1
|
Zou B, Wang D, Zhong J, He Z, Zhou Y, Yang H, Liu Y, Zeng G, Duan X. Mesenchymal stem cells attenuate hyperoxaluria-induced kidney injury and crystal depositions via inhibiting the activation of NLRP3 inflammasome. Life Sci 2025; 371:123608. [PMID: 40194762 DOI: 10.1016/j.lfs.2025.123608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/16/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025]
Abstract
AIMS Calcium oxalate (CaOx) is the predominant form of kidney stones, associated with significant morbidity and recurrence rates. Mesenchymal stem cells (MSCs) have shown promise in treating renal injury, but their impact on CaOx stone formation remains unclear. MATERIALS AND METHODS We established a hyperoxaluria-induced AKI model in mice through intraperitoneal injection of glyoxylate. Two types of MSCs, bone marrow-derived MSCs (BMSCs) and umbilical cord-derived mesenchymal stem cells (UMSCs), were injected through tail vein injection. Histological evaluations and blood biochemical tests were performed to assess crystal deposition and kidney function. The inflammatory response and NLRP3 inflammasome activation were assessed using immunofluorescence, immunohistochemistry, TUNEL staining, and qPCR. In vitro, macrophages were cocultured in the presence of MSCs. ELISA was used to measure IL-1β and IL-18 release. MTS assays assessed renal epithelial cell protection. Western blotting evaluated NLRP3 inflammasome activation in macrophages. KEY FINDINGS Both BMSCs and UMSCs significantly inhibited CaOx crystal deposition and kidney injury by inhibiting NLRP3 inflammasome activation. In vitro, both MSC types suppressed NLRP3 inflammasome activation in macrophages through the NF-κB signaling pathway, leading to decreased release of IL-1β and IL-18 and enhanced protection of renal epithelial cells. This attenuation of renal tubular cell injury is a critical factor in preventing CaOx stone formation. SIGNIFICANCE Our findings reveal that Both BMSCs and UMSCs effectively attenuate hyperoxaluria-induced kidney injury and crystal deposition by inhibiting NLRP3 inflammasome activation. This discovery is helpful for developing new effective therapeutic means for nephrolithiasis.
Collapse
Affiliation(s)
- Bangyu Zou
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou, China; Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China; Guangzhou Institute of Urology, Guangzhou Medical University; Department of Urology, Changhai Hospital, First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ding Wang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinghua Zhong
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou, China; Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China; Guangzhou Institute of Urology, Guangzhou Medical University
| | - Zhiqing He
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou, China; Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China; Guangzhou Institute of Urology, Guangzhou Medical University
| | - Yuhao Zhou
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou, China; Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China; Guangzhou Institute of Urology, Guangzhou Medical University
| | - Houmeng Yang
- Department of Urology, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No.2 Hospital), Ningbo, China
| | - Yongda Liu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou, China; Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China; Guangzhou Institute of Urology, Guangzhou Medical University
| | - Guohua Zeng
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou, China; Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China; Guangzhou Institute of Urology, Guangzhou Medical University.
| | - Xiaolu Duan
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou, China; Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China; Guangzhou Institute of Urology, Guangzhou Medical University.
| |
Collapse
|
2
|
Geng J, Zheng Z, Li L, Ren Z, Tian G, Qin J, Zhao T, Feng X. Apigenin attenuated sepsis induced acute lung injury via polarizing macrophage towards M2 by blocking miR-146a →TLR7 interaction. Int Immunopharmacol 2025; 152:114446. [PMID: 40088874 DOI: 10.1016/j.intimp.2025.114446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/19/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
TLR7 (Toll-like receptor 7) has been indicated as an important sensor for single -stranded RNA contributes to systemic inflammation and mortality in acute lung injury (ALI), which is an acute diffuse inflammatory lung injury. Cumulative results show that macrophages contribute to the development and progression of ALI through the secretion of inflammatory cytokines/chemokines. Here we show that macrophage polarizes towards M1 phenotype and TLR7 signaling is activated in septic mice. Moreover, TLR7 deficiency promotes macrophage polarized towards M2 phenotype and attenuates ALI. Strikingly, the natural product of flavone apigenin (Xu et al., 2017 [1]) significantly improves sepsis-induced lung inflammation and lung injury via inhibiting inflammatory macrophages in a TLR7-dependent manner. Mechanically, Api blocked the binding of TLR7 with its agonist miR-146a. This finding reveals TLR7 is an important therapeutic target and Api as a modulator of TLR7 is a potential lead compound for treatment of septic diseases and inflammation related diseases.
Collapse
Affiliation(s)
- Jiafeng Geng
- Shandong Province University Clinical Immunology Translational Medicine Laboratory, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jingshi Road 16766, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhihuan Zheng
- Shandong Province University Clinical Immunology Translational Medicine Laboratory, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jingshi Road 16766, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Liangge Li
- Shandong Province University Clinical Immunology Translational Medicine Laboratory, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jingshi Road 16766, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zixuan Ren
- Shandong Province University Clinical Immunology Translational Medicine Laboratory, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jingshi Road 16766, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Ge Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Jing Qin
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Tong Zhao
- Shandong Province University Clinical Immunology Translational Medicine Laboratory, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jingshi Road 16766, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiujing Feng
- Shandong Province University Clinical Immunology Translational Medicine Laboratory, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jingshi Road 16766, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| |
Collapse
|
3
|
Tang M, Shen L, Tang M, Liu L, Rao Z, Wang Z, Wang Y, Yin S, Li S, Xu G, Zhang K. Human mesenchymal stromal cells ameliorate cisplatin-induced acute and chronic kidney injury via TSG-6. Stem Cells 2024; 42:848-859. [PMID: 38804841 DOI: 10.1093/stmcls/sxae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Cisplatin is widely used in tumor chemotherapy, but nephrotoxicity is an unavoidable side effect of cisplatin. Several studies have demonstrated that mesenchymal stromal cells (MSCs) ameliorate cisplatin-induced kidney injury, but the underlying mechanisms are unknown. In this study, the cisplatin-induced kidney injury mouse model was established by subjecting a single intraperitoneal injection with cisplatin. One hour before cisplatin injection, the mice received human bone marrow MSCs (hBM-MSCs) with or without siRNA-transfection, recombinant human tumor necrosis factor-α-stimulated gene/protein 6 (rhTSG-6), or PBS through the tail vein. In addition, cisplatin-stimulated HK-2 cells were treated with hBM-MSCs or rhTSG-6. Human BM-MSCs treatment remarkably ameliorated cisplatin-induced acute and chronic kidney injury, as evidenced by significant reductions in serum creatinine (Scr), blood urea nitrogen, tubular injury, collagen deposition, α-smooth muscle actin accumulation, as well as inflammatory responses, and by remarkable increased anti-inflammatory factor expression and Treg cells infiltration in renal tissues. Furthermore, we found that only a few hBM-MSCs engrafted into damaged kidney and that the level of human TSG-6 in the serum of mice increased significantly following hBM-MSCs administration. Moreover, hBM-MSCs significantly increased the viability of damaged HK-2 cells and decreased the levels of inflammatory cytokines in the culture supernatant. However, the knockdown of the TSG-6 gene in hBM-MSCs significantly attenuated their beneficial effects in vivo and in vitro. On the contrary, treated with rhTSG-6 achieved similar beneficial effects of hBM-MSCs. Our results indicate that systemic administration of hBM-MSCs alleviates cisplatin-induced acute and chronic kidney injury in part by paracrine TSG-6 secretion.
