1
|
Jeon D, Kim SH, Kim J, Jeong H, Uhm C, Oh H, Cho K, Cho Y, Park IH, Oh J, Kim JJ, Hwang JY, Lee HJ, Lee HY, Seo JY, Shin JS, Seong JK, Nam KT. Discovery of a new long COVID mouse model via systemic histopathological comparison of SARS-CoV-2 intranasal and inhalation infection. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167347. [PMID: 39019092 DOI: 10.1016/j.bbadis.2024.167347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/19/2024]
Abstract
Intranasal infection is commonly used to establish a SARS-CoV-2 mouse model due to its non-invasive procedures and a minimal effect from the operation itself. However, mice intranasally infected with SARS-CoV-2 have a high mortality rate, which limits the utility of this model for exploring therapeutic strategies and the sequelae of non-fatal COVID-19 cases. To resolve these limitations, an aerosolised viral administration method has been suggested. However, an in-depth pathological analysis comparing the two models is lacking. Here, we show that inhalation and intranasal SARS-CoV-2 (106 PFU) infection models established in K18-hACE2 mice develop unique pathological features in both the respiratory and central nervous systems, which could be directly attributed to the infection method. While the inhalation-infection model exhibited relatively milder pathological parameters, it closely mimicked the prevalent chest CT pattern observed in COVID-19 patients with focal, peripheral lesions and fibrotic scarring in the recuperating lung. We also found the evidence of direct neuron-invasion from the olfactory receptor neurons to the olfactory bulb in the intranasal model and showed the trigeminal nerve as an alternative route of transmission to the brain in inhalation infected mice. Even after viral clearance confirmed at 14 days post-infection, mild lesions were still found in the brain of inhalation-infected mice. These findings suggest that the inhalation-infection model has advantages over the intranasal-infection model in closely mimicking the pathological features of non-fatal symptoms of COVID-19, demonstrating its potential to study the sequelae and possible interventions for long COVID.
Collapse
Affiliation(s)
- Donghun Jeon
- Department of Biomedical Sciences, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung-Hee Kim
- Department of Biomedical Sciences, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Jiseon Kim
- Department of Biomedical Sciences, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Haengdueng Jeong
- Department of Biomedical Sciences, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Chanyang Uhm
- Department of Biomedical Sciences, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Heeju Oh
- Department of Biomedical Sciences, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyungrae Cho
- Department of Biomedical Sciences, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Yejin Cho
- Department of Biomedical Sciences, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - In Ho Park
- Department of Biomedical Sciences, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea; Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Jooyeon Oh
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeong Jin Kim
- Department of Biomedical Sciences, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji-Yeon Hwang
- Preclinical Research Center, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hyo-Jung Lee
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea; Department of Nuclear Medicine, Seoul National University, College of Medicine, Seoul, South Korea
| | - Jun-Young Seo
- Department of Biomedical Sciences, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeon-Soo Shin
- Department of Biomedical Sciences, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea; Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea; Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, South Korea; Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, BK 21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, South Korea; BIO MAX Institute, Seoul National University, Seoul, South Korea; Interdisciplinary Program for Bioinformatics, Seoul National University, Seoul, South Korea.
| | - Ki Taek Nam
- Department of Biomedical Sciences, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
2
|
Ahmed M, Lai AY, Hill ME, Ribeiro JA, Amiraslani A, McLaurin J. Obesity differentially effects the somatosensory cortex and striatum of TgF344-AD rats. Sci Rep 2024; 14:7235. [PMID: 38538727 PMCID: PMC10973391 DOI: 10.1038/s41598-024-57953-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
Lifestyle choices leading to obesity, hypertension and diabetes in mid-life contribute directly to the risk of late-life Alzheimer's disease (AD). However, in late-life or in late-stage AD conditions, obesity reduces the risk of AD and disease progression. To examine the mechanisms underlying this paradox, TgF344-AD rats were fed a varied high-carbohydrate, high-fat (HCHF) diet to induce obesity from nine months of age representing early stages of AD to twelve months of age in which rats exhibit the full spectrum of AD symptomology. We hypothesized regions primarily composed of gray matter, such as the somatosensory cortex (SSC), would be differentially affected compared to regions primarily composed of white matter, such as the striatum. We found increased myelin and oligodendrocytes in the somatosensory cortex of rats fed the HCHF diet with an absence of neuronal loss. We observed decreased inflammation in the somatosensory cortex despite increased AD pathology. Compared to the somatosensory cortex, the striatum had fewer changes. Overall, our results suggest that the interaction between diet and AD progression affects myelination in a brain region specific manner such that regions with a lower density of white matter are preferentially affected. Our results offer a possible mechanistic explanation for the obesity paradox.
