1
|
Fagín E, Felip M, Brancelj A, Masqué P, Catalan J. Parasite sedimentary DNA reveals fish introduction into a European high-mountain lake by the seventh century. Nat Commun 2025; 16:3081. [PMID: 40199847 PMCID: PMC11978990 DOI: 10.1038/s41467-025-57801-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/04/2025] [Indexed: 04/10/2025] Open
Abstract
High-mountain lakes were historically fishless due to natural barriers, but human introductions have led to widespread fish presence. Although particularly intensive during the last decades, historical documents indicate introductions in European high mountains already during the 14th and 15th centuries, but they could have occurred before, provided the intensive land use of the high mountain had started earlier. We used ancient environmental DNA from lake sediments (sedDNA) to investigate this hypothesis. Fish ectoparasites from various clades were identified using the 18S rRNA gene in the sediment record of a deep, high-mountain Pyrenean lake, with Ichthyobodo (Kinetoplastea) being of particular interest due to its consistent occurrence. The study shows a continued presence of fish parasites in the lake since the 7th century, which coincides with the Late-Roman and Visigothic extensive mountain use for sheep pasturing as supported by nearby archeological remains and increased lake primary production evidenced by photosynthetic pigments.
Collapse
Affiliation(s)
- Elena Fagín
- CREAF, Environmental Change Ecology Group, Cerdanyola del Vallès, Spain
| | - Marisol Felip
- CREAF, Environmental Change Ecology Group, Cerdanyola del Vallès, Spain
- Universitat de Barcelona, BEECA, Barcelona, Spain
| | | | - Pere Masqué
- School of Natural Sciences, Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup, WA, Australia
| | - Jordi Catalan
- CREAF, Environmental Change Ecology Group, Cerdanyola del Vallès, Spain.
- CSIC, Bellaterra, Spain.
| |
Collapse
|
2
|
Baehr S, Ho WC, Perez S, Cenzano A, Hancock K, Patrick L, Brown A, Miller S, Lynch M. Consideration of a Liquid Mutation-Accumulation Experiment to Measure Mutation Rates by Successive Serial Dilution. Genome Biol Evol 2025; 17:evaf049. [PMID: 40088461 PMCID: PMC11973482 DOI: 10.1093/gbe/evaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 03/17/2025] Open
Abstract
The mutation-accumulation (MA) experiment is a fixture of evolutionary biology, though its execution is laborious. MA experiments typically take between months and years to acquire sufficient mutations to measure DNA mutation rates and mutation spectra. MA experiments for many organisms rely on colony formation on agar plates and repetitive streaking, an environment which at first glance appears somewhat contrived, a poor imitation of actual environmental living conditions. We propose that a fully liquid-phase MA experiment may at times more accurately reflect the environment of an organism. We note also that whereas automation of streaking plates is a daunting prospect, automation of liquid handling, and serial dilution is already commonplace. In principle, this type of MA experiment can be automated so as to reduce the human capital requirements of measuring mutation rates. We demonstrate that a liquid MA recapitulates the mutation rate estimated for MMR-E. coli in liquid LB culture vs. plate Lysogeny Broth culture. We detect a modified mutation spectrum with a transition skew of 4.7:1 of A:T→G:C vs. G:C→A:T mutations, highlighting the potential role of tautomerization as a mechanism of DNA mutation.
Collapse
Affiliation(s)
- Stephan Baehr
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Wei-Chin Ho
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Department of Biology, University of Texas, Tyler, TX, USA
| | - Samuel Perez
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Alyssa Cenzano
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Department of Biology, ASU Preparatory Academy Polytechnic High School, Mesa, AZ, USA
| | - Katelyn Hancock
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Lea Patrick
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Adalyn Brown
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Samuel Miller
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Michael Lynch
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
3
|
Ikeda K, Shiota Y. Theoretical Study of Guanine Oxidation Catalyzed by a Ruthenium Complex with an Oxygen Molecule. Inorg Chem 2025; 64:4330-4338. [PMID: 39999400 DOI: 10.1021/acs.inorgchem.4c04862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The oxidation of an aromatic ring in guanosine monophosphate by a RuII-aqua complex, [RuII(OH2)(η5-C5Me5)(bpy)]+ (bpy = 2,2'-bipyridine), using O2 gases in an aqueous solution has been reported (Takenaka et al. Chem. Asian J. 2018, 13, 3480-3184). However, its mechanism has not been sufficiently clarified to facilitate the design of optimal catalysts. To clarify the mechanism of aerobic oxidation catalyzed by Ru complexes, we employed density functional theory (DFT) calculations to analyze the oxidation of 9-methyl guanine, as a model of the substrate. Although the ligand-exchange reaction between the H2O and O2 molecules yielded a more stable RuIV-peroxo complex, [RuIV(η2-O2)(η5-C5Me5)(bpy)]+, subsequent reactions were initiated by a RuIII-superoxo complex, [RuIII(η1-O2•-)(η5-C5Me5)(bpy)]+. We confirmed the plausible path for the homolytic cleavage of the O-O bond in [RuIII(η1-O2•-)(η5-C5Me5)(bpy)]+ to form a RuIV-oxo complex, [RuIV(O)(η5-C5Me5)(bpy)]+, with the activation free energy (ΔGa) of 12.2 kcal/mol. The subsequent oxidation of the substrate by [RuIV(O)(η5-C5Me5)(bpy)]+ facilitated the formation of an arenium-like intermediate to form the product compounds, where the energy in the transition state corresponding to the oxidation of the substrate is 21.5 kcal/mol. An additional reaction path for the oxidation of the substrate by [RuIII(η1-O2•-)(η5-C5Me5)(bpy)]+ must exceed the high energy in the transition state (31.7 kcal/mol), indicating that [RuIV(O)(η5-C5Me5)(bpy)]+ catalyzed the oxidation of the substrate as reactive species. Conversely, the Cp*-ligand oxidation, which induced catalyst degradation, requires ΔGa of 21.4 kcal/mol to exceed the transition state. Overall, our DFT study offers insight into the reaction mechanism of aerobic oxidation involving inert chemical bonds, facilitating the design of appropriate catalysts for the reaction.
Collapse
Affiliation(s)
- Kei Ikeda
- Institute for Materials Chemistry and Engineering and Integrated Research Consortium on Chemical Science (IRCCS), Kyushu University, Fukuoka 819-0395, Japan
- Mitsubishi Chemical Corporation, Science & Innovation Center, Yokohama 227-8502, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering and Integrated Research Consortium on Chemical Science (IRCCS), Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Zheng X, Kong W, Dai X, You C. YBX1 Modulates 8-Oxoguanine Recognition and Repair in DNA. ACS Chem Biol 2025; 20:529-536. [PMID: 39903676 DOI: 10.1021/acschembio.4c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
8-Oxoguanine (8-oxoG) is not only a biomarker of oxidative DNA damage but also an epigenetic-like regulator in mammalian cells. The identification and characterization of 8-oxoG-binding proteins would be crucial for further understanding the biological consequences of 8-oxoG. Here, we identified human Y-box-binding protein 1 (YBX1) as a novel binding protein for 8-oxoG modification in DNA by using a quantitative proteomic approach. Moreover, we found that the deficiency of YBX1 can substantially decrease the cellular sensitivity to oxidative stress and facilitate the repair of 8-oxoG embedded in DNA. These findings provided new insight into the biological significance of the functional interplay between YBX1 and 8-oxoG modification in DNA.
Collapse
Affiliation(s)
- Xiaofang Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing 400030, PR China
| | - Weiheng Kong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Xiaoxia Dai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Changjun You
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
5
|
Zewail-Foote M, del Mundo IMA, Klattenhoff AW, Vasquez KM. Oxidative damage within alternative DNA structures results in aberrant mutagenic processing. Nucleic Acids Res 2025; 53:gkaf066. [PMID: 39950343 PMCID: PMC11826088 DOI: 10.1093/nar/gkaf066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/17/2025] Open
Abstract
Genetic instability is a hallmark of cancer, and mutation hotspots in human cancer genomes co-localize with alternative DNA structure-forming sequences (e.g. H-DNA), implicating them in cancer etiology. H-DNA has been shown to stimulate genetic instability in mammals. Here, we demonstrate a new paradigm of genetic instability, where a cancer-associated H-DNA-forming sequence accumulates more oxidative lesions than B-DNA under conditions of oxidative stress (OS), often found in tumor microenvironments. We show that OS results in destabilization of the H-DNA structure and attenuates the fold increase in H-DNA-induced mutations over control B-DNA in mammalian cells. Furthermore, the mutation spectra revealed that the damaged H-DNA-containing region was processed differently compared to H-DNA in the absence of oxidative damage in mammalian cells. The oxidatively modified H-DNA elicits differential recruitment of DNA repair proteins from both the base excision repair and nucleotide excision repair mechanisms. Altogether, these results suggest a new model of genetic instability whereby H-DNA-forming regions are hotspots for DNA damage in oxidative microenvironments, resulting in its altered mutagenic processing. Our findings provide valuable insights into the role of OS in DNA structure-induced genetic instability and may establish H-DNA-forming sequences as promising genomic biomarkers and potential therapeutic targets for genetic diseases.
Collapse
Affiliation(s)
- Maha Zewail-Foote
- Department of Chemistry and Biochemistry, Southwestern University, 1001 E University Ave, Georgetown, TX 78626, United States
| | - Imee M A del Mundo
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. Austin, TX 78723, United States
| | - Alex W Klattenhoff
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. Austin, TX 78723, United States
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. Austin, TX 78723, United States
| |
Collapse
|
6
|
Li S, You M, Chen C, Fu J, Xu Y, Pi J, Wang Y. Direct engulfment of synapses by overactivated microglia due to cadmium exposure and the protective role of Nrf2. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117620. [PMID: 39732062 DOI: 10.1016/j.ecoenv.2024.117620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Cadmium (Cd), a notorious environmental pollutant, has been linked to neurological disorders, but the underlying mechanism remains elusive. We aimed to explore the role of microglia in Cd-induced synaptic damages at environmentally relevant doses and whether microglia directly engulf synaptic structures. Nrf2 is deeply implicated in the status of microglial activation; therefore, we also investigated whether it is involved in the above process. Nrf2 knockout mice and wild-type mice were used to explore prolonged Cd exposure-induced synaptic damages, learning-memory impairments, and microglial activation. We also created Nrf2 knockdown (KD) BV2 microglia to investigate the role of cell-specific Nrf2 in Cd-induced microglial activation. Finally, we developed co-culture systems of either Nrf2-KD or Scramble microglia and primary neurons or HT22 neurons to study the effects of Nrf2-regulated microglial activation on synaptic damages induced by Cd. Moreover, the direct engulfment, a main avenue in microglia that may be responsible for Cd-induced synaptic damages and regulated by Nrf2, was specifically studied in vivo and in vitro, along with underlying specific mechanisms. We found that Cd exposure induced microglial overactivation, and Cd-overactivated microglia impaired synapses through direct engulfment of synaptic structures, which may contribute to learning-memory impairments. Both fractalkine and complement pathways underlay microglial engulfment of synapses due to Cd exposure. Nrf2 was essential in preventing microglial overactivation and subsequent direct engulfment, thus preventing the consequent synaptic damages due to Cd exposure. Overall, the findings suggest that Cd-overactivated microglia damage synapses through direct engulfment, resulting from the activation of fractalkine and complement pathways.
Collapse
Affiliation(s)
- Siyao Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning 110122, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China; Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education (Guizhou Medical University), Guiyang, Guizhou 550025, China
| | - Chengjie Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning 110122, China; Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Jingqi Fu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning 110122, China; Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Yuanyuan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning 110122, China; Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Jingbo Pi
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning 110122, China; Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Yi Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning 110122, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
7
|
Walker M. Measuring Biomarkers of Oxidative Stress in ME/CFS Patients. Methods Mol Biol 2025; 2920:225-244. [PMID: 40372686 DOI: 10.1007/978-1-0716-4498-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) have a deficiency in energy production as a result of dysfunctions in their mitochondrial metabolism, defects in the complexes of the electron transport chain, and in the regulation of reactive oxygen species (ROS). This can lead to an imbalance and excess of these species with subsequent modifications of proteins, lipids, and DNA. Oxidative stress is defined as an accumulation of ROS due to a loss of regulation and the subsequent inability to detoxify them. The modifications to the cellular macromolecules by ROS can be used as biomarkers of oxidative stress and so have the potential to monitor the disease course of a condition like ME/CFS. Proteins are especially vulnerable to oxidative stress as amino acid residues are naturally modified as part of cell signaling so, in an imbalance between ROS and antioxidants, proteins become modified at multiple sites potentially altering structure and function. Protein carbonyl modifications are stable and can be measured using 2,4-dinitrophenylhydrazine using a commercial ELISA assay. This has been applied here to immune cell proteins and plasma from ME/CFS patients who had moderate functional activity before and during an exercise protocol, and was shown to have potential as a marker of oxidative stress in these patients. The methods used to measure the DNA modification, 8-hydroxy-2'-deoxyguanosine (8-OHdG) are known to give varied results depending on the technology used. Here, a commercial ELISA assay did not have the sensitivity to detect the modifications in the DNA before and during the exercise protocol of these ME/CFS patients.
