified by a series of biochemical experiments and functional assays. RESULTS The results of the pharmacodynamic assay showed that Cel has favorable antimalarial activity both in vivo and in vitro. The ABPP-based target profiling showed that Cel can bind to a number of proteins in the parasite. Among the 31 identified potential target proteins of Cel, PfSpdsyn and PfEGF1-α were verified to be two critical target proteins, suggesting the role of Cel in interfering with the de novo synthesis of spermidine and proteins of the parasite, thus exerting its antimalarial effects. CONCLUSIONS In conclusion, this study reports for the first time the potential antimalarial targets and mechanism of action of Cel using the ABPP strategy. Our work not only support the expansion of Cel as a potential antimalarial agent or adjuvant, but also establishes the necessary theoretical basis for the development of potential antimalarial drugs with pentacyclic triterpenoid structures, as represented by Cel. Video Abstract.
Collapse
Affiliation(s)
- Peng Gao
- Department of rehabilitation medicine, Shunde Hospital, Southern Medical University, Foshan, 528300, China
| | - Jianyou Wang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Huan Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huanhuan Pang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiemei Liu
- Department of rehabilitation medicine, Shunde Hospital, Southern Medical University, Foshan, 528300, China
| | - Chen Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Honglin Chen
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Liting Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lixia Yuan
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China.
| | - Guang Han
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, China.
| | - Jigang Wang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, China.
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital; First Affiliated Hospital of Southern University of Science and Technology; Second Clinical Medical College of Jinan University, Shenzhen, 518020, China.
| | - Gang Liu
- Department of rehabilitation medicine, Shunde Hospital, Southern Medical University, Foshan, 528300, China.
| |
Collapse
|
12
|
An Y, Zhang Q, Chen Y, Xia F, Wong YK, He H, Hao M, Tian J, Zhang X, Luo P, Wang J. Chemoproteomics Reveals Glaucocalyxin A Induces Mitochondria-Dependent Apoptosis of Leukemia Cells via Covalently Binding to VDAC1. Adv Biol (Weinh) 2024; 8:e2300538. [PMID: 38105424 DOI: 10.1002/adbi.202300538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Chronic myelogenous leukemia (CML) that is resistant to tyrosine kinase inhibitors is one of the deadliest hematologic malignancies, and the T315I mutation in the breakpoint cluster region-Abelson (BCR-ABL) kinase domain is the most prominent point mutation responsible for imatinib resistance in CML. Glaucocalyxin A (GLA), a natural bioactive product derived from the Rabdosia rubescens plant, has strong anticancer activity. In this study, the effect and molecular mechanism of GLA on imatinib-sensitive and imatinib-resistant CML cells harboring T315I mutation via a combined deconvolution strategy of chemoproteomics and label-free proteomics is investigated. The data demonstrated that GLA restrains proliferation and induces mitochondria-dependent apoptosis in both imatinib-sensitive and resistant CML cells. GLA covalently binds to the cysteine residues of mitochondrial voltage-dependent anion channels (VDACs), resulting in mitochondrial damage and overflow of intracellular apoptotic factors, eventually leading to apoptosis. In addition, the combination of GLA with elastin, a mitochondrial channel VDAC2/3 inhibitor, enhances mitochondria-dependent apoptosis in imatinib-sensitive and -resistant CML cells, representing a promising therapeutic approach for leukemia treatment. Taken together, the results show that GLA induces mitochondria-dependent apoptosis via covalently targeting VDACs in CML cells. GLA may thus be a candidate compound for the treatment of leukemia.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Cell Proliferation
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Apoptosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mitochondria/metabolism
- Mitochondria/pathology
- Voltage-Dependent Anion Channel 1/genetics
- Voltage-Dependent Anion Channel 1/therapeutic use
- Diterpenes, Kaurane
Collapse
Affiliation(s)
- Yehai An
- School of Pharmaceutical Sciences and School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qian Zhang