Collapse
Affiliation(s)
- Minhal Ahmed
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Aaron Y Lai
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Mary E Hill
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Jessica A Ribeiro
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Ashley Amiraslani
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - JoAnne McLaurin
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada.
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
3
|
Ramírez-Carreto RJ, Rodríguez-Cortés YM, Torres-Guerrero H, Chavarría A. Possible Implications of Obesity-Primed Microglia that Could Contribute to Stroke-Associated Damage. Cell Mol Neurobiol 2023; 43:2473-2490. [PMID: 36935429 PMCID: PMC10025068 DOI: 10.1007/s10571-023-01329-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/14/2023] [Indexed: 03/21/2023]
Abstract
Microglia, the resident macrophages of the central nervous system, are essential players during physiological and pathological processes. Although they participate in synaptic pruning and maintenance of neuronal circuits, microglia are mainly studied by their activity modulating inflammatory environment and adapting their phenotype and mechanisms to insults detected in the brain parenchyma. Changes in microglial phenotypes are reflected in their morphology, membrane markers, and secreted substances, stimulating neighbor glia and leading their responses to control stimuli. Understanding how microglia react in various microenvironments, such as chronic inflammation, made it possible to establish therapeutic windows and identify synergic interactions with acute damage events like stroke. Obesity is a low-grade chronic inflammatory state that gradually affects the central nervous system, promoting neuroinflammation development. Obese patients have the worst prognosis when they suffer a cerebral infarction due to basal neuroinflammation, then obesity-induced neuroinflammation could promote the priming of microglial cells and favor its neurotoxic response, potentially worsening patients' prognosis. This review discusses the main microglia findings in the obesity context during the course and resolution of cerebral infarction, involving the temporality of the phenotype changes and balance of pro- and anti-inflammatory responses, which is lost in the swollen brain of an obese subject. Obesity enhances proinflammatory responses during a stroke. Obesity-induced systemic inflammation promotes microglial M1 polarization and priming, which enhances stroke-associated damage, increasing M1 and decreasing M2 responses.
Collapse
Affiliation(s)
- Ricardo Jair Ramírez-Carreto
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yesica María Rodríguez-Cortés
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Haydee Torres-Guerrero
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - Anahí Chavarría
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
4
|
Yawoot N, Sengking J, Govitrapong P, Tocharus C, Tocharus J. Melatonin modulates the aggravation of pyroptosis, necroptosis, and neuroinflammation following cerebral ischemia and reperfusion injury in obese rats. Biochim Biophys Acta Mol Basis Dis 2023:166785. [PMID: 37302429 DOI: 10.1016/j.bbadis.2023.166785] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Obesity is well-established as a common comorbidity in ischemic stroke. The increasing evidence has revealed that it also associates with the exacerbation of brain pathologies, resulting in increasingly severe neurological outcomes following cerebral ischemia and reperfusion (I/R) damage. Mechanistically, pyroptosis and necroptosis are novel forms of regulated death that relate to the propagation of inflammatory signals in case of cerebral I/R. Previous studies noted that pyroptotic and necroptotic signaling were exacerbated in I/R brain of obese animals and led to the promotion of brain tissue injury. This study aimed to investigate the roles of melatonin on pyroptosis, necroptosis, and pro-inflammatory pathways occurring in the I/R brain of obese rats. Male Wistar rats were given a high-fat diet for 16 weeks to induce the obese condition, and then were divided into 4 groups: Sham-operated, I/R treated with vehicle, I/R treated with melatonin (10 mg/kg), and I/R treated with glycyrrhizic acid (10 mg/kg). All drugs were administered via intraperitoneal injection at the onset of reperfusion. The development of neurological deficits, cerebral infarction, histological changes, neuronal death, and glial cell hyperactivation were investigated. This study revealed that melatonin effectively improved these detrimental parameters. Furthermore, the processes of pyroptosis, necroptosis, and inflammation were all diminished by melatonin treatment. A summary of the findings is that melatonin effectively reduces ischemic brain pathology and thereby improves post-stroke outcomes in obese rats by modulating pyroptosis, necroptosis, and inflammation.
