1
|
Rohban R, Martins CP, Esni F. Advanced therapy to cure diabetes: mission impossible is now possible? Front Cell Dev Biol 2024; 12:1484859. [PMID: 39629270 PMCID: PMC11611888 DOI: 10.3389/fcell.2024.1484859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Cell and Gene therapy are referred to as advanced therapies that represent overlapping fields of regenerative medicine. They have similar therapeutic goals such as to modify cellular identity, improve cell function, or fight a disease. These two therapeutic avenues, however, possess major differences. While cell therapy involves introduction of new cells, gene therapy entails introduction or modification of genes. Furthermore, the aim of cell therapy is often to replace, or repair damaged tissue, whereas gene therapy is used typically as a preventive approach. Diabetes mellitus severely affects the quality of life of afflicted individuals and has various side effects including cardiovascular, ophthalmic disorders, and neuropathy while putting enormous economic pressure on both the healthcare system and the patient. In recent years, great effort has been made to develop cutting-edge therapeutic interventions for diabetes treatment, among which cell and gene therapies stand out. This review aims to highlight various cell- and gene-based therapeutic approaches leading to the generation of new insulin-producing cells as a topmost "panacea" for treating diabetes, while deliberately avoiding a detailed molecular description of these approaches. By doing so, we aim to target readers who are new to the field and wish to get a broad helicopter overview of the historical and current trends of cell- and gene-based approaches in β-cell regeneration.
Collapse
Affiliation(s)
- Rokhsareh Rohban
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Christina P. Martins
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Farzad Esni
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States
- UPMC Hillman Cancer Center, Pittsburgh, PA, United States
- McGowan Institute for regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Latypova AA, Yaremenko AV, Pechnikova NA, Minin AS, Zubarev IV. Magnetogenetics as a promising tool for controlling cellular signaling pathways. J Nanobiotechnology 2024; 22:327. [PMID: 38858689 PMCID: PMC11163773 DOI: 10.1186/s12951-024-02616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
Magnetogenetics emerges as a transformative approach for modulating cellular signaling pathways through the strategic application of magnetic fields and nanoparticles. This technique leverages the unique properties of magnetic nanoparticles (MNPs) to induce mechanical or thermal stimuli within cells, facilitating the activation of mechano- and thermosensitive proteins without the need for traditional ligand-receptor interactions. Unlike traditional modalities that often require invasive interventions and lack precision in targeting specific cellular functions, magnetogenetics offers a non-invasive alternative with the capacity for deep tissue penetration and the potential for targeting a broad spectrum of cellular processes. This review underscores magnetogenetics' broad applicability, from steering stem cell differentiation to manipulating neuronal activity and immune responses, highlighting its potential in regenerative medicine, neuroscience, and cancer therapy. Furthermore, the review explores the challenges and future directions of magnetogenetics, including the development of genetically programmed magnetic nanoparticles and the integration of magnetic field-sensitive cells for in vivo applications. Magnetogenetics stands at the forefront of cellular manipulation technologies, offering novel insights into cellular signaling and opening new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Anastasiia A Latypova
- Institute of Future Biophysics, Dolgoprudny, 141701, Russia
- Moscow Center for Advanced Studies, Moscow, 123592, Russia
| | - Alexey V Yaremenko
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Nadezhda A Pechnikova
- Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- Saint Petersburg Pasteur Institute, Saint Petersburg, 197101, Russia
| | - Artem S Minin
- M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russia
| | - Ilya V Zubarev
- Institute of Future Biophysics, Dolgoprudny, 141701, Russia.
| |
Collapse
|
3
|
Torabizadeh F, Talaei-Khozani T, Yaghobi A, Walker M, Mirzaei E. Enhancing chondrogenic differentiation of mesenchymal stem cells through synergistic effects of cellulose nanocrystals and plastic compression in collagen-based hydrogel for cartilage formation. Int J Biol Macromol 2024; 272:132848. [PMID: 38830491 DOI: 10.1016/j.ijbiomac.2024.132848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Collagen-based (COL) hydrogels could be a promising treatment option for injuries to the articular cartilage (AC) becuase of their similarity to AC native extra extracellular matrix. However, the high hydration of COL hydrogels poses challenges for AC's mechanical properties. To address this, we developed a hydrogel platform that incorporating cellulose nanocrystals (CNCs) within COL and followed by plastic compression (PC) procedure to expel the excessive fluid out. This approach significantly improved the mechanical properties of the hydrogels and enhanced the chondrogenic differentiation of mesenchymal stem cells (MSCs). Radially confined PC resulted in higher collagen fibrillar densities together with reducing fibril-fibril distances. Compressed hydrogels containing CNCs exhibited the highest compressive modulus and toughness. MSCs encapsulated in these hydrogels were initially affected by PC, but their viability improved after 7 days. Furthermore, the morphology of the cells and their secretion of glycosaminoglycans (GAGs) were positively influenced by the compressed COL-CNC hydrogel. Our findings shed light on the combined effects of PC and CNCs in improving the physical and mechanical properties of COL and their role in promoting chondrogenesis.
Collapse
Affiliation(s)
- Farid Torabizadeh
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefeh Yaghobi
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Matthew Walker
- Centre for the Cellular Microenvironment, University of Glasgow, UK
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Yang Y, Han K, Huang S, Wang K, Wang Y, Ding S, Zhang L, Zhang M, Xu B, Ma S, Wang Y, Wu S, Wang X. Revelation of adhesive proteins affecting cellular contractility through reference-free traction force microscopy. J Mater Chem B 2024; 12:3249-3261. [PMID: 38466580 DOI: 10.1039/d4tb00065j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Over the past few decades, the critical role played by cellular contractility associated mechanotransduction in the regulation of cell functions has been revealed. In this case, numerous biomaterials have been chemically or structurally designed to manipulate cell behaviors through the regulation of cellular contractility. In particular, adhesive proteins including fibronectin, poly-L-lysine and collagen type I have been widely applied in various biomaterials to improve cell adhesion. Therefore, clarifying the effects of adhesive proteins on cellular contractility has been valuable for the development of biomaterial design. In this study, reference-free traction force microscopy with a well-organized microdot array was designed and prepared to investigate the relationship between adhesive proteins, cellular contractility, and mechanotransduction. The results showed that fibronectin and collagen type I were able to promote the assembly of focal adhesions and further enhance cellular contraction and YAP activity. In contrast, although poly-L-lysine supported cell spreading and elongation, it was inefficient at inducing cell contractility and activating YAP. Additionally, compared with cellular morphogenesis, cellular contraction was essential for YAP activation.
Collapse
Affiliation(s)
- Yingjun Yang
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, P. R. China
| | - Kuankuan Han
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
| | - Siyuan Huang
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
- Department of Basic Medical Sciences, Sichuan Vocational College of Health and Rehabilitation, Zigong, China
| | - Kai Wang
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
| | - Yuchen Wang
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
| | - Shukai Ding
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
| | - Le Zhang
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
| | - Miao Zhang
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
| | - Bingshe Xu
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, P. R. China
- Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan, China
| | - Shufang Ma
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
| | - Yongtao Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China.
| | - Shengli Wu
- Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Xinlong Wang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
5
|
Arcuri S, Pennarossa G, Ledda S, Gandolfi F, Brevini TAL. Use of Epigenetic Cues and Mechanical Stimuli to Generate Blastocyst-Like Structures from Mammalian Skin Dermal Fibroblasts. Methods Mol Biol 2024; 2767:161-173. [PMID: 37199907 DOI: 10.1007/7651_2023_486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Mammalian embryogenesis is characterized by complex interactions between embryonic and extra-embryonic tissues that coordinate morphogenesis, coupling bio-mechanical and bio-chemical cues, to regulate gene expression and influence cell fate. Deciphering such mechanisms is essential to understand early embryogenesis, as well as to harness differentiation disorders. Currently, several early developmental events remain unclear, mainly due to ethical and technical limitations related to the use of natural embryos.Here, we describe a three-step approach to generate 3D spherical structures, arbitrarily defined "epiBlastoids," whose phenotype is remarkably similar to natural embryos. In the first step, adult dermal fibroblasts are converted into trophoblast-like cells, combining the use of 5-azacytidine, to erase the original cell phenotype, with an ad hoc induction protocol, to drive erased cells into the trophoblast lineage. In the second step, once again epigenetic erasing is applied, in combination with mechanosensing-related cues, to generate inner cell mass (ICM)-like spheroids. More specifically, erased cells are encapsulated in micro-bioreactors to promote 3D cell rearrangement and boost pluripotency. In the third step, chemically induced trophoblast-like cells and ICM-like spheroids are co-cultured in the same micro-bioreactors. The newly generated embryoids are then transferred to microwells, to encourage further differentiation and favor epiBlastoid formation. The procedure here described is a novel strategy for in vitro generation of 3D spherical structures, phenotypically similar to natural embryos. The use of easily accessible dermal fibroblasts and the lack of retroviral gene transfection make this protocol a promising strategy to study early embryogenesis as well as embryo disorders.
Collapse
Affiliation(s)
- Sharon Arcuri
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Centre for Stem Cell Research, Università degli Studi di Milano, Lodi, Italy
| | - Georgia Pennarossa
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Centre for Stem Cell Research, Università degli Studi di Milano, Lodi, Italy
| | - Sergio Ledda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Centre for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Centre for Stem Cell Research, Università degli Studi di Milano, Lodi, Italy
| |
Collapse
|
6
|
Li Y, Jiang W, Zhou X, Long Y, Sun Y, Zeng Y, Yao X. Advances in Regulating Cellular Behavior Using Micropatterns. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2023; 96:527-547. [PMID: 38161579 PMCID: PMC10751872 DOI: 10.59249/uxoh1740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Micropatterns, characterized as distinct physical microstructures or chemical adhesion matrices on substance surfaces, have emerged as a powerful tool for manipulating cellular activity. By creating specific extracellular matrix microenvironments, micropatterns can influence various cell behaviors, including orientation, proliferation, migration, and differentiation. This review provides a comprehensive overview of the latest advancements in the use of micropatterns for cell behavior regulation. It discusses the influence of micropattern morphology and coating on cell behavior and the underlying mechanisms. It also highlights future research directions in this field, aiming to inspire new investigations in materials medicine, regenerative medicine, and tissue engineering. The review underscores the potential of micropatterns as a novel approach for controlling cell behavior, which could pave the way for breakthroughs in various biomedical applications.
Collapse
Affiliation(s)
- Yizhou Li
- Institute of Biomedical Engineering, West China School
of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu,
P.R. China
- State Key Laboratory of Oral Diseases & National
Center for Stomatology & National Clinical Research Center for Oral
Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R.