Collapse
Affiliation(s)
- Ming Tang
- Urinary Nephropathy Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400065, People's Republic of China
| | - Linguo Shen
- Urinary Nephropathy Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400065, People's Republic of China
| | - Maozhi Tang
- Urinary Nephropathy Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400065, People's Republic of China
| | - Ling Liu
- Urinary Nephropathy Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400065, People's Republic of China
| | - Zhengsheng Rao
- Urinary Nephropathy Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400065, People's Republic of China
| | - Zhilin Wang
- Urinary Nephropathy Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400065, People's Republic of China
| | - Yadi Wang
- Urinary Nephropathy Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400065, People's Republic of China
| | - Supei Yin
- Urinary Nephropathy Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400065, People's Republic of China
| | - Shujing Li
- Urinary Nephropathy Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400065, People's Republic of China
| | - Guilian Xu
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Keqin Zhang
- Urinary Nephropathy Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400065, People's Republic of China
| |
Collapse
|
4
|
Torrico S, Hotter G, Muñoz Á, Calle P, García M, Poch E, Játiva S. PBMC therapy reduces cell death and tissue fibrosis after acute kidney injury by modulating the pattern of monocyte/macrophage survival in tissue. Biomed Pharmacother 2024; 178:117186. [PMID: 39067165 DOI: 10.1016/j.biopha.2024.117186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
In this study, we investigated if the therapeutic potential of peripheral blood mononuclear cell (PBMC) therapy in a murine model of ischemic AKI is related with the survival pattern of monocyte/macrophages in tissue. CD-1 mice were subjected to bilateral renal ischemia followed by reperfusion to induce AKI. M2-polarized PBMCs isolated from CD-1 mice were administered intravenously at different time points post-injury. Our results demonstrate that early administration of PBMC therapy attenuates renal tissue damage, reduces tissue cell death and prevents fibrosis development. Reduction of tissue pyroptosis was observed by reduction on NLRP3 inflammasome activation and decreasing IL-1beta and Caspase-1 expression in the kidney. Furthermore, the therapy was shown to mitigate ferroptosis by inducing GPX4 overexpression. Early administration of PBMCs increased the survival pattern of renal tissue-macrophages, promoting a "pro-survival phenotype" resulting in decreased pyroptotic marker NLRP3, IL-1beta and Caspase 1 and increased anti-ferroptotic gene GPX4. Conversely, delayed administration of PBMC therapy exhibits diminished efficacy in preventing cell death and fibrosis in tissue and provoked a decrease in the pro-survival phenotype of both monocyte /macrophages in tissue. Our findings highlight the therapeutic potential of PBMC therapy in mitigating AKI and preventing CKD progression by modulating tissue-resident macrophage survival and reducing their cell death pathways. The fact that the effectiveness of the therapy depends on the time of administration after the injury underscores the importance of early intervention in AKI management.
Collapse
Affiliation(s)
- Selene Torrico
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; M2rlab-XCELL, Madrid 28010, Spain; Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Georgina Hotter
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; CIBER-BBN, Networking Center on Bioengineering, Biomaterials and Nanomedicine, Zaragoza 50018, Spain
| | - Ángeles Muñoz
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
| | - Priscila Calle
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; M2rlab-XCELL, Madrid 28010, Spain
| | - Miriam García
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; M2rlab-XCELL, Madrid 28010, Spain
| | - Esteban Poch
- Nefrologia i Trasplantament Renal, Hospital Clínic, IDIBAPS, Universidad de Barcelona, Barcelona 08036, Spain
| | - Soraya Játiva
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain; M2rlab-XCELL, Madrid 28010, Spain.
| |
Collapse
|
5
|
Chen Y, Hou S. Targeted treatment of rat AKI induced by rhabdomyolysis using BMSC derived magnetic exosomes and its mechanism. NANOSCALE ADVANCES 2024; 6:4180-4195. [PMID: 39114150 PMCID: PMC11304081 DOI: 10.1039/d4na00334a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/11/2024] [Indexed: 08/10/2024]
Abstract
Introduction: rhabdomyolysis (RM) is a serious syndrome. A large area of muscle injury and dissolution induces acute kidney injury (AKI), which results in a high incidence and mortality rate. Exosomes released by mesenchymal stem cells (MSCs) have been used to treat AKI induced by rhabdomyolysis and have shown regenerative effects. However, the most serious drawbacks of these methods are poor targeting and a low enrichment rate after systemic administration. Methods: in this study, we demonstrated that magnetic exosomes derived from bone marrow mesenchymal stem cells (BMSCs) can directly target damaged muscles rather than kidneys using an external magnetic field. Results: magnetic navigation exosomes reduced the dissolution of damaged muscles, greatly reduced the release of cellular contents, slowed the development of AKI. Discussion: in summary, our proposed method can overcome the shortcomings of poor targeting in traditional exosome therapy. Moreover, in the rhabdomyolysis-induced AKI model, we propose for the first time an exosome therapy mode that directly targets damaged muscles through magnetic navigation.
Collapse
Affiliation(s)
- Yuling Chen
- Institute of Disaster and Emergency Medicine, Tianjin University Tianjin China
- Tianjin Key Laboratory of Disaster Medicine Technology Tianjin China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University Tianjin China
- Tianjin Key Laboratory of Disaster Medicine Technology Tianjin China
| |
Collapse
|
6
|
Luo J, Zhang Y, Jayaprakash S, Zhuang L, He J. Cross-Species Insights into Autosomal Dominant Polycystic Kidney Disease: Provide an Alternative View on Research Advancement. Int J Mol Sci 2024; 25:5646. [PMID: 38891834 PMCID: PMC11171680 DOI: 10.3390/ijms25115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a prevalent hereditary disorder that affects the kidneys, characterized by the development of an excessive number of fluid-filled cysts of varying sizes in both kidneys. Along with the progression of ADPKD, these enlarged cysts displace normal kidney tissue, often accompanied by interstitial fibrosis and inflammation, and significantly impair renal function, leading to end-stage renal disease. Currently, the precise mechanisms underlying ADPKD remain elusive, and a definitive cure has yet to be discovered. This review delineates the epidemiology, pathological features, and clinical diagnostics of ADPKD or ADPKD-like disease across human populations, as well as companion animals and other domesticated species. A light has been shed on pivotal genes and biological pathways essential for preventing and managing ADPKD, which underscores the importance of cross-species research in addressing this complex condition. Treatment options are currently limited to Tolvaptan, dialysis, or surgical excision of large cysts. However, comparative studies of ADPKD across different species hold promise for unveiling novel insights and therapeutic strategies to combat this disease.
Collapse
Affiliation(s)
- Jianing Luo
- College of Animal Sciences, Zhejiang University, Hangzhou 310027, China; (J.L.); (Y.Z.); (L.Z.)
| | - Yuan Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310027, China; (J.L.); (Y.Z.); (L.Z.)
| | - Sakthidasan Jayaprakash
- Department of Biotechnology, Hindustan Institute of Technology and Science, Tamil Nadu 603103, India;
| | - Lenan Zhuang
- College of Animal Sciences, Zhejiang University, Hangzhou 310027, China; (J.L.); (Y.Z.); (L.Z.)
| | - Jin He
- College of Animal Sciences, Zhejiang University, Hangzhou 310027, China; (J.L.); (Y.Z.); (L.Z.)
| |
Collapse
|
7
|
Cheung MD, Asiimwe R, Erman EN, Fucile CF, Liu S, Sun CW, Hanumanthu VS, Pal HC, Wright ED, Ghajar-Rahimi G, Epstein D, Orandi BJ, Kumar V, Anderson DJ, Greene ME, Bell M, Yates S, Moore KH, LaFontaine J, Killian JT, Baker G, Perry J, Khan Z, Reed R, Little SC, Rosenberg AF, George JF, Locke JE, Porrett PM. Spatiotemporal immune atlas of a clinical-grade gene-edited pig-to-human kidney xenotransplant. Nat Commun 2024; 15:3140. [PMID: 38605083 PMCID: PMC11009229 DOI: 10.1038/s41467-024-47454-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
Pig-to-human xenotransplantation is rapidly approaching the clinical arena; however, it is unclear which immunomodulatory regimens will effectively control human immune responses to pig xenografts. Here, we transplant a gene-edited pig kidney into a brain-dead human recipient on pharmacologic immunosuppression and study the human immune response to the xenograft using spatial transcriptomics and single-cell RNA sequencing. Human immune cells are uncommon in the porcine kidney cortex early after xenotransplantation and consist of primarily myeloid cells. Both the porcine resident macrophages and human infiltrating macrophages express genes consistent with an alternatively activated, anti-inflammatory phenotype. No significant infiltration of human B or T cells into the porcine kidney xenograft is detectable. Altogether, these findings provide proof of concept that conventional pharmacologic immunosuppression may be able to restrict infiltration of human immune cells into the xenograft early after compatible pig-to-human kidney xenotransplantation.
