1
|
Twort VG, Laine VN, Field KA, Whiting-Fawcett F, Ito F, Reiman M, Bartonicka T, Fritze M, Ilyukha VA, Belkin VV, Khizhkin EA, Reeder DM, Fukui D, Jiang TL, Lilley TM. Signals of positive selection in genomes of palearctic Myotis-bats coexisting with a fungal pathogen. BMC Genomics 2024; 25:828. [PMID: 39227786 PMCID: PMC11370307 DOI: 10.1186/s12864-024-10722-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024] Open
Abstract
Disease can act as a driving force in shaping genetic makeup across populations, even species, if the impacts influence a particularly sensitive part of their life cycles. White-nose disease is caused by a fungal pathogen infecting bats during hibernation. The mycosis has caused massive population declines of susceptible species in North America, particularly in the genus Myotis. However, Myotis bats appear to tolerate infection in Eurasia, where the fungal pathogen has co-evolved with its bat hosts for an extended period of time. Therefore, with susceptible and tolerant populations, the fungal disease provides a unique opportunity to tease apart factors contributing to tolerance at a genomic level to and gain an understanding of the evolution of non-harmful in host-parasite interactions. To investigate if the fungal disease has caused adaptation on a genomic level in Eurasian bat species, we adopted both whole-genome sequencing approaches and a literature search to compile a set of 300 genes from which to investigate signals of positive selection in genomes of 11 Eurasian bats at the codon-level. Our results indicate significant positive selection in 38 genes, many of which have a marked role in responses to infection. Our findings suggest that white-nose syndrome may have applied a significant selective pressure on Eurasian Myotis-bats in the past, which can contribute their survival in co-existence with the pathogen. Our findings provide an insight on the selective pressure pathogens afflict on their hosts using methodology that can be adapted to other host-pathogen study systems.
Collapse
Affiliation(s)
- V G Twort
- Finnish Museum of Natural History, BatLab Finland, University of Helsinki, Helsinki, Finland
| | - V N Laine
- Finnish Museum of Natural History, BatLab Finland, University of Helsinki, Helsinki, Finland
| | - K A Field
- Department of Biology, Bucknell University, Lewisburg, PA, USA
| | - F Whiting-Fawcett
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - F Ito
- Finnish Museum of Natural History, BatLab Finland, University of Helsinki, Helsinki, Finland
| | - M Reiman
- Finnish Museum of Natural History, BatLab Finland, University of Helsinki, Helsinki, Finland
| | - T Bartonicka
- Dept. Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 611 37, Czech Republic
| | - M Fritze
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
- German Bat Observatory, Berlin, Germany
- Competence Center for Bat Conservation Saxony Anhalt, in the South Harz Karst Landscape Biosphere Reserve, Südharz, Germany
| | - V A Ilyukha
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - V V Belkin
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia
| | - E A Khizhkin
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia
| | - D M Reeder
- Department of Biology, Bucknell University, Lewisburg, PA, USA
| | - D Fukui
- Graduate School of Agricultural and Life Sciences, The University of Tokyo Fuji Iyashinomori Woodland Study Center, The University of Tokyo, Yamanakako, Japan
| | - T L Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - T M Lilley
- Finnish Museum of Natural History, BatLab Finland, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Isidoro-Ayza M, Lorch JM, Klein BS. The skin I live in: Pathogenesis of white-nose syndrome of bats. PLoS Pathog 2024; 20:e1012342. [PMID: 39207947 PMCID: PMC11361426 DOI: 10.1371/journal.ppat.1012342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The emergence of white-nose syndrome (WNS) in North America has resulted in mass mortalities of hibernating bats and total extirpation of local populations. The need to mitigate this disease has stirred a significant body of research to understand its pathogenesis. Pseudogymnoascus destructans, the causative agent of WNS, is a psychrophilic (cold-loving) fungus that resides within the class Leotiomycetes, which contains mainly plant pathogens and is unrelated to other consequential pathogens of animals. In this review, we revisit the unique biology of hibernating bats and P. destructans and provide an updated analysis of the stages and mechanisms of WNS progression. The extreme life history of hibernating bats, the psychrophilic nature of P. destructans, and its evolutionary distance from other well-characterized animal-infecting fungi translate into unique host-pathogen interactions, many of them yet to be discovered.