China
| | - Wenli Jiang
- Institute of Biomedical Engineering, West China School
of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu,
P.R. China
| | - Xintong Zhou
- Institute of Biomedical Engineering, West China School
of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu,
P.R. China
| | - Yicen Long
- Institute of Biomedical Engineering, West China School
of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu,
P.R. China
| | - Yujia Sun
- Institute of Biomedical Engineering, West China School
of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu,
P.R. China
| | - Ye Zeng
- Institute of Biomedical Engineering, West China School
of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu,
P.R. China
| | - Xinghong Yao
- Radiation Oncology Key Laboratory of Sichuan Province,
Department of Radiotherapy, Sichuan Clinical Research Center for Cancer, Sichuan
Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital
of University of Electronic Science and Technology of China, Chengdu, P.R.
China
| |
Collapse
|
7
|
Ding L, Oh S, Shrestha J, Lam A, Wang Y, Radfar P, Warkiani ME. Scaling up stem cell production: harnessing the potential of microfluidic devices. Biotechnol Adv 2023; 69:108271. [PMID: 37844769 DOI: 10.1016/j.biotechadv.2023.108271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Stem cells are specialised cells characterised by their unique ability to both self-renew and transform into a wide array of specialised cell types. The widespread interest in stem cells for regenerative medicine and cultivated meat has led to a significant demand for these cells in both research and practical applications. Despite the growing need for stem cell manufacturing, the industry faces significant obstacles, including high costs for equipment and maintenance, complicated operation, and low product quality and yield. Microfluidic technology presents a promising solution to the abovementioned challenges. As an innovative approach for manipulating liquids and cells within microchannels, microfluidics offers a plethora of advantages at an industrial scale. These benefits encompass low setup costs, ease of operation and multiplexing, minimal energy consumption, and the added advantage of being labour-free. This review presents a thorough examination of the prominent microfluidic technologies employed in stem cell research and explores their promising applications in the burgeoning stem cell industry. It thoroughly examines how microfluidics can enhance cell harvesting from tissue samples, facilitate mixing and cryopreservation, streamline microcarrier production, and efficiently conduct cell separation, purification, washing, and final cell formulation post-culture.
Collapse
Affiliation(s)
- Lin Ding
- Smart MCs Pty Ltd, Ultimo, Sydney, 2007, Australia.
| | - Steve Oh
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore
| | - Jesus Shrestha
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Alan Lam
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore
| | - Yaqing Wang
- School of Biomedical Engineering, University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Payar Radfar
- Smart MCs Pty Ltd, Ultimo, Sydney, 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia..
| |
Collapse
|
8
|
Peng Y, Qu R, Yang Y, Fan T, Sun B, Khan AU, Wu S, Liu W, Zhu J, Chen J, Li X, Dai J, Ouyang J. Regulation of the integrin αVβ3- actin filaments axis in early osteogenic differentiation of human mesenchymal stem cells under cyclic tensile stress. Cell Commun Signal 2023; 21:308. [PMID: 37904190 PMCID: PMC10614380 DOI: 10.1186/s12964-022-01027-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/24/2022] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Integrins are closely related to mechanical conduction and play a crucial role in the osteogenesis of human mesenchymal stem cells. Here we wondered whether tensile stress could influence cell differentiation through integrin αVβ3. METHODS We inhibited the function of integrin αVβ3 of human mesenchymal stem cells by treating with c(RGDyk). Using cytochalasin D and verteporfin to inhibit polymerization of microfilament and function of nuclear Yes-associated protein (YAP), respectively. For each application, mesenchymal stem cells were loaded by cyclic tensile stress of 10% at 0.5 Hz for 2 h daily. Mesenchymal stem cells were harvested on day 7 post-treatment. Western blotting and quantitative RT-PCR were used to detect the expression of alkaline phosphatase (ALP), RUNX2, β-actin, integrin αVβ3, talin-1, vinculin, FAK, and nuclear YAP. Immunofluorescence staining detected vinculin, actin filaments, and YAP nuclear localization. RESULTS Cyclic tensile stress could increase the expression of ALP and RUNX2. Inhibition of integrin αVβ3 activation led to rearrangement of actin filaments and downregulated the expression of ALP, RUNX2 and promoted YAP nuclear localization. When microfilament polymerization was inhibited, ALP, RUNX2, and nuclear YAP nuclear localization decreased. Inhibition of YAP nuclear localization could reduce the expression of ALP and RUNX2. CONCLUSIONS Cyclic tensile stress promotes early osteogenesis of human mesenchymal stem cells via the integrin αVβ3-actin filaments axis. YAP nuclear localization participates in this process of human mesenchymal stem cells. Video Abstract.
Collapse
Affiliation(s)
- Yan Peng
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuchao Yang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tingyu Fan
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bing Sun
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Asmat Ullah Khan
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shutong Wu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenqing Liu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jinhui Zhu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Junxin Chen
- Shenzhen Andy New Material Technology Co., LTD, Shenzhen, 518106, China
| | - Xiaoqing Li
- Shenzhen Andy New Material Technology Co., LTD, Shenzhen, 518106, China
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
9
|
Nano porous polycarbonate membranes stimulating cell adhesion and promoting osteogenic differentiation and differential mRNA expression. Biochem Biophys Res Commun 2023; 638:147-154. [PMID: 36459878 DOI: 10.1016/j.bbrc.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Tissue engineering is thought to be the ideal therapy for bone defect reconstructive treatment. In this study, we present a method of utilizing micro/nano porous polycarbonate membranes (PCMs) as the extracellular matrix to cultivate the human periodontal ligament cells (hPDLCs) and investigate the osteogenic differentiation of those cells. We also compared the osteogenic enhancing abilities of different pore size PCMs. The pore diameters of the candidate membranes are 200 nm, 800 nm, 1200 nm, and 10 μm respectively, and their physical properties are identified. After seeding and cultivating on the PCMs, hPDLCs can be stimulated to undergo osteogenic differentiation, in which the 200 nm PCM is proved to have the most optimal osteo-induction ability. The results of in vivo experiments provide strong evidence suggesting that the hPDLCs stimulated by 200 nm PCM greatly accelerates the healing of bone reconstruction in mice skull defects, as well as promote the process of ectopic osteogenesis. RNA-sequencing was conducted to determine the differential mRNA expression profile during the osteogenesis process of hPDLCs on PCMs. GO and KEGG enrichment analysis were conducted to study the regulatory mechanisms, in which osteogenic marker expression such as Hippo, TGF-β, and PI3K-Akt signaling pathways were significantly up-regulated. The up-regulation indicates the promising potential of nano porous PCMs for promoting osteogenesis for bone regeneration applications. Ultimately, signaling pathways that promote osteogenesis warrants further exploration.
Collapse
|
10
|
Martinac B, Kung C. The force-from-lipid principle and its origin, a ‘ what is true for E. coli is true for the elephant’ refrain. J Neurogenet 2022; 36:44-54. [DOI: 10.1080/01677063.2022.2097674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Boris Martinac
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
- School of Clinical Medicine, UNSW Medicine & Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Ching Kung
- Laboratory of Molecular Biology and the Department of Genetics, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
11
|
Liu S, Kanchanawong P. Emerging interplay of cytoskeletal architecture, cytomechanics and pluripotency. J Cell Sci 2022; 135:275761. [PMID: 35726598 DOI: 10.1242/jcs.259379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pluripotent stem cells (PSCs) are capable of differentiating into all three germ layers and trophoblasts, whereas tissue-specific adult stem cells have a more limited lineage potency. Although the importance of the cytoskeletal architecture and cytomechanical properties in adult stem cell differentiation have been widely appreciated, how they contribute to mechanotransduction in PSCs is less well understood. Here, we discuss recent insights into the interplay of cellular architecture, cell mechanics and the pluripotent states of PSCs. Notably, the distinctive cytomechanical and morphodynamic profiles of PSCs are accompanied by a number of unique molecular mechanisms. The extent to which such mechanobiological signatures are intertwined with pluripotency regulation remains an open question that may have important implications in developmental morphogenesis and regenerative medicine.
Collapse
Affiliation(s)
- Shiying Liu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore 117411, Republic of Singapore
| |
Collapse
|
12
|
Shi H, Wu X, Sun S, Wang C, Vangelatos Z, Ash-Shakoor A, Grigoropoulos CP, Mather PT, Henderson JH, Ma Z. Profiling the responsiveness of focal adhesions of human cardiomyocytes to extracellular dynamic nano-topography. Bioact Mater 2022; 10:367-377. [PMID: 34901553 PMCID: PMC8636819 DOI: 10.1016/j.bioactmat.2021.08.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/17/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
Focal adhesion complexes function as the mediators of cell-extracellular matrix interactions to sense and transmit the extracellular signals. Previous studies have demonstrated that cardiomyocyte focal adhesions can be modulated by surface topographic features. However, the response of focal adhesions to dynamic surface topographic changes remains underexplored. To study this dynamic responsiveness of focal adhesions, we utilized a shape memory polymer-based substrate that can produce a flat-to-wrinkle surface transition triggered by an increase of temperature. Using this dynamic culture system, we analyzed three proteins (paxillin, vinculin and zyxin) from different layers of the focal adhesion complex in response to dynamic extracellular topographic change. Hence, we quantified the dynamic profile of cardiomyocyte focal adhesion in a time-dependent manner, which provides new understanding of dynamic cardiac mechanobiology.
Collapse
Affiliation(s)
- Huaiyu Shi
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, 13244, USA
- BioInspired Syracuse Institute for Materials and Living Systems, Syracuse University, Syracuse, NY, 13244, USA
| | - Xiangjun Wu
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, 13244, USA
- BioInspired Syracuse Institute for Materials and Living Systems, Syracuse University, Syracuse, NY, 13244, USA
| | - Shiyang Sun
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, 13244, USA
- BioInspired Syracuse Institute for Materials and Living Systems, Syracuse University, Syracuse, NY, 13244, USA
| | - Chenyan Wang
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, 13244, USA
- BioInspired Syracuse Institute for Materials and Living Systems, Syracuse University, Syracuse, NY, 13244, USA
| | - Zacharias Vangelatos
- Department of Mechanical Engineering, University of California, Berkeley, PA, 94720, USA
| | - Ariel Ash-Shakoor
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, 13244, USA
| | | | - Patrick T. Mather
- Department of Chemical Engineering, Bucknell University, Lewisburg, PA, 17837, USA
| | - James H. Henderson
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, 13244, USA
- BioInspired Syracuse Institute for Materials and Living Systems, Syracuse University, Syracuse, NY, 13244, USA
| | - Zhen Ma
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, 13244, USA
- BioInspired Syracuse Institute for Materials and Living Systems, Syracuse University, Syracuse, NY, 13244, USA
| |
Collapse
|
13
|
Beshay PE, Cortes-Medina MG, Menyhert MM, Song JW. The biophysics of cancer: emerging insights from micro- and nanoscale tools. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100056. [PMID: 35156093 PMCID: PMC8827905 DOI: 10.1002/anbr.202100056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer is a complex and dynamic disease that is aberrant both biologically and physically. There is growing appreciation that physical abnormalities with both cancer cells and their microenvironment that span multiple length scales are important drivers for cancer growth and metastasis. The scope of this review is to highlight the key advancements in micro- and nano-scale tools for delineating the cause and consequences of the aberrant physical properties of tumors. We focus our review on three important physical aspects of cancer: 1) solid mechanical properties, 2) fluid mechanical properties, and 3) mechanical alterations to cancer cells. Beyond posing physical barriers to the delivery of cancer therapeutics, these properties are also known to influence numerous biological processes, including cancer cell invasion and migration leading to metastasis, and response and resistance to therapy. We comment on how micro- and nanoscale tools have transformed our fundamental understanding of the physical dynamics of cancer progression and their potential for bridging towards future applications at the interface of oncology and physical sciences.