Collapse
Affiliation(s)
- Matthew D Cheung
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rebecca Asiimwe
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Elise N Erman
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Shanrun Liu
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
- Flow Cytometry & Single Cell Core Facility, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chiao-Wang Sun
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
- Flow Cytometry & Single Cell Core Facility, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vidya Sagar Hanumanthu
- Flow Cytometry & Single Cell Core Facility, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Harish C Pal
- Flow Cytometry & Single Cell Core Facility, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Emma D Wright
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Daniel Epstein
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Babak J Orandi
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vineeta Kumar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Douglas J Anderson
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Morgan E Greene
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Markayla Bell
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stefani Yates
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kyle H Moore
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer LaFontaine
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John T Killian
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gavin Baker
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jackson Perry
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zayd Khan
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rhiannon Reed
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shawn C Little
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexander F Rosenberg
- Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James F George
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jayme E Locke
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Paige M Porrett
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
8
|
Bahrami M, Darabi S, Roozbahany NA, Abbaszadeh HA, Moghadasali R. Great potential of renal progenitor cells in kidney: From the development to clinic. Exp Cell Res 2024; 434:113875. [PMID: 38092345 DOI: 10.1016/j.yexcr.2023.113875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
The mammalian renal organ represents a pinnacle of complexity, housing functional filtering units known as nephrons. During embryogenesis, the depletion of niches containing renal progenitor cells (RPCs) and the subsequent incapacity of adult kidneys to generate new nephrons have prompted the formulation of protocols aimed at isolating residual RPCs from mature kidneys and inducing their generation from diverse cell sources, notably pluripotent stem cells. Recent strides in the realm of regenerative medicine and the repair of tissues using stem cells have unveiled critical signaling pathways essential for the maintenance and generation of human RPCs in vitro. These findings have ushered in a new era for exploring novel strategies for renal protection. The present investigation delves into potential transcription factors and signaling cascades implicated in the realm of renal progenitor cells, focusing on their protection and differentiation. The discourse herein elucidates contemporary research endeavors dedicated to the acquisition of progenitor cells, offering crucial insights into the developmental mechanisms of these cells within the renal milieu and paving the way for the formulation of innovative treatment modalities.
Collapse
Affiliation(s)
- Maryam Bahrami
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Laser Applications in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Darabi
- Cellular and Molecular Research Center, Research Institute for Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Hojjat Allah Abbaszadeh
- Laser Applications in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
9
|
Rajput S, Malviya R, Uniyal P. Advances in the Treatment of Kidney Disorders using Mesenchymal Stem Cells. Curr Pharm Des 2024; 30:825-840. [PMID: 38482624 DOI: 10.2174/0113816128296105240305110312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/20/2024] [Indexed: 06/04/2024]
Abstract
Renal disease is a medical condition that poses a potential threat to the life of an individual and is related to substantial morbidity and mortality rates in clinical environments. The aetiology of this condition is influenced by multiple factors, and its incidence tends to increase with progressive aging. Although supportive therapy and kidney transplantation have potential advantages, they also have limitations in terms of mitigating the progression of KD. Despite significant advancements in the domain of supportive therapy, mortality rates in patients continue to increase. Due to their ability to self-renew and multidirectionally differentiate, stem cell therapy has been shown to have tremendous potential in the repair of the diseased kidney. MSCs (Mesenchymal stem cells) are a cell population that is extensively distributed and can be located in various niches throughout an individual's lifespan. The cells in question are characterised by their potential for indefinite replication and their aptitude for undergoing differentiation into fully developed cells of mesodermal origin under laboratory conditions. It is essential to emphasize that MSCs have demonstrated a favorable safety profile and efficacy as a therapeutic intervention for renal diseases in both preclinical as well as clinical investigations. MSCs have been found to slow the advancement of kidney disease, and this impact is thought to be due to their control over a number of physiological processes, including immunological response, tubular epithelial- mesenchymal transition, oxidative stress, renal tubular cell death, and angiogenesis. In addition, MSCs demonstrate recognised effectiveness in managing both acute and chronic kidney diseases via paracrine pathways. The proposal to utilise a therapy that is based on stem-cells as an effective treatment has been put forward in search of discovering novel therapies to promote renal regeneration. Preclinical researchers have demonstrated that various types of stem cells can provide advantages in acute and chronic kidney disease. Moreover, preliminary results from clinical trials have suggested that these interventions are both safe and well-tolerated. This manuscript provides a brief overview of the potential renoprotective effects of stem cell-based treatments in acute as well as chronic renal dysfunction. Furthermore, the mechanisms that govern the process of kidney regeneration induced by stem cells are investigated. This article will examine the therapeutic approaches that make use of stem cells for the treatment of kidney disorders. The analysis will cover various cellular sources that have been utilised, potential mechanisms involved, and the outcomes that have been achieved so far.
Collapse
Affiliation(s)
- Shivam Rajput
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
10
|
Li N, Han L, Wang X, Qiao O, Zhang L, Gong Y. Biotherapy of experimental acute kidney injury: emerging novel therapeutic strategies. Transl Res 2023; 261:69-85. [PMID: 37329950 DOI: 10.1016/j.trsl.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Acute kidney injury (AKI) is a complex and heterogeneous disease with high incidence and mortality, posing a serious threat to human life and health. Usually, in clinical practice, AKI is caused by crush injury, nephrotoxin exposure, ischemia-reperfusion injury, or sepsis. Therefore, most AKI models for pharmacological experimentation are based on this. The current research promises to develop new biological therapies, including antibody therapy, non-antibody protein therapy, cell therapy, and RNA therapy, that could help mitigate the development of AKI. These approaches can promote renal repair and improve systemic hemodynamics after renal injury by reducing oxidative stress, inflammatory response, organelles damage, and cell death, or activating cytoprotective mechanisms. However, no candidate drugs for AKI prevention or treatment have been successfully translated from bench to bedside. This article summarizes the latest progress in AKI biotherapy, focusing on potential clinical targets and novel treatment strategies that merit further investigation in future pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Ning Li
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Lu Han
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Xinyue Wang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Ou Qiao
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Li Zhang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Yanhua Gong
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China.
| |
Collapse
|
11
|
da Silva TB, Rendra E, David CAW, Bieback K, Cross MJ, Wilm B, Liptrott NJ, Murray P. Umbilical cord mesenchymal stromal cell-derived extracellular vesicles lack the potency to immunomodulate human monocyte-derived macrophages in vitro. Biomed Pharmacother 2023; 167:115624. [PMID: 37783151 DOI: 10.1016/j.biopha.2023.115624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have been reported to display efficacy in a variety of preclinical models, but without long-term engraftment, suggesting a role for secreted factors, such as MSC-derived extracellular vesicles (EVs). MSCs are known to elicit immunomodulatory effects, an important aspect of which is their ability to affect macrophage phenotype. However, it is not clear if these effects are mediated by MSC-derived EVs, or other factors secreted by the MSCs. Here, we use flow cytometry to assess the effects of human umbilical cord (hUC) MSC-derived EVs on the expression of pro-inflammatory (CD80) and anti-inflammatory (CD163) surface markers in human monocyte-derived macrophages (hMDMs). hUC-MSC-derived EVs did not change the surface marker expression of the hMDMs. In contrast, when hMDMs were co-incubated with hUC-MSCs in indirect co-cultures, changes were observed in the expression of CD14, CD80 and CD163, particularly in M1 macrophages, suggesting that soluble factors are necessary to elicit a shift in phenotype. However, even though EVs did not alter the surface marker expression of macrophages, they promoted angiogenesis and phagocytic capacity increased proportionally to increases in EV concentration. Taken together, these results suggest that hUC-MSC-derived EVs are not sufficient to alter macrophage phenotype and that additional MSC-derived factors are needed.
Collapse
Affiliation(s)
- Tamiris Borges da Silva
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, L69 3GE Liverpool, UK
| | - Erika Rendra
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Christopher A W David
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany; Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Michael J Cross
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GL, UK
| | - Bettina Wilm
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, L69 3GE Liverpool, UK
| | - Neill J Liptrott
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Patricia Murray
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, L69 3GE Liverpool, UK.
| |
Collapse
|
12
|
Muñiz-García A, Pichardo AH, Littlewood J, Tasker S, Sharkey J, Wilm B, Peace H, O'Callaghan D, Green M, Taylor A, Murray P. Near infrared conjugated polymer nanoparticles (CPN™) for tracking cells using fluorescence and optoacoustic imaging. NANOSCALE ADVANCES 2023; 5:5520-5528. [PMID: 37822909 PMCID: PMC10563848 DOI: 10.1039/d3na00546a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/10/2023] [Indexed: 10/13/2023]
Abstract
Tracking the biodistribution of cell therapies is crucial for understanding their safety and efficacy. Optical imaging techniques are particularly useful for tracking cells due to their clinical translatability and potential for intra-operative use to validate cell delivery. However, there is a lack of appropriate optical probes for cell tracking. The only FDA-approved material for clinical use is indocyanine green (ICG). ICG can be used for both fluorescence and photoacoustic imaging, but is prone to photodegradation, and at higher concentrations, undergoes quenching and can adversely affect cell health. We have developed novel near-infrared imaging probes comprising conjugated polymer nanoparticles (CPNs™) that can be fine-tuned to absorb and emit light at specific wavelengths. To compare the performance of the CPNs™ with ICG for in vivo cell tracking, labelled mesenchymal stromal cells (MSCs) were injected subcutaneously in mice and detected using fluorescence imaging (FI) and a form of photoacoustic imaging called multispectral optoacoustic tomography (MSOT). MSCs labelled with either ICG or CPN™ 770 could be detected with FI, but only CPN™ 770-labelled MSCs could be detected with MSOT. These results show that CPNs™ show great promise for tracking cells in vivo using optical imaging techniques, and for some applications, out-perform ICG.