Collapse
Affiliation(s)
- Marcos Isidoro-Ayza
- Department of Pediatrics, Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jeffrey M. Lorch
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin, United States of America
| | - Bruce S. Klein
- Department of Pediatrics, Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
3
|
Troitsky TS, Laine VN, Lilley TM. When the host's away, the pathogen will play: the protective role of the skin microbiome during hibernation. Anim Microbiome 2023; 5:66. [PMID: 38129884 PMCID: PMC10740296 DOI: 10.1186/s42523-023-00285-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
The skin of animals is enveloped by a symbiotic microscopic ecosystem known as the microbiome. The host and microbiome exhibit a mutualistic relationship, collectively forming a single evolutionary unit sometimes referred to as a holobiont. Although the holobiome theory highlights the importance of the microbiome, little is known about how the skin microbiome contributes to protecting the host. Existing studies focus on humans or captive animals, but research in wild animals is in its infancy. Specifically, the protective role of the skin microbiome in hibernating animals remains almost entirely overlooked. This is surprising, considering the massive population declines in hibernating North American bats caused by the fungal pathogen Pseudogymnoascus destructans, which causes white-nose syndrome. Hibernation offers a unique setting in which to study the function of the microbiome because, during torpor, the host's immune system becomes suppressed, making it susceptible to infection. We conducted a systematic review of peer-reviewed literature on the protective role of the skin microbiome in non-human animals. We selected 230 publications that mentioned pathogen inhibition by microbes residing on the skin of the host animal. We found that the majority of studies were conducted in North America and focused on the bacterial microbiome of amphibians infected by the chytrid fungus. Despite mentioning pathogen inhibition by the skin microbiome, only 30.4% of studies experimentally tested the actual antimicrobial activity of symbionts. Additionally, only 7.8% of all publications studied defensive cutaneous symbionts during hibernation. With this review, we want to highlight the knowledge gap surrounding skin microbiome research in hibernating animals. For instance, research looking to mitigate the effects of white-nose syndrome in bats should focus on the antifungal microbiome of Palearctic bats, as they survive exposure to the Pseudogymnoascus destructans -pathogen during hibernation. We also recommend future studies prioritize lesser-known microbial symbionts, such as fungi, and investigate the effects of a combination of anti-pathogen microbes, as both areas of research show promise as probiotic treatments. By incorporating the protective skin microbiome into disease mitigation strategies, conservation efforts can be made more effective.
Collapse
Affiliation(s)
- T S Troitsky
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - V N Laine
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - T M Lilley
- BatLab Finland, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Li A, Leng H, Li Z, Jin L, Sun K, Feng J. Temporal dynamics of the bat wing transcriptome: Insight into gene-expression changes that enable protection against pathogen. Virulence 2023; 14:2156185. [PMID: 36599840 PMCID: PMC9815227 DOI: 10.1080/21505594.2022.2156185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Skin acts as a mechanical barrier between the body and its surrounding environment and plays an important role in resistance to pathogens. However, we still know little regarding skin responses to physiological changes, particularly with regard to responses against potential pathogens. We herein executed RNA-seq on the wing of the Rhinolophus ferrumequinum to assess gene-expression variations at four physiological stages: pre-hibernation, hibernation (early-hibernation and late-hibernation), and post-hibernation, as well as the gene-expression patterns of infected and uninfected bats with the Pseudogymnoascus destructans (Pd). Our results showed that a greater number of differentially expressed genes between the more disparate physiological stages. Functional enrichment analysis showed that the down-regulated response pathways in hibernating bats included phosphorus metabolism and immune response, indicating metabolic suppression and decreased whole immune function. We also found up-regulated genes in post-hibernating bats that included C-type lectin receptor signalling, Toll-like receptor signalling pathway, and cell adhesion, suggesting that the immune response and skin integrity of the wing were improved after bats emerged from their hibernation and that this facilitated clearing Pd from the integument. Additionally, we found that the genes involved in cytokine or chemokine activity were up-regulated in late-hibernation compared to early-hibernation and that FOSB regulation of immune cell activation was differentially expressed in bats infected with Pd during late-hibernation, implying that the host's innate immune function was enhanced during late-hibernation so as to resist pathogenic infection. Our findings highlight the concept that maintenance of intrinsic immunity provides protection against pathogenic infections in highly resistant bats.