Collapse
Affiliation(s)
- Max Walker
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
8
|
Stolc V, Karhanek M, Freund F, Griko Y, Loftus DJ, Ohayon MM. Metabolic stress in space: ROS-induced mutations in mice hint at a new path to cancer. Redox Biol 2024; 78:103398. [PMID: 39586121 PMCID: PMC11625351 DOI: 10.1016/j.redox.2024.103398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 11/27/2024] Open
Abstract
Long-duration spaceflight beyond Earth's magnetosphere poses serious health risks, including muscle atrophy, bone loss, liver and kidney damage, and the Spaceflight-Associated Neuro-ocular Syndrome (SANS). RNA-seq of mice aboard the International Space Station (ISS) for 37 days revealed extraordinary hypermutation in tissue-specific genes, with guanine base conversion predominating, potentially contributing to spaceflight-associated health risks. Our results suggest that the genome-wide accelerated mutation that we measured, seemingly independent of radiation dose, was induced by oxidative damage from higher atmospheric carbon dioxide (CO2) levels and increased reactive oxygen species (ROS) on the ISS. This accelerated mutation, faster via RNA transcription than replication and more numerous than by radiation alone, unveils novel hotspots in the mammalian proteome. Notably, these hotspots correlate with commonly mutated genes across various human cancers, highlighting the ISS as a crucial platform for studying accelerated mutation, genome instability, and the induction of disease-causing mutations in model organisms. Our results suggest that metabolic processes can contribute to somatic mutation, and thus may play a role in the development of cancer. A metabolic link to genetic instability potentially has far-reaching implications for various diseases, with implications for human health on Earth and in space.
Collapse
Affiliation(s)
- Viktor Stolc
- NASA Ames Research Center, Moffett Field, CA, 94035, USA.
| | - Miloslav Karhanek
- Biomedical Research Center, Slovak Academy of Sciences, 845 05, Bratislava, Slovakia
| | | | - Yuri Griko
- NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - David J Loftus
- NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Maurice M Ohayon
- Stanford University, School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
9
|
Mansouri B, Moradi A, Saba F. Blood oxidative stress parameters in hospital workers occupationally exposed to low doses of ionizing radiation: A systematic review and meta-analysis. Heliyon 2024; 10:e39989. [PMID: 39748987 PMCID: PMC11693902 DOI: 10.1016/j.heliyon.2024.e39989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 01/04/2025] Open
Abstract
This study conducted a systematic review and meta-analysis to explore the relationship between blood oxidative stress biomarkers and exposure to low-dose ionizing radiation in medical radiation workers. The researchers searched PubMed, Scopus, Web of Science, and Google Scholar for relevant studies until February 2023. They assessed the quality of the studies using the Newcastle‒Ottawa Scale (NOS) and used a random-effects model to combine the results. The I-square test was employed to assess study heterogeneity. The effect sizes were represented by standardized mean differences (proxied by Hedges' g) with a 95 % confidence interval. Out of 295 initial articles, 38 studies met the inclusion criteria for the meta-analysis. The systematic review results revealed a significant difference in blood oxidative stress biomarkers with exposure to low-dose ionizing radiation in medical radiation workers. Furthermore, the overall effect size of MDA was notably higher than that of the control group (p < 0.05). However, the effect size did not show any significant difference between the two groups for other parameters (SMDs ranged from [-0.92, 2.10] for 8-OHdG, [-3.47, 4.48] for reduced glutathione, [-1.08, 3.61] for CAT, [-5.03, 18.35] for SOD, [-2.52, 2.56] for TAC (p > 0.05)).
Collapse
Affiliation(s)
- Borhan Mansouri
- Substance Abuse Prevention Research Center, Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aida Moradi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fakhredin Saba
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Medical Laboratory Science, School of Paramedical, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
10
|
Thomas D, Yang J, Cho SJ, Stout-Delgado H. Role of Mitofusin 1 in mediating reactive oxygen species in alveolar macrophages during Streptococcuspneumoniae. Redox Biol 2024; 76:103329. [PMID: 39197317 PMCID: PMC11400614 DOI: 10.1016/j.redox.2024.103329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024] Open
Abstract
Alveolar macrophages (AM) are key effectors of the immune response and are essential for host responses to S. pneumoniae. Mitochondria are highly dynamic organelles whose function aids in regulating the cell cycle, innate immunity, autophagy, redox signaling, calcium homeostasis, and mitochondrial quality control in AM. In response to cellular stress, mitochondria can engage in stress-induced mitochondrial hyperfusion (SIMH). The current study aimed to investigate the role of Mfn1 on mitochondrial control of reactive oxygen species (ROS) in AMs and the role of Mfn1 deficiency on immune responses to S. pneumoniae. Compared to Mfn1FloxCre- controls, there were distinct histological differences in lung tissue collected from Mfn1Floxed; CreLysM mice, with less injury and inflammation observed in mice with Mfn1 deficient myeloid cells. There was a significant decrease in lipid peroxidation and ROS production in Mfn1 deficient AM that was associated with increased superoxide dismutase (SOD) and antioxidant activity. Our findings demonstrate that Mfn1 deficiency in myeloid cells decreased inflammation and lung tissue injury during S. pneumoniae infection.
Collapse
Affiliation(s)
- David Thomas
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, USA; New York-Presbyterian Hospital, New York, NY, USA
| | - Jianjun Yang
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, USA
| | - Soo Jung Cho
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, USA; New York-Presbyterian Hospital, New York, NY, USA
| | - Heather Stout-Delgado
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, USA.
| |
Collapse
|
11
|
Kumar K, Fornace AJ, Suman S. 8-OxodG: A Potential Biomarker for Chronic Oxidative Stress Induced by High-LET Radiation. DNA 2024; 4:221-238. [PMID: 39268222 PMCID: PMC11391509 DOI: 10.3390/dna4030015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Oxidative stress-mediated biomolecular damage is a characteristic feature of ionizing radiation (IR) injury, leading to genomic instability and chronic health implications. Specifically, a dose- and linear energy transfer (LET)-dependent persistent increase in oxidative DNA damage has been reported in many tissues and biofluids months after IR exposure. Contrary to low-LET photon radiation, high-LET IR exposure is known to cause significantly higher accumulations of DNA damage, even at sublethal doses, compared to low-LET IR. High-LET IR is prevalent in the deep space environment (i.e., beyond Earth's magnetosphere), and its exposure could potentially impair astronauts' health. Therefore, the development of biomarkers to assess and monitor the levels of oxidative DNA damage can aid in the early detection of health risks and would also allow timely intervention. Among the recognized biomarkers of oxidative DNA damage, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodG) has emerged as a promising candidate, indicative of chronic oxidative stress. It has been reported to exhibit differing levels following equivalent doses of low- and high-LET IR. This review discusses 8-OxodG as a potential biomarker of high-LET radiation-induced chronic stress, with special emphasis on its potential sources, formation, repair mechanisms, and detection methods. Furthermore, this review addresses the pathobiological implications of high-LET IR exposure and its association with 8-OxodG. Understanding the association between high-LET IR exposure-induced chronic oxidative stress, systemic levels of 8-OxodG, and their potential health risks can provide a framework for developing a comprehensive health monitoring biomarker system to safeguard the well-being of astronauts during space missions and optimize long-term health outcomes.
Collapse
Affiliation(s)
- Kamendra Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
12
|
Zhou X, Yang J, Luo Y, Shen X. HNCGAT: a method for predicting plant metabolite-protein interaction using heterogeneous neighbor contrastive graph attention network. Brief Bioinform 2024; 25:bbae397. [PMID: 39162311 PMCID: PMC11730448 DOI: 10.1093/bib/bbae397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/15/2024] [Accepted: 07/27/2024] [Indexed: 08/21/2024] Open
Abstract
The prediction of metabolite-protein interactions (MPIs) plays an important role in plant basic life functions. Compared with the traditional experimental methods and the high-throughput genomics methods using statistical correlation, applying heterogeneous graph neural networks to the prediction of MPIs in plants can reduce the cost of manpower, resources, and time. However, to the best of our knowledge, applying heterogeneous graph neural networks to the prediction of MPIs in plants still remains under-explored. In this work, we propose a novel model named heterogeneous neighbor contrastive graph attention network (HNCGAT), for the prediction of MPIs in Arabidopsis. The HNCGAT employs the type-specific attention-based neighborhood aggregation mechanism to learn node embeddings of proteins, metabolites, and functional-annotations, and designs a novel heterogeneous neighbor contrastive learning framework to preserve heterogeneous network topological structures. Extensive experimental results and ablation study demonstrate the effectiveness of the HNCGAT model for MPI prediction. In addition, a case study on our MPI prediction results supports that the HNCGAT model can effectively predict the potential MPIs in plant.
Collapse
Affiliation(s)
- Xi Zhou
- School of Tropical Agriculture and Forestry, Hainan University, 58 Renmin Avenue, Haikou 570228, Hainan, China
| | - Jing Yang
- School of Tropical Agriculture and Forestry, Hainan University, 58 Renmin Avenue, Haikou 570228, Hainan, China
| | - Yin Luo
- School of Tropical Agriculture and Forestry, Hainan University, 58 Renmin Avenue, Haikou 570228, Hainan, China
| | - Xiao Shen
- School of Computer Science and Technology, Hainan University, 58 Renmin Avenue, Haikou 570228, Hainan, China
| |
Collapse
|
13
|
Salinas-Rodriguez A, Manrique-Espinoza B, Rivera-Almaraz A, Sánchez-López JM, Rosas-Vargas H. Telomere Length is Associated with the Prevalence, Persistence, and Incidence of Sarcopenia. Arch Med Res 2024; 55:103007. [PMID: 38805768 DOI: 10.1016/j.arcmed.2024.103007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/27/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Telomere length (TL) shortening has been identified as a marker of aging and associated with adverse health outcomes, but evidence of its association with sarcopenia is inconclusive. AIMS Estimate the cross-sectional and prospective associations between TL and sarcopenia. METHODS We used data from Waves 3 and 4 (2017, 2021) of the Study on Global Aging and Adult Health in Mexico (SAGE-Mexico). The cross-sectional sample consisted of 1,738 adults aged 50 and older, and the longitudinal sample consisted of 1,437. Relative TL was determined by real-time quantitative polymerase chain reaction (qPCR) on DNA extracted from saliva samples and quantified as the telomere/single-copy gene (T/S) ratio. Sarcopenia was defined according to the European Working Group on Sarcopenia in Older People (EWGSOP2). RESULTS The mean salivary TL was 1.50 T/S units (95% CI: 1.49-1.52). The baseline prevalence of sarcopenia was 13.3% (95% CI: 9.8-16.8%). The incidence and persistence of sarcopenia were 6.8% (95% CI: 5.0-9.5%) and 7.0% (95% CI: 5.1-9.6%), respectively. The results showed that a one standard deviation decrease in TL was cross-sectionally associated with higher odds of sarcopenia (OR = 1.31; 95% CI: 1.03-1.67) and prospectively with a higher incidence (RRR = 1.55; 95% CI: 1.06-2.25) and persistence (RRR = 1.50; 95% CI: 1.01-2.24) of sarcopenia. CONCLUSIONS Older adults with shorter TL had higher rates of incident and persistent sarcopenia. Implementation of interventions to delay the decline of TL in older adults is warranted. Further translational studies are needed to elucidate the effects of exercise or diet on DNA repair in the telomeric region and their associations with sarcopenia.
Collapse
Affiliation(s)
- Aaron Salinas-Rodriguez
- Centro de Investigación en Evaluación y Encuestas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Betty Manrique-Espinoza
- Centro de Investigación en Evaluación y Encuestas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico.
| | - Ana Rivera-Almaraz
- Centro de Investigación en Evaluación y Encuestas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - José Manuel Sánchez-López
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano de Seguro Social, Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano de Seguro Social, Mexico City, Mexico
| |
Collapse
|
14
|
Quiroz D, Oya S, Lopez-Mateos D, Zhao K, Pierce A, Ortega L, Ali A, Carbonell-Bejerano P, Yarov-Yarovoy V, Suzuki S, Hayashi G, Osakabe A, Monroe G. H3K4me1 recruits DNA repair proteins in plants. THE PLANT CELL 2024; 36:2410-2426. [PMID: 38531669 PMCID: PMC11132887 DOI: 10.1093/plcell/koae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/28/2024]
Abstract
DNA repair proteins can be recruited by their histone reader domains to specific epigenomic features, with consequences on intragenomic mutation rate variation. Here, we investigated H3K4me1-associated hypomutation in plants. We first examined 2 proteins which, in plants, contain Tudor histone reader domains: PRECOCIOUS DISSOCIATION OF SISTERS 5 (PDS5C), involved in homology-directed repair, and MUTS HOMOLOG 6 (MSH6), a mismatch repair protein. The MSH6 Tudor domain of Arabidopsis (Arabidopsis thaliana) binds to H3K4me1 as previously demonstrated for PDS5C, which localizes to H3K4me1-rich gene bodies and essential genes. Mutations revealed by ultradeep sequencing of wild-type and msh6 knockout lines in Arabidopsis show that functional MSH6 is critical for the reduced rate of single-base substitution (SBS) mutations in gene bodies and H3K4me1-rich regions. We explored the breadth of these mechanisms among plants by examining a large rice (Oryza sativa) mutation data set. H3K4me1-associated hypomutation is conserved in rice as are the H3K4me1-binding residues of MSH6 and PDS5C Tudor domains. Recruitment of DNA repair proteins by H3K4me1 in plants reveals convergent, but distinct, epigenome-recruited DNA repair mechanisms from those well described in humans. The emergent model of H3K4me1-recruited repair in plants is consistent with evolutionary theory regarding mutation modifier systems and offers mechanistic insight into intragenomic mutation rate variation in plants.