Collapse
Affiliation(s)
- Ana Muñiz-García
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool Liverpool UK
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London London UK
| | - Alejandra Hernandez Pichardo
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool Liverpool UK
- Centre for Pre-clinical Imaging, University of Liverpool Liverpool UK
| | - James Littlewood
- Centre for Pre-clinical Imaging, University of Liverpool Liverpool UK
- iThera Medical GmbH Munich Germany
| | - Suzannah Tasker
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool Liverpool UK
| | | | - Bettina Wilm
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool Liverpool UK
- Centre for Pre-clinical Imaging, University of Liverpool Liverpool UK
| | | | | | | | - Arthur Taylor
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool Liverpool UK
- Centre for Pre-clinical Imaging, University of Liverpool Liverpool UK
| | - Patricia Murray
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool Liverpool UK
- Centre for Pre-clinical Imaging, University of Liverpool Liverpool UK
| |
Collapse
|
13
|
Liang J, Liu Y. Animal Models of Kidney Disease: Challenges and Perspectives. KIDNEY360 2023; 4:1479-1493. [PMID: 37526653 PMCID: PMC10617803 DOI: 10.34067/kid.0000000000000227] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Kidney disease is highly prevalent and affects approximately 850 million people worldwide. It is also associated with high morbidity and mortality, and current therapies are incurable and often ineffective. Animal models are indispensable for understanding the pathophysiology of various kidney diseases and for preclinically testing novel remedies. In the last two decades, rodents continue to be the most used models for imitating human kidney diseases, largely because of the increasing availability of many unique genetically modified mice. Despite many limitations and pitfalls, animal models play an essential and irreplaceable role in gaining novel insights into the mechanisms, pathologies, and therapeutic targets of kidney disease. In this review, we highlight commonly used animal models of kidney diseases by focusing on experimental AKI, CKD, and diabetic kidney disease. We briefly summarize the pathological characteristics, advantages, and drawbacks of some widely used models. Emerging animal models such as mini pig, salamander, zebrafish, and drosophila, as well as human-derived kidney organoids and kidney-on-a-chip are also discussed. Undoubtedly, careful selection and utilization of appropriate animal models is of vital importance in deciphering the mechanisms underlying nephropathies and evaluating the efficacy of new treatment options. Such studies will provide a solid foundation for future diagnosis, prevention, and treatment of human kidney diseases.
Collapse
Affiliation(s)
- Jianqing Liang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Youhua Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| |
Collapse
|
14
|
Ma K, Liu JF, Zheng ZR, Li HY, Hu B, Meng Y. The polarization of M2 macrophages can be adjusted to alleviate renal injury by methylprednisolone in sepsis-AKI. Arch Biochem Biophys 2023; 747:109738. [PMID: 37696383 DOI: 10.1016/j.abb.2023.109738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/21/2023] [Accepted: 09/03/2023] [Indexed: 09/13/2023]
Abstract
Acute kidney injury in sepsis patients has an extreme mortality rate in clinical. It obviously seems that immune cells, for example, macrophages are involved with this process. Macrophages, as highly important immune cells, play a significant role in the development of human kidney diseases. But the specific role of macrophages in this process is still unclear. Under different timeline points, we surprisingly found that macrophages had the most dynamic changes in acute kidney injury immune cells. Based on macrophages' functions, they are primarily classified into M1 macrophages (pro-inflammatory) and M2 macrophages (anti-inflammatory). The polarization of M2 macrophages is closely associated with the seriousness of sepsis-induced kidney injury, but how to modulate their polarization to alleviate sepsis-associated renal damage remains unknown. We discovered that the polarization of M2 macrophages after methylprednisolone injection can significantly alleviate acute kidney injury by reducing secreted cytokine. This study suggests that the proportion of macrophage subtypes can be regulated by methylprednisolone to alleviate acute kidney injury in sepsis to provide a new sight for a clinical to provide a promising strategy for renal injury caused.
Collapse
Affiliation(s)
- Ke Ma
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China; Institute of Nephrology, Jinan University, Guangzhou, 510632, China
| | - Jin-Feng Liu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China; Institute of Nephrology, Jinan University, Guangzhou, 510632, China
| | - Zi-Run Zheng
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China; Institute of Nephrology, Jinan University, Guangzhou, 510632, China
| | - Hong-Yue Li
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China; Institute of Nephrology, Jinan University, Guangzhou, 510632, China
| | - Bo Hu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China; Department of Nephrology, The Fifth Affiliated Hospital of Jinan University, Heyuan, 570000, China; Institute of Nephrology, Jinan University, Guangzhou, 510632, China.
| | - Yu Meng
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China; Department of Nephrology, The Fifth Affiliated Hospital of Jinan University, Heyuan, 570000, China; Institute of Nephrology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
15
|
Shan K, Li J, Yang Q, Chen K, Zhou S, Jia L, Fu G, Qi Y, Wang Q, Chen YQ. Dietary docosahexaenoic acid plays an opposed role in ferroptotic and non-ferroptotic acute kidney injury. J Nutr Biochem 2023; 120:109418. [PMID: 37490984 DOI: 10.1016/j.jnutbio.2023.109418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
Ferroptosis due to polyunsaturated fatty acid (PUFA) peroxidation has been implicated in the pathogenesis of acute kidney injury (AKI), suggesting the risk of dietary intake of PUFA for people susceptible to AKI. Clinically, however, in addition to ferroptosis, other mechanisms also contribute to different types of AKI such as inflammation associated necroptosis and pyroptosis. Therefore, the role of PUFA, especially ω3 PUFA which is a common food supplement, in various AKIs deserves further evaluation. In this study, rhabdomyolysis- and folic acid-induced AKI (Rha-AKI and FA-AKI) were established in mice fed with different fatty acids Histology of kidney, blood urea nitrogen and creatinine, lipid peroxidation, and inflammatory factors were examined. Results showed that these two types of AKIs had diametrically different pathogenesis indicated by that ferrostatin-1 (Fer-1), a lipid antioxidant, can attenuate FA-AKI rather than Rha-AKI. Further, dietary DHA (provided by fish oil) reduced tubular injury and renal lesion by inhibiting peroxidation and inflammation in mice with Rha-AKI while increasing cell death, tissue damage, peroxidation and inflammation in mice with FA-AKI. In human renal tubular epithelial cell line HK-2, MTT assay and DHE staining showed that both myoglobin and ferroptosis inducers can cause cell death and oxidative stress. Ferroptosis inducer-induced cell death was promoted by DHA, while such result was not observed in myoglobin-induced cell death when adding DHA. This study illustrates that the mechanisms of AKI might be either ferroptosis dependent or -independent and the deterioration effect of dietary DHA depends on whether ferroptosis is involved.