Collapse
Affiliation(s)
- Peter E Beshay
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210
| | | | - Miles M Menyhert
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
14
|
Sharma A, Clemens RA, Garcia O, Taylor DL, Wagner NL, Shepard KA, Gupta A, Malany S, Grodzinsky AJ, Kearns-Jonker M, Mair DB, Kim DH, Roberts MS, Loring JF, Hu J, Warren LE, Eenmaa S, Bozada J, Paljug E, Roth M, Taylor DP, Rodrigue G, Cantini P, Smith AW, Giulianotti MA, Wagner WR. Biomanufacturing in low Earth orbit for regenerative medicine. Stem Cell Reports 2021; 17:1-13. [PMID: 34971562 PMCID: PMC8758939 DOI: 10.1016/j.stemcr.2021.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023] Open
Abstract
Research in low Earth orbit (LEO) has become more accessible. The 2020 Biomanufacturing in Space Symposium reviewed space-based regenerative medicine research and discussed leveraging LEO to advance biomanufacturing for regenerative medicine applications. The symposium identified areas where financial investments could stimulate advancements overcoming technical barriers. Opportunities in disease modeling, stem-cell-derived products, and biofabrication were highlighted. The symposium will initiate a roadmap to a sustainable market for regenerative medicine biomanufacturing in space. This perspective summarizes the 2020 Biomanufacturing in Space Symposium, highlights key biomanufacturing opportunities in LEO, and lays the framework for a roadmap to regenerative medicine biomanufacturing in space.
Collapse
Affiliation(s)
- Arun Sharma
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | | | - Orquidea Garcia
- Johnson & Johnson 3D Printing Innovation & Customer Solutions, Johnson & Johnson Services, Inc., Irvine, CA, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute and Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Kelly A Shepard
- California Institute for Regenerative Medicine, Oakland, CA, USA
| | | | - Siobhan Malany
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Alan J Grodzinsky
- Departments of Biological Engineering, Mechanical Engineering and Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mary Kearns-Jonker
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Devin B Mair
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael S Roberts
- Center for the Advancement of Science in Space, Inc, Melbourne, FL, USA
| | | | - Jianying Hu
- Center for Computational Health IBM Research, Yorktown Heights, New York, NY, USA
| | - Lara E Warren
- Center for the Advancement of Science in Space, Inc, Melbourne, FL, USA
| | - Sven Eenmaa
- Center for the Advancement of Science in Space, Inc, Melbourne, FL, USA
| | - Joe Bozada
- Joseph M. Katz Graduate School of Business, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric Paljug
- Joseph M. Katz Graduate School of Business, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Gary Rodrigue
- Center for the Advancement of Science in Space, Inc, Melbourne, FL, USA
| | - Patrick Cantini
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| | - Amelia W Smith
- Center for the Advancement of Science in Space, Inc, Melbourne, FL, USA
| | - Marc A Giulianotti
- Center for the Advancement of Science in Space, Inc, Melbourne, FL, USA.
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA; Departments of Surgery, Bioengineering, Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Zhaosong M, Na F, Shuling G, Jiacheng L, Ran W. Heterogeneity affects the differentiation potential of dental follicle stem cells through the TGF-β signaling pathway. Bioengineered 2021; 12:12294-12307. [PMID: 34927533 PMCID: PMC8810196 DOI: 10.1080/21655979.2021.2009974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 01/17/2023] Open
Abstract
Adult mesenchymal stem cells play an important role in maintaining organ homeostasis owing to their unique ability to generate more specialized cell populations in a coordinated manner. Adult mesenchymal stem cells are heterogeneous, a feature that is essential for their functions. However, studies have not elucidated how heterogeneity of mesenchymal stem cells affects their differentiation capacity. The current study thus explored the heterogeneous Dental Follicle Stem Cells (DFSCs). A previous study by our research group reported that selecting sub-clones can cause artificial damage of the heterogeneous microenvironment of DFSCs. The finds showed a decrease in differentiation capacity of the three subclones, although the underlying mechanism was not elucidated. In this study, cells were harvested and prepared for gene expression microarray analysis. Sequence data was used in gene ontology and pathway enrichment analysis. The results showed that downregulation of the TGF-β signaling pathway was the main cause of changes in differentiation of sub-clones. Additional analyses revealed that the Hippo pathway, WNT pathway and signaling pathways regulating the pluripotency of stem cells were also implicated in these changes, through a cross talk with TGF-β signaling pathway through Bmp2, Bmp4, and Bambi. In vivo implantation experiments and osteogenic induction showed that differentiation capacity of DFSCs was significantly reduced in the sub-clones. In summary, the findings of the current study show that differentiation potential of DFSCs is correlated with the heterogeneous microenvironment and TGF-β signaling pathway significantly modulates these biological processes.
Collapse
Affiliation(s)
- Meng Zhaosong
- Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Fu Na
- Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Guo Shuling
- School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Liu Jiacheng
- School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Wei Ran
- School of Stomatology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
16
|
Soft surfaces promote astrocytic differentiation of mouse embryonic neural stem cells via dephosphorylation of MRLC in the absence of serum. Sci Rep 2021; 11:19574. [PMID: 34599241 PMCID: PMC8486742 DOI: 10.1038/s41598-021-99059-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/15/2021] [Indexed: 11/24/2022] Open
Abstract
Astrocytes, which can be obtained from neural stem cells (NSCs) by adding serum and/or recombinant proteins in culture media or by passaging NSCs repeatedly, are expected to be applicable in regenerative medicine for the treatment of neurodegenerative diseases. However, astrocytes obtained using existing methods are costly and have poor quality. The stiffness of culture surfaces has been reported to affect astrocytic differentiation of adult NSCs. However, the influence of surface stiffness on astrocytic differentiation of embryonic NSCs has not yet been reported. In this study, we showed that astrocytic differentiation of embryonic NSCs was increased on soft surfaces (1 kPa and 12 kPa) compared with the NSCs on stiff surfaces (2.8 GPa) in serum-free condition. Furthermore, di-phosphorylated myosin regulatory light chain (PP-MRLC) was decreased in embryonic NSCs cultured on the soft surfaces than the cells on the stiff surfaces. Additionally, astrocytic differentiation of embryonic NSCs was induced by a Ras homolog associated kinase (ROCK) inhibitor, which decreased PP-MRLC in NSCs. These results suggest that decreasing the PP-MRLC of embryonic NSCs on soft surfaces or treating NSCs with a ROCK inhibitor is a good method to prepare astrocytes for application in regenerative medicine.
Collapse
|
17
|
Alegre-Cebollada J. Protein nanomechanics in biological context. Biophys Rev 2021; 13:435-454. [PMID: 34466164 PMCID: PMC8355295 DOI: 10.1007/s12551-021-00822-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
How proteins respond to pulling forces, or protein nanomechanics, is a key contributor to the form and function of biological systems. Indeed, the conventional view that proteins are able to diffuse in solution does not apply to the many polypeptides that are anchored to rigid supramolecular structures. These tethered proteins typically have important mechanical roles that enable cells to generate, sense, and transduce mechanical forces. To fully comprehend the interplay between mechanical forces and biology, we must understand how protein nanomechanics emerge in living matter. This endeavor is definitely challenging and only recently has it started to appear tractable. Here, I introduce the main in vitro single-molecule biophysics methods that have been instrumental to investigate protein nanomechanics over the last 2 decades. Then, I present the contemporary view on how mechanical force shapes the free energy of tethered proteins, as well as the effect of biological factors such as post-translational modifications and mutations. To illustrate the contribution of protein nanomechanics to biological function, I review current knowledge on the mechanobiology of selected muscle and cell adhesion proteins including titin, talin, and bacterial pilins. Finally, I discuss emerging methods to modulate protein nanomechanics in living matter, for instance by inducing specific mechanical loss-of-function (mLOF). By interrogating biological systems in a causative manner, these new tools can contribute to further place protein nanomechanics in a biological context.
Collapse
|
18
|
Paredes O, Morales JA, Mendizabal AP, Romo-Vázquez R. Metacode: One code to rule them all. Biosystems 2021; 208:104486. [PMID: 34274462 DOI: 10.1016/j.biosystems.2021.104486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022]
Abstract
The code of codes or metacode is a microcosm where biological layers, as well as their codes, interact together allowing the continuity of information flow in organisms by increasing biological entities' complexity. Through this novel organic code, biological systems scale towards niches with higher informatic freedom building structures that increase the entropy in the universe. Code biology has developed a novel informational framework where biological entities strive themselves through the information flow carried out through organic codes consisting of two molecular or functional landscapes intertwined through arbitrary linkages via an adaptor whose nature is autonomous from molecular determinism. Here we will integrate genomic and epigenomic codes according to the evidence released in ENCODE (phase 3), psychENCODE and GTEx project, outlining the principles of the metacode, to address the continuous nature of biological systems and their inter-layered information flow. This novel complex metacode maps from very constrained sets of elements (i.e., regulation sites modulating gene expression) to new ones with greater freedom of decoding (i.e., a continuous cell phenotypic space). This leads to a new domain in code biology where biological systems are informatic attractors that navigate an energy metaspace through a complexity-noise balance, stalling in emergent niches where organic codes take meaning.