Collapse
Affiliation(s)
- Daniela Quiroz
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
- Integrative Genetics and Genomics, University of California Davis, Davis, CA 95616, USA
| | - Satoyo Oya
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
- Laboratory of Genetics, Department of Biological Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Diego Lopez-Mateos
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA
- Biophysics Graduate Group, University of California Davis, Davis, CA 95616, USA
| | - Kehan Zhao
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
- Plant Biology Graduate Group, University of California Davis, Davis, CA 95616, USA
| | - Alice Pierce
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
- Plant Biology Graduate Group, University of California Davis, Davis, CA 95616, USA
| | - Lissandro Ortega
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
| | - Alissza Ali
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
| | | | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA
- Biophysics Graduate Group, University of California Davis, Davis, CA 95616, USA
| | - Sae Suzuki
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-0814, Japan
| | - Gosuke Hayashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-0814, Japan
| | - Akihisa Osakabe
- Laboratory of Genetics, Department of Biological Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Grey Monroe
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
- Integrative Genetics and Genomics, University of California Davis, Davis, CA 95616, USA
- Plant Biology Graduate Group, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
15
|
Utzman PH, Mays VP, Miller BC, Fairbanks MC, Brazelton WJ, Horvath MP. Metagenome mining and functional analysis reveal oxidized guanine DNA repair at the Lost City Hydrothermal Field. PLoS One 2024; 19:e0284642. [PMID: 38718041 PMCID: PMC11078426 DOI: 10.1371/journal.pone.0284642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
The GO DNA repair system protects against GC → TA mutations by finding and removing oxidized guanine. The system is mechanistically well understood but its origins are unknown. We searched metagenomes and abundantly found the genes encoding GO DNA repair at the Lost City Hydrothermal Field (LCHF). We recombinantly expressed the final enzyme in the system to show MutY homologs function to suppress mutations. Microbes at the LCHF thrive without sunlight, fueled by the products of geochemical transformations of seafloor rocks, under conditions believed to resemble a young Earth. High levels of the reductant H2 and low levels of O2 in this environment raise the question, why are resident microbes equipped to repair damage caused by oxidative stress? MutY genes could be assigned to metagenome-assembled genomes (MAGs), and thereby associate GO DNA repair with metabolic pathways that generate reactive oxygen, nitrogen and sulfur species. Our results indicate that cell-based life was under evolutionary pressure to cope with oxidized guanine well before O2 levels rose following the great oxidation event.
Collapse
Affiliation(s)
- Payton H. Utzman
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Vincent P. Mays
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Briggs C. Miller
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Mary C. Fairbanks
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - William J. Brazelton
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Martin P. Horvath
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
16
|
Adhikary D, Mehta D, Kisiala A, Basu U, Uhrig RG, Emery RN, Rahman H, Kav NNV. Proteome- and metabolome-level changes during early stages of clubroot infection in Brassica napus canola. Mol Omics 2024; 20:265-282. [PMID: 38334713 DOI: 10.1039/d3mo00210a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Clubroot is a destructive root disease of canola (Brassica napus L.) caused by Plasmodiophora brassicae Woronin. Despite extensive research into the molecular responses of B. napus to P. brassicae, there is limited information on proteome- and metabolome-level changes in response to the pathogen, especially during the initial stages of infection. In this study, we have investigated the proteome- and metabolome- level changes in the roots of clubroot-resistant (CR) and -susceptible (CS) doubled-haploid (DH) B. napus lines, in response to P. brassicae pathotype 3H at 1-, 4-, and 7-days post-inoculation (DPI). Root proteomes were analyzed using nanoflow liquid chromatography coupled with tandem mass spectrometry (nano LC-MS/MS). Comparisons of pathogen-inoculated and uninoculated root proteomes revealed 2515 and 1556 differentially abundant proteins at one or more time points (1-, 4-, and 7-DPI) in the CR and CS genotypes, respectively. Several proteins related to primary metabolites (e.g., amino acids, fatty acids, and lipids), secondary metabolites (e.g., glucosinolates), and cell wall reinforcement-related proteins [e.g., laccase, peroxidases, and plant invertase/pectin methylesterase inhibitors (PInv/PMEI)] were identified. Eleven nucleotides and nucleoside-related metabolites, and eight fatty acids and sphingolipid-related metabolites were identified in the metabolomics study. To our knowledge, this is the first report of root proteome-level changes and associated alterations in metabolites during the early stages of P. brassicae infection in B. napus.
Collapse
Affiliation(s)
- Dinesh Adhikary
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Devang Mehta
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Anna Kisiala
- Biology Department, Trent University, Peterborough, ON, Canada
| | - Urmila Basu
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - R Glen Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Rj Neil Emery
- Biology Department, Trent University, Peterborough, ON, Canada
| | - Habibur Rahman
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Nat N V Kav
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
17
|
Alanazi M, Yong J, Wu M, Zhang Z, Tian D, Zhang R. Recent Advances in Detection of Hydroxyl Radical by Responsive Fluorescence Nanoprobes. Chem Asian J 2024; 19:e202400105. [PMID: 38447112 DOI: 10.1002/asia.202400105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/08/2024]
Abstract
Hydroxyl radical (•OH), a highly reactive oxygen species (ROS), is assumed as one of the most aggressive free radicals. This radical has a detrimental impact on cells as it can react with different biological substrates leading to pathophysiological disorders, including inflammation, mitochondrion dysfunction, and cancer. Quantification of this free radical in-situ plays critical roles in early diagnosis and treatment monitoring of various disorders, like macrophage polarization and tumor cell development. Luminescence analysis using responsive probes has been an emerging and reliable technique for in-situ detection of various cellular ROS, and some recently developed •OH responsive nanoprobes have confirmed the association with cancer development. This paper aims to summarize the recent advances in the characterization of •OH in living organisms using responsive nanoprobes, covering the production, the sources of •OH, and biological function, especially in the development of related diseases followed by the discussion of luminescence nanoprobes for •OH detection.
Collapse
Affiliation(s)
- Mazen Alanazi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Jiaxi Yong
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Miaomiao Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Zexi Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Dihua Tian
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| |
Collapse
|
18
|
Muoio D, Laspata N, Dannenberg RL, Curry C, Darkoa-Larbi S, Hedglin M, Uttam S, Fouquerel E. PARP2 promotes Break Induced Replication-mediated telomere fragility in response to replication stress. Nat Commun 2024; 15:2857. [PMID: 38565848 PMCID: PMC10987537 DOI: 10.1038/s41467-024-47222-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
PARP2 is a DNA-dependent ADP-ribosyl transferase (ARTs) enzyme with Poly(ADP-ribosyl)ation activity that is triggered by DNA breaks. It plays a role in the Base Excision Repair pathway, where it has overlapping functions with PARP1. However, additional roles for PARP2 have emerged in the response of cells to replication stress. In this study, we demonstrate that PARP2 promotes replication stress-induced telomere fragility and prevents telomere loss following chronic induction of oxidative DNA lesions and BLM helicase depletion. Telomere fragility results from the activity of the break-induced replication pathway (BIR). During this process, PARP2 promotes DNA end resection, strand invasion and BIR-dependent mitotic DNA synthesis by orchestrating POLD3 recruitment and activity. Our study has identified a role for PARP2 in the response to replication stress. This finding may lead to the development of therapeutic approaches that target DNA-dependent ART enzymes, particularly in cancer cells with high levels of replication stress.
Collapse
Affiliation(s)
- Daniela Muoio
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Department of Pharmacology and Chemical Biology, Pittsburgh, PA, 15213, USA
| | - Natalie Laspata
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Department of Pharmacology and Chemical Biology, Pittsburgh, PA, 15213, USA
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233S. 10th street, Philadelphia, PA, 19107, USA
| | - Rachel L Dannenberg
- Department of Chemistry, The Pennsylvania State University, University park, State College, PA, 16802, USA
| | - Caroline Curry
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233S. 10th street, Philadelphia, PA, 19107, USA
| | - Simone Darkoa-Larbi
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233S. 10th street, Philadelphia, PA, 19107, USA
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University park, State College, PA, 16802, USA
| | - Shikhar Uttam
- Department of Computational and Systems Biology, UPMC Hillman Cancer Center, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Elise Fouquerel
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Department of Pharmacology and Chemical Biology, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
19
|
Sams MP, Iansavitchous J, Astridge M, Rysan H, Xu LS, Rodrigues de Oliveira B, DeKoter RP. N-Acetylcysteine Alters Disease Progression and Increases Janus Kinase Mutation Frequency in a Mouse Model of Precursor B-Cell Acute Lymphoblastic Leukemia. J Pharmacol Exp Ther 2024; 389:40-50. [PMID: 38336380 DOI: 10.1124/jpet.123.002000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) is the most prevalent type of cancer in young children and is associated with high levels of reactive oxygen species (ROS). The antioxidant N-acetylcysteine (NAC) was tested for its ability to alter disease progression in a mouse model of B-ALL. Mb1-CreΔPB mice have deletions in genes encoding PU.1 and Spi-B in B cells and develop B-ALL at 100% incidence. Treatment of Mb1-CreΔPB mice with NAC in drinking water significantly reduced the frequency of CD19+ pre-B-ALL cells infiltrating the thymus at 11 weeks of age. However, treatment with NAC did not reduce leukemia progression or increase survival by a median 16 weeks of age. NAC significantly altered gene expression in leukemias in treated mice. Mice treated with NAC had increased frequencies of activating mutations in genes encoding Janus kinases 1 and 3. In particular, frequencies of Jak3 R653H mutations were increased in mice treated with NAC compared with control drinking water. NAC opposed oxidization of PTEN protein ROS in cultured leukemia cells. These results show that NAC alters leukemia progression in this mouse model, ultimately selecting for leukemias with high Jak3 R653H mutation frequencies. SIGNIFICANCE STATEMENT: In a mouse model of precursor B-cell acute lymphoblastic leukemia associated with high levels of reactive oxygen species, treatment with N-acetylcysteine did not delay disease progression but instead selected for leukemic clones with activating R653H mutations in Janus kinase 3.
Collapse
Affiliation(s)
- Mia P Sams
- Department of Microbiology and Immunology and the Western Infection, Immunity and Inflammation Centre, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada (M.P.S., J.I., M.A., H.R., L.S.X., B.R.dO.) and Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario, Canada (R.P.D.)
| | - James Iansavitchous
- Department of Microbiology and Immunology and the Western Infection, Immunity and Inflammation Centre, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada (M.P.S., J.I., M.A., H.R., L.S.X., B.R.dO.) and Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario, Canada (R.P.D.)
| | - Madeline Astridge
- Department of Microbiology and Immunology and the Western Infection, Immunity and Inflammation Centre, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada (M.P.S., J.I., M.A., H.R., L.S.X., B.R.dO.) and Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario, Canada (R.P.D.)
| | - Heidi Rysan
- Department of Microbiology and Immunology and the Western Infection, Immunity and Inflammation Centre, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada (M.P.S., J.I., M.A., H.R., L.S.X., B.R.dO.) and Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario, Canada (R.P.D.)
| | - Li S Xu
- Department of Microbiology and Immunology and the Western Infection, Immunity and Inflammation Centre, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada (M.P.S., J.I., M.A., H.R., L.S.X., B.R.dO.) and Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario, Canada (R.P.D.)
| | - Bruno Rodrigues de Oliveira
- Department of Microbiology and Immunology and the Western Infection, Immunity and Inflammation Centre, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada (M.P.S., J.I., M.A., H.R., L.S.X., B.R.dO.) and Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario, Canada (R.P.D.)
| | - Rodney P DeKoter
- Department of Microbiology and Immunology and the Western Infection, Immunity and Inflammation Centre, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada (M.P.S., J.I., M.A., H.R., L.S.X., B.R.dO.) and Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario, Canada (R.P.D.)
| |
Collapse
|
20
|
Martínez LE, Gómez G, Ramírez N, Franco B, Robleto EA, Pedraza-Reyes M. 8-OxoG-Dependent Regulation of Global Protein Responses Leads to Mutagenesis and Stress Survival in Bacillus subtilis. Antioxidants (Basel) 2024; 13:332. [PMID: 38539865 PMCID: PMC10968225 DOI: 10.3390/antiox13030332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
The guanine oxidized (GO) system of Bacillus subtilis, composed of the YtkD (MutT), MutM and MutY proteins, counteracts the cytotoxic and genotoxic effects of the oxidized nucleobase 8-OxoG. Here, we report that in growing B. subtilis cells, the genetic inactivation of GO system potentiated mutagenesis (HPM), and subsequent hyperresistance, contributes to the damaging effects of hydrogen peroxide (H2O2) (HPHR). The mechanism(s) that connect the accumulation of the mutagenic lesion 8-OxoG with the ability of B. subtilis to evolve and survive the noxious effects of oxidative stress were dissected. Genetic and biochemical evidence indicated that the synthesis of KatA was exacerbated, in a PerR-independent manner, and the transcriptional coupling repair factor, Mfd, contributed to HPHR and HPM of the ΔGO strain. Moreover, these phenotypes are associated with wider pleiotropic effects, as revealed by a global proteome analysis. The inactivation of the GO system results in the upregulated production of KatA, and it reprograms the synthesis of the proteins involved in distinct types of cellular stress; this has a direct impact on (i) cysteine catabolism, (ii) the synthesis of iron-sulfur clusters, (iii) the reorganization of cell wall architecture, (iv) the activation of AhpC/AhpF-independent organic peroxide resistance, and (v) increased resistance to transcription-acting antibiotics. Therefore, to contend with the cytotoxic and genotoxic effects derived from the accumulation of 8-OxoG, B. subtilis activates the synthesis of proteins belonging to transcriptional regulons that respond to a wide, diverse range of cell stressors.