Collapse
Affiliation(s)
- Kai Shan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Jiaqi Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Qin Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Kang Chen
- Food Sciences, Department of Life Technologies, University of Turku, Turku, Finland
| | - Shanshan Zhou
- The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lingling Jia
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang Province, China
| | - Guoling Fu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yumin Qi
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Qizai Wang
- Food Sciences, Department of Life Technologies, University of Turku, Turku, Finland
| | - Yong Q Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China.
| |
Collapse
|
16
|
Hernandez Pichardo A, Wilm B, Liptrott NJ, Murray P. Intravenous Administration of Human Umbilical Cord Mesenchymal Stromal Cells Leads to an Inflammatory Response in the Lung. Stem Cells Int 2023; 2023:7397819. [PMID: 37705699 PMCID: PMC10497368 DOI: 10.1155/2023/7397819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/25/2023] [Accepted: 08/04/2023] [Indexed: 09/15/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) administered intravenously (IV) have shown efficacy in preclinical models of various diseases. This is despite the cells not reaching the site of injury due to entrapment in the lungs. The immunomodulatory properties of MSCs are thought to underlie their therapeutic effects, irrespective of whether they are sourced from bone marrow, adipose tissue, or umbilical cord. To better understand how MSCs affect innate immune cell populations in the lung, we evaluated the distribution and phenotype of neutrophils, monocytes, and macrophages by flow cytometry and histological analyses after delivering human umbilical cord-derived MSCs (hUC-MSCs) IV into immunocompetent mice. After 2 hr, we observed a significant increase in neutrophils, and proinflammatory monocytes and macrophages. Moreover, these immune cells localized in close proximity to the MSCs, suggesting an active role in their clearance. By 24 hr, we detected an increase in anti-inflammatory monocytes and macrophages. These results suggest that the IV injection of hUC-MSCs leads to an initial inflammatory phase in the lung shortly after injection, followed by a resolution phase 24 hr later.
Collapse
Affiliation(s)
- Alejandra Hernandez Pichardo
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Centre for Pre-Clinical Imaging, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Bettina Wilm
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Centre for Pre-Clinical Imaging, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Neill J. Liptrott
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Patricia Murray
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Centre for Pre-Clinical Imaging, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
17
|
Mesenchymal stem cells and macrophages and their interactions in tendon-bone healing. J Orthop Translat 2023; 39:63-73. [PMID: 37188000 PMCID: PMC10175706 DOI: 10.1016/j.jot.2022.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/21/2023] Open
Abstract
Tendon-bone insertion injuries (TBI), such as anterior cruciate ligament (ACL) and rotator cuff injuries, are common degenerative or traumatic pathologies with a negative impact on the patient's daily life, and they cause huge economic losses every year. The healing process after an injury is complex and is dependent on the surrounding environment. Macrophages accumulate during the entire process of tendon and bone healing and their phenotypes progressively transform as they regenerate. As the "sensor and switch of the immune system", mesenchymal stem cells (MSCs) respond to the inflammatory environment and exert immunomodulatory effects during the tendon-bone healing process. When exposed to appropriate stimuli, they can differentiate into different tissues, including chondrocytes, osteocytes, and epithelial cells, promoting reconstruction of the complex transitional structure of the enthesis. It is well known that MSCs and macrophages communicate with each other during tissue repair. In this review, we discuss the roles of macrophages and MSCs in TBI injury and healing. Reciprocal interactions between MSCs and macrophages and some biological processes utilizing their mutual relations in tendon-bone healing are also described. Additionally, we discuss the limitations in our understanding of tendon-bone healing and propose feasible ways to exploit MSC-macrophage interplay to develop an effective therapeutic strategy for TBI injuries. The Translational potential of this article This paper reviewed the important functions of macrophages and mesenchymal stem cells in tendon-bone healing and described the reciprocal interactions between them during the healing process. By managing macrophage phenotypes, mesenchymal stem cells and the interactions between them, some possible novel therapies for tendon-bone injury may be proposed to promote tendon-bone healing after restoration surgery.
Collapse
|
18
|
Razi S, Yaghmoorian Khojini J, Kargarijam F, Panahi S, Tahershamsi Z, Tajbakhsh A, Gheibihayat SM. Macrophage efferocytosis in health and disease. Cell Biochem Funct 2023; 41:152-165. [PMID: 36794573 DOI: 10.1002/cbf.3780] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023]
Abstract
Creating cellular homeostasis within a defined tissue typically relates to the processes of apoptosis and efferocytosis. A great example here is cell debris that must be removed to prevent unwanted inflammatory responses and then reduce autoimmunity. In view of that, defective efferocytosis is often assumed to be responsible for the improper clearance of apoptotic cells (ACs). This predicament triggers off inflammation and even results in disease development. Any disruption of phagocytic receptors, molecules as bridging groups, or signaling routes can also inhibit macrophage efferocytosis and lead to the impaired clearance of the apoptotic body. In this line, macrophages as professional phagocytic cells take the lead in the efferocytosis process. As well, insufficiency in macrophage efferocytosis facilitates the spread of a wide variety of diseases, including neurodegenerative diseases, kidney problems, types of cancer, asthma, and the like. Establishing the functions of macrophages in this respect can be thus useful in the treatment of many diseases. Against this background, this review aimed to recapitulate the knowledge about the mechanisms related to macrophage polarization under physiological or pathological conditions, and shed light on its interaction with efferocytosis.
Collapse
Affiliation(s)
- Shokufeh Razi
- Department of Genetics, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Javad Yaghmoorian Khojini
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Kargarijam
- Department of Biotechnology, Faculty of Sciences and Advanced Technology in Biology, University of Science and Culture, Tehran, Iran
| | - Susan Panahi
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zahra Tahershamsi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Munich, Germany
| |
Collapse
|
19
|
Abdolmohammadi K, Mahmoudi T, Alimohammadi M, Tahmasebi S, Zavvar M, Hashemi SM. Mesenchymal stem cell-based therapy as a new therapeutic approach for acute inflammation. Life Sci 2023; 312:121206. [PMID: 36403645 DOI: 10.1016/j.lfs.2022.121206] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Acute inflammatory diseases such as acute colitis, kidney injury, liver failure, lung injury, myocardial infarction, pancreatitis, septic shock, and spinal cord injury are significant causes of death worldwide. Despite advances in the understanding of its pathophysiology, there are many restrictions in the treatment of these diseases, and new therapeutic approaches are required. Mesenchymal stem cell-based therapy due to immunomodulatory and regenerative properties is a promising candidate for acute inflammatory disease management. Based on preclinical results, mesenchymal stem cells and their-derived secretome improved immunological and clinical parameters. Furthermore, many clinical trials of acute kidney, liver, lung, myocardial, and spinal cord injury have yielded promising results. In this review, we try to provide a comprehensive view of mesenchymal stem cell-based therapy in acute inflammatory diseases as a new treatment approach.
Collapse
Affiliation(s)
- Kamal Abdolmohammadi
- Department of Immunology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Tayebeh Mahmoudi
- 17 Shahrivar Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Zavvar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Nanothechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Torrico S, Hotter G, Játiva S. Development of Cell Therapies for Renal Disease and Regenerative Medicine. Int J Mol Sci 2022; 23:ijms232415943. [PMID: 36555585 PMCID: PMC9783572 DOI: 10.3390/ijms232415943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The incidence of renal disease is gradually increasing worldwide, and this condition has become a major public health problem because it is a trigger for many other chronic diseases. Cell therapies using multipotent mesenchymal stromal cells, hematopoietic stem cells, macrophages, and other cell types have been used to induce regeneration and provide a cure for acute and chronic kidney disease in experimental models. This review describes the advances in cell therapy protocols applied to acute and chronic kidney injuries and the attempts to apply these treatments in a clinical setting.
Collapse
Affiliation(s)
- Selene Torrico
- M2rlab-XCELL, 28010 Madrid, Spain
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas Institut d’Investigacions Biomèdiques August Pi i Sunyer (IIBB-CSIC-IDIBAPS), 08036 Barcelona, Spain
- Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Georgina Hotter
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas Institut d’Investigacions Biomèdiques August Pi i Sunyer (IIBB-CSIC-IDIBAPS), 08036 Barcelona, Spain
- CIBER-BBN, Networking Center on Bioengineering, Biomaterials and Nanomedicine, 50018 Zaragoza, Spain
- Correspondence: (G.H.); (S.J.)
| | - Soraya Játiva
- M2rlab-XCELL, 28010 Madrid, Spain
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas Institut d’Investigacions Biomèdiques August Pi i Sunyer (IIBB-CSIC-IDIBAPS), 08036 Barcelona, Spain
- Correspondence: (G.H.); (S.J.)
| |
Collapse
|
21
|
Hu L, Ge Y, Cao Z, Tian Y, Sun Q, Li Z, Ma J, Wu Y, Wang N, Tang B. Strontium-modified porous polyetheretherketone with the triple function of osteogenesis, angiogenesis, and anti-inflammatory for bone grafting. BIOMATERIALS ADVANCES 2022; 143:213160. [PMID: 36334515 DOI: 10.1016/j.bioadv.2022.213160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/26/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Polyetheretherketone (PEEK) is a potential bone repair material because of its stable chemical and good mechanical properties. However, the biological inertness of PEEK limits its clinical application. Sr2+ has multi biological functions, including promoting bone formation and blood vessel regeneration and inhibiting inflammation. In this paper, PEEK was modified with Sr2+ with the purpose to construct PEEK bone graft material with triple functions of osteogenesis, angiogenesis, and anti-inflammatory. The results showed that Sr-modified PEEK could stably release Sr2+ for a long time in the PBS solution, and indeed could promote the proliferation and differentiation of osteoblasts, promote angiogenesis, and inhibit inflammation. Therefore, it is believed that this multifunctional PEEK with Sr2+ should show great promise for clinical applications in bone repair.