Collapse
Affiliation(s)
- Nuttapong Yawoot
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jirakhamon Sengking
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
5
|
Lee CH, Lee TK, Kim DW, Lim SS, Kang IJ, Ahn JH, Park JH, Lee JC, Kim CH, Park Y, Won MH, Choi SY. Relationship between Neuronal Damage/Death and Astrogliosis in the Cerebral Motor Cortex of Gerbil Models of Mild and Severe Ischemia and Reperfusion Injury. Int J Mol Sci 2022; 23:ijms23095096. [PMID: 35563487 PMCID: PMC9100252 DOI: 10.3390/ijms23095096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 02/07/2023] Open
Abstract
Neuronal loss (death) occurs selectively in vulnerable brain regions after ischemic insults. Astrogliosis is accompanied by neuronal death. It can change the molecular expression and morphology of astrocytes following ischemic insults. However, little is known about cerebral ischemia and reperfusion injury that can variously lead to damage of astrocytes according to the degree of ischemic injury, which is related to neuronal damage/death. Thus, the purpose of this study was to examine the relationship between damage to cortical neurons and astrocytes using gerbil models of mild and severe transient forebrain ischemia induced by blocking the blood supply to the forebrain for five or 15 min. Significant ischemia tFI-induced neuronal death occurred in the deep layers (layers V and VI) of the motor cortex: neuronal death occurred earlier and more severely in gerbils with severe ischemia than in gerbils with mild ischemia. Distinct astrogliosis was detected in layers V and VI. It gradually increased with time after both ischemiae. The astrogliosis was significantly higher in severe ischemia than in mild ischemia. The ischemia-induced increase of glial fibrillary acidic protein (GFAP; a maker of astrocyte) expression in severe ischemia was significantly higher than that in mild ischemia. However, GFAP-immunoreactive astrocytes were apparently damaged two days after both ischemiae. At five days after ischemiae, astrocyte endfeet around capillary endothelial cells were severely ruptured. They were more severely ruptured by severe ischemia than by mild ischemia. However, the number of astrocytes stained with S100 was significantly higher in severe ischemia than in mild ischemia. These results indicate that the degree of astrogliosis, including the disruption (loss) of astrocyte endfeet following ischemia and reperfusion in the forebrain, might depend on the severity of ischemia and that the degree of ischemia-induced neuronal damage may be associated with the degree of astrogliosis.
Collapse
Affiliation(s)
- Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Korea;
| | - Tae-Kyeong Lee
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea; (T.-K.L.); (S.S.L.); (I.J.K.)
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung 25457, Korea;
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea; (T.-K.L.); (S.S.L.); (I.J.K.)
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea; (T.-K.L.); (S.S.L.); (I.J.K.)
| | - Ji Hyeon Ahn
- Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan 50510, Korea;
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju 38066, Korea;
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea;
| | - Choong-Hyo Kim
- Department of Neurosurgery, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Korea;
| | - Yoonsoo Park
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Korea;
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea;
- Correspondence: (M.-H.W.); (S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
- Correspondence: (M.-H.W.); (S.Y.C.)
| |
Collapse
|
6
|
Rapp C, Hamilton J, Blum K, Thanos PK. The long-term interaction of diet and dopamine D2 gene expression on brain microglial activation. Psychiatry Res Neuroimaging 2022; 320:111430. [PMID: 34953329 DOI: 10.1016/j.pscychresns.2021.111430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/11/2022]
Abstract
Dopamine D2 receptors are expressed on microglial in the central nervous system and promote anti-inflammatory responses. Little work has been done on the interaction between the dopamine D2 receptors and diet on activated microglial expression in the brain. To assess this, the current study uses in vitro autoradiography to look at microglial activation in the brain as a marker for neuroinflammation. Mice with different levels of expression of the DA D2 gene were given a chronic diet of either normal diet chow or high fat diet chow for 30 weeks. Mice were then euthanized and their brains were processed for [3H]PK11195 autoradiography. Mice with reductions or lack of the D2 gene showed higher [3H]PK11195 binding in a diet-specific manner within somatosensory and striatal regions, as well as the piriform, frontal, insular, and entorhinal regions compared to mice with normal D2 gene levels. These brain regions are important for sensory processing, habit formation, as well as cognitive function tasks related to learning, motivation, and memory. These results suggest that decreased D2R levels may increase vulnerability to specific inflammatory markers. Future studies will need to examine the implications of these inflammatory changes on brain function and behavior.