Collapse
Affiliation(s)
- Omar Paredes
- Computer Sciences Department, CUCEI, Universidad de Guadalajara, Mexico
| | | | - Adriana P Mendizabal
- Molecular Biology Laboratory, Farmacobiology Department, CUCEI, Universidad de Guadalajara, Mexico
| | | |
Collapse
|
19
|
Mattiassi S, Rizwan M, Grigsby CL, Zaw AM, Leong KW, Yim EKF. Enhanced efficiency of nonviral direct neuronal reprogramming on topographical patterns. Biomater Sci 2021; 9:5175-5191. [PMID: 34128504 DOI: 10.1039/d1bm00400j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nonviral direct neuronal reprogramming holds significant potential in the fields of tissue engineering and regenerative medicine. However, the issue of low reprogramming efficiency poses a major barrier to its application. We propose that topographical cues, which have been applied successfully to enhance lineage-directed differentiation and multipotent stem cell transdifferentiation, could improve nonviral direct neuronal reprogramming efficiency. To investigate, we used a polymer-BAM (Brn2, Ascl1, Myt1l) factor transfection polypex to reprogram primary mouse embryonic fibroblasts. Using a multiarchitecture chip, we screened for patterns that may improve transfection and/or subsequent induced neuron reprogramming efficiency. Selected patterns were then investigated further by analyzing β-tubulin III (TUJ1) and microtubule-associated protein 2 (MAP2) protein expression, cell morphology and electrophysiological function of induced neurons. Certain hierarchical topographies, with nanopatterns imprinted on micropatterns, significantly improved the percentage of TUJ1+ and MAP2+ cells. It is postulated that the microscale base pattern enhances initial BAM expression while the nanoscale sub-pattern promotes subsequent maturation. This is because the base pattern alone increased expression of TUJ1 and MAP2, while the nanoscale pattern was the only pattern yielding induced neurons capable of firing multiple action potentials. Nanoscale patterns also produced the highest fraction of cells showing spontaneous synaptic activity. Overall, reprogramming efficiency with one dose of polyplex on hierarchical patterns was comparable to that of five doses without topography. Thus, topography can enhance nonviral direct reprogramming of fibroblasts into induced neurons.
Collapse
Affiliation(s)
- Sabrina Mattiassi
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada.
| | | | | | | | | | | |
Collapse
|
20
|
Chen K, Wang Y, Deng X, Guo L, Wu C. Extracellular matrix stiffness regulates mitochondrial dynamics through PINCH-1- and kindlin-2-mediated signalling. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.crcbio.2021.100008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
D'Urso M, Kurniawan NA. Mechanical and Physical Regulation of Fibroblast-Myofibroblast Transition: From Cellular Mechanoresponse to Tissue Pathology. Front Bioeng Biotechnol 2020; 8:609653. [PMID: 33425874 PMCID: PMC7793682 DOI: 10.3389/fbioe.2020.609653] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Fibroblasts are cells present throughout the human body that are primarily responsible for the production and maintenance of the extracellular matrix (ECM) within the tissues. They have the capability to modify the mechanical properties of the ECM within the tissue and transition into myofibroblasts, a cell type that is associated with the development of fibrotic tissue through an acute increase of cell density and protein deposition. This transition from fibroblast to myofibroblast-a well-known cellular hallmark of the pathological state of tissues-and the environmental stimuli that can induce this transition have received a lot of attention, for example in the contexts of asthma and cardiac fibrosis. Recent efforts in understanding how cells sense their physical environment at the micro- and nano-scales have ushered in a new appreciation that the substrates on which the cells adhere provide not only passive influence, but also active stimulus that can affect fibroblast activation. These studies suggest that mechanical interactions at the cell-substrate interface play a key role in regulating this phenotype transition by changing the mechanical and morphological properties of the cells. Here, we briefly summarize the reported chemical and physical cues regulating fibroblast phenotype. We then argue that a better understanding of how cells mechanically interact with the substrate (mechanosensing) and how this influences cell behaviors (mechanotransduction) using well-defined platforms that decouple the physical stimuli from the chemical ones can provide a powerful tool to control the balance between physiological tissue regeneration and pathological fibrotic response.
Collapse
Affiliation(s)
- Mirko D'Urso
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Nicholas A. Kurniawan
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
22
|
Jovic TH, Combellack EJ, Jessop ZM, Whitaker IS. 3D Bioprinting and the Future of Surgery. Front Surg 2020; 7:609836. [PMID: 33330613 PMCID: PMC7728666 DOI: 10.3389/fsurg.2020.609836] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction: The disciplines of 3D bioprinting and surgery have witnessed incremental transformations over the last century. 3D bioprinting is a convergence of biology and engineering technologies, mirroring the clinical need to produce viable biological tissue through advancements in printing, regenerative medicine and materials science. To outline the current and future challenges of 3D bioprinting technology in surgery. Methods: A comprehensive literature search was undertaken using the MEDLINE, EMBASE and Google Scholar databases between 2000 and 2019. A narrative synthesis of the resulting literature was produced to discuss 3D bioprinting, current and future challenges, the role in personalized medicine and transplantation surgery and the global 3D bioprinting market. Results: The next 20 years will see the advent of bioprinted implants for surgical use, however the path to clinical incorporation will be fraught with an array of ethical, regulatory and technical challenges of which each must be surmounted. Previous clinical cases where regulatory processes have been bypassed have led to poor outcomes and controversy. Speculated roles of 3D bioprinting in surgery include the production of de novo organs for transplantation and use of autologous cellular material for personalized medicine. The promise of these technologies has sparked an industrial revolution, leading to an exponential growth of the 3D bioprinting market worth billions of dollars. Conclusion: Effective translation requires the input of scientists, engineers, clinicians, and regulatory bodies: there is a need for a collaborative effort to translate this impactful technology into a real-world healthcare setting and potentially transform the future of surgery.
Collapse
Affiliation(s)
- Thomas H Jovic
- Reconstructive Surgery and Regenerative Medicine Research Group, Swansea University, Swansea, United Kingdom.,Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| | - Emman J Combellack
- Reconstructive Surgery and Regenerative Medicine Research Group, Swansea University, Swansea, United Kingdom.,Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| | - Zita M Jessop
- Reconstructive Surgery and Regenerative Medicine Research Group, Swansea University, Swansea, United Kingdom.,Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| | - Iain S Whitaker
- Reconstructive Surgery and Regenerative Medicine Research Group, Swansea University, Swansea, United Kingdom.,Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| |
Collapse
|
23
|
Zenoozi S, Mohamad Sadeghi GM, Rafiee M. Synthesis and characterization of biocompatible semi-interpenetrating polymer networks based on polyurethane and cross-linked poly (acrylic acid). Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Qiu B, Bessler N, Figler K, Buchholz M, Rios AC, Malda J, Levato R, Caiazzo M. Bioprinting Neural Systems to Model Central Nervous System Diseases. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910250. [PMID: 34566552 PMCID: PMC8444304 DOI: 10.1002/adfm.201910250] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 05/09/2023]
Abstract
To date, pharmaceutical progresses in central nervous system (CNS) diseases are clearly hampered by the lack of suitable disease models. Indeed, animal models do not faithfully represent human neurodegenerative processes and human in vitro 2D cell culture systems cannot recapitulate the in vivo complexity of neural systems. The search for valuable models of neurodegenerative diseases has recently been revived by the addition of 3D culture that allows to re-create the in vivo microenvironment including the interactions among different neural cell types and the surrounding extracellular matrix (ECM) components. In this review, the new challenges in the field of CNS diseases in vitro 3D modeling are discussed, focusing on the implementation of bioprinting approaches enabling positional control on the generation of the 3D microenvironments. The focus is specifically on the choice of the optimal materials to simulate the ECM brain compartment and the biofabrication technologies needed to shape the cellular components within a microenvironment that significantly represents brain biochemical and biophysical parameters.
Collapse
Affiliation(s)
- Boning Qiu
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| | - Nils Bessler
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25Utrecht3584 CSThe Netherlands
| | - Kianti Figler
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| | - Maj‐Britt Buchholz
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25Utrecht3584 CSThe Netherlands
| | - Anne C. Rios
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25Utrecht3584 CSThe Netherlands
| | - Jos Malda
- Department of Orthopaedics and Regenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584CXThe Netherlands
- Department of Equine SciencesFaculty of Veterinary MedicineUtrecht UniversityYalelaan 112Utrecht3584CXThe Netherlands
| | - Riccardo Levato
- Department of Orthopaedics and Regenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584CXThe Netherlands
- Department of Equine SciencesFaculty of Veterinary MedicineUtrecht UniversityYalelaan 112Utrecht3584CXThe Netherlands
| | - Massimiliano Caiazzo
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples “Federico II”Via Pansini 5Naples80131Italy
| |
Collapse
|
25
|
Numerical Methods for the Design and Description of In Vitro Expansion Processes of Human Mesenchymal Stem Cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 177:185-228. [PMID: 33090237 DOI: 10.1007/10_2020_147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Human mesenchymal stem cells (hMSCs) are a valuable source of cells for clinical applications (e.g., treatment of acute myocardial infarction or inflammatory diseases), especially in the field of regenerative medicine. However, for autologous (patient-specific) and allogeneic (off-the-shelf) hMSC-based therapies, in vitro expansion is necessary prior to the clinical application in order to achieve the required cell numbers. Safe, reproducible, and economic in vitro expansion of hMSCs for autologous and allogeneic therapies can be problematic because the cell material is restricted and the cells are sensitive to environmental changes. It is beneficial to collect detailed information on the hydrodynamic conditions and cell growth behavior in a bioreactor system, in order to develop a so called "Digital Twin" of the cultivation system and expansion process. Numerical methods, such as Computational Fluid Dynamics (CFD) which has become widely used in the biotech industry for studying local characteristics within bioreactors or kinetic growth modelling, provide possible solutions for such tasks.In this review, we will present the current state-of-the-art for the in vitro expansion of hMSCs. Different numerical tools, including numerical fluid flow simulations and cell growth modelling approaches for hMSCs, will be presented. In addition, a case study demonstrating the applicability of CFD and kinetic growth modelling for the development of an microcarrier-based hMSC process will be shown.
Collapse
|
26
|
Myocardin-Related Transcription Factor A (MRTF-A) Regulates the Balance between Adipogenesis and Osteogenesis of Human Adipose Stem Cells. Stem Cells Int 2020; 2020:8853541. [PMID: 33029150 PMCID: PMC7527895 DOI: 10.1155/2020/8853541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
Previous studies have demonstrated that myocardin-related transcription factor A (MRTF-A) generates a link between the dynamics of the actin cytoskeleton and gene expression with its coregulator, serum response factor (SRF). MRTF-A has also been suggested as a regulator of stem cell differentiation. However, the role of MRTF-A in human mesenchymal stem cell differentiation remains understudied. We aimed to elucidate whether MRTF-A is a potential regulator of human adipose stem cell (hASC) differentiation towards adipogenic and osteogenic lineages. To study the role of MRTF-A activity in the differentiation process, hASCs were cultured in adipogenic and osteogenic media supplemented with inhibitor molecules CCG-1423 or CCG-100602 that have been shown to block the expression of MRTF-A/SRF-activated genes. Our results of image-based quantification of Oil Red O stained lipid droplets and perilipin 1 staining denote that MRTF-A inhibition enhanced the adipogenic differentiation. On the contrary, MRTF-A inhibition led to diminished activity of an early osteogenic marker alkaline phosphatase, and export of extracellular matrix (ECM) proteins collagen type I and osteopontin. Also, quantitative Alizarin Red staining representing ECM mineralization was significantly decreased under MRTF-A inhibition. Image-based analysis of Phalloidin staining revealed that MRTF-A inhibition reduced the F-actin formation and parallel orientation of the actin filaments. Additionally, MRTF-A inhibition affected the protein amounts of α-smooth muscle actin (α-SMA), myosin light chain (MLC), and phosphorylated MLC suggesting that MRTF-A would regulate differentiation through SRF activity. Our results strongly indicate that MRTF-A is an important regulator of the balance between osteogenesis and adipogenesis of hASCs through its role in mediating the cytoskeletal dynamics. These results provide MRTF-A as a new interesting target for guiding the stem cell differentiation in tissue engineering applications for regenerative medicine.