Collapse
Affiliation(s)
- Liqiu Hu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yongmei Ge
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhe Cao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ye Tian
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - QiLi Sun
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhen Li
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, Jiangsu 213001, China
| | - Jing Ma
- Smart Biomaterial Design Lab, Southern University of Science and Technology Hospital, Shenzhen, Guangdong 518055, China
| | - Yutong Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ning Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, Guangdong 518055, China.
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
22
|
Diniz LRL, Elshabrawy HA, Souza MTS, Duarte ABS, Madhav N, de Sousa DP. Renoprotective Effects of Luteolin: Therapeutic Potential for COVID-19-Associated Acute Kidney Injuries. Biomolecules 2022; 12:1544. [PMID: 36358895 PMCID: PMC9687696 DOI: 10.3390/biom12111544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 07/30/2023] Open
Abstract
Acute kidney injury (AKI) has been increasingly reported in critically-ill COVID-19 patients. Moreover, there was significant positive correlation between COVID-19 deaths and renal disorders in hospitalized COVID-19 patients with underlying comorbidities who required renal replacement therapy. It has suggested that death in COVID-19 patients with AKI is 3-fold higher than in COVID-19 patients without AKI. The pathophysiology of COVID-19-associated AKI could be attributed to unspecific mechanisms, as well as COVID-19-specific mechanisms such as direct cellular injury, an imbalanced renin-angiotensin-aldosterone system, pro-inflammatory cytokines elicited by the viral infection and thrombotic events. To date, there is no specific treatment for COVID-19 and its associated AKI. Luteolin is a natural compound with multiple pharmacological activities, including anticoronavirus, as well as renoprotective activities against kidney injury induced by sepsis, renal ischemia and diverse nephrotoxic agents. Therefore, in this review, we mechanistically discuss the anti-SARS-CoV-2 and renoprotective activities of luteolin, which highlight its therapeutic potential in COVID-19-AKI patients.
Collapse
Affiliation(s)
| | - Hatem A. Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | | | | | - Nikhil Madhav
- College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | | |
Collapse
|
23
|
Ferroptotic MSCs protect mice against sepsis via promoting macrophage efferocytosis. Cell Death Dis 2022; 13:825. [PMID: 36163182 PMCID: PMC9512818 DOI: 10.1038/s41419-022-05264-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 01/23/2023]
Abstract
The therapeutic effect of mesenchymal stem cells (MSCs) on sepsis has been well-known. However, a comprehensive understanding of the relationship between MSCs and macrophages remains elusive. Superparamagnetic iron oxide (SPIO) is one of the most commonly used tracers for MSCs. Our previous study has shown that SPIO enhanced the therapeutic effect of MSCs in a macrophage-dependent manner. However, the fate of SPIO-labeled MSCs (MSCSPIO) after infusion remains unknown and the direct interaction between MSCSPIO and macrophages remains unclear. Mice were injected intravenously with MSCSPIO at 2 h after Escherichia coli infection and sacrificed at different times to investigate their distribution and therapeutic effect. We found that MSCSPIO homed to lungs rapidly after infusion and then trapped in livers for more than 10 days. Only a few MSCSPIO homed to the spleen and there was no MSCSPIO detectable in the brain, heart, kidney, colon, and uterus. MSCSPIO tended to stay longer in injured organs compared with healthy organs and played a long-term protective role in sepsis. The mRNA expression profiles between MSCs and MSCSPIO were rather different, genes related to lipid metabolism, inflammation, and oxidative stress were changed. The levels of ROS and lipid peroxide were elevated in MSCSPIO, which confirmed that SPIO-induced ferroptosis in MSCSPIO. Ferroptosis of MSCSPIO induced by SPIO enhanced the efferocytosis of macrophages and thus enhanced the protective effect on septic mice, while the benefits were impaired after MSCSPIO were treated with Ferrostatin-1 (Fer-1) or Liproxtatin-1 (Lip-1), the inhibitors of ferroptosis. SPIO-induced ferroptosis in MSCs contributes to better therapeutic effects in sepsis by enhancing the efferocytosis of macrophages. Our data showed the efficacy and advantage of MSCSPIO as a therapeutic tool and the cell states exert different curative effects on sepsis.
Collapse
|
24
|
McCullough KR, Akhter J, Taheri MJ, Traylor A, Zmijewska AA, Verma V, Hudson MC, Sachdeva A, Erman EN, Moore KH, George JF, Bolisetty S. Functional consequence of myeloid ferritin heavy chain on acute and chronic effects of rhabdomyolysis-induced kidney injury. Front Med (Lausanne) 2022; 9:894521. [PMID: 36160140 PMCID: PMC9492979 DOI: 10.3389/fmed.2022.894521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Acute kidney injury (AKI) is a serious complication of rhabdomyolysis that significantly impacts survival. Myoglobin released from the damaged muscle accumulates in the kidney, causing heme iron-mediated oxidative stress, tubular cell death, and inflammation. In response to injury, myeloid cells, specifically neutrophils and macrophages, infiltrate the kidneys, and mediate response to injury. Ferritin, comprised of ferritin light chain and ferritin heavy chain (FtH), is vital for intracellular iron handling. Given the dominant role of macrophages and heme-iron burden in the pathogenesis of rhabdomyolysis, we studied the functional role of myeloid FtH in rhabdomyolysis-induced AKI and subsequent fibrosis. Using two models of rhabdomyolysis induced AKI, we found that during the acute phase, myeloid FtH deletion did not impact rhabdomyolysis-induced kidney injury, cell death or cell proliferation, suggesting that tubular heme burden is the dominant injury mechanism. We also determined that, while the kidney architecture was markedly improved after 28 days, tubular casts persisted in the kidneys, suggesting sustained damage or incomplete recovery. We further showed that rhabdomyolysis resulted in an abundance of disparate intra-renal immune cell populations, such that myeloid populations dominated during the acute phase and lymphoid populations dominated in the chronic phase. Fibrotic remodeling was induced in both genotypes at 7 days post-injury but continued to progress only in wild-type mice. This was accompanied by an increase in expression of pro-fibrogenic and immunomodulatory proteins, such as transforming growth factor-β, S100A8, and tumor necrosis factor-α. Taken together, we found that while the initial injury response to heme burden was similar, myeloid FtH deficiency was associated with lesser interstitial fibrosis. Future studies are warranted to determine whether this differential fibrotic remodeling will render these animals more susceptible to a second AKI insult or progress to chronic kidney disease at an accelerated pace.