Collapse
Affiliation(s)
- Cecilia Rapp
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, 1021 Main Street, Buffalo, NY 14203-1016, USA; Department of Biomedical Engineering, State University at New York at Buffalo, Buffalo, NY USA
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, 1021 Main Street, Buffalo, NY 14203-1016, USA; Department of Psychology, State University at Buffalo, Buffalo, NY, USA
| | - Kenneth Blum
- Graduate College, Western University Health Sciences, Pomona, CA, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, 1021 Main Street, Buffalo, NY 14203-1016, USA; Department of Psychology, State University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
7
|
Wang Y, Su X, Chen Y, Wang Y, Zhou J, Liu T, Wang N, Fu C. Unfavorable Dietary Quality Contributes to Elevated Risk of Ischemic Stroke among Residents in Southwest China: Based on the Chinese Diet Balance Index 2016 (DBI-16). Nutrients 2022; 14:694. [PMID: 35277053 PMCID: PMC8838893 DOI: 10.3390/nu14030694] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/16/2022] Open
Abstract
Background: Little is known about the effects of dietary quality on the risk of ischemic stroke among Southwest Chinese, and evidence from prospective studies is needed. We aimed to evaluate the associations of ischemic stroke with dietary quality assessed by the Chinese Diet Balance Index 2016 (DBI-2016). Methods: The Guizhou Population Health Cohort Study (GPHCS) recruited 9280 residents aged 18 to 95 years from 12 areas in Guizhou Province, Southwest China. Baseline investigations, including information collections of diet and demographic characteristics, and anthropometric measurements were performed from 2010 to 2012. Dietary quality was assessed by using DBI-2016. The primary outcome was incident ischemic stroke diagnosed according to the International Classification of Diseases 10th revision (ICD-10) until December 2020. Data analyzed in the current study was from 7841 participants with complete information of diet assessments and ischemic stroke certification. Cox proportional hazards models were used to estimate the risk of ischemic stroke associated with dietary quality. Results: During a median follow-up of 6.63 years (range 1.11 to 9.53 years), 142 participants were diagnosed with ischemic stroke. Participants with ischemic stroke had a more excessive intake of cooking oils, alcoholic beverages, and salt, and had more inadequacy in meats than those without ischemic stroke. (p < 0.05). Compared with participants in the lowest quartile (Q1), those in the highest quartile (Q4) of the higher bound score (HBS) and of the dietary quality distance (DQD) had an elevated risk for ischemic stroke, with the corresponding hazard ratios (HRs) of 3.31 (95%CI: 1.57−6.97) and 2.26 (95%CI: 1.28−4.00), respectively, after adjustment for age, ethnic group, education level, marriage status, smoking and waist circumference, and the medical history of diabetes and hypertension at baseline. In addition, excessive intake levels (score 1−6) of cooking oils, excessive intake levels (score 1−6) of salt, and inadequate intake levels (score −12 to −7) of dietary variety were positively associated with an increased risk for ischemic stroke, with the multiple HRs of 3.00 (95%CI: 1.77−5.07), 2.03 (95%CI: 1.33−3.10) and 5.40 (95%CI: 1.70−17.20), respectively. Conclusions: Our results suggest that unfavorable dietary quality, including overall excessive consumption, excessive intake of cooking oils and salt, or under adequate dietary diversity, may increase the risk for ischemic stroke.
Collapse
Affiliation(s)
- Yingying Wang
- Key Laboratory of Public Health Safety, NHC Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai 200032, China; (Y.W.); (Y.C.); (C.F.)
| | - Xu Su
- Guizhou Province Center for Disease Prevention and Control, Guiyang 550004, China; (X.S.); (Y.W.); (J.Z.)
| | - Yun Chen
- Key Laboratory of Public Health Safety, NHC Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai 200032, China; (Y.W.); (Y.C.); (C.F.)
| | - Yiying Wang
- Guizhou Province Center for Disease Prevention and Control, Guiyang 550004, China; (X.S.); (Y.W.); (J.Z.)
| | - Jie Zhou
- Guizhou Province Center for Disease Prevention and Control, Guiyang 550004, China; (X.S.); (Y.W.); (J.Z.)
| | - Tao Liu
- Guizhou Province Center for Disease Prevention and Control, Guiyang 550004, China; (X.S.); (Y.W.); (J.Z.)
| | - Na Wang
- Key Laboratory of Public Health Safety, NHC Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai 200032, China; (Y.W.); (Y.C.); (C.F.)