Collapse
Affiliation(s)
- Lissett E. Martínez
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato 36050, Mexico; (L.E.M.); (G.G.); (N.R.); (B.F.)
| | - Gerardo Gómez
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato 36050, Mexico; (L.E.M.); (G.G.); (N.R.); (B.F.)
| | - Norma Ramírez
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato 36050, Mexico; (L.E.M.); (G.G.); (N.R.); (B.F.)
| | - Bernardo Franco
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato 36050, Mexico; (L.E.M.); (G.G.); (N.R.); (B.F.)
| | - Eduardo A. Robleto
- School of Life Sciences, University of Nevada, Las Vegas, NV 89557, USA;
| | - Mario Pedraza-Reyes
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato 36050, Mexico; (L.E.M.); (G.G.); (N.R.); (B.F.)
| |
Collapse
|
21
|
Chen H, Zhang Y, Wang B, Liao R, Duan X, Yang C, Chen J, Hao Y, Shu Y, Cai L, Leng X, Qian NS, Sun D, Niu B, Zhou Q. Characterization and mitigation of artifacts derived from NGS library preparation due to structure-specific sequences in the human genome. BMC Genomics 2024; 25:227. [PMID: 38429743 PMCID: PMC10908179 DOI: 10.1186/s12864-024-10157-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/23/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Hybridization capture-based targeted next generation sequencing (NGS) is gaining importance in routine cancer clinical practice. DNA library preparation is a fundamental step to produce high-quality sequencing data. Numerous unexpected, low variant allele frequency calls were observed in libraries using sonication fragmentation and enzymatic fragmentation. In this study, we investigated the characteristics of the artifact reads induced by sonication and enzymatic fragmentation. We also developed a bioinformatic algorithm to filter these sequencing errors. RESULTS We used pairwise comparisons of somatic single nucleotide variants (SNVs) and insertions and deletions (indels) of the same tumor DNA samples prepared using both ultrasonic and enzymatic fragmentation protocols. Our analysis revealed that the number of artifact variants was significantly greater in the samples generated using enzymatic fragmentation than using sonication. Most of the artifacts derived from the sonication-treated libraries were chimeric artifact reads containing both cis- and trans-inverted repeat sequences of the genomic DNA. In contrast, chimeric artifact reads of endonuclease-treated libraries contained palindromic sequences with mismatched bases. Based on these distinctive features, we proposed a mechanistic hypothesis model, PDSM (pairing of partial single strands derived from a similar molecule), by which these sequencing errors derive from ultrasonication and enzymatic fragmentation library preparation. We developed a bioinformatic algorithm to generate a custom mutation "blacklist" in the BED region to reduce errors in downstream analyses. CONCLUSIONS We first proposed a mechanistic hypothesis model (PDSM) of sequencing errors caused by specific structures of inverted repeat sequences and palindromic sequences in the natural genome. This new hypothesis predicts the existence of chimeric reads that could not be explained by previous models, and provides a new direction for further improving NGS analysis accuracy. A bioinformatic algorithm, ArtifactsFinder, was developed and used to reduce the sequencing errors in libraries produced using sonication and enzymatic fragmentation.
Collapse
Affiliation(s)
- HuiJuan Chen
- Beijing ChosenMed Clinical Laboratory Company Limited, Jinghai Industrial Park, Economic and Technological Development Area, Beijing, 100176, China
- Computer Network Information Center, Chinese Academy of Sciences,, University of Chinese Academy of Sciences, Beijing, 100190, China
- WillingMed Technology Beijing Co., Ltd., Beijing, 100176, China
| | - YiRan Zhang
- Beijing ChosenMed Clinical Laboratory Company Limited, Jinghai Industrial Park, Economic and Technological Development Area, Beijing, 100176, China
| | - Bing Wang
- Beijing ChosenMed Clinical Laboratory Company Limited, Jinghai Industrial Park, Economic and Technological Development Area, Beijing, 100176, China
| | - Rui Liao
- Beijing ChosenMed Clinical Laboratory Company Limited, Jinghai Industrial Park, Economic and Technological Development Area, Beijing, 100176, China
| | - XiaoHong Duan
- Beijing ChosenMed Clinical Laboratory Company Limited, Jinghai Industrial Park, Economic and Technological Development Area, Beijing, 100176, China
- ChosenMed Technology (Zhejiang) Co. Ltd., Zhejiang, 311103, China
| | - ChunYan Yang
- Beijing ChosenMed Clinical Laboratory Company Limited, Jinghai Industrial Park, Economic and Technological Development Area, Beijing, 100176, China
| | - Jing Chen
- Beijing ChosenMed Clinical Laboratory Company Limited, Jinghai Industrial Park, Economic and Technological Development Area, Beijing, 100176, China
| | - YanTong Hao
- Beijing ChosenMed Clinical Laboratory Company Limited, Jinghai Industrial Park, Economic and Technological Development Area, Beijing, 100176, China
| | - YingShuang Shu
- Beijing ChosenMed Clinical Laboratory Company Limited, Jinghai Industrial Park, Economic and Technological Development Area, Beijing, 100176, China
| | - LiLi Cai
- Beijing ChosenMed Clinical Laboratory Company Limited, Jinghai Industrial Park, Economic and Technological Development Area, Beijing, 100176, China
| | - Xue Leng
- Beijing ChosenMed Clinical Laboratory Company Limited, Jinghai Industrial Park, Economic and Technological Development Area, Beijing, 100176, China
| | - Nian-Song Qian
- Department of Oncology,Senior Department of Respiratory and Critical Care Medicine, The Eighth Medical Center of Chinese, PLA General Hospital, No.17A Heishanhu Road, Haidian District, Beijing, 100853, China.
| | - DaWei Sun
- Beijing ChosenMed Clinical Laboratory Company Limited, Jinghai Industrial Park, Economic and Technological Development Area, Beijing, 100176, China.
- ChosenMed Technology (Zhejiang) Co. Ltd., Zhejiang, 311103, China.
| | - Beifang Niu
- Beijing ChosenMed Clinical Laboratory Company Limited, Jinghai Industrial Park, Economic and Technological Development Area, Beijing, 100176, China.
- Computer Network Information Center, Chinese Academy of Sciences,, University of Chinese Academy of Sciences, Beijing, 100190, China.
- ChosenMed Technology (Zhejiang) Co. Ltd., Zhejiang, 311103, China.
| | - Qiming Zhou
- Beijing ChosenMed Clinical Laboratory Company Limited, Jinghai Industrial Park, Economic and Technological Development Area, Beijing, 100176, China.
- ChosenMed Technology (Zhejiang) Co. Ltd., Zhejiang, 311103, China.
| |
Collapse
|
22
|
Andrés CMC, de la Lastra JMP, Juan CA, Plou FJ, Pérez-Lebeña E. Chemical Insights into Oxidative and Nitrative Modifications of DNA. Int J Mol Sci 2023; 24:15240. [PMID: 37894920 PMCID: PMC10607741 DOI: 10.3390/ijms242015240] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
This review focuses on DNA damage caused by a variety of oxidizing, alkylating, and nitrating species, and it may play an important role in the pathophysiology of inflammation, cancer, and degenerative diseases. Infection and chronic inflammation have been recognized as important factors in carcinogenesis. Under inflammatory conditions, reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from inflammatory and epithelial cells, and result in the formation of oxidative and nitrative DNA lesions, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-nitroguanine. Cellular DNA is continuously exposed to a very high level of genotoxic stress caused by physical, chemical, and biological agents, with an estimated 10,000 modifications occurring every hour in the genetic material of each of our cells. This review highlights recent developments in the chemical biology and toxicology of 2'-deoxyribose oxidation products in DNA.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. AstrofísicoFco. Sánchez, 3, 38206 La Laguna, Spain
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain;
| | - Francisco J. Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain;
| | | |
Collapse
|
23
|
Cipriano A, Viviano M, Feoli A, Milite C, Sarno G, Castellano S, Sbardella G. NADPH Oxidases: From Molecular Mechanisms to Current Inhibitors. J Med Chem 2023; 66:11632-11655. [PMID: 37650225 PMCID: PMC10510401 DOI: 10.1021/acs.jmedchem.3c00770] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Indexed: 09/01/2023]
Abstract
NADPH oxidases (NOXs) form a family of electron-transporting membrane enzymes whose main function is reactive oxygen species (ROS) generation. Strong evidence suggests that ROS produced by NOX enzymes are major contributors to oxidative damage under pathologic conditions. Therefore, blocking the undesirable actions of these enzymes is a therapeutic strategy for treating various pathological disorders, such as cardiovascular diseases, inflammation, and cancer. To date, identification of selective NOX inhibitors is quite challenging, precluding a pharmacologic demonstration of NOX as therapeutic targets in vivo. The aim of this Perspective is to furnish an updated outlook about the small-molecule NOX inhibitors described over the last two decades. Structures, activities, and in vitro/in vivo specificity are discussed, as well as the main biological assays used.
Collapse
Affiliation(s)
- Alessandra Cipriano
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Monica Viviano
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Alessandra Feoli
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Ciro Milite
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Giuliana Sarno
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Sabrina Castellano
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Gianluca Sbardella
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| |
Collapse
|
24
|
Reid DM, Barber RC, Jones HP, Thorpe RJ, Sun J, Zhou Z, Phillips NR. Integrative blood-based characterization of oxidative mitochondrial DNA damage variants implicates Mexican American's metabolic risk for developing Alzheimer's disease. Sci Rep 2023; 13:14765. [PMID: 37679478 PMCID: PMC10484983 DOI: 10.1038/s41598-023-41190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
Alzheimer's Disease (AD) continues to be a leading cause of death in the US. As the US aging population (ages 65 +) expands, the impact will disproportionately affect vulnerable populations, e.g., Hispanic/Latino population, due to their AD-related health disparities. Age-related regression in mitochondrial activity and ethnic-specific differences in metabolic burden could potentially explain in part the racial/ethnic distinctions in etiology that exist for AD. Oxidation of guanine (G) to 8-oxo-guanine (8oxoG) is a prevalent lesion and an indicator of oxidative stress and mitochondrial dysfunction. Damaged mtDNA (8oxoG) can serve as an important marker of age-related systemic metabolic dysfunction and upon release into peripheral circulation may exacerbate pathophysiology contributing to AD development and/or progression. Analyzing blood samples from Mexican American (MA) and non-Hispanic White (NHW) participants enrolled in the Texas Alzheimer's Research & Care Consortium, we used blood-based measurements of 8oxoG from both buffy coat PBMCs and plasma to determine associations with population, sex, type-2 diabetes, and AD risk. Our results show that 8oxoG levels in both buffy coat and plasma were significantly associated with population, sex, years of education, and reveal a potential association with AD. Furthermore, MAs are significantly burdened by mtDNA oxidative damage in both blood fractions, which may contribute to their metabolic vulnerability to developing AD.
Collapse
Affiliation(s)
- Danielle Marie Reid
- Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| | - Robert C Barber
- Family Medicine, Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, TX, USA
- Institue for Translational Research, UNT Health Science Center, Fort Worth, TX, USA
| | - Harlan P Jones
- Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| | - Roland J Thorpe
- Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
- Johns Hopkins Center for Health Disparities Solutions, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jie Sun
- Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| | - Zhengyang Zhou
- Biostatistics and Epidemiology, School of Public Health, UNT Health Science Center, Fort Worth, TX, USA
| | - Nicole R Phillips
- Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA.