Collapse
Affiliation(s)
- Aoqiang Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China,School of Life Sciences, Central China Normal University, Wuhan, China
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Zhongle Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China,College of Life Science, Jilin Agricultural University, Changchun, China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China,CONTACT Keping Sun
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China,College of Life Science, Jilin Agricultural University, Changchun, China,Jiang Feng
| |
Collapse
|
5
|
Harazim M, Perrot J, Varet H, Bourhy H, Lannoy J, Pikula J, Seidlová V, Dacheux L, Martínková N. Transcriptomic responses of bat cells to European bat lyssavirus 1 infection under conditions simulating euthermia and hibernation. BMC Immunol 2023; 24:7. [PMID: 37085747 PMCID: PMC10120247 DOI: 10.1186/s12865-023-00542-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/31/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Coevolution between pathogens and their hosts decreases host morbidity and mortality. Bats host and can tolerate viruses which can be lethal to other vertebrate orders, including humans. Bat adaptations to infection include localized immune response, early pathogen sensing, high interferon expression without pathogen stimulation, and regulated inflammatory response. The immune reaction is costly, and bats suppress high-cost metabolism during torpor. In the temperate zone, bats hibernate in winter, utilizing a specific behavioural adaptation to survive detrimental environmental conditions and lack of energy resources. Hibernation torpor involves major physiological changes that pose an additional challenge to bat-pathogen coexistence. Here, we compared bat cellular reaction to viral challenge under conditions simulating hibernation, evaluating the changes between torpor and euthermia. RESULTS We infected the olfactory nerve-derived cell culture of Myotis myotis with an endemic bat pathogen, European bat lyssavirus 1 (EBLV-1). After infection, the bat cells were cultivated at two different temperatures, 37 °C and 5 °C, to examine the cell response during conditions simulating euthermia and torpor, respectively. The mRNA isolated from the cells was sequenced and analysed for differential gene expression attributable to the temperature and/or infection treatment. In conditions simulating euthermia, infected bat cells produce an excess signalling by multitude of pathways involved in apoptosis and immune regulation influencing proliferation of regulatory cell types which can, in synergy with other produced cytokines, contribute to viral tolerance. We found no up- or down-regulated genes expressed in infected cells cultivated at conditions simulating torpor compared to non-infected cells cultivated under the same conditions. When studying the reaction of uninfected cells to the temperature treatment, bat cells show an increased production of heat shock proteins (HSPs) with chaperone activity, improving the bat's ability to repair molecular structures damaged due to the stress related to the temperature change. CONCLUSIONS The lack of bat cell reaction to infection in conditions simulating hibernation may contribute to the virus tolerance or persistence in bats. Together with the cell damage repair mechanisms induced in response to hibernation, the immune regulation may promote bats' ability to act as reservoirs of zoonotic viruses such as lyssaviruses.
Collapse
Affiliation(s)
- Markéta Harazim
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 60300, Brno, Czechia.