Collapse
|
27
|
Ranjbar HA, Nourany M, Mollavali M, Noormohammadi F, Jafari S. Stimuli‐responsive polyurethane bionanocomposites of poly(ethylene glycol)/poly(ε‐caprolactone) and [poly(ε‐caprolactone)‐grafted‐] cellulose nanocrystals. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Mohammad Nourany
- Polymer Engineering and Color Technology Amirkabir University of Technology Tehran Iran
| | - Majid Mollavali
- Department of Chemical Engineering, Faculty of Engineering Ardakan University Ardakan Iran
| | - Fatemeh Noormohammadi
- Polymer Engineering and Color Technology Amirkabir University of Technology Tehran Iran
| | - Safora Jafari
- Polymer Engineering and Color Technology Amirkabir University of Technology Tehran Iran
| |
Collapse
|
28
|
Ayuningtyas FD, Kim MH, Kino-Oka M. Muscle lineage switching by migratory behaviour-driven epigenetic modifications of human mesenchymal stem cells on a dendrimer-immobilized surface. Acta Biomater 2020; 106:170-180. [PMID: 32092429 DOI: 10.1016/j.actbio.2020.02.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/27/2022]
Abstract
Understanding of the fundamental mechanisms of epigenetic modification in the migration of human mesenchymal stem cells (hMSCs) provides surface design strategies for controlling self-renewal and lineage commitment. We investigated the mechanism underlying muscle lineage switching of hMSCs by cellular and nuclear deformation during cell migration on polyamidoamine dendrimer surfaces. With an increase in the dendrimer generation number, cells exhibited increased nuclear deformation and decreased lamin A/C and lamin B1 expression. Analysis of two repressive modifications (H3K9me3 and H3K27me3) and one activating modification (H3K9ac) revealed that H3K9me3 was suppressed, and H3K9ac and H3K27me3 were upregulated in the cultures on a higher-generation dendrimer surface. This induced significant hMSC lineage switching to smooth, skeletal, and cardiac muscle lineages. Thus, reorganizations of the nuclear lamina and cytoskeleton related to migration changes on dendrimer surfaces are responsible for the integrated regulation of histone modifications in hMSCs, thereby shifting the cells from the multipotent state to muscle lineages. These findings improve our understanding of the role of epigenetic modification in cell migration and provide new insights into how designed surfaces can be applied as cell-instructive materials in the field of biomaterial-guided differentiation of hMSCs to different cell types. STATEMENT OF SIGNIFICANCE: Stem cell engineering strategies currently applied the mechanical cues that emerge from cellular microenvironment to regulate stem cell behaviour. This study significantly improved our understanding of the mechanotransduction mechanism involving cell-ECM and cytoskeleton-nucleoskeleton interactions, and of nuclear genome regulation based on cellular responses to biomaterial modifications. The new insights into how the physical environment on a culture surface influences cell behaviour improve our understanding of mechanical control mechanisms of the interactions of cells with the extracellular environment. Our findings are also expected to contribute to and play an essential role in the development of future material strategies for creating artificial cell-instructive niches.
Collapse
Affiliation(s)
- Fitria Dwi Ayuningtyas
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
29
|
Castilla-Casadiego DA, Reyes-Ramos AM, Domenech M, Almodovar J. Effects of Physical, Chemical, and Biological Stimulus on h-MSC Expansion and Their Functional Characteristics. Ann Biomed Eng 2020; 48:519-535. [PMID: 31705365 PMCID: PMC6952531 DOI: 10.1007/s10439-019-02400-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/30/2019] [Indexed: 01/10/2023]
Abstract
Human adult mesenchymal stem or stromal cells (h-MSC) therapy has gained considerable attention due to the potential to treat or cure diseases given their immunosuppressive properties and tissue regeneration capabilities. Researchers have explored diverse strategies to promote high h-MSC production without losing functional characteristics or properties. Physical stimulus including stiffness, geometry, and topography, chemical stimulus, like varying the surface chemistry, and biochemical stimuli such as cytokines, hormones, small molecules, and herbal extracts have been studied but have yet to be translated to industrial manufacturing practice. In this review, we describe the role of those stimuli on h-MSC manufacturing, and how these stimuli positively promote h-MSC properties, impacting the cell manufacturing field for cell-based therapies. In addition, we discuss other process considerations such as bioreactor design, good manufacturing practice, and the importance of the cell donor and ethics factors for manufacturing potent h-MSC.
Collapse
Affiliation(s)
- David A Castilla-Casadiego
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA
| | - Ana M Reyes-Ramos
- Department of Chemical Engineering, University of Puerto Rico Mayagüez, Call Box 9000, Mayagüez, PR, 00681-9000, USA
| | - Maribella Domenech
- Department of Chemical Engineering, University of Puerto Rico Mayagüez, Call Box 9000, Mayagüez, PR, 00681-9000, USA
| | - Jorge Almodovar
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA.
| |
Collapse
|
30
|
Rizwan M, Yao Y, Gorbet MB, Tse J, Anderson DEJ, Hinds MT, Yim EKF. One-Pot Covalent Grafting of Gelatin on Poly(Vinyl Alcohol) Hydrogel to Enhance Endothelialization and Hemocompatibility for Synthetic Vascular Graft Applications. ACS APPLIED BIO MATERIALS 2020; 3:693-703. [PMID: 32656504 PMCID: PMC7351135 DOI: 10.1021/acsabm.9b01026] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cardiovascular diseases remain the leading cause of death worldwide. Patency rates of clinically-utilized small diameter synthetic vascular grafts such as Dacron® and expanded polytetrafluoroethylene (ePTFE) to treat cardiovascular disease are inadequate due to lack of endothelialization. Sodium trimetaphosphate (STMP) crosslinked PVA could be potentially employed as blood-compatible small diameter vascular graft for the treatment of cardiovascular disease. However, PVA severely lacks cell adhesion properties, and the efforts to endothelialize STMP-PVA have been insufficient to produce a functioning endothelium. To this end, we developed a one-pot method to conjugate cell-adhesive protein via hydroxyl-to-amine coupling using carbonyldiimidazole by targeting residual hydroxyl groups on crosslinked STMP-PVA hydrogel. Primary human umbilical vascular endothelial cells (HUVECs) demonstrated significantly improved cells adhesion, viability and spreading on modified PVA. Cells formed a confluent endothelial monolayer, and expressed vinculin focal adhesions, cell-cell junction protein zonula occludens 1 (ZO1), and vascular endothelial cadherin (VE-Cadherin). Extensive characterization of the blood-compatibility was performed on modified PVA hydrogel by examining platelet activation, platelet microparticle formation, platelet CD61 and CD62P expression, and thrombin generation, which showed that the modified PVA was blood-compatible. Additionally, grafts were tested under whole, flowing blood without any anticoagulants in a non-human primate, arteriovenous shunt model. No differences were seen in platelet or fibrin accumulation between the modified-PVA, unmodified PVA or clinical, ePTFE controls. This study presents a significant step in the modification of PVA for the development of next generation in situ endothelialized synthetic vascular grafts.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Yuan Yao
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Maud B. Gorbet
- Systems Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
- Centre for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - John Tse
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Deirdre E. J. Anderson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Monica T. Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Evelyn K. F. Yim
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| |
Collapse
|
31
|
Lei Y, Goldblatt ZE, Billiar KL. Micromechanical Design Criteria for Tissue-Engineering Biomaterials. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00083-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Jain D, Mattiassi S, Goh EL, Yim EKF. Extracellular matrix and biomimetic engineering microenvironment for neuronal differentiation. Neural Regen Res 2020; 15:573-585. [PMID: 31638079 PMCID: PMC6975142 DOI: 10.4103/1673-5374.266907] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Extracellular matrix (ECM) influences cell differentiation through its structural and biochemical properties. In nervous system, neuronal behavior is influenced by these ECMs structures which are present in a meshwork, fibrous, or tubular forms encompassing specific molecular compositions. In addition to contact guidance, ECM composition and structures also exert its effect on neuronal differentiation. This short report reviewed the native ECM structure and composition in central nervous system and peripheral nervous system, and their impact on neural regeneration and neuronal differentiation. Using topographies, stem cells have been differentiated to neurons. Further, focussing on engineered biomimicking topographies, we highlighted the role of anisotropic topographies in stem cell differentiation to neurons and its recent temporal application for efficient neuronal differentiation.
Collapse
Affiliation(s)
- Deepak Jain
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Sabrina Mattiassi
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Eyleen L Goh
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, Singapore
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
33
|
Abdelrazik H, Giordano E, Barbanti Brodano G, Griffoni C, De Falco E, Pelagalli A. Substantial Overview on Mesenchymal Stem Cell Biological and Physical Properties as an Opportunity in Translational Medicine. Int J Mol Sci 2019; 20:5386. [PMID: 31671788 PMCID: PMC6862078 DOI: 10.3390/ijms20215386] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSC) have piqued worldwide interest for their extensive potential to treat a large array of clinical indications, their unique and controversial immunogenic and immune modulatory properties allowing ample discussions and debates for their possible applications. Emerging data demonstrating that the interaction of biomaterials and physical cues with MSC can guide their differentiation into specific cell lineages also provide new interesting insights for further MSC manipulation in different clinical applications. Moreover, recent discoveries of some regulatory molecules and signaling pathways in MSC niche that may regulate cell fate to distinct lineage herald breakthroughs in regenerative medicine. Although the advancement and success in the MSC field had led to an enormous increase in the amount of ongoing clinical trials, we still lack defined clinical therapeutic protocols. This review will explore the exciting opportunities offered by human and animal MSC, describing relevant biological properties of these cells in the light of the novel emerging evidence mentioned above while addressing the limitations and challenges MSC are still facing.
Collapse
Affiliation(s)
- Heba Abdelrazik
- Department of Clinical Pathology, Cairo University, Cairo 1137, Egypt.
- Department of Diagnosis, central laboratory department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, 16131 Genoa, Italy.
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, 47522 Cesena, Italy.
| | - Giovanni Barbanti Brodano
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Cristiana Griffoni
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Elena De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
- Mediterranea Cardiocentro, 80122 Napoli, Italy.
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy.