- School of Pharmaceutical Sciences and School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yin-Kwan Wong
- School of Pharmaceutical Sciences and School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hengkai He
- School of Pharmaceutical Sciences and School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Mingjing Hao
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
| | - Jiahang Tian
- School of Pharmaceutical Sciences and School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Piao Luo
- School of Pharmaceutical Sciences and School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jigang Wang
- School of Pharmaceutical Sciences and School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
13
|
Dobrescu I, Hammam E, Dziekan JM, Claës A, Halby L, Preiser P, Bozdech Z, Arimondo PB, Scherf A, Nardella F. Plasmodium falciparum Eukaryotic Translation Initiation Factor 3 is Stabilized by Quinazoline-Quinoline Bisubstrate Inhibitors. ACS Infect Dis 2023; 9:1257-1266. [PMID: 37216290 PMCID: PMC10262199 DOI: 10.1021/acsinfecdis.3c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Indexed: 05/24/2023]
Abstract
Malaria drug resistance is hampering the fight against the deadliest parasitic disease affecting over 200 million people worldwide. We recently developed quinoline-quinazoline-based inhibitors (as compound 70) as promising new antimalarials. Here, we aimed to investigate their mode of action by using thermal proteome profiling (TPP). The eukaryotic translation initiation factor 3 (EIF3i) subunit I was identified as the main target protein stabilized by compound 70 in Plasmodium falciparum. This protein has never been characterized in malaria parasites. P. falciparum parasite lines were generated expressing either a HA tag or an inducible knockdown of the PfEIF3i gene to further characterize the target protein. PfEIF3i was stabilized in the presence of compound 70 in a cellular thermal shift Western blot assay, pointing that PfEIF3i indeed interacts with quinoline-quinazoline-based inhibitors. In addition, PfEIF3i-inducible knockdown blocks intra-erythrocytic development in the trophozoite stage, indicating that it has a vital function. We show that PfEIF3i is mostly expressed in late intra-erythrocytic stages and localizes in the cytoplasm. Previous mass spectrometry reports show that PfEIF3i is expressed in all parasite life cycle stages. Further studies will explore the potential of PfEIF3i as a target for the design of new antimalarial drugs active all along the life cycle of the parasite.
Collapse
Affiliation(s)
- Irina Dobrescu
- Unité
Biology of Host-Parasite Interactions, Department of Parasites and
Insect Vectors, Institut Pasteur, Université
de Paris-Cité, CNRS EMR 9195, INSERM Unit U1201, 25-28 Rue Du Dr Roux, Paris 75015, France
| | - Elie Hammam
- Unité
Biology of Host-Parasite Interactions, Department of Parasites and
Insect Vectors, Institut Pasteur, Université
de Paris-Cité, CNRS EMR 9195, INSERM Unit U1201, 25-28 Rue Du Dr Roux, Paris 75015, France
| | - Jerzy M. Dziekan
- School
of Biological Sciences, Nanyang Technological
University, Singapore 639798, Singapore
| | - Aurélie Claës
- Unité
Biology of Host-Parasite Interactions, Department of Parasites and
Insect Vectors, Institut Pasteur, Université
de Paris-Cité, CNRS EMR 9195, INSERM Unit U1201, 25-28 Rue Du Dr Roux, Paris 75015, France
| | - Ludovic Halby
- Epigenetic
Chemical Biology, Department of Structural Biology and Chemistry,
Institut Pasteur, Université de Paris-Cité,
UMR n3523 Chem4Life, CNRS, 28 Rue Du Dr Roux, Paris 75015, France
| | - Peter Preiser
- School
of Biological Sciences, Nanyang Technological
University, Singapore 639798, Singapore
| | - Zbynek Bozdech
- School
of Biological Sciences, Nanyang Technological
University, Singapore 639798, Singapore
| | - Paola B. Arimondo
- Epigenetic
Chemical Biology, Department of Structural Biology and Chemistry,
Institut Pasteur, Université de Paris-Cité,
UMR n3523 Chem4Life, CNRS, 28 Rue Du Dr Roux, Paris 75015, France
| | - Artur Scherf
- Unité
Biology of Host-Parasite Interactions, Department of Parasites and
Insect Vectors, Institut Pasteur, Université
de Paris-Cité, CNRS EMR 9195, INSERM Unit U1201, 25-28 Rue Du Dr Roux, Paris 75015, France
| | - Flore Nardella
- Unité
Biology of Host-Parasite Interactions, Department of Parasites and
Insect Vectors, Institut Pasteur, Université
de Paris-Cité, CNRS EMR 9195, INSERM Unit U1201, 25-28 Rue Du Dr Roux, Paris 75015, France
| |
Collapse
|