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, 61137, Brno, Czechia.
| | - Juliette Perrot
- Institut Pasteur, Université Paris Cité Lyssavirus, Epidemiology and Neuropathology Unit, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Hugo Varet
- Institut Pasteur, Université Paris Cité Bioinformatics and Biostatistics Hub, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Hervé Bourhy
- Institut Pasteur, Université Paris Cité Lyssavirus, Epidemiology and Neuropathology Unit, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Julien Lannoy
- Institut Pasteur, Université Paris Cité Lyssavirus, Epidemiology and Neuropathology Unit, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého třída 1946/1, 61242, Brno, Czechia
| | - Veronika Seidlová
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého třída 1946/1, 61242, Brno, Czechia
| | - Laurent Dacheux
- Institut Pasteur, Université Paris Cité Lyssavirus, Epidemiology and Neuropathology Unit, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Natália Martínková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 60300, Brno, Czechia
- RECETOX, Masaryk University, Kotlářská 2, 61137, Brno, Czechia
| |
Collapse
|
6
|
Whiting-Fawcett F, Field KA, Puechmaille SJ, Blomberg AS, Lilley TM. Heterothermy and antifungal responses in bats. Curr Opin Microbiol 2021; 62:61-67. [PMID: 34098511 DOI: 10.1016/j.mib.2021.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/21/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022]
Abstract
Hibernation, a period where bats have suppressed immunity and low body temperatures, provides the psychrophilic fungus Pseudogymnoascus destructans the opportunity to colonise bat skin, leading to severe disease in susceptible species. Innate immunity, which requires less energy and may remain more active during torpor, can control infections with local inflammation in some bat species that are resistant to infection. If infection is not controlled before emergence from hibernation, ineffective adaptive immune mechanisms are activated, including incomplete Th1, ineffective Th2, and variable Th17 responses. The Th17 and neutrophil responses, normally beneficial antifungal mechanisms, appear to be sources of immunopathology for susceptible bat species, because they are hyperactivated after return to homeothermy. Non-susceptible species show both well-balanced and suppressed immune responses both during and after hibernation.
Collapse
Affiliation(s)
- Flora Whiting-Fawcett
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | | | | | - Thomas M Lilley
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
7
|
Fritze M, Puechmaille SJ, Costantini D, Fickel J, Voigt CC, Czirják GÁ. Determinants of defence strategies of a hibernating European bat species towards the fungal pathogen Pseudogymnoascus destructans. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104017. [PMID: 33476670 DOI: 10.1016/j.dci.2021.104017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Pseudogymnoascus destructans (Pd), the causative agent of white-nose syndrome in North America, has decimated bat populations within a decade. The fungus impacts bats during hibernation when physiological functions, including immune responses, are down-regulated. Studies have shown that Pd is native to Europe, where it is not associated with mass mortalities. Moreover, genomic and proteomic studies indicated that European bats may have evolved an effective immune defence, which is lacking in North American bats. However, it is still unclear which defence strategy enables European bats to cope with the pathogen. Here, we analyzed selected physiological and immunological parameters in torpid, Pd infected European greater mouse-eared bats (Myotis myotis) showing three different levels of infection (asymptomatic, mild and severe symptoms). From a subset of the studied bats we tracked skin temperatures during one month of hibernation. Contrasting North American bats, arousal patterns remained unaffected by Pd infections in M. myotis. In general, heavier M. myotis aroused more often from hibernation and showed less severe disease symptoms than lean individuals; most likely because heavy bats were capable of reducing the Pd load more effectively than lean individuals. In the blood of severely infected bats, we found higher gene expression levels of an inflammatory cytokine (IL-1β), but lower levels of an acute phase protein (haptoglobin), reactive oxygen metabolites (ROMs) and plasma non-enzymatic antioxidant capacity (OXY) compared to conspecifics with lower levels of infection. We conclude that M. myotis, and possibly also other European bat species, tolerate Pd infections during torpor by using selected acute phase response parameters at baseline levels, yet without arousing from torpor and without synthesizing additional immune molecules.