- Institute of Biostructures and Bioimages (IBB), National Research Council (CNR), 80131 Naples, Italy.
| |
Collapse
|
34
|
Marrese M, Lonardoni D, Boi F, van Hoorn H, Maccione A, Zordan S, Iannuzzi D, Berdondini L. Investigating the Effects of Mechanical Stimulation on Retinal Ganglion Cell Spontaneous Spiking Activity. Front Neurosci 2019; 13:1023. [PMID: 31611765 PMCID: PMC6776634 DOI: 10.3389/fnins.2019.01023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/09/2019] [Indexed: 01/03/2023] Open
Abstract
Mechanical forces are increasingly recognized as major regulators of several physiological processes at both the molecular and cellular level; therefore, a deep understanding of the sensing of these forces and their conversion into electrical signals are essential for studying the mechanosensitive properties of soft biological tissues. To contribute to this field, we present a dual-purpose device able to mechanically stimulate retinal tissue and to record the spiking activity of retinal ganglion cells (RGCs). This new instrument relies on combining ferrule-top micro-indentation, which provides local measurements of viscoelasticity, with high-density multi-electrode array (HD-MEAs) to simultaneously record the spontaneous activity of the retina. In this paper, we introduce this instrument, describe its technical characteristics, and present a proof-of-concept experiment that shows how RGC spiking activity of explanted mice retinas respond to mechanical micro-stimulations of their photoreceptor layer. The data suggest that, under specific conditions of indentation, the retina perceive the mechanical stimulation as modulation of the visual input, besides the longer time-scale of activation, and the increase in spiking activity is not only localized under the indentation probe, but it propagates across the retinal tissue.
Collapse
Affiliation(s)
- Marica Marrese
- LaserLab, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Davide Lonardoni
- NetS3 Laboratory, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Fabio Boi
- NetS3 Laboratory, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Hedde van Hoorn
- LaserLab, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Alessandro Maccione
- NetS3 Laboratory, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Stefano Zordan
- NetS3 Laboratory, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Davide Iannuzzi
- LaserLab, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Luca Berdondini
- NetS3 Laboratory, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
35
|
Guo L, Wang R, Zhang K, Yuan J, Wang J, Wang X, Ma J, Wu C. A PINCH-1-Smurf1 signaling axis mediates mechano-regulation of BMPR2 and stem cell differentiation. J Cell Biol 2019; 218:3773-3794. [PMID: 31578224 PMCID: PMC6829670 DOI: 10.1083/jcb.201902022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/30/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022] Open
Abstract
Mechanical cues from extracellular matrix exert strong effects on stem cell differentiation. This study finds that a signaling axis consisting of PINCH-1, Smurf1, and BMPR2 senses mechanical signals from extracellular matrix and regulates BMP signaling and mesenchymal stem cell differentiation. Mechano-environment plays multiple critical roles in the control of mesenchymal stem cell (MSC) fate decision, but the underlying signaling mechanisms remain undefined. We report here a signaling axis consisting of PINCH-1, SMAD specific E3 ubiquitin protein ligase 1 (Smurf1), and bone morphogenetic protein type 2 receptor (BMPR2) that links mechano-environment to MSC fate decision. PINCH-1 interacts with Smurf1, which inhibits the latter from interacting with BMPR2 and consequently suppresses BMPR2 degradation, resulting in augmented BMP signaling and MSC osteogenic differentiation (OD). Extracellular matrix (ECM) stiffening increases PINCH-1 level and consequently activates this signaling axis. Depletion of PINCH-1 blocks stiff ECM-induced BMP signaling and OD, whereas overexpression of PINCH-1 overrides signals from soft ECM and promotes OD. Finally, perturbation of either Smurf1 or BMPR2 expression is sufficient to block the effects of PINCH-1 on BMP signaling and MSC fate decision. Our findings delineate a key signaling mechanism through which mechano-environment controls BMPR2 level and MSC fate decision.
Collapse
Affiliation(s)
- Ling Guo
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Rong Wang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Kuo Zhang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jifan Yuan
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jiaxin Wang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xiaoxia Wang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jianfei Ma
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
36
|
Padhi A, Nain AS. ECM in Differentiation: A Review of Matrix Structure, Composition and Mechanical Properties. Ann Biomed Eng 2019; 48:1071-1089. [PMID: 31485876 DOI: 10.1007/s10439-019-02337-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022]
Abstract
Stem cell regenerative potential owing to the capacity to self-renew as well as differentiate into other cell types is a promising avenue in regenerative medicine. Stem cell niche not only provides physical scaffolding but also possess instructional capacity as it provides a milieu of biophysical and biochemical cues. Extracellular matrix (ECM) has been identified as a major dictator of stem cell lineage, thus understanding the structure of in vivo ECM pertaining to specific tissue differentiation will aid in devising in vitro strategies to improve the differentiation efficiency. In this review, we summarize details about the native architecture, composition and mechanical properties of in vivo ECM of the early embryonic stages and the later adult stages. Native ECM from adult tissues categorized on their origin from respective germ layers are discussed while engineering techniques employed to facilitate differentiation of stem cells into particular lineages are noted. Overall, we emphasize that in vitro strategies need to integrate tissue specific ECM biophysical cues for developing accurate artificial environments for optimizing stem cell differentiation.
Collapse
Affiliation(s)
- Abinash Padhi
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amrinder S Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
37
|
Biophysical implications of Maxwell stress in electric field stimulated cellular microenvironment on biomaterial substrates. Biomaterials 2019; 209:54-66. [DOI: 10.1016/j.biomaterials.2019.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 01/09/2023]
|
38
|
Ambrosini A, Rayer M, Monier B, Suzanne M. Mechanical Function of the Nucleus in Force Generation during Epithelial Morphogenesis. Dev Cell 2019; 50:197-211.e5. [PMID: 31204174 PMCID: PMC6658619 DOI: 10.1016/j.devcel.2019.05.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/11/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022]
Abstract
Mechanical forces are critical regulators of cell shape changes and developmental morphogenetic processes. Forces generated along the epithelium apico-basal cell axis have recently emerged as essential for tissue remodeling in three dimensions. Yet the cellular machinery underlying those orthogonal forces remains poorly described. We found that during Drosophila leg folding cells eventually committed to die produce apico-basal forces through the formation of a dynamic actomyosin contractile tether connecting the apical surface to a basally relocalized nucleus. We show that the nucleus is anchored to basal adhesions by a basal F-actin network and constitutes an essential component of the force-producing machinery. Finally, we demonstrate force transmission to the apical surface and the basal nucleus by laser ablation. Thus, this work reveals that the nucleus, in addition to its role in genome protection, actively participates in mechanical force production and connects the contractile actomyosin cytoskeleton to basal adhesions.
Collapse
Affiliation(s)
- Arnaud Ambrosini
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Mégane Rayer
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Bruno Monier
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France.
| | - Magali Suzanne
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France.
| |
Collapse
|
39
|
Moghaddam MM, Bonakdar S, Shariatpanahi MR, Shokrgozar MA, Faghihi S. The Effect of Physical Cues on the Stem Cell Differentiation. Curr Stem Cell Res Ther 2019; 14:268-277. [DOI: 10.2174/1574888x14666181227120706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/05/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022]
Abstract
Development of multicellular organisms is a very complex and organized process during which cells respond to various factors and features in extracellular environments. It has been demonstrated that during embryonic evolvement, under certain physiological or experimental conditions, unspecialized cells or stem cells can be induced to become tissue or organ-specific cells with special functions. Considering the importance of physical cues in stem cell fate, the present study reviews the role of physical factors in stem cells differentiation and discusses the molecular mechanisms associated with these factors.
Collapse
Affiliation(s)
- Mehrdad M. Moghaddam
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, 14965/161, Iran
| | - Shahin Bonakdar
- National Cell Bank, Pasteur Institute of Iran, Tehran 3159915111, Iran
| | | | | | - Shahab Faghihi
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, 14965/161, Iran
| |
Collapse
|
40
|
Panchamanon P, Pavasant P, Leethanakul C. Periostin plays role in force-induced stem cell potential by periodontal ligament stem cells. Cell Biol Int 2019; 43:506-515. [PMID: 30761669 DOI: 10.1002/cbin.11116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/10/2019] [Indexed: 01/07/2023]
Abstract
Mechanical stimuli have been shown to play an important role in directing stem cell fate and maintenance of tissue homeostasis. One of the functions of the mechanoresponsive tissue periodontal ligament (PDL) is to withstand the functional forces within the oral cavity. Periodontal ligament stem cells (PDLSCs) derived from periodontal tissue have been demonstrated to be able to respond directly to mechanical forces. However, the mechanisms of action of mechanical force on PDLSCs are not totally understood. The aim of this study was to investigate the mechanisms by which compressive force affects PDLSCs, especially their stemness properties. PDLSCs were established from extracted human third molars; their stem cell characteristics were validated by detecting the expression of stem cell markers and confirming their ability to differentiate into osteogenic and adipogenic lineages. PDLSCs were subjected to various magnitudes of static compressive force (0 [control], 0.5, 1.0, 1.5, or 2 g/cm2 ). Application of 1.0 g/cm2 compressive force significantly upregulated a panel of stem cell marker genes, including NANOG and OCT4. Conversely, higher force magnitudes downregulated these genes. Mechanical loading also upregulated periostin, a matrix protein that plays important roles in tissue morphogenesis. Interestingly, knockdown of periostin using siRNA abolished force-induced stem cell marker expression in PDLSCs. This study suggests a proper magnitude of compressive force could be one important factor involved in the modulation of the pluripotency of PDLSCs through the action of periostin. The precise mechanism by which periostin regulates stemness requires further detailed investigation.
Collapse
Affiliation(s)
- Panita Panchamanon
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Prasit Pavasant
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Henry-Dunant Rd, Pathumwan, Bangkok 10330, Thailand
| | - Chidchanok Leethanakul
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| |
Collapse
|
41
|
Oksdath M, Perrin SL, Bardy C, Hilder EF, DeForest CA, Arrua RD, Gomez GA. Review: Synthetic scaffolds to control the biochemical, mechanical, and geometrical environment of stem cell-derived brain organoids. APL Bioeng 2018; 2:041501. [PMID: 31069322 PMCID: PMC6481728 DOI: 10.1063/1.5045124] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/31/2018] [Indexed: 01/16/2023] Open
Abstract
Stem cell-derived brain organoids provide a powerful platform for systematic studies of tissue functional architecture and the development of personalized therapies. Here, we review key advances at the interface of soft matter and stem cell biology on synthetic alternatives to extracellular matrices. We emphasize recent biomaterial-based strategies that have been proven advantageous towards optimizing organoid growth and controlling the geometrical, biomechanical, and biochemical properties of the organoid's three-dimensional environment. We highlight systems that have the potential to increase the translational value of region-specific brain organoid models suitable for different types of manipulations and high-throughput applications.