- Institue for Translational Research, UNT Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
25
|
Vandenberg BN, Laughery MF, Cordero C, Plummer D, Mitchell D, Kreyenhagen J, Albaqshi F, Brown AJ, Mieczkowski PA, Wyrick JJ, Roberts SA. Contributions of replicative and translesion DNA polymerases to mutagenic bypass of canonical and atypical UV photoproducts. Nat Commun 2023; 14:2576. [PMID: 37142570 PMCID: PMC10160025 DOI: 10.1038/s41467-023-38255-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
UV exposure induces a mutation signature of C > T substitutions at dipyrimidines in skin cancers. We recently identified additional UV-induced AC > TT and A > T substitutions that could respectively cause BRAF V600K and V600E oncogenic mutations. The mutagenic bypass mechanism past these atypical lesions, however, is unknown. Here, we whole genome sequenced UV-irradiated yeast and used reversion reporters to delineate the roles of replicative and translesion DNA polymerases in mutagenic bypass of UV-lesions. Our data indicates that yeast DNA polymerase eta (pol η) has varied impact on UV-induced mutations: protecting against C > T substitutions, promoting T > C and AC > TT substitutions, and not impacting A > T substitutions. Surprisingly, deletion rad30Δ increased novel UV-induced C > A substitutions at CA dinucleotides. In contrast, DNA polymerases zeta (pol ζ) and epsilon (pol ε) participated in AC > TT and A > T mutations. These results uncover lesion-specific accurate and mutagenic bypass of UV lesions, which likely contribute to key driver mutations in melanoma.
Collapse
Affiliation(s)
- Brittany N Vandenberg
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA
| | - Marian F Laughery
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA
| | - Cameron Cordero
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA
| | - Dalton Plummer
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA
| | - Debra Mitchell
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA
| | - Jordan Kreyenhagen
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA
| | - Fatimah Albaqshi
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA
| | - Alexander J Brown
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA
| | - Piotr A Mieczkowski
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - John J Wyrick
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA.
| | - Steven A Roberts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
26
|
Reid DM, Barber RC, Jones HP, Thorpe RJ, Sun J, Zhou Z, Phillips NR. Integrative Blood-Based Characterization of Oxidative Mitochondrial DNA Damage Variants Implicates Mexican Americans' Metabolic Risk for Developing Alzheimer's Disease. RESEARCH SQUARE 2023:rs.3.rs-2666242. [PMID: 36993752 PMCID: PMC10055654 DOI: 10.21203/rs.3.rs-2666242/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Alzheimer's Disease (AD) continues to be a leading cause of death in the US. As the US aging population (ages 65+) expands, the impact will disproportionately affect vulnerable populations, e.g., Hispanic/Latinx population, due to their AD-related health disparities. Age-related regression in mitochondrial activity and ethnic-specific differences in metabolic burden could potentially explain in part the racial/ethnic distinctions in etiology that exist for AD. Oxidation of guanine (G) to 8-oxo-guanine (8oxoG) is a prevalent lesion and an indicator of oxidative stress and mitochondrial dysfunction. Damaged mtDNA (8oxoG) can serve as an important marker of age-related systemic metabolic dysfunction and upon release into peripheral circulation may exacerbate pathophysiology contributing to AD development and/or progression. Analyzing blood samples from Mexican American (MA) and non-Hispanic White (NHW) participants enrolled in the Texas Alzheimer's Research & Care Consortium, we used blood-based measurements of 8oxoG from both buffy coat PBMCs and plasma to determine associations with population, sex, type-2 diabetes, and AD risk. Our results show that 8oxoG levels in both buffy coat and plasma were significantly associated with population, sex, years of education, and reveal a potential association with AD. Furthermore, MAs are significantly burdened by mtDNA oxidative damage in both blood fractions, which may contribute to their metabolic vulnerability to developing AD.
Collapse
Affiliation(s)
| | | | | | - Roland J Thorpe
- Johns Hopkins Center for Health Disparities Solutions, Johns Hopkins Bloomberg School of Public Health
| | - Jie Sun
- University of North Texas Health Science Center
| | | | | |
Collapse
|
27
|
Kharel P, Singhal NK, Mahendran T, West N, Croos B, Rana J, Smith L, Freeman E, Chattopadhyay A, McDonough J, Basu S. NAT8L mRNA oxidation is linked to neurodegeneration in multiple sclerosis. Cell Chem Biol 2023; 30:308-320.e5. [PMID: 36882060 DOI: 10.1016/j.chembiol.2023.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 12/31/2022] [Accepted: 02/10/2023] [Indexed: 03/08/2023]
Abstract
RNA oxidation has been implicated in neurodegeneration, but the underlying mechanism for such effects is unclear. Extensive RNA oxidation occurs within the neurons in multiple sclerosis (MS) brains. Here, we identified selectively oxidized mRNAs in neuronal cells that pertained to neuropathological pathways. N-acetyl aspartate transferase 8 like (NAT8L) is one such transcript, whose translation product enzymatically synthesizes N-acetyl aspartic acid (NAA), a neuronal metabolite important for myelin synthesis. We reasoned that impediment of translation of an oxidized NAT8L mRNA will result in a reduction in its cognate protein, thus lowering the NAA level. This hypothesis is supported by our studies on cells, an animal model, and postmortem human MS brain. Reduced brain NAA level hampers myelin integrity making neuronal axons more susceptible to damage, which contributes to MS neurodegeneration. Overall, this work provides a framework for a mechanistic understanding of the link between RNA oxidation and neurodegeneration.
Collapse
Affiliation(s)
- Prakash Kharel
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | | | - Thulasi Mahendran
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Nicole West
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Brintha Croos
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Joram Rana
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Lindsey Smith
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Ernest Freeman
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | | | - Jennifer McDonough
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Soumitra Basu
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|
28
|
Bhawsinghka N, Burkholder A, Schaaper RM. Detection of DNA replication errors and 8-oxo-dGTP-mediated mutations in E. coli by Duplex DNA Sequencing. DNA Repair (Amst) 2023; 123:103462. [PMID: 36738688 PMCID: PMC9992157 DOI: 10.1016/j.dnarep.2023.103462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
Mutation is a phenomenon inescapable for all life-forms, including bacteria. While bacterial mutation rates are generally low due to the operation of error-avoidance systems, sometimes they are elevated by many orders of magnitude. Such a state, known as a hypermutable state, can result from exposure to stress or to harmful environments. Studies of bacterial mutation frequencies and analysis of the precise types of mutations can provide insights into the mechanisms by which mutations occur and the possible involvement of error-avoidance pathways. Several approaches have been used for this, like reporter assays involving non-essential genes or mutation accumulation over multiple generations. However, these approaches give an indirect estimation, and a more direct approach for determining mutations is desirable. With the recent development of a DNA sequencing technique known as Duplex Sequencing, it is possible to detect rare variants in a population at a frequency of 1 in 107 base pairs or less. Here, we have applied Duplex Sequencing to study spontaneous mutations in E. coli. We also investigated the production of replication errors by using a mismatch-repair defective (mutL) strain as well as oxidative-stress associated mutations using a mutT-defective strain. For DNA from a wild-type strain we obtained mutant frequencies in the range of 10-7 to 10-8 depending on the specific base-pair substitution, but we argue that these mutants merely represent a background of the system, rather than mutations that occurred in vivo. In contrast, bona-fide in vivo mutations were identified for DNA from both the mutL and mutT strains, as indicated by specific increases in base substitutions that are fully consistent with their established in vivo roles. Notably, the data reproduce the specific context effects of in vivo mutations as well as the leading vs. lagging strand bias among DNA replication errors.
Collapse
Affiliation(s)
- Niketa Bhawsinghka
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Adam Burkholder
- Office of Environmental Science Cyberinfrastructure, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Roel M Schaaper
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
29
|
Hernández-Álvarez D, Rosado-Pérez J, Gavia-García G, Arista-Ugalde TL, Aguiñiga-Sánchez I, Santiago-Osorio E, Mendoza-Núñez VM. Aging, Physical Exercise, Telomeres, and Sarcopenia: A Narrative Review. Biomedicines 2023; 11:598. [PMID: 36831134 PMCID: PMC9952920 DOI: 10.3390/biomedicines11020598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Human aging is a gradual and adaptive process characterized by a decrease in the homeostatic response, leading to biochemical and molecular changes that are driven by hallmarks of aging, such as oxidative stress (OxS), chronic inflammation, and telomere shortening. One of the diseases associated with the hallmarks of aging, which has a great impact on functionality and quality of life, is sarcopenia. However, the relationship between telomere length, sarcopenia, and age-related mortality has not been extensively studied. Moderate physical exercise has been shown to have a positive effect on sarcopenia, decreasing OxS and inflammation, and inducing protective effects on telomeric DNA. This results in decreased DNA strand breaks, reduced OxS and IA, and activation of repair pathways. Higher levels of physical activity are associated with an apparent increase in telomere length. This review aims to present the current state of the art of knowledge on the effect of physical exercise on telomeric maintenance and activation of repair mechanisms in sarcopenia.
Collapse
Affiliation(s)
- David Hernández-Álvarez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Juana Rosado-Pérez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Graciela Gavia-García
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Taide Laurita Arista-Ugalde
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Itzen Aguiñiga-Sánchez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Edelmiro Santiago-Osorio
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Víctor Manuel Mendoza-Núñez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| |
Collapse
|
30
|
OGG1 Inhibition Reduces Acinar Cell Injury in a Mouse Model of Acute Pancreatitis. Biomedicines 2022; 10:biomedicines10102543. [PMID: 36289805 PMCID: PMC9599718 DOI: 10.3390/biomedicines10102543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Acute pancreatitis (AP) is a potentially life-threatening gastrointestinal disease with a complex pathology including oxidative stress. Oxidative stress triggers oxidative DNA lesions such as formation of 7,8-dihydro-8-oxo-2′-oxoguanine (8-oxoG) and also causes DNA strand breaks. DNA breaks can activate the nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP1) which contributes to AP pathology. 8-oxoG is recognized by 8-oxoG glycosylase 1 (OGG1) resulting in the removal of 8-oxoG from DNA as an initial step of base excision repair. Since OGG1 also possesses a DNA nicking activity, OGG1 activation may also trigger PARP1 activation. In the present study we investigated the role played by OGG1 in AP. We found that the OGG1 inhibitor compound TH5487 reduced edema formation, inflammatory cell migration and necrosis in a cerulein-induced AP model in mice. Moreover, TH5487 caused 8-oxoG accumulation and reduced tissue poly(ADP-ribose) levels. Consistent with the indirect PARP inhibitory effect, TH5487 shifted necrotic cell death (LDH release and Sytox green uptake) towards apoptosis (caspase activity) in isolated pancreatic acinar cells. In the in vivo AP model, TH5487 treatment suppressed the expression of various cytokine and chemokine mRNAs such as those of TNF, IL-1β, IL1ra, IL6, IL16, IL23, CSF, CCL2, CCL4, CCL12, IL10 and TREM as measured with a cytokine array and verified by RT-qPCR. As a potential mechanism underlying the transcriptional inhibitory effect of the OGG1 inhibitor we showed that while 8-oxoG accumulation in the DNA facilitates NF-κB binding to its consensus sequence, when OGG1 is inhibited, target site occupancy of NF-κB is impaired. In summary, OGG1 inhibition provides protection from tissue injury in AP and these effects are likely due to interference with the PARP1 and NF-κB activation pathways.
Collapse
|
31
|
Liu Y, Zhu X, Wang Z, Dai X, You C. Next-Generation Sequencing-Based Analysis of the Roles of DNA Polymerases ν and θ in the Replicative Bypass of 8-Oxo-7,8-dihydroguanine in Human Cells. ACS Chem Biol 2022; 17:2315-2319. [PMID: 35815634 DOI: 10.1021/acschembio.2c00415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA polymerase (Pol) ν and Pol θ are two specialized A-family DNA polymerases that function in the translesion synthesis of certain DNA lesions. However, the biological functions of human Pols ν and θ in cellular replicative bypass of 8-oxo-7,8-dihydroguanine (8-oxoG), an important carcinogenesis-related biomarker of oxidative DNA damage, remain unclear. Herein, we showed that depletion of Pols ν and θ in human cells could cause an elevated hypersensitivity to oxidative stress induced by hydrogen peroxide. Using next-generation sequencing-based lesion bypass and mutagenesis assay, we further demonstrated that Pols ν and θ had important roles in promoting translesion synthesis of 8-oxoG in human cells. We also found that the depletion of Pol ν, but not Pol θ, caused a substantial reduction in G → T mutation frequency for 8-oxoG. These findings provided novel insights into the involvement of A-family DNA polymerases in oxidative DNA damage response.