| | - Chaowei Fu
- Key Laboratory of Public Health Safety, NHC Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai 200032, China; (Y.W.); (Y.C.); (C.F.)
| |
Collapse
|
8
|
Lee TK, Kim DW, Lee JC, Park CW, Sim H, Ahn JH, Park JH, Shin MC, Cho JH, Lee CH, Won MH, Choi SY. Changes in Cyclin D1, cdk4, and Their Associated Molecules in Ischemic Pyramidal Neurons in Gerbil Hippocampus after Transient Ischemia and Neuroprotective Effects of Ischemic Preconditioning by Keeping the Molecules in the Ischemic Neurons. BIOLOGY 2021; 10:biology10080719. [PMID: 34439951 PMCID: PMC8389197 DOI: 10.3390/biology10080719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/17/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Cyclin D1 and cyclin-dependent kinase 4 (cdk4) is implicated in neuronal death induced by various pathological conditions. Ischemic preconditioning (IPC) confers neuroprotective effect, but underlying mechanisms have been poorly addressed. In this study, IPC protected pyramidal neurons (cells) in gerbil hippocampus after transient ischemia. Additionally, IPC controlled expressions of cyclin D1, cdk4, phosphorylated retinoblastoma (p-Rb), and E2 promoter binding factor 1 (E2F1). In particular, the expression of p16INK4a was not different by IPC. These findings indicate that cyclin D1/cdk4-related signals may play important roles in events in neurons related to damage/death following ischemic insults. Especially, the preservation of p16INK4a by IPC may be crucial in attenuating neuronal death/damage or protecting neurons after brain ischemic insults. Abstract Inadequate activation of cell cycle proteins including cyclin D1 and cdk4 is involved in neuronal cell death induced by diverse pathological stresses, including transient global brain ischemia. The neuroprotective effect of ischemic preconditioning is well-established, but the underlying mechanism is still unknown. In this study, we examined changes in cyclin D1, cdk4, and related molecules in cells or neurons located in Cornu Ammonis 1 (CA1) of gerbil hippocampus after transient ischemia for 5 min (ischemia and reperfusion) and investigated the effects of IPC on these molecules after ischemia. Four groups were used in this study as follows: sham group, ischemia group, IPC plus (+) sham group, and IPC+ischemia group. IPC was developed by inducing 2-min ischemia at 24 h before 5-min ischemia (real ischemia). Most pyramidal cells located in CA1 of the ischemia group died five days after ischemia. CA1 pyramidal cells in the IPC+ischemia group were protected. In the ischemia group, the expressions of cyclin D1, cdk4, phosphorylated retinoblastoma (p-Rb), and E2F1 (a transcription factor regulated by p-Rb) were significantly altered in the pyramidal cells with time after ischemia; in the IPC+ischemia group, they were controlled at the level shown in the sham group. In particular, the expression of p16INK4a (an endogenous cdk inhibitor) in the ischemia group was reversely altered in the pyramidal cells; in the IPC+TI group, the expression of p16INK4a was not different from that shown in the sham group. Our current results indicate that cyclin D1/cdk4-related signals may have important roles in events in neurons related to damage/death following ischemia and reperfusion. In particular, the preservation of p16INK4a by IPC may be crucial in attenuating neuronal death/damage or protecting neurons after brain ischemic insults.
Collapse
Affiliation(s)
- Tae-Kyeong Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea;
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology and Research Institute of Oral Sciences, College of Dentistry, Kangnung-Wonju National University, Gangneung 25457, Korea;
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (J.-C.L.); (C.W.P.); (H.S.); (J.H.A.)
| | - Cheol Woo Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (J.-C.L.); (C.W.P.); (H.S.); (J.H.A.)
| | - Hyejin Sim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (J.-C.L.); (C.W.P.); (H.S.); (J.H.A.)
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (J.-C.L.); (C.W.P.); (H.S.); (J.H.A.)
- Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan 50510, Korea
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju 38066, Korea;
| | - Myoung Cheol Shin
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Korea; (M.C.S.); (J.H.C.)
| | - Jun Hwi Cho
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Korea; (M.C.S.); (J.H.C.)
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Korea;
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea; (J.-C.L.); (C.W.P.); (H.S.); (J.H.A.)