Collapse
Affiliation(s)
- Mariana Oksdath
- Centre for Cancer Biology, South Australia Pathology and University of South Australia, Adelaide 5001, Australia
| | - Sally L. Perrin
- Centre for Cancer Biology, South Australia Pathology and University of South Australia, Adelaide 5001, Australia
| | | | - Emily F. Hilder
- Future Industries Institute, University of South Australia, Mawson Lakes 5095, Australia
| | - Cole A. DeForest
- Department of Chemical Engineering and Department of Bioengineering, University of Washington, Seattle, Washington 98195-1750, USA
| | - R. Dario Arrua
- Future Industries Institute, University of South Australia, Mawson Lakes 5095, Australia
| | - Guillermo A. Gomez
- Centre for Cancer Biology, South Australia Pathology and University of South Australia, Adelaide 5001, Australia
| |
Collapse
|
42
|
You E, Huh YH, Lee J, Ko P, Jeong J, Keum S, Kim J, Kwon A, Song WK, Rhee S. Downregulation of SPIN90 promotes fibroblast activation via periostin-FAK-ROCK signaling module. J Cell Physiol 2018; 234:9216-9224. [PMID: 30341913 DOI: 10.1002/jcp.27600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Abstract
Alterations in mechanical properties in the extracellular matrix are modulated by myofibroblasts and are required for progressive fibrotic diseases. Recently, we reported that fibroblasts depleted of SPIN90 showed enhanced differentiation into myofibroblasts via increased acetylation of microtubules in the soft matrix; the mechanisms of the underlying signaling network, however, remain unclear. In this study, we determine the effect of depletion of SPIN90 on FAK/ROCK signaling modules. Transcriptome analysis of Spin90 KO mouse embryonic fibroblasts (MEF) and fibroblasts activated by TGF-β revealed that Postn is the most significantly upregulated gene. Knockdown of Postn by small interfering RNA suppressed cell adhesion and myofibroblastic differentiation and downregulated FAK activity in Spin90 KO MEF. Our results indicate that SPIN90 depletion activates FAK/ROCK signaling, induced by Postn expression, which is critical for myofibroblastic differentiation on soft matrices mimicking the mechanical environment of a normal tissue.
Collapse
Affiliation(s)
- Eunae You
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Yun-Hyun Huh
- Bio Imaging and Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jieun Lee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Panseon Ko
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Jangho Jeong
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Seula Keum
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Jaegu Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ahreum Kwon
- Bio Imaging and Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Woo Keun Song
- Bio Imaging and Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
43
|
Thottacherry JJ, Kosmalska AJ, Kumar A, Vishen AS, Elosegui-Artola A, Pradhan S, Sharma S, Singh PP, Guadamillas MC, Chaudhary N, Vishwakarma R, Trepat X, Del Pozo MA, Parton RG, Rao M, Pullarkat P, Roca-Cusachs P, Mayor S. Mechanochemical feedback control of dynamin independent endocytosis modulates membrane tension in adherent cells. Nat Commun 2018; 9:4217. [PMID: 30310066 PMCID: PMC6181995 DOI: 10.1038/s41467-018-06738-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 09/04/2018] [Indexed: 12/31/2022] Open
Abstract
Plasma membrane tension regulates many key cellular processes. It is modulated by, and can modulate, membrane trafficking. However, the cellular pathway(s) involved in this interplay is poorly understood. Here we find that, among a number of endocytic processes operating simultaneously at the cell surface, a dynamin independent pathway, the CLIC/GEEC (CG) pathway, is rapidly and specifically upregulated upon a sudden reduction of tension. Moreover, inhibition (activation) of the CG pathway results in lower (higher) membrane tension. However, alteration in membrane tension does not directly modulate CG endocytosis. This requires vinculin, a mechano-transducer recruited to focal adhesion in adherent cells. Vinculin acts by controlling the levels of a key regulator of the CG pathway, GBF1, at the plasma membrane. Thus, the CG pathway directly regulates membrane tension and is in turn controlled via a mechano-chemical feedback inhibition, potentially leading to homeostatic regulation of membrane tension in adherent cells. Plasma membrane tension is an important factor that regulates many key cellular processes. Here authors show that a specific dynamin-independent endocytic pathway is modulated by changes in tension via the mechano-transducer vinculin.
Collapse
Affiliation(s)
- Joseph Jose Thottacherry
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bellary Road, Bengaluru, 560065, India
| | - Anita Joanna Kosmalska
- Institute for Bioengineering of Catalonia (IBEC), Barcelona, 08028, Spain.,University of Barcelona, Barcelona, 08036, Spain
| | - Amit Kumar
- Raman Research Institute, C. V. Raman Avenue, Bengaluru, 560080, India
| | - Amit Singh Vishen
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bellary Road, Bengaluru, 560065, India.,Simons Centre for the Study of Living Machines, National Centre for Biological Sciences (NCBS), Bengaluru, 560065, India
| | | | - Susav Pradhan
- Raman Research Institute, C. V. Raman Avenue, Bengaluru, 560080, India
| | - Sumit Sharma
- CSIR - Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Parvinder P Singh
- CSIR - Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Marta C Guadamillas
- Integrin Signalling Lab, Cell Biology & Physiology Program, Cell & Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, 28029, Spain
| | - Natasha Chaudhary
- University of Queensland, Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, St Lucia, QLD, 4072, Australia.,Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Ram Vishwakarma
- CSIR - Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), Barcelona, 08028, Spain.,University of Barcelona, Barcelona, 08036, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| | - Miguel A Del Pozo
- Integrin Signalling Lab, Cell Biology & Physiology Program, Cell & Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, 28029, Spain
| | - Robert G Parton
- University of Queensland, Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, St Lucia, QLD, 4072, Australia
| | - Madan Rao
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bellary Road, Bengaluru, 560065, India.,Simons Centre for the Study of Living Machines, National Centre for Biological Sciences (NCBS), Bengaluru, 560065, India
| | - Pramod Pullarkat
- Raman Research Institute, C. V. Raman Avenue, Bengaluru, 560080, India
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), Barcelona, 08028, Spain.,University of Barcelona, Barcelona, 08036, Spain
| | - Satyajit Mayor
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bellary Road, Bengaluru, 560065, India. .,Institute for Stem Cell Biology and Regenerative Medicine, Tata Institute of Fundamental Research (TIFR), Bengaluru, 560065, India.
| |
Collapse
|
44
|
The Mechanobiology of the Actin Cytoskeleton in Stem Cells during Differentiation and Interaction with Biomaterials. Stem Cells Int 2018; 2018:2891957. [PMID: 30402108 PMCID: PMC6196919 DOI: 10.1155/2018/2891957] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/03/2018] [Accepted: 08/16/2018] [Indexed: 12/27/2022] Open
Abstract
An understanding of the cytoskeleton's importance in stem cells is essential for their manipulation and further clinical application. The cytoskeleton is crucial in stem cell biology and depends on physical and chemicals signals to define its structure. Additionally, cell culture conditions will be important in the proper maintenance of stemness, lineage commitment, and differentiation. This review focuses on the following areas: the role of the actin cytoskeleton of stem cells during differentiation, the significance of cellular morphology, signaling pathways involved in cytoskeletal rearrangement in stem cells, and the mechanobiology and mechanotransduction processes implicated in the interactions of stem cells with different surfaces of biomaterials, such as nanotopography, which is a physical cue influencing the differentiation of stem cells. Also, cancer stem cells are included since it is necessary to understand the role of their mechanical properties to develop new strategies to treat cancer. In this context, to study the stem cells requires integrated disciplines, including molecular and cellular biology, chemistry, physics, and immunology, as well as mechanobiology. Finally, since one of the purposes of studying stem cells is for their application in regenerative medicine, the deepest understanding is necessary in order to establish safety protocols and effective cell-based therapies.
Collapse
|
45
|
Chooi WH, Ong W, Murray A, Lin J, Nizetic D, Chew SY. Scaffold mediated gene knockdown for neuronal differentiation of human neural progenitor cells. Biomater Sci 2018; 6:3019-3029. [PMID: 30277233 DOI: 10.1039/c8bm01034j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The use of human induced pluripotent stem cell-derived neural progenitor cells (hiPSC-NPCs) is an attractive therapeutic option for damaged nerve tissues. To direct neuronal differentiation of stem cells, we have previously developed an electrospun polycaprolactone nanofiber scaffold that was functionalized with siRNA targeting Re-1 silencing transcription factor (REST), by mussel-inspired bioadhesive coating. However, the efficacy of nanofiber-mediated RNA interference on hiPSC-NPCs differentiation remains unknown. Furthermore, interaction between such cell-seeded scaffolds with injured tissues has not been tested. In this study, scaffolds were optimized for REST knockdown in hiPSC-NPCs to enhance neuronal differentiation. Specifically, the effects of two different mussel-inspired bioadhesives and transfection reagents were analyzed. Scaffolds functionalized with RNAiMAX Lipofectamine-siREST complexes enhanced the differentiation of hiPSC-NPCs into TUJ1+ cells (60% as compared to 22% in controls with scrambled siNEG after 9 days) without inducing high cytotoxicity. When cell-seeded scaffolds were transplanted to transected spinal cord organotypic slices, similar efficiency in neuronal differentiation was observed. The scaffolds also supported the migration of cells and neurite outgrowth from the spinal cord slices. Taken together, the results suggest that this scaffold can be effective in enhancing hiPSC-NPC neuronal commitment by gene-silencing for the treatment of injured spinal cords.
Collapse
Affiliation(s)
- Wai Hon Chooi
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 637459 Singapore. sychew.ntu.edu.sg
| | - William Ong
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 637459 Singapore. sychew.ntu.edu.sg
| | - Aoife Murray
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232 Singapore
| | - Junquan Lin
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 637459 Singapore. sychew.ntu.edu.sg
| | - Dean Nizetic
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232 Singapore
| | - Sing Yian Chew
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 637459 Singapore. sychew.ntu.edu.sg and Lee Kong Chian School of Medicine, Nanyang Technological University, 308232 Singapore
| |
Collapse
|
46
|
Focal Adhesion Kinase and ROCK Signaling Are Switch-Like Regulators of Human Adipose Stem Cell Differentiation towards Osteogenic and Adipogenic Lineages. Stem Cells Int 2018; 2018:2190657. [PMID: 30275837 PMCID: PMC6157106 DOI: 10.1155/2018/2190657] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/07/2018] [Accepted: 07/04/2018] [Indexed: 12/18/2022] Open
Abstract
Adipose tissue is an attractive stem cell source for soft and bone tissue engineering applications and stem cell therapies. The adipose-derived stromal/stem cells (ASCs) have a multilineage differentiation capacity that is regulated through extracellular signals. The cellular events related to cell adhesion and cytoskeleton have been suggested as central regulators of differentiation fate decision. However, the detailed knowledge of these molecular mechanisms in human ASCs remains limited. This study examined the significance of focal adhesion kinase (FAK), Rho-Rho-associated protein kinase (Rho-ROCK), and their downstream target extracellular signal-regulated kinase 1/2 (ERK1/2) on hASCs differentiation towards osteoblasts and adipocytes. Analyses of osteogenic markers RUNX2A, alkaline phosphatase, and matrix mineralization revealed an essential role of active FAK, ROCK, and ERK1/2 signaling for the osteogenesis of hASCs. Inhibition of these kinases with specific small molecule inhibitors diminished osteogenesis, while inhibition of FAK and ROCK activity led to elevation of adipogenic marker genes AP2 and LEP and lipid accumulation implicating adipogenesis. This denotes to a switch-like function of FAK and ROCK signaling in the osteogenic and adipogenic fates of hASCs. On the contrary, inhibition of ERK1/2 kinase activity deceased adipogenic differentiation, indicating that activation of ERK signaling is required for both adipogenic and osteogenic potential. Our findings highlight the reciprocal role of cell adhesion mechanisms and actin dynamics in regulation of hASC lineage commitment. This study enhances the knowledge of molecular mechanisms dictating hASC differentiation and thus opens possibilities for more efficient control of hASC differentiation.