Collapse
Affiliation(s)
- Marcus Fritze
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315, Berlin, Germany; Institute of Biology, Freie Universität Berlin, Takustr. 6, 14195, Berlin, Germany.
| | - Sebastien J Puechmaille
- Institut des Sciences de L'Evolution, University of Montpellier, CNRS, EPHE, IRD, Montpellier, 34095, Montpellier, France
| | - David Costantini
- Unité Physiologie Moléculaire et Adaptation (PhyMA), Muséum National D'Histoire Naturelle, CNRS, CP32, 57 Rue Cuvier, 75005, Paris, France
| | - Jörns Fickel
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315, Berlin, Germany; Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Christian C Voigt
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315, Berlin, Germany; Institute of Biology, Freie Universität Berlin, Takustr. 6, 14195, Berlin, Germany
| | - Gábor Á Czirják
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315, Berlin, Germany
| |
Collapse
|
8
|
Abstract
The recent introduction of Pseudogymnoascus destructans (the fungal pathogen that causes white-nose syndrome in bats) from Eurasia to North America has resulted in the collapse of North American bat populations and restructured species communities. The long evolutionary history between P. destructans and bats in Eurasia makes understanding host life history essential to uncovering the ecology of P. destructans. In this Review, we combine information on pathogen and host biology to understand the patterns of P. destructans spread, seasonal transmission ecology, the pathogenesis of white-nose syndrome and the cross-scale impact from individual hosts to ecosystems. Collectively, this research highlights how early pathogen detection and quantification of host impacts has accelerated the understanding of this newly emerging infectious disease.
Collapse
|
9
|
Associating physiological functions with genomic variability in hibernating bats. Evol Ecol 2021. [DOI: 10.1007/s10682-020-10096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Davy CM, Donaldson ME, Bandouchova H, Breit AM, Dorville NA, Dzal YA, Kovacova V, Kunkel EL, Martínková N, Norquay KJ, Paterson JE, Zukal J, Pikula J, Willis CK, Kyle CJ. Transcriptional host-pathogen responses of Pseudogymnoascus destructans and three species of bats with white-nose syndrome. Virulence 2020; 11:781-794. [PMID: 32552222 PMCID: PMC7549942 DOI: 10.1080/21505594.2020.1768018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 03/07/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Understanding how context (e.g., host species, environmental conditions) drives disease susceptibility is an essential goal of disease ecology. We hypothesized that in bat white-nose syndrome (WNS), species-specific host-pathogen interactions may partly explain varying disease outcomes among host species. We characterized bat and pathogen transcriptomes in paired samples of lesion-positive and lesion-negative wing tissue from bats infected with Pseudogymnoascus destructans in three parallel experiments. The first two experiments analyzed samples collected from the susceptible Nearctic Myotis lucifugus and the less-susceptible Nearctic Eptesicus fuscus, following experimental infection and hibernation in captivity under controlled conditions. The third experiment applied the same analyses to paired samples from infected, free-ranging Myotis myotis, a less susceptible, Palearctic species, following natural infection and hibernation (n = 8 sample pairs/species). Gene expression by P. destructans was similar among the three host species despite varying environmental conditions among the three experiments and was similar within each host species between saprophytic contexts (superficial growth on wings) and pathogenic contexts (growth in lesions on the same wings). In contrast, we observed qualitative variation in host response: M. lucifugus and M. myotis exhibited systemic responses to infection, while E. fuscus up-regulated a remarkably localized response. Our results suggest potential phylogenetic determinants of response to WNS and can inform further studies of context-dependent host-pathogen interactions.