Collapse
Affiliation(s)
- Yini Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiaowen Zhu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ziyu Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiaoxia Dai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Changjun You
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
32
|
Camus MF, Alexander-Lawrie B, Sharbrough J, Hurst GDD. Inheritance through the cytoplasm. Heredity (Edinb) 2022; 129:31-43. [PMID: 35525886 PMCID: PMC9273588 DOI: 10.1038/s41437-022-00540-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022] Open
Abstract
Most heritable information in eukaryotic cells is encoded in the nuclear genome, with inheritance patterns following classic Mendelian segregation. Genomes residing in the cytoplasm, however, prove to be a peculiar exception to this rule. Cytoplasmic genetic elements are generally maternally inherited, although there are several exceptions where these are paternally, biparentally or doubly-uniparentally inherited. In this review, we examine the diversity and peculiarities of cytoplasmically inherited genomes, and the broad evolutionary consequences that non-Mendelian inheritance brings. We first explore the origins of vertical transmission and uniparental inheritance, before detailing the vast diversity of cytoplasmic inheritance systems across Eukaryota. We then describe the evolution of genomic organisation across lineages, how this process has been shaped by interactions with the nuclear genome and population genetics dynamics. Finally, we discuss how both nuclear and cytoplasmic genomes have evolved to co-inhabit the same host cell via one of the longest symbiotic processes, and all the opportunities for intergenomic conflict that arise due to divergence in inheritance patterns. In sum, we cannot understand the evolution of eukaryotes without understanding hereditary symbiosis.
Collapse
Affiliation(s)
- M Florencia Camus
- Department of Genetics, Evolution and Environment, University College London, London, UK.
| | | | - Joel Sharbrough
- Biology Department, New Mexico Institute of Mining and Technology, Socorro, NM, USA
| | - Gregory D D Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, England
| |
Collapse
|
33
|
Lorente L, Rodriguez ST, Sanz P, González-Rivero AF, Pérez-Cejas A, Padilla J, Díaz D, González A, Martín MM, Jiménez A, Cerro P, Portero J, Barrera MA. DNA and RNA oxidative damage in hepatocellular carcinoma patients and mortality during the first year of liver transplantation. World J Hepatol 2022; 14:1182-1189. [PMID: 35978670 PMCID: PMC9258248 DOI: 10.4254/wjh.v14.i6.1182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/28/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Oxidative damage of DNA and RNA has been associated with mortality of patients with different diseases. However, there is no published data on the potential use of DNA and RNA oxidative damage to predict the prognosis of patients with hepatocellular carcinoma (HCC) undergoing liver transplantation (LT).
AIM To determine whether patients with increased DNA and RNA oxidative damage prior to LT for HCC have a poor LT prognosis.
METHODS Patients with HCC who underwent LT were included in this observational and retrospective study. Serum levels of all three oxidized guanine species (OGS) were measured prior to LT since guanine is the nucleobase that forms DNA and RNA most prone to oxidation. LT mortality at 1 year was the end-point study.
RESULTS Surviving patients (n = 101) showed lower serum OGS levels (P = 0.01) and lower age of the liver donor (P = 0.03) than non-surviving patients (n = 13). An association between serum OGS levels prior to LT and 1-year LT (odds ratio = 2.079; 95% confidence interval = 1.356-3.189; P = 0.001) was found in the logistic regression analysis.
CONCLUSION The main new finding was that high serum OGS concentration prior to LT was associated with the mortality 1 year after LT in HCC patients.
Collapse
Affiliation(s)
- Leonardo Lorente
- Department ofIntensive Care, Hospital Universitario de Canarias, La Laguna 38320, Tenerife, Spain
| | - Sergio T Rodriguez
- Intensive Care Unit, Hospital Universitario Nuestra Señora Candelaria, Santa Cruz de Tenerife 38010, Spain
| | - Pablo Sanz
- Department of Surgery, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife 38010, Spain
| | | | - Antonia Pérez-Cejas
- Department of Laboratory, Hospital Universitario de Canarias, La Laguna 38320, Spain
| | - Javier Padilla
- Department of Surgery, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife 38010, Spain
| | - Dácil Díaz
- Department of Digestive, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife 38010, Spain
| | - Antonio González
- Department of Digestive, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife 38010, Spain
| | - María M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora Candelaria, Santa Cruz de Tenerife 38010, Spain
| | - Alejandro Jiménez
- Research Unit, Hospital Universitario de Canarias, La Laguna 38320, Spain
| | - Purificación Cerro
- Transplant Unit, Hospital Universitario Nuestra Señora Candelaria, Santa Cruz de Tenerife 38010, Spain
| | - Julián Portero
- Department of Radiology, Hospital Universitario Nuestra Señora Candelaria, Santa Cruz de Tenerife 38010, Spain
| | - Manuel A Barrera
- Department of Surgery, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife 38010, Spain
| |
Collapse
|
34
|
Kong W, Ji Y, Zhu X, Dai X, You C. Development and Application of a Chemical Labeling‐based Biosensing Assay for Rapid Detection of 8‐oxoguanine and its Repair
in vitro
and in Human Cells. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Weiheng Kong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology Hunan University Changsha 410082 China
- College of Chemistry and Chemical Engineering Qufu Normal University Qufu 273165 Shandong China
| | - Yongqin Ji
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology Hunan University Changsha 410082 China
| | - Xiaowen Zhu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology Hunan University Changsha 410082 China
| | - Xiaoxia Dai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology Hunan University Changsha 410082 China
| | - Changjun You
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology Hunan University Changsha 410082 China
| |
Collapse
|
35
|
Bumbasirevic U, Bojanic N, Simic T, Milojevic B, Zivkovic M, Kosanovic T, Kajmakovic B, Janicic A, Durutovic O, Radovanovic M, Santric V, Zekovic M, Coric V. Interplay between Comprehensive Inflammation Indices and Redox Biomarkers in Testicular Germ-Cell Tumors. J Pers Med 2022; 12:833. [PMID: 35629255 PMCID: PMC9143453 DOI: 10.3390/jpm12050833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Sustained and dysregulated inflammation, concurrent tumor-induced immune suppression, and oxidative stress are profoundly involved in cancer initiation, presentation, and perpetuation. Within this prospective study, we simultaneously analyzed the preoperative indices of systemic inflammatory response and the representative byproducts of oxidative DNA, protein, and lipid damage with the aim of evaluating their clinical relevance among patients diagnosed with testicular germ-cell tumors (GCT). In the analytical cohort (n = 88, median age 34 years), neutrophil-to-lymphocyte ratio (NLR), derived neutrophil-to-lymphocyte ratio (dNLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR), systemic immune-inflammation index (SII), systemic inflammation response index (SIRI), and C-reactive protein (CRP) were significantly altered in patients with a higher tumor stage (p < 0.05). Highly suggestive correlations were found between NLR, dNLR, and SII and modified nucleoside 8-OHdG. CRP and albumin-to-globulin ratio (AGR) significantly correlated with thiols group level and maximal tumor dimension (p < 0.05). Based on receiver operating characteristic (ROC) curve analyses, all the evaluated pre-orchiectomy inflammation markers demonstrated strong performance in predicting metastatic disease; optimal cut-off points were determined for each indicator. Although further large-scale studies are warranted, inflammatory and redox indices may both complement the established tumor markers and standard clinicopathological prognostic variables and contribute to enhanced personalized risk-assessment among testicular GCT patients.
Collapse
Affiliation(s)
- Uros Bumbasirevic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (U.B.); (N.B.); (B.M.); (M.Z.); (B.K.); (A.J.); (O.D.); (M.R.); (V.S.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Nebojsa Bojanic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (U.B.); (N.B.); (B.M.); (M.Z.); (B.K.); (A.J.); (O.D.); (M.R.); (V.S.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Tatjana Simic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Department of Medical Sciences, Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| | - Bogomir Milojevic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (U.B.); (N.B.); (B.M.); (M.Z.); (B.K.); (A.J.); (O.D.); (M.R.); (V.S.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Marko Zivkovic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (U.B.); (N.B.); (B.M.); (M.Z.); (B.K.); (A.J.); (O.D.); (M.R.); (V.S.)
| | - Tijana Kosanovic
- Radiology Department, The University Hospital ‘Dr. Dragisa Misovic-Dedinje’, 11000 Belgrade, Serbia;
| | - Boris Kajmakovic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (U.B.); (N.B.); (B.M.); (M.Z.); (B.K.); (A.J.); (O.D.); (M.R.); (V.S.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Aleksandar Janicic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (U.B.); (N.B.); (B.M.); (M.Z.); (B.K.); (A.J.); (O.D.); (M.R.); (V.S.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Otas Durutovic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (U.B.); (N.B.); (B.M.); (M.Z.); (B.K.); (A.J.); (O.D.); (M.R.); (V.S.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milan Radovanovic
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (U.B.); (N.B.); (B.M.); (M.Z.); (B.K.); (A.J.); (O.D.); (M.R.); (V.S.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Veljko Santric
- Clinic of Urology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (U.B.); (N.B.); (B.M.); (M.Z.); (B.K.); (A.J.); (O.D.); (M.R.); (V.S.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milica Zekovic
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Vesna Coric
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
36
|
Neuroprotective Effects of Nicotinamide (Vitamin B3) on Neurodegeneration in Diabetic Rat Retinas. Nutrients 2022; 14:nu14061162. [PMID: 35334819 PMCID: PMC8950738 DOI: 10.3390/nu14061162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 01/27/2023] Open
Abstract
The loss of inner retinal neurons is an initial event in diabetic retinopathy. In diabetic retinas, oxidative stress is increased, which could lead to increased oxidative DNA damage. Nicotinamide is a precursor to nicotinamide adenine dinucleotide, which contributes to the DNA damage response. We investigated whether nicotinamide plays a neuroprotective role in diabetic retinal neurodegeneration in terms of DNA repair. Male Sprague Dawley rats with streptozotocin-induced diabetes were orally administered nicotinamide (500 mg/kg/day) for 4 or 12 weeks. Oxidative stress exhibited by dihydroethidium was upregulated at 4 and 12 weeks after onset of diabetes, and nicotinamide treatment reduced oxidative stress at 4 weeks after induction of diabetes. Oxidative DNA damage measured by 8-hydroxy-2′-deoxyguanosine (8-OHdG) increased at 4 and 12 weeks after induction of diabetes and decreased following nicotinamide treatment. The elevated expression of glial fibrillary acidic protein (GFAP) induced by diabetes was attenuated by nicotinamide treatment. In Western blot analysis, the increased expression of cleaved PARP-1 in diabetes was attenuated by nicotinamide treatment at 12 weeks after induction of diabetes. The diabetes-induced apoptosis of inner retinal cells detected by the TUNEL assay was reduced by nicotinamide treatment. In conclusion, nicotinamide attenuated retinal neurodegeneration in diabetes, probably by reducing oxidative DNA damage and supporting DNA repair.
Collapse
|
37
|
Chiorcea-Paquim AM. 8-oxoguanine and 8-oxodeoxyguanosine Biomarkers of Oxidative DNA Damage: A Review on HPLC-ECD Determination. Molecules 2022; 27:1620. [PMID: 35268721 PMCID: PMC8911600 DOI: 10.3390/molecules27051620] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/26/2022] Open
Abstract
Reactive oxygen species (ROS) are continuously produced in living cells due to metabolic and biochemical reactions and due to exposure to physical, chemical and biological agents. Excessive ROS cause oxidative stress and lead to oxidative DNA damage. Within ROS-mediated DNA lesions, 8-oxoguanine (8-oxoG) and its nucleotide 8-oxo-2'-deoxyguanosine (8-oxodG)-the guanine and deoxyguanosine oxidation products, respectively, are regarded as the most significant biomarkers for oxidative DNA damage. The quantification of 8-oxoG and 8-oxodG in urine, blood, tissue and saliva is essential, being employed to determine the overall effects of oxidative stress and to assess the risk, diagnose, and evaluate the treatment of autoimmune, inflammatory, neurodegenerative and cardiovascular diseases, diabetes, cancer and other age-related diseases. High-performance liquid chromatography with electrochemical detection (HPLC-ECD) is largely employed for 8-oxoG and 8-oxodG determination in biological samples due to its high selectivity and sensitivity, down to the femtomolar range. This review seeks to provide an exhaustive analysis of the most recent reports on the HPLC-ECD determination of 8-oxoG and 8-oxodG in cellular DNA and body fluids, which is relevant for health research.