Collapse
|
47
|
Guneta V, Zhou Z, Tan NS, Sugii S, Wong MTC, Choong C. Recellularization of decellularized adipose tissue-derived stem cells: role of the cell-secreted extracellular matrix in cellular differentiation. Biomater Sci 2018; 6:168-178. [PMID: 29167844 DOI: 10.1039/c7bm00695k] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adipose-derived stem cells (ASCs) are found in a location within the adipose tissue known as the stem cell niche. The ASCs in the niche are maintained in the quiescent state, and upon exposure to various microenvironmental triggers are prompted to undergo proliferation or differentiation. These microenvironmental triggers also modulate the extracellular matrix (ECM), which interacts with the cells through the cytoskeleton and induces downstream events inside the cells that bring about a change in cell behaviour. In response to these changes, the cells remodel the ECM, which will differ according to the type of tissue being formed by the cells. As the ECM itself plays an important role in the regulation of cellular differentiation, this study aims to explore the role of the cell-secreted ECM at various stages of differentiation of stem cells in triggering the differentiation of ASCs. To this end, the ASCs cultured in proliferation, osteogenic and adipogenic media were decellularized and the secreted ECM was characterized. Overall, it was found that osteo-differentiated ASCs produced higher amounts of collagen and glycosaminoglycans (GAG) compared to the undifferentiated and adipo-differentiated ASCs. The two types of differentiated ECMs were subsequently shown to trigger initial but not terminal differentiation of ASCs into osteo- and adipo-lineages respectively, as indicated by the upregulation of lineage specific markers. In addition, integrin subunits alpha (α) 6 and integrin beta (β) 1 were found to be produced by ASCs cultured on cell-secreted ECM-coated substrates, suggesting that the integrins α6 and β1 play an instrumental role in cell-ECM interactions. Taken together, this study demonstrates the importance of the ECM in cellular fate decisions and how ECM-coated substrates can potentially be used for various tissue engineering applications.
Collapse
Affiliation(s)
- V Guneta
- School of Materials Science and Engineering, Nanyang Technological University, Singapore.
| | | | | | | | | | | |
Collapse
|
48
|
Caluori G, Pribyl J, Pesl M, Oliver-De La Cruz J, Nardone G, Skladal P, Forte G. Advanced and Rationalized Atomic Force Microscopy Analysis Unveils Specific Properties of Controlled Cell Mechanics. Front Physiol 2018; 9:1121. [PMID: 30174612 PMCID: PMC6107778 DOI: 10.3389/fphys.2018.01121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/25/2018] [Indexed: 01/01/2023] Open
Abstract
The cell biomechanical properties play a key role in the determination of the changes during the essential cellular functions, such as contraction, growth, and migration. Recent advances in nano-technologies have enabled the development of new experimental and modeling approaches to study cell biomechanics, with a level of insights and reliability that were not possible in the past. The use of atomic force microscopy (AFM) for force spectroscopy allows nanoscale mapping of the cell topography and mechanical properties under, nearly physiological conditions. A proper evaluation process of such data is an essential factor to obtain accurate values of the cell elastic properties (primarily Young's modulus). Several numerical models were published in the literature, describing the depth sensing indentation as interaction process between the elastic surface and indenting probe. However, many studies are still relying on the nowadays outdated Hertzian model from the nineteenth century, or its modification by Sneddon. The lack of comparison between the Hertz/Sneddon model with their modern modifications blocks the development of advanced analysis software and further progress of AFM promising technology into biological sciences. In this work, we applied a rationalized use of mechanical models for advanced postprocessing and interpretation of AFM data. We investigated the effect of the mechanical model choice on the final evaluation of cellular elasticity. We then selected samples subjected to different physicochemical modulators, to show how a critical use of AFM data handling can provide more information than simple elastic modulus estimation. Our contribution is intended as a methodological discussion of the limitations and benefits of AFM-based advanced mechanical analysis, to refine the quantification of cellular elastic properties and its correlation to undergoing cellular processes in vitro.
Collapse
Affiliation(s)
- Guido Caluori
- International Clinical Research Center of the St. Anne's University Hospital Brno (FNUSA-ICRC), Interventional Cardiac Electrophysiology, Brno, Czechia.,Central European Institute of Technology of Masaryk University, Nanobiotechnology, Brno, Czechia
| | - Jan Pribyl
- Central European Institute of Technology of Masaryk University, Nanobiotechnology, Brno, Czechia
| | - Martin Pesl
- International Clinical Research Center of the St. Anne's University Hospital Brno (FNUSA-ICRC), Interventional Cardiac Electrophysiology, Brno, Czechia.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,First Department of Internal Medicine/Cardioangiology, St. Anne's Hospital, Masaryk University, Brno, Czechia
| | - Jorge Oliver-De La Cruz
- International Clinical Research Center of the St. Anne's University Hospital Brno (FNUSA-ICRC), Center for Translational Medicine, Brno, Czechia
| | - Giorgia Nardone
- International Clinical Research Center of the St. Anne's University Hospital Brno (FNUSA-ICRC), Center for Translational Medicine, Brno, Czechia
| | - Petr Skladal
- Central European Institute of Technology of Masaryk University, Nanobiotechnology, Brno, Czechia
| | - Giancarlo Forte
- International Clinical Research Center of the St. Anne's University Hospital Brno (FNUSA-ICRC), Center for Translational Medicine, Brno, Czechia.,Department of Biomaterials Science, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
49
|
Kim R, Wang Y, Hwang SHJ, Attayek PJ, Smiddy NM, Reed MI, Sims CE, Allbritton NL. Formation of arrays of planar, murine, intestinal crypts possessing a stem/proliferative cell compartment and differentiated cell zone. LAB ON A CHIP 2018; 18:2202-2213. [PMID: 29944153 PMCID: PMC6337012 DOI: 10.1039/c8lc00332g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A simple, in vitro intestinal model recapitulating key aspects of crypt architecture and physiology would facilitate our understanding the impact of drugs, foods and microbial metabolites on the intestine. To address the limitations of previously reported intestinal in vitro platforms, we developed a planar crypt array that replicated the spatial segregation and physiologic responses of primary mouse intestinal epithelial cells in the large intestine. Collagen was coated across an impermeable film possessing an array of microholes creating two regions of distinct stiffness and porosity (above and outside the microholes). Primary mouse colon epithelial cells formed a continuous monolayer across the array with a proliferative cell zone above the microholes and a nonproliferative or differentiated cell region distant from the microholes. Formation of a chemical gradient of growth factors across the array yielded a more complete or in vivo-like cell segregation of proliferative and differentiated cells with cell migration outward from the proliferative cell zone into the differentiated zone to replace apoptotic dying cells much as occurs in vivo. Short chain fatty acids (microbial metabolites) applied to the luminal surface of the crypt array significantly impacted the proliferation and differentiation of the cells replicating the known in vivo effects of these fatty acids. Importantly this planar crypt array was readily fabricated and maintained, easily imaged with properties quantified by microscopy, and compatible with reagent addition to either the luminal or basal fluid reservoirs. The ability to observe simultaneously stem/proliferative and differentiated cell behavior and movement between these two compartments in response to drugs, toxins, inflammatory mediators or microbial metabolites will be of widespread utility.
Collapse
Affiliation(s)
- Raehyun Kim
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Gioia M, Michaletti A, Scimeca M, Marini M, Tarantino U, Zolla L, Coletta M. Simulated microgravity induces a cellular regression of the mature phenotype in human primary osteoblasts. Cell Death Discov 2018; 4:59. [PMID: 29760957 PMCID: PMC5945613 DOI: 10.1038/s41420-018-0055-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 01/08/2023] Open
Abstract
Decreased mechanical loading on bones, such as prolonged bed rest and microgravity during space flights, leads to the development of an osteoporotic-like phenotype. Although osteoblast hypo-functionality is reported to be involved in the progression of bone pathological conditions, the cellular mechanisms of this process remain largely unknown. The combined application of mass spectrometry "-omics" and histochemical and ultrastructural approaches have been employed to investigate the effects of the gravitational unloading on human bone-cell biology. Here we show, ex vivo, that simulated microgravity (Sμg) on human primary osteoblasts (hpOB) induces an alteration of pro-osteogenic determinants (i.e., cell morphology and deposit of hydroxyapatite crystals), accompanied by a downregulation of adhesive proteins and bone differentiation markers (e.g., integrin beta-1, protein folding Crystallin Alpha B (CRYα-B), runt-related transcription factor 2 (RUNX-2), bone morphogenic protein-2 (BMP-2), and receptor activator of nuclear factor kappa-B ligand (RANK-L)), indicating an impairment of osteogenesis. Further, we observed for the first time that Sμg can trigger a transition toward a mesenchymal-like phenotype, in which a mature osteoblast displays an hampered vitamin A metabolism, loses adhesive molecules, gains mesenchymal components (e.g., pre-osteoblast state marker CD44), morphological protrusions (filopodium-like), enhances GTPase activities, which in turn allows it to acquire migrating properties. Although this phenotypic conversion is not complete and can be reversible, Sμg environment proves a plasticity potential hidden on Earth. Overall, our results suggest that Sμg can be a powerful physical cue for triggering ex vivo a dedifferentiation impulse on hpOBs, opening a new scenario of possible innovative therapeutical biomechanical strategies for the treatment of osteo-degenerative diseases.
Collapse
Affiliation(s)
- Magda Gioia
- 1Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Anna Michaletti
- 2Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Manuel Scimeca
- 3Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Mario Marini
- 4Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Umberto Tarantino
- 1Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Lello Zolla
- 2Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Massimo Coletta
- 1Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|