- Correspondence: (M.-H.W.); (S.Y.C.); Tel.: +82-33-250-8891 (M.-H.W.); +82-33-248-2112 (S.Y.C.); Fax: +82-33-256-1614 (M.-H.W.); +82-33-241-1463 (S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea;
- Correspondence: (M.-H.W.); (S.Y.C.); Tel.: +82-33-250-8891 (M.-H.W.); +82-33-248-2112 (S.Y.C.); Fax: +82-33-256-1614 (M.-H.W.); +82-33-241-1463 (S.Y.C.)
| |
Collapse
|
9
|
Kim SY, Park C, Kim MY, Ji SY, Hwangbo H, Lee H, Hong SH, Han MH, Jeong JW, Kim GY, Son CG, Cheong J, Choi YH. ROS-Mediated Anti-Tumor Effect of Coptidis Rhizoma against Human Hepatocellular Carcinoma Hep3B Cells and Xenografts. Int J Mol Sci 2021; 22:4797. [PMID: 33946527 PMCID: PMC8124566 DOI: 10.3390/ijms22094797] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/24/2022] Open
Abstract
Coptidis Rhizoma is the dried rhizome from the Coptis chinensis Franch. that has been shown to have a number of beneficial pharmacological properties including antioxidant, anti-inflammatory, and anti-cancer effects. However, the anti-cancer effects of Coptidis Rhizoma on hepatocellular carcinoma (HCC) remain unclear. In this study, we investigated the anti-cancer properties of Coptidis Rhizoma ethanol extract (CR) in HCC Hep3B cells and in a xenograft mouse model. Our results showed that the CR significantly inhibited cell growth and induced apoptosis in Hep3B cells through increased expression of Bcl-2 associated x-protein (Bax) and cleavage of poly-ADP ribose polymerase (PARP), reduced expression of Bcl-2, and activated caspases. CR also increased the generation of intracellular reactive oxygen species (ROS), which caused a loss of mitochondrial membrane potential (MMP, ΔΨm) and activation of the mitochondria-mediated intrinsic apoptosis pathway. Moreover, N-acetylcysteine (NAC), a ROS inhibitor, markedly blocked the effects of CR on apoptotic pathways. CR also induced the expression of light chain 3 (LC3)-I/II, a key autophagy regulator, whereas CR-mediated autophagy was significantly suppressed by NAC. In addition, pre-treatment with NAC perfectly attenuated the inhibition of cell invasion and migration of CR-stimulated Hep3B cells. Furthermore, oral administration of CR suppressed Hep3B tumor growth in xenograft mice without toxicity, alterations to body weight, or changes in hematological and biochemical profiles. Taken together, our findings suggest that CR has anti-tumor effects that result from ROS generation, and may be a potential pharmacological intervention for HCC.
Collapse
Affiliation(s)
- So Young Kim
- Anti-Aging Research Center, Dongeui University, Busan 47340, Korea; (S.Y.K.); (M.Y.K.); (S.Y.J.); (H.H.); (H.L.)
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Korea;
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea
| | - Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-Eui University, Busan 47340, Korea;
| | - Min Yeong Kim
- Anti-Aging Research Center, Dongeui University, Busan 47340, Korea; (S.Y.K.); (M.Y.K.); (S.Y.J.); (H.H.); (H.L.)
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Korea;
| | - Seon Yeong Ji
- Anti-Aging Research Center, Dongeui University, Busan 47340, Korea; (S.Y.K.); (M.Y.K.); (S.Y.J.); (H.H.); (H.L.)
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Korea;
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dongeui University, Busan 47340, Korea; (S.Y.K.); (M.Y.K.); (S.Y.J.); (H.H.); (H.L.)
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Korea;
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea
| | - Hyesook Lee
- Anti-Aging Research Center, Dongeui University, Busan 47340, Korea; (S.Y.K.); (M.Y.K.); (S.Y.J.); (H.H.); (H.L.)
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Korea;
| | - Su Hyun Hong
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Korea;
| | - Min Ho Han
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea;
| | - Jin-Woo Jeong
- Nakdonggang National Institute of Biological Resources, Sangju 17104, Korea;
| | - Gi-Young Kim
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea;
| | - Chang-Gue Son
- Institute of Bioscience & Integrative Medicine, Daejeon University, 176 split 75 Daedeokdae-ro Seo-gu, Daejeon 35235, Korea;
| | - JaeHun Cheong
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dongeui University, Busan 47340, Korea; (S.Y.K.); (M.Y.K.); (S.Y.J.); (H.H.); (H.L.)
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Korea;
| |
Collapse
|