Collapse
Affiliation(s)
- Ana-Maria Chiorcea-Paquim
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Department of Chemistry, 3004-535 Coimbra, Portugal;
- Instituto Pedro Nunes (IPN), 3030-199 Coimbra, Portugal
| |
Collapse
|
38
|
Taniguchi Y. Development of Artificial Nucleoside Analogues for the Recognition and Detection of Damaged Nucleoside in DNA. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Mechanistic studies on the adverse effects of manganese overexposure in differentiated LUHMES cells. Food Chem Toxicol 2022; 161:112822. [DOI: 10.1016/j.fct.2022.112822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 01/16/2023]
|
40
|
De Rosa M, Johnson SA, Opresko PL. Roles for the 8-Oxoguanine DNA Repair System in Protecting Telomeres From Oxidative Stress. Front Cell Dev Biol 2021; 9:758402. [PMID: 34869348 PMCID: PMC8640134 DOI: 10.3389/fcell.2021.758402] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/27/2021] [Indexed: 11/27/2022] Open
Abstract
Telomeres are protective nucleoprotein structures that cap linear chromosome ends and safeguard genome stability. Progressive telomere shortening at each somatic cell division eventually leads to critically short and dysfunctional telomeres, which can contribute to either cellular senescence and aging, or tumorigenesis. Human reproductive cells, some stem cells, and most cancer cells, express the enzyme telomerase to restore telomeric DNA. Numerous studies have shown that oxidative stress caused by excess reactive oxygen species is associated with accelerated telomere shortening and dysfunction. Telomeric repeat sequences are remarkably susceptible to oxidative damage and are preferred sites for the production of the mutagenic base lesion 8-oxoguanine, which can alter telomere length homeostasis and integrity. Therefore, knowledge of the repair pathways involved in the processing of 8-oxoguanine at telomeres is important for advancing understanding of the pathogenesis of degenerative diseases and cancer associated with telomere instability. The highly conserved guanine oxidation (GO) system involves three specialized enzymes that initiate distinct pathways to specifically mitigate the adverse effects of 8-oxoguanine. Here we introduce the GO system and review the studies focused on investigating how telomeric 8-oxoguanine processing affects telomere integrity and overall genome stability. We also discuss newly developed technologies that target oxidative damage selectively to telomeres to investigate roles for the GO system in telomere stability.
Collapse
Affiliation(s)
- Mariarosaria De Rosa
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Samuel A Johnson
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| |
Collapse
|
41
|
Demirci-Çekiç S, Özkan G, Avan AN, Uzunboy S, Çapanoğlu E, Apak R. Biomarkers of Oxidative Stress and Antioxidant Defense. J Pharm Biomed Anal 2021; 209:114477. [PMID: 34920302 DOI: 10.1016/j.jpba.2021.114477] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
A number of reactive oxygen and nitrogen species are produced during normal metabolism in human body. These species can be both radical and non-radical and have varying degrees of reactivity. Although they have some important functions in the human body, such as contributing to signal transmission and the immune system, their presence must be balanced by the antioxidant defense system. The human body has an excellent intrinsic enzymatic antioxidant system in addition to different non-enzymatic antioxidants having small molecular masses. An extrinsic source of antioxidants are foodstuffs such as fruits, vegetables, herbs and spices, mostly rich in polyphenols. When the delicate biochemical balance between oxidants and antioxidants is disturbed in favor of oxidants, "oxidative stress" conditions emerge, under which reactive species can cause oxidative damage to biomacromolecules such as proteins, carbohydrates, lipids and DNA. This oxidative damage is often associated with cancer, aging, and neurodegenerative disorders. Because reactive species are extremely short-lived, it is almost impossible to measure their concentrations directly. Although there are certain methods such as ESR / EPR that serve this purpose, they have some disadvantages and are quite costly systems. Therefore, products generated from oxidative damage of proteins, lipids and DNA are often used to quantify the extent of oxidative damage rather than direct measurement of reactive species. These oxidative damage products are usually known as biomarkers. Determination of the concentrations of these biomarkers and changes in the concentration of protective antioxidants can provide useful information for avoiding certain diseases and keep healthy conditions.
Collapse
Affiliation(s)
- Sema Demirci-Çekiç
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey
| | - Gülay Özkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical Uviversity, Istanbul, Turkey
| | - Aslı Neslihan Avan
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey
| | - Seda Uzunboy
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey
| | - Esra Çapanoğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical Uviversity, Istanbul, Turkey.
| | - Reşat Apak
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey; Turkish Academy of Sciences (TUBA), Vedat Dalokay St. No. 112, Cankaya, 06670 Ankara, Turkey.
| |
Collapse
|
42
|
Waneka G, Svendsen JM, Havird JC, Sloan DB. Mitochondrial mutations in Caenorhabditis elegans show signatures of oxidative damage and an AT-bias. Genetics 2021; 219:6346985. [PMID: 34849888 DOI: 10.1093/genetics/iyab116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/09/2021] [Indexed: 01/25/2023] Open
Abstract
Rapid mutation rates are typical of mitochondrial genomes (mtDNAs) in animals, but it is not clear why. The difficulty of obtaining measurements of mtDNA mutation that are not biased by natural selection has stymied efforts to distinguish between competing hypotheses about the causes of high mtDNA mutation rates. Several studies which have measured mtDNA mutations in nematodes have yielded small datasets with conflicting conclusions about the relative abundance of different substitution classes (i.e., the mutation spectrum). We therefore leveraged Duplex Sequencing, a high-fidelity DNA sequencing technique, to characterize de novo mtDNA mutations in Caenorhabditis elegans. This approach detected nearly an order of magnitude more mtDNA mutations than documented in any previous nematode mutation study. Despite an existing extreme AT bias in the C. elegans mtDNA (75.6% AT), we found that a significant majority of mutations increase genomic AT content. Compared to some prior studies in nematodes and other animals, the mutation spectrum reported here contains an abundance of CG→AT transversions, supporting the hypothesis that oxidative damage may be a driver of mtDNA mutations in nematodes. Furthermore, we found an excess of G→T and C→T changes on the coding DNA strand relative to the template strand, consistent with increased exposure to oxidative damage. Analysis of the distribution of mutations across the mtDNA revealed significant variation among protein-coding genes and as well as among neighboring nucleotides. This high-resolution view of mitochondrial mutations in C. elegans highlights the value of this system for understanding relationships among oxidative damage, replication error, and mtDNA mutation.
Collapse
Affiliation(s)
- Gus Waneka
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA and
| | - Joshua M Svendsen
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA and
| | - Justin C Havird
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA and
| |
Collapse
|
43
|
Lorente L, Martín MM, González-Rivero AF, Pérez-Cejas A, Abreu-González P, Sabatel R, Ramos L, Argueso M, Cáceres JJ, Solé-Violán J, Jiménez A, García-Marín V. High Serum DNA and RNA Oxidative Damage in Non-surviving Patients with Spontaneous Intracerebral Hemorrhage. Neurocrit Care 2021; 33:90-96. [PMID: 31598840 DOI: 10.1007/s12028-019-00864-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE One study found higher leukocytes 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in patients with spontaneous intracerebral hemorrhage (ICH) than in healthy subjects due to the oxidation of guanosine from deoxyribonucleic acid (DNA). The objective of this study was to determine whether there is an association between oxidative damage of serum DNA and ribonucleic acid (RNA) and mortality in patients with ICH. METHODS In this observational and prospective study, patients with severe supratentorial ICH (defined as Glasgow Coma Scale < 9) were included from six Intensive Care Units of Spanish hospitals. At the time of severe ICH diagnosis, concentrations in serum of malondialdehyde (as lipid peroxidation biomarker) and of the three oxidized guanine species (OGS) (8-hydroxyguanosine from RNA, 8-hydroxyguanine from DNA or RNA, and 8-OHdG from DNA) were determined. Thirty-day mortality was considered the end-point study. RESULTS Serum levels of OGS (p < 0.001) and malondialdehyde (p = 0.002) were higher in non-surviving (n = 46) than in surviving patients (n = 54). There was an association of serum OGS levels with serum malondialdehyde levels (rho = 0.36; p = 0.001) and 30-day mortality (OR = 1.568; 95% CI 1.183-2.078; p = 0.002). CONCLUSIONS The novel and most important finding of our study was that serum OGS levels in ICH patients are associated with mortality.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n, La Laguna, 38320, Santa Cruz de Tenerife, Spain.
| | - María M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora de Candelaria, Crta del Rosario s/n, 38010, Santa Cruz de Tenerife, Spain
| | - Agustín F González-Rivero
- Laboratory Department, Hospital Universitario de Canarias, Ofra, s/n, La Laguna, 38320, Santa Cruz de Tenerife, Spain
| | - Antonia Pérez-Cejas
- Laboratory Department, Hospital Universitario de Canarias, Ofra, s/n, La Laguna, 38320, Santa Cruz de Tenerife, Spain
| | - Pedro Abreu-González
- Department of Physiology, Faculty of Medicine, University of the La Laguna, Ofra, s/n, La Laguna, 38320, Santa Cruz de Tenerife, Spain
| | - Rafael Sabatel
- Department of Radiology, Hospital Universitario de Canarias, Ofra, s/n, La Laguna, 38320, Santa Cruz de Tenerife, Spain
| | - Luis Ramos
- Intensive Care Unit, Hospital General La Palma, Buenavista de Arriba s/n, Breña Alta, 38713, La Palma, Spain
| | - Mónica Argueso
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Avda, Blasco Ibáñez no. 17-19, 46004, Valencia, Spain
| | - Juan J Cáceres
- Intensive Care Unit, Hospital Insular, Plaza Dr, Pasteur s/n, 35016, Las Palmas de Gran Canaria, Spain
| | - Jordi Solé-Violán
- Intensive Care Unit, Hospital Universitario Dr. Negrín, Barranco de la Ballena s/n, 35010, Las Palmas de Gran Canaria, Spain
| | - Alejandro Jiménez
- Research Unit, Hospital Universitario de Canarias, Ofra, s/n, La Laguna, 38320, Santa Cruz de Tenerife, Spain
| | - Victor García-Marín
- Department of Neurosurgery, Hospital Universitario de Canarias, Ofra, s/n, La Laguna, 38320, Santa Cruz de Tenerife, Spain
| |
Collapse
|
44
|
Aoki Y, Ohno M, Matsumoto M, Matsumoto M, Masumura K, Nohmi T, Tsuzuki T. Characteristic mutations induced in the small intestine of Msh2-knockout gpt delta mice. Genes Environ 2021; 43:27. [PMID: 34225823 PMCID: PMC8256579 DOI: 10.1186/s41021-021-00196-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022] Open
Abstract
Background Base pair mismatches in genomic DNA can result in mutagenesis, and consequently in tumorigenesis. To investigate how mismatch repair deficiency increases mutagenicity under oxidative stress, we examined the type and frequency of mutations arising in the mucosa of the small intestine of mice carrying a reporter gene encoding guanine phosphoribosyltransferase (gpt) and in which the Msh2 gene, which encodes a component of the mismatch repair system, was either intact (Msh2+/+::gpt/0; Msh2-bearing) or homozygously knockout (KO) (Msh2−/−::gpt/0; Msh2-KO). Results Gpt mutant frequency in the small intestine of Msh2-KO mice was about 10 times that in Msh2-bearing mice. Mutant frequency in the Msh2-KO mice was not further enhanced by administration of potassium bromate, an oxidative stress inducer, in the drinking water at a dose of 1.5 g/L for 28 days. Mutation analysis showed that the characteristic mutation in the small intestine of the Msh2-KO mice was G-to-A transition, irrespective of whether potassium bromate was administered. Furthermore, administration of potassium bromate induced mutations at specific sites in gpt in the Msh2-KO mice: G-to-A transition was frequently induced at two known sites of spontaneous mutation (nucleotides 110 and 115, CpG sites) and at nucleotides 92 and 113 (3′-side of 5′-GpG-3′), and these sites were confirmed to be mutation hotspots in potassium bromate-administered Msh2-KO mice. Administration of potassium bromate also induced characteristic mutations, mainly single-base deletion and insertion of an adenine residue, in sequences of three to five adenine nucleotides (A-runs) in Msh2-KO mice, and elevated the overall proportion of single-base deletions plus insertions in Msh2-KO mice. Conclusions Our previous study revealed that administration of potassium bromate enhanced tumorigenesis in the small intestine of Msh2-KO mice and induced G-to-A transition in the Ctnnb1 gene. Based on our present and previous observations, we propose that oxidative stress under conditions of mismatch repair deficiency accelerates the induction of single-adenine deletions at specific sites in oncogenes, which enhances tumorigenesis in a synergistic manner with G-to-A transition in other oncogenes (e.g., Ctnnb1). Supplementary Information The online version contains supplementary material available at 10.1186/s41021-021-00196-0.