Collapse
Affiliation(s)
- Kayla R. McCullough
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Juheb Akhter
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mauhaun J. Taheri
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Amie Traylor
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anna A. Zmijewska
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vivek Verma
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Matthew C. Hudson
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Abhishek Sachdeva
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Elise N. Erman
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kyle H. Moore
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James F. George
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Subhashini Bolisetty
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Subhashini Bolisetty,
| |
Collapse
|
25
|
Bunnell BA, Martin EC, Matossian MD, Brock CK, Nguyen K, Collins-Burow B, Burow ME. The effect of obesity on adipose-derived stromal cells and adipose tissue and their impact on cancer. Cancer Metastasis Rev 2022; 41:549-573. [PMID: 35999486 DOI: 10.1007/s10555-022-10063-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022]
Abstract
The significant increase in the incidence of obesity represents the next global health crisis. As a result, scientific research has focused on gaining deeper insights into obesity and adipose tissue biology. As a result of the excessive accumulation of adipose tissue, obesity results from hyperplasia and hypertrophy within the adipose tissue. The functional alterations in the adipose tissue are a confounding contributing factor to many diseases, including cancer. The increased incidence and aggressiveness of several cancers, including colorectal, postmenopausal breast, endometrial, prostate, esophageal, hematological, malignant melanoma, and renal carcinomas, result from obesity as a contributing factor. The increased morbidity and mortality of obesity-associated cancers are attributable to increased hormones, adipokines, and cytokines produced by the adipose tissue. The increased adipose tissue levels observed in obese patients result in more adipose stromal/stem cells (ASCs) distributed throughout the body. ASCs have been shown to impact cancer progression in vitro and in preclinical animal models. ASCs influence tumor biology via multiple mechanisms, including the increased recruitment of ASCs to the tumor site and increased production of cytokines and growth factors by ASCs and other cells within the tumor stroma. Emerging evidence indicates that obesity induces alterations in the biological properties of ASCs, subsequently leading to enhanced tumorigenesis and metastasis of cancer cells. As the focus of this review is the interaction and impact of ASCs on cancer, the presentation is limited to preclinical data generated on cancers in which there is a demonstrated role for ASCs, such as postmenopausal breast, colorectal, prostate, ovarian, multiple myeloma, osteosarcoma, cervical, bladder, and gastrointestinal cancers. Our group has investigated the interactions between obesity and breast cancer and the mechanisms that regulate ASCs and adipocytes in these different contexts through interactions between cancer cells, immune cells, and other cell types present in the tumor microenvironment (TME) are discussed. The reciprocal and circular feedback loop between obesity and ASCs and the mechanisms by which ASCs from obese patients alter the biology of cancer cells and enhance tumorigenesis will be discussed. At present, the evidence for ASCs directly influencing human tumor growth is somewhat limited, though recent clinical studies suggest there may be some link.
Collapse
Affiliation(s)
- Bruce A Bunnell
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA.
| | - Elizabeth C Martin
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Margarite D Matossian
- Department of Microbiology, Immunology and Genetics, University of Chicago, IL, Chicago, USA
| | - Courtney K Brock
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Khoa Nguyen
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Bridgette Collins-Burow
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Matthew E Burow
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
26
|
Dosing Limitation for Intra-Renal Arterial Infusion of Mesenchymal Stromal Cells. Int J Mol Sci 2022; 23:ijms23158268. [PMID: 35955404 PMCID: PMC9368110 DOI: 10.3390/ijms23158268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 02/01/2023] Open
Abstract
The immunomodulatory and regenerative properties of mesenchymal stromal cells (MSCs) make MSC therapy a promising therapeutic strategy in kidney disease. A targeted MSC administration via the renal artery offers an efficient delivery method with limited spillover to other organs. Although local administration alleviates safety issues with MSCs in systemic circulation, it introduces new safety concerns in the kidneys. In a porcine model, we employed intra-renal arterial infusion of ten million allogenic adipose tissue-derived MSCs. In order to trigger any potential adverse events, a higher dose (hundred million MSCs) was also included. The kidney function was studied by magnetic resonance imaging after the MSC infusion and again at two weeks post-treatment. The kidneys were assessed by single kidney glomerular filtration rate (skGFR) measurements, histology and inflammation, and fibrosis-related gene expression. None of the measured parameters were affected immediately after the administration of ten million MSCs, but the administration of one hundred million MSCs induced severe adverse events. Renal perfusion was reduced immediately after MSC administration which coincided with the presence of microthrombi in the glomeruli and signs of an instant blood-mediated inflammatory reaction. At two weeks post-treatment, the kidneys that were treated with one hundred million MSCs showed reduced skGFR, signs of tissue inflammation, and glomerular and tubular damage. In conclusions, the intra-renal administration of ten million MSCs is well-tolerated by the porcine kidney. However, higher concentrations (one hundred million MSCs) caused severe kidney damage, implying that very high doses of intra-renally administered MSCs should be undertaken with caution.
Collapse
|
27
|
Jiang X, Yang J, Liu F, Tao J, Xu J, Zhang M. Embryonic stem cell-derived mesenchymal stem cells alleviate skeletal muscle injury induced by acute compartment syndrome. Stem Cell Res Ther 2022; 13:313. [PMID: 35841081 PMCID: PMC9284828 DOI: 10.1186/s13287-022-03000-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background Acute compartment syndrome (ACS), a well-known complication of musculoskeletal injury, results in muscle necrosis and cell death. Embryonic stem cell-derived mesenchymal stem cells (ESC-MSCs) have been shown to be a promising therapy for ACS. However, their effectiveness and potentially protective mechanism remain unknown. The present study was designed to investigate the efficacy and underlying mechanism of ESC-MSCs in ACS-induced skeletal muscle injury. Method A total of 168 male Sprague–Dawley (SD) rats underwent 2 h of intracompartmental pressure elevation by saline infusion into the anterior compartment of the left hindlimb to establish the ACS model. ESC-MSCs were differentiated from the human embryonic stem cell (ESC) line H9. A dose of 1.2 × 106 of ESC-MSCs was intravenously injected during fasciotomy. Post-ACS assessments included skeletal edema index, serum indicators, histological analysis, apoptosis, fibrosis, regeneration, and functional recovery of skeletal muscle. Then, fluorescence microscopy was used to observe the distribution of labeled ESC-MSCs in vivo, and western blotting and immunofluorescence analyses were performed to examine macrophages infiltration in skeletal muscle. Finally, we used liposomal clodronate to deplete macrophages and reassess skeletal muscle injury in response to ESC-MSC therapy. Result ESC-MSCs significantly reduced systemic inflammatory responses, ACS-induced skeletal muscle edema, and cell apoptosis. In addition, ESC-MSCs inhibited skeletal muscle fibrosis and increased regeneration and functional recovery of skeletal muscle after ACS. The beneficial effects of ESC-MSCs on ACS-induced skeletal muscle injury were accompanied by a decrease in CD86-positive M1 macrophage polarization and an increase in CD206-positive M2 macrophage polarization. After depleting macrophages with liposomal clodronate, the beneficial effects of ESC-MSCs were attenuated. Conclusion Our findings suggest that embryonic stem cell-derived mesenchymal stem cells infusion could effectively alleviate ACS-induced skeletal muscle injury, in which the beneficial effects were related to the regulation of macrophages polarization.
Collapse
Affiliation(s)
- Xiangkang Jiang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China.,Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Jingyuan Yang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China.,Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Fei Liu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China.,Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Jiawei Tao
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China.,Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Jiefeng Xu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China.,Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Mao Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China. .,Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China. .,Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China.
| |
Collapse
|
28
|
Wang S, Lei B, Zhang E, Gong P, Gu J, He L, Han L, Yuan Z. Targeted Therapy for Inflammatory Diseases with Mesenchymal Stem Cells and Their Derived Exosomes: From Basic to Clinics. Int J Nanomedicine 2022; 17:1757-1781. [PMID: 35469174 PMCID: PMC9034888 DOI: 10.2147/ijn.s355366] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/09/2022] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a beneficial and physiological process, but there are a number of inflammatory diseases which have detrimental effects on the body. In addition, the drugs used to treat inflammation have toxic side effects when used over a long period of time. Mesenchymal stem cells (MSCs) are pluripotent stem cells that can be isolated from a variety of tissues and can be differentiate into diverse cell types under appropriate conditions. They also exhibit noteworthy anti-inflammatory properties, providing new options for the treatment of inflammatory diseases. The therapeutic potential of MSCs is currently being investigated for various inflammatory diseases, such as kidney injury, lung injury, osteoarthritis (OA), rheumatoid arthritis (RA), and inflammatory bowel disease (IBD). MSCs can perform multiple functions, including immunomodulation, homing, and differentiation, to enable damaged tissues to form a balanced inflammatory and regenerative microenvironment under severe inflammatory conditions. In addition, accumulated evidence indicates that exosomes from extracellular vesicles of MSCs (MSC-Exos) play an extraordinary role, mainly by transferring their components to recipient cells. In this review, we summarize the mechanism and clinical trials of MSCs and MSC-Exos in various inflammatory diseases in detail, with a view to contributing to the treatment of MSCs and MSC-Exos in inflammatory diseases.