Collapse
Affiliation(s)
- Christina M. Davy
- Environmental and Life Sciences Program, Trent University, Peterborough, Canada
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Peterborough, Canada
| | | | - Hana Bandouchova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Ana M. Breit
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, Canada
| | - Nicole A.S. Dorville
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, Canada
| | - Yvonne A. Dzal
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, Canada
| | - Veronika Kovacova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Emma L. Kunkel
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, Canada
| | - Natália Martínková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Kaleigh J.O. Norquay
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, Canada
| | - James E. Paterson
- Environmental and Life Sciences Program, Trent University, Peterborough, Canada
| | - Jan Zukal
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Jiri Pikula
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Craig K.R. Willis
- Department of Biology and Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, Winnipeg, Canada
| | - Christopher J. Kyle
- Environmental and Life Sciences Program, Trent University, Peterborough, Canada
- Natural Resources DNA Profiling and Forensics Centre, Trent University, Peterborough, Canada
| |
Collapse
|
11
|
Yi X, Donner DM, Marquardt PE, Palmer JM, Jusino MA, Frair J, Lindner DL, Latch EK. Major histocompatibility complex variation is similar in little brown bats before and after white-nose syndrome outbreak. Ecol Evol 2020; 10:10031-10043. [PMID: 33005361 PMCID: PMC7520216 DOI: 10.1002/ece3.6662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 12/28/2022] Open
Abstract
White-nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus destructans (Pd), has driven alarming declines in North American hibernating bats, such as little brown bat (Myotis lucifugus). During hibernation, infected little brown bats are able to initiate anti-Pd immune responses, indicating pathogen-mediated selection on the major histocompatibility complex (MHC) genes. However, such immune responses may not be protective as they interrupt torpor, elevate energy costs, and potentially lead to higher mortality rates. To assess whether WNS drives selection on MHC genes, we compared the MHC DRB gene in little brown bats pre- (Wisconsin) and post- (Michigan, New York, Vermont, and Pennsylvania) WNS (detection spanning 2014-2015). We genotyped 131 individuals and found 45 nucleotide alleles (27 amino acid alleles) indicating a maximum of 3 loci (1-5 alleles per individual). We observed high allelic admixture and a lack of genetic differentiation both among sampling sites and between pre- and post-WNS populations, indicating no signal of selection on MHC genes. However, post-WNS populations exhibited decreased allelic richness, reflecting effects from bottleneck and drift following rapid population declines. We propose that mechanisms other than adaptive immunity are more likely driving current persistence of little brown bats in affected regions.
Collapse
Affiliation(s)
- Xueling Yi
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWIUSA
| | - Deahn M. Donner
- Northern Research StationUSDA Forest ServiceRhinelanderWIUSA
| | | | | | - Michelle A. Jusino
- Northern Research StationUSDA Forest ServiceMadisonWIUSA
- Department of Plant PathologyUniversity of FloridaGainesvilleFLUSA
| | - Jacqueline Frair
- Roosevelt Wild Life StationSUNY College of Environmental Science and ForestrySyracuseNYUSA
| | | | - Emily K. Latch
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWIUSA
| |
Collapse
|
12
|
Martínková N, Baird SJE, Káňa V, Zima J. Bat population recoveries give insight into clustering strategies during hibernation. Front Zool 2020; 17:26. [PMID: 32884575 PMCID: PMC7465407 DOI: 10.1186/s12983-020-00370-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/13/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Behaviour during hibernation contributes to energy conservation in winter. Hibernating bats select roosts with respect to physiological and environmental stressors, available local microclimate and species-specific requirements. RESULTS We found that, in the period between 1977 and 2018, hibernating Myotis myotis and Rhinolophus hipposideros bats showed exponential population growth. The growth rates, corrected for local winter seasonal severity and winter duration, were equal to 10 and 13%, respectively. While R. hipposideros only utilised the thermally stable and, at survey time, warmer corridors in the hibernaculum, an increasing proportion of M. myotis roosted in the thermally stable corridors as their abundance increased. About 14% of all hibernating M. myotis displayed solitary roosting, irrespective of other covariates. Those bats that clustered together formed progressively larger clusters with increasing abundance, particularly in cold corridors. We found no statistically significant relationship for clustering behaviour or cluster size with winter severity or winter duration. CONCLUSIONS Abundance of hibernating bats is increasing in Central Europe. As the number of M. myotis bats increases, thermally unstable corridors become saturated with large clusters and the animals begin to roost deeper underground.