Collapse
Affiliation(s)
- Yasunobu Aoki
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.
| | - Mizuki Ohno
- Kyushu University, Faculty of Medical Sciences, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Michiyo Matsumoto
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Michi Matsumoto
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Teruhisa Tsuzuki
- Kyushu University, Faculty of Medical Sciences, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
45
|
Association Between DNA and RNA Oxidative Damage and Mortality of Patients with Traumatic Brain Injury. Neurocrit Care 2021; 32:790-795. [PMID: 31385181 DOI: 10.1007/s12028-019-00800-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND The hyperoxidative state in traumatic brain injury (TBI) could produce oxidative damage on the ribonucleic acid (RNA) and deoxyribonucleic acid (DNA). Oxidative damage to nucleic acids in TBI patients has been studied, and higher concentrations of 8-OHdG were found in postmortem brain samples of subjects who died following TBI than in subjects who died from sudden cardiac death. Thus, the objective of this study was to determine whether there is an association between serum DNA and RNA oxidative damage and mortality in TBI patients. METHODS We included patients with severe isolated TBI defined as a lower score than 9 points in the Glasgow Coma Scale (GCS) and lower than 9 points in non-cranial aspects in the Injury Severity Score. We determined serum concentrations of the three oxidized guanine species (OGS) (8-OHdG from DNA, 8-hydroxyguanosine from RNA, and 8-hydroxyguanine from DNA or RNA) and malondialdehyde (to estimate lipid peroxidation) on the day of TBI. Mortality at 30 days was the end-point study. RESULTS We found higher serum concentrations of OGS (p < 0.001) and malondialdehyde (p < 0.001) in non-surviving (n = 34) than in surviving patients (n = 90), an association between serum OGS levels and 30-day mortality after control for CGS, age, and computed tomography findings (OR = 1.397; 95% CI = 1.137-1.716; p = 0.001), and a positive correlation between serum levels of OGS and malondialdehyde (rho = 0.24; p = 0.01). CONCLUSIONS To our knowledge, our study is the largest series reporting data on DNA oxidative damage in TBI patients and is the first reporting DNA and RNA oxidative damage in TBI patients associating lipid peroxidation and mortality.
Collapse
|
46
|
Cave JW, Willis DE. G-quadruplex regulation of neural gene expression. FEBS J 2021; 289:3284-3303. [PMID: 33905176 DOI: 10.1111/febs.15900] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/24/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022]
Abstract
G-quadruplexes are four-stranded helical nucleic acid structures characterized by stacked tetrads of guanosine bases. These structures are widespread throughout mammalian genomic DNA and RNA transcriptomes, and prevalent across all tissues. The role of G-quadruplexes in cancer is well-established, but there has been a growing exploration of these structures in the development and homeostasis of normal tissue. In this review, we focus on the roles of G-quadruplexes in directing gene expression in the nervous system, including the regulation of gene transcription, mRNA processing, and trafficking, as well as protein translation. The role of G-quadruplexes and their molecular interactions in the pathology of neurological diseases is also examined. Outside of cancer, there has been only limited exploration of G-quadruplexes as potential intervention targets to treat disease or injury. We discuss studies that have used small-molecule ligands to manipulate G-quadruplex stability in order to treat disease or direct neural stem/progenitor cell proliferation and differentiation into therapeutically relevant cell types. Understanding the many roles that G-quadruplexes have in the nervous system not only provides critical insight into fundamental molecular mechanisms that control neurological function, but also provides opportunities to identify novel therapeutic targets to treat injury and disease.
Collapse
Affiliation(s)
- John W Cave
- InVitro Cell Research LLC, Englewood, NJ, USA
| | - Dianna E Willis
- Burke Neurological Institute, White Plains, NY, USA.,Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
47
|
Athapattu US, Amarasekara CA, Immel JR, Bloom S, Barany F, Nagel AC, Soper SA. Solid-phase XRN1 reactions for RNA cleavage: application in single-molecule sequencing. Nucleic Acids Res 2021; 49:e41. [PMID: 33511416 PMCID: PMC8053086 DOI: 10.1093/nar/gkab001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 12/04/2020] [Accepted: 01/04/2021] [Indexed: 01/29/2023] Open
Abstract
Modifications in RNA are numerous (∼170) and in higher numbers compared to DNA (∼5) making the ability to sequence an RNA molecule to identify these modifications highly tenuous using next generation sequencing (NGS). The ability to immobilize an exoribonuclease enzyme, such as XRN1, to a solid support while maintaining its activity and capability to cleave both the canonical and modified ribonucleotides from an intact RNA molecule can be a viable approach for single-molecule RNA sequencing. In this study, we report an enzymatic reactor consisting of covalently attached XRN1 to a solid support as the groundwork for a novel RNA exosequencing technique. The covalent attachment of XRN1 to a plastic solid support was achieved using EDC/NHS coupling chemistry. Studies showed that the solid-phase digestion efficiency of model RNAs was 87.6 ± 2.8%, while the XRN1 solution-phase digestion for the same model was 78.3 ± 4.4%. The ability of immobilized XRN1 to digest methylated RNA containing m6A and m5C ribonucleotides was also demonstrated. The processivity and clipping rate of immobilized XRN1 secured using single-molecule fluorescence measurements of a single RNA transcript demonstrated a clipping rate of 26 ± 5 nt s-1 and a processivity of >10.5 kb at 25°C.
Collapse
Affiliation(s)
| | | | - Jacob R Immel
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Steven Bloom
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | | | | | - Steven A Soper
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
- Sunflower Genomics, Inc., Lawrence, KS 66047, USA
- Department of Mechanical Engineering and Bioengineering, University of Kansas, Lawrence, KS 66045, USA
- Department of Cancer Biology and KU Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
48
|
Liu Y, Ma C, Leonen CJA, Chatterjee C, Nováková G, Marek A, Tureček F. Tackling a Curious Case: Generation of Charge-Tagged Guanosine Radicals by Gas-Phase Electron Transfer and Their Characterization by UV-vis Photodissociation Action Spectroscopy and Theory. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:772-785. [PMID: 33567214 PMCID: PMC8579407 DOI: 10.1021/jasms.0c00459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report the generation of gas-phase riboguanosine radicals that were tagged at ribose with a fixed-charge 6-(trimethylammonium)hexane-1-aminocarbonyl group. The radical generation relied on electron transfer from fluoranthene anion to noncovalent dibenzocrown-ether dication complexes which formed nucleoside cation radicals upon one-electron reduction and crown-ether ligand loss. The cation radicals were characterized by collision-induced dissociation (CID), photodissociation (UVPD), and UV-vis action spectroscopy. Identification of charge-tagged guanosine radicals was challenging because of spontaneous dissociations by loss of a hydrogen atom and guanine that occurred upon storing the ions in the ion trap without further excitation. The loss of H proceeded from an exchangeable position on N-7 in guanine that was established by deuterium labeling and was the lowest energy dissociation of the guanosine radicals according to transition-state energy calculations. Rate constant measurements revealed an inverse isotope effect on the loss of either hydrogen or deuterium with rate constants kH = 0.25-0.26 s-1 and kD = 0.39-0.54 s-1. We used time-dependent density functional theory calculations, including thermal vibronic effects, to predict the absorption spectra of several protomeric radical isomers. The calculated spectra of low-energy N-7-H guanine-radical tautomers closely matched the action spectra. Transition-state-theory calculations of the rate constants for the loss of H-7 and guanine agreed with the experimental rate constants for a narrow range of ion effective temperatures. Our calculations suggest that the observed inverse isotope effect does not arise from the isotope-dependent differences in the transition-state energies. Instead, it may be caused by the dynamics of post-transition-state complexes preceding the product separation.
Collapse
Affiliation(s)
- Yue Liu
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, United States
| | - Congcong Ma
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, United States
| | - Calvin J A Leonen
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, United States
| | - Champak Chatterjee
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, United States
| | - Gabriela Nováková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Aleš Marek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | | |
Collapse
|
49
|
Lorente L, Martín MM, González-Rivero AF, Pérez-Cejas A, Cáceres JJ, Perez A, Ramos-Gómez L, Solé-Violán J, Marcos Y Ramos JA, Ojeda N, Jiménez A. DNA and RNA Oxidative Damage and Mortality of Patients With COVID-19. Am J Med Sci 2021; 361:585-590. [PMID: 33600784 PMCID: PMC7884223 DOI: 10.1016/j.amjms.2021.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/05/2020] [Accepted: 02/12/2021] [Indexed: 12/19/2022]
Abstract
Background Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) oxidative damage is associated with mortality of patients with different diseases. However, there are no data about DNA and RNA oxidative damage from coronavirus disease 2019 (COVID-19) patients. Thus, the objective of this study was to explore DNA and RNA oxidative damage in surviving and non-surviving COVID-19 patients. Materials and Methods Eight Intensive Care Units from 6 hospitals in the Canary Islands (Spain) participated in this prospective and observational study. We recorded the serum levels at ICU admission of the three guanine oxidized species (OGS) because guanine is the nucleobase that forms the DNA and RNA most prone to oxidation. Survival at 30 days was our end-point study. Results Non-surviving (n = 11) compared to surviving patients (n = 42) had higher APACHE-II (p < 0.001), SOFA (p = 0.004) and serum OGS levels (p = 0.001). In logistic regression analyses an association between serum OGS levels and 30-day mortality after controlling for SOFA (OR=2.601; 95% CI=1.305–5.182; p = 0.007) or APACHE-II (OR=2.493; 95% CI=1.274–4.879; p = 0.008) was found. The area under curve (AUC) for mortality prediction by serum OGS levels was 83% (95% CI=70–92%; p < 0.001), by APACHE II was 85% (95% CI=75–96%; p < 0.001), and by SOFA was 80% (95% CI=66–94%; p < 0.001). No significant differences were found in the AUC between serum OGS levels and SOFA (p = 0.91), and serum OGS levels and APACHE-II (p = 0.64). Conclusions To our knowledge, this is the first study reporting on oxidative DNA and RNA damage in COVID-19 patients, and the main new finding was that serum OGS concentration was associated with mortality.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain.
| | - María M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | | | - Antonia Pérez-Cejas
- Laboratory Department, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | - Juan J Cáceres
- Intensive Care Unit, Hospital Insular, Las Palmas de Gran Canaria, Spain
| | - Alina Perez
- Internal Intensive Care Unit, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | | | - Jordi Solé-Violán
- Intensive Care Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | | | - Nazario Ojeda
- Department of Anesthesiology, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Alejandro Jiménez
- Research Unit, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| |
Collapse
|
50
|
Amarasekara CA, Rathnayaka C, Athapattu US, Zhang L, Choi J, Park S, Nagel AC, Soper SA. Electrokinetic identification of ribonucleotide monophosphates (rNMPs) using thermoplastic nanochannels. J Chromatogr A 2021; 1638:461892. [PMID: 33477027 PMCID: PMC8107831 DOI: 10.1016/j.chroma.2021.461892] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
With advances in the design and fabrication of nanofluidic devices during the last decade, there have been a few reports on nucleic acid analysis using nanoscale electrophoresis. The attractive nature of nanofluidics is the unique phenomena associated with this length scale that are not observed using microchip electrophoresis. Many of these effects are surface-related and include electrostatics, surface roughness, van der Waals interactions, hydrogen bonding, and the electric double layer. The majority of reports related to nanoscale electrophoresis have utilized glass-based devices, which are not suitable for broad dissemination into the separation community because of the sophisticated, time consuming, and high-cost fabrication methods required to produce the relevant devices. In this study, we report the use of thermoplastic nanochannels (110 nm x 110 nm, depth x width) for the free solution electrokinetic analysis of ribonucleotide monophosphates (rNMPs). Thermoplastic devices with micro- and nanofluidic networks were fabricated using nanoimprint lithography (NIL) with the structures enclosed via thermal fusion bonding of a cover plate to the fluidic substrate. Unique to this report is that we fabricated devices in cyclic olefin copolymer (COC) that was thermally fusion bonded to a COC cover plate. Results using COC/COC devices were compared to poly(methyl methacrylate), PMMA, devices with a COC cover plate. Our results indicated that at pH = 7.9, the electrophoresis in free solution resulted in an average resolution of the rNMPs >4 (COC/COC device range = 1.94 - 8.88; PMMA/COC device range = 1.4 - 7.8) with some of the rNMPs showing field-dependent electrophoretic mobilities. Baseline separation of the rNMPs was not possible using PMMA- or COC-based microchip electrophoresis. We also found that COC/COC devices could be assembled and UV/O3 activated after device assembly with the dose of the UV/O3 affecting the magnitude of the electroosmotic flow, EOF. In addition, the bond strength between the substrate and cover plate of unmodified COC/COC devices was higher compared to PMMA/COC devices. The large differences in the electrophoretic mobilities of the rNMPs afforded by nanoscale electrophoresis will enable a new single-molecule sequencing platform we envision, which uses molecular-dependent electrophoretic mobilities to identify the constituent rNMPs generated from an intact RNA molecule using a processive exonuclease. With optimized nanoscale electrophoresis, the rNMPs could be identified via mobility matching at an accuracy >99% in both COC/COC and PMMA/COC devices.
Collapse
Affiliation(s)
- Charuni A Amarasekara
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045; Center of Biomodular Multiscale Systems for Precision Medicine
| | - Chathurika Rathnayaka
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045; Center of Biomodular Multiscale Systems for Precision Medicine
| | - Uditha S Athapattu
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045; Center of Biomodular Multiscale Systems for Precision Medicine
| | - Lulu Zhang
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045; Center of Biomodular Multiscale Systems for Precision Medicine
| | - Junseo Choi
- Center of Biomodular Multiscale Systems for Precision Medicine; Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803
| | - Sunggook Park
- Center of Biomodular Multiscale Systems for Precision Medicine; Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803
| | | | - Steven A Soper
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045; Center of Biomodular Multiscale Systems for Precision Medicine; Sunflower Genomics, Inc. Lawrence, KS 66047; Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66045; Bioengineering Program, The University of Kansas, Lawrence, KS 66045; KU Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160.
| |
Collapse
|