Collapse
Affiliation(s)
- Natália Martínková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, Brno, 60365 Czechia
- RECETOX, Masaryk University, Kamenice 753/5, Brno, 62500 Czechia
| | - Stuart J. E. Baird
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, Brno, 60365 Czechia
| | | | - Jan Zima
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, Brno, 60365 Czechia
| |
Collapse
|
13
|
Genome-Wide Changes in Genetic Diversity in a Population of Myotis lucifugus Affected by White-Nose Syndrome. G3-GENES GENOMES GENETICS 2020; 10:2007-2020. [PMID: 32276959 PMCID: PMC7263666 DOI: 10.1534/g3.119.400966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Novel pathogens can cause massive declines in populations, and even extirpation of hosts. But disease can also act as a selective pressure on survivors, driving the evolution of resistance or tolerance. Bat white-nose syndrome (WNS) is a rapidly spreading wildlife disease in North America. The fungus causing the disease invades skin tissues of hibernating bats, resulting in disruption of hibernation behavior, premature energy depletion, and subsequent death. We used whole-genome sequencing to investigate changes in allele frequencies within a population of Myotis lucifugus in eastern North America to search for genetic resistance to WNS. Our results show low FST values within the population across time, i.e., prior to WNS (Pre-WNS) compared to the population that has survived WNS (Post-WNS). However, when dividing the population with a geographical cut-off between the states of Pennsylvania and New York, a sharp increase in values on scaffold GL429776 is evident in the Post-WNS samples. Genes present in the diverged area are associated with thermoregulation and promotion of brown fat production. Thus, although WNS may not have subjected the entire M. lucifugus population to selective pressure, it may have selected for specific alleles in Pennsylvania through decreased gene flow within the population. However, the persistence of remnant sub-populations in the aftermath of WNS is likely due to multiple factors in bat life history.
Collapse
|
14
|
Turbill C, Welbergen JA. Anticipating white-nose syndrome in the Southern Hemisphere: Widespread conditions favourable to Pseudogymnoascus destructans
pose a serious risk to Australia's bat fauna. AUSTRAL ECOL 2019. [DOI: 10.1111/aec.12832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Christopher Turbill
- Hawkesbury Institute for the Environment; Western Sydney University; Hawkesbury Campus Richmond New South Wales 2753 Australia
| | - Justin A. Welbergen
- Hawkesbury Institute for the Environment; Western Sydney University; Hawkesbury Campus Richmond New South Wales 2753 Australia
| |
Collapse
|
15
|
Lilley TM, Prokkola JM, Blomberg AS, Paterson S, Johnson JS, Turner GG, Bartonička T, Bachorec E, Reeder DM, Field KA. Resistance is futile: RNA-sequencing reveals differing responses to bat fungal pathogen in Nearctic Myotis lucifugus and Palearctic Myotis myotis. Oecologia 2019; 191:295-309. [PMID: 31506746 PMCID: PMC6763535 DOI: 10.1007/s00442-019-04499-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 08/30/2019] [Indexed: 12/18/2022]
Abstract
Abstract Resistance and tolerance allow organisms to cope with potentially life-threatening pathogens. Recently introduced pathogens initially induce resistance responses, but natural selection favors the development of tolerance, allowing for a commensal relationship to evolve. Mycosis by Pseudogymnoascus destructans, causing white-nose syndrome (WNS) in Nearctic hibernating bats, has resulted in population declines since 2006. The pathogen, which spread from Europe, has infected species of Palearctic Myotis for a longer period. We compared ecologically relevant responses to the fungal infection in the susceptible Nearctic M. lucifugus and less susceptible Palearctic M. myotis, to uncover factors contributing to survival differences in the two species. Samples were collected from euthermic bats during arousal from hibernation, a naturally occurring phenomenon, during which transcriptional responses are activated. We compared the whole-transcriptome responses in wild bats infected with P. destructans hibernating in their natural habitat. Our results show dramatically different local transcriptional responses to the pathogen between uninfected and infected samples from the two species. Whereas we found 1526 significantly upregulated or downregulated transcripts in infected M. lucifugus, only one transcript was downregulated in M. myotis. The upregulated response pathways in M. lucifugus include immune cell activation and migration, and inflammatory pathways, indicative of an unsuccessful attempt to resist the infection. In contrast, M. myotis appears to tolerate P. destructans infection by not activating a transcriptional response. These host-microbe interactions determine pathology, contributing to WNS susceptibility, or commensalism, promoting tolerance to fungal colonization during hibernation that favors survival. Graphic abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s00442-019-04499-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas M Lilley
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
| | - Jenni M Prokkola
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Joseph S Johnson
- Department of Biological Sciences, Ohio University, Athens, OH, USA
| | | | - Tomáš Bartonička
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Erik Bachorec
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | | | | |
Collapse
|
16
|
Martínková N, Pikula J, Zukal J, Kovacova V, Bandouchova H, Bartonička T, Botvinkin AD, Brichta J, Dundarova H, Kokurewicz T, Irwin NR, Linhart P, Orlov OL, Piacek V, Škrabánek P, Tiunov MP, Zahradníková A. Hibernation temperature-dependent Pseudogymnoascus destructans infection intensity in Palearctic bats. Virulence 2018; 9:1734-1750. [PMID: 36595968 PMCID: PMC10022473 DOI: 10.1080/21505594.2018.1548685] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
White-nose syndrome (WNS) is a fungal disease caused by Pseudogymnoascus destructans that is devastating to Nearctic bat populations but tolerated by Palearctic bats. Temperature is a factor known to be important for fungal growth and bat choice of hibernation. Here we investigated the effect of temperature on the pathogenic fungal growth in the wild across the Palearctic. We modelled body surface temperature of bats with respect to fungal infection intensity and disease severity and were able to relate this to the mean annual surface temperature at the site. Bats that hibernated at lower temperatures had less fungal growth and fewer skin lesions on their wings. Contrary to expectation derived from laboratory P. destructans culture experiments, natural infection intensity peaked between 5 and 6°C and decreased at warmer hibernating temperature. We made predictive maps based on bat species distributions, temperature and infection intensity and disease severity data to determine not only where P. destructans will be found but also where the infection will be invasive to bats across the Palearctic. Together these data highlight the mechanistic model of the interplay between environmental and biological factors, which determine progression in a wildlife disease.
Collapse
Affiliation(s)
- Natália Martínková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic.,Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic
| | - Jiri Pikula
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Jan Zukal
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic.,Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Veronika Kovacova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Hana Bandouchova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Tomáš Bartonička
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Alexander D Botvinkin
- Epidemiology Department, Irkutsk State Medical University, Irkutsk, Russian Federation
| | - Jiri Brichta
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Heliana Dundarova
- Department of Ecosystem Research, Environmental Risk Assessment and Conservation Biology, Institute of Biodiversity and Ecosystem Research, Sofia, Bulgaria
| | - Tomasz Kokurewicz
- Institute of Biology, Department of Vertebrate Ecology and Palaeontology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | - Petr Linhart
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Oleg L Orlov
- International Complex Research Laboratory for Study of Climate Change, Land Use and Biodiversity, Tyumen State University, Tyumen, Russian Federation.,Department of Biochemistry, Ural State Medical University, Ekaterinburg, Russian Federation
| | - Vladimir Piacek
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Pavel Škrabánek
- Department of Process Control, Faculty of Electrical Engineering and Informatics, University of Pardubice, Pardubice, Czech Republic.,Institute of Automation and Computer Science, Brno University of Technology, Brno, Czech Republic
| | - Mikhail P Tiunov
- Institute of Biology and Soil Science, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Alexandra Zahradníková
- Department of Muscle Cell Research, Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|