Collapse
Affiliation(s)
- Shuo Wang
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, Sichuan, People’s Republic of China
| | - Biyu Lei
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, Sichuan, People’s Republic of China
| | - E Zhang
- Department of Basic Sciences, Officers College of People’s Armed Police, Chengdu, Sichuan, 610213, People’s Republic of China
| | - Puyang Gong
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, Sichuan, People’s Republic of China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, Sichuan, People’s Republic of China
| | - Lili He
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, Sichuan, People’s Republic of China
| | - Lu Han
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, Sichuan, People’s Republic of China
| | - Zhixiang Yuan
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, Sichuan, People’s Republic of China
| |
Collapse
|
29
|
Li N, Chen J, Geng C, Wang X, Wang Y, Sun N, Wang P, Han L, Li Z, Fan H, Hou S, Gong Y. Myoglobin promotes macrophage polarization to M1 type and pyroptosis via the RIG-I/Caspase1/GSDMD signaling pathway in CS-AKI. Cell Death Dis 2022; 8:90. [PMID: 35228524 PMCID: PMC8885737 DOI: 10.1038/s41420-022-00894-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 12/14/2022]
Abstract
Crush syndrome (CS) is a life-threatening illness in traffic accidents and earthquakes. Crush syndrome-induced acute kidney injury (CS-AKI) is considered to be mainly due to myoglobin (Mb) circulation and deposition after skeletal muscle ruptures and releases. Macrophages are the primary immune cells that fight foreign substances and play critical roles in regulating the body's natural immune response. However, what effect does myoglobin have on macrophages and the mechanisms involved in the CS-AKI remain unclear. This study aims to look into how myoglobin affects macrophages of the CS-AKI model. C57BL/6 mice were used to construct the CS-AKI model by digital crush platform. Biochemical analysis and renal histology confirmed the successful establishment of the CS-AKI mouse model. Ferrous myoglobin was used to treat Raw264.7 macrophages to mimic the CS-AKI cell model in vitro. The macrophage polarization toward M1 type and activation of RIG-I as myoglobin sensor were verified by real-time quantitative PCR (qPCR), Western blotting (WB), and immunofluorescence (IF). Macrophage pyroptosis was observed under light microscopy. The interaction between RIG-I and caspase1 was subsequently explored by co-immunoprecipitation (Co-IP) and IF. Small interfering RNA (siRIG-I) and pyroptosis inhibitor dimethyl fumarate (DMF) were used to verify the role of macrophage polarization and pyroptosis in CS-AKI. In the kidney tissue of CS-AKI mice, macrophage infiltration and M1 type were found. We also detected that in the cell model of CS-AKI in vitro, ferrous myoglobin treatment promoted macrophages polarization to M1. Meanwhile, we observed pyroptosis, and myoglobin activated the RIG-I/Caspase1/GSDMD signaling pathway. In addition, pyroptosis inhibitor DMF not only alleviated kidney injury of CS-AKI mice but also inhibited macrophage polarization to M1 phenotype and pyroptosis via the RIG-I/Caspase1/GSDMD signaling pathway. Our research found that myoglobin promotes macrophage polarization to M1 type and pyroptosis via the RIG-I/Caspase1/GSDMD signaling pathway in CS-AKI.
Collapse
Affiliation(s)
- Ning Li
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China.,Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Jiale Chen
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China.,Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Chenhao Geng
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China.,Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Xinyue Wang
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China.,Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Yuru Wang
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China.,Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Na Sun
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China.,Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Pengtao Wang
- Department of Intensive Care Unit, Tianjin First Center Hospital, Tianjin, 300192, China
| | - Lu Han
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China.,Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Zizheng Li
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China.,Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Haojun Fan
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China.,Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Shike Hou
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China. .,Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China. .,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China.
| | - Yanhua Gong
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China. .,Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China. .,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China.
| |
Collapse
|
30
|
Weng X, Li J, Guan Q, Zhao H, Wang Z, Gleave ME, Nguan CY, Du C. The functions of clusterin in renal mesenchymal stromal cells: Promotion of cell growth and regulation of macrophage activation. Exp Cell Res 2022; 413:113081. [PMID: 35218723 DOI: 10.1016/j.yexcr.2022.113081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/31/2022] [Accepted: 02/15/2022] [Indexed: 12/24/2022]
Abstract
Clusterin (CLU) increases resistance to renal ischemia-reperfusion injury and promotes renal tissue repair. However, the mechanisms underlying of the renal protection of CLU remain unknown. Mesenchymal stromal cells (MSCs) may contribute to kidney cell turnover and injury repair. This study investigated the in vitro functions of CLU in kidney mesenchymal stromal cells (KMSCs). KMSCs were grown in plastic culture plates. Cell surface markers, apoptosis and phagocytosis were determined by flow cytometry, and CLU protein by Western blot. There were no differences in the expression of MSC markers (positive: CD133, Sca-1, CD44, CD117 and NG2, and negative: CD34, CD45, CD163, CD41, CD276, CD138, CD79a, CD146 and CD140b) and in the trilineage differentiation to chondrocytes, adipocytes and osteocytes between wild type (WT) and CLU knockout (KO) KMSCs. CLU was expressed intracellularly and secreted by WT KMSCs, and it was up-regulated by hypoxia. CLU did not prevent hypoxia-induced cell apoptosis but promoted cell growth in KMSC cultures. Furthermore, incubation with CLU-containing culture medium from WT KMSCs increased CD206 expression and phagocytic capacity of macrophages. In conclusion, our data for the first time demonstrate the function of CLU in the promotion of KMSCs proliferation, and it may be required for KMSCs-regulated macrophage M2 polarization and phagocytic activity.
Collapse
Affiliation(s)
- Xiaodong Weng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China; Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jing Li
- Department of Ophthamology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430060, China
| | - Qiunong Guan
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Haimei Zhao
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Zihuan Wang
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; First Clinical Medical School, Southern Medical University, Guangzhou, 510000, China
| | - Martin E Gleave
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Christopher Yc Nguan
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Caigan Du
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
31
|
Russo V, El Khatib M, Prencipe G, Citeroni MR, Faydaver M, Mauro A, Berardinelli P, Cerveró-Varona A, Haidar-Montes AA, Turriani M, Di Giacinto O, Raspa M, Scavizzi F, Bonaventura F, Stöckl J, Barboni B. Tendon Immune Regeneration: Insights on the Synergetic Role of Stem and Immune Cells during Tendon Regeneration. Cells 2022; 11:434. [PMID: 35159244 PMCID: PMC8834336 DOI: 10.3390/cells11030434] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/11/2022] Open
Abstract
Tendon disorders represent a very common pathology in today's population, and tendinopathies that account 30% of tendon-related injuries, affect yearly millions of people which in turn cause huge socioeconomic and health repercussions worldwide. Inflammation plays a prominent role in the development of tendon pathologies, and advances in understanding the underlying mechanisms during the inflammatory state have provided additional insights into its potential role in tendon disorders. Different cell compartments, in combination with secreted immune modulators, have shown to control and modulate the inflammatory response during tendinopathies. Stromal compartment represented by tenocytes has shown to display an important role in orchestrating the inflammatory response during tendon injuries due to the interplay they exhibit with the immune-sensing and infiltrating compartments, which belong to resident and recruited immune cells. The use of stem cells or their derived secretomes within the regenerative medicine field might represent synergic new therapeutical approaches that can be used to tune the reaction of immune cells within the damaged tissues. To this end, promising opportunities are headed to the stimulation of macrophages polarization towards anti-inflammatory phenotype together with the recruitment of stem cells, that possess immunomodulatory properties, able to infiltrate within the damaged tissues and improve tendinopathies resolution. Indeed, the comprehension of the interactions between tenocytes or stem cells with the immune cells might considerably modulate the immune reaction solving hence the inflammatory response and preventing fibrotic tissue formation. The purpose of this review is to compare the roles of distinct cell compartments during tendon homeostasis and injury. Furthermore, the role of immune cells in this field, as well as their interactions with stem cells and tenocytes during tendon regeneration, will be discussed to gain insights into new ways for dealing with tendinopathies.
Collapse
Affiliation(s)
- Valentina Russo
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Giuseppe Prencipe
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Maria Rita Citeroni
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Melisa Faydaver
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Annunziata Mauro
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Adrián Cerveró-Varona
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Arlette A. Haidar-Montes
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Maura Turriani
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Oriana Di Giacinto
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Marcello Raspa
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Ferdinando Scavizzi
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Fabrizio Bonaventura
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Johannes Stöckl
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Barbara Barboni
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| |
Collapse
|
32
|
Krampera M, Le Blanc K. Mesenchymal stromal cells: Putative microenvironmental modulators become cell therapy. Cell Stem Cell 2021; 28:1708-1725. [PMID: 34624232 DOI: 10.1016/j.stem.2021.09.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An exceptional safety profile has been shown in a large number of cell therapy clinical trials that use mesenchymal stromal cells (MSCs). However, reliable potency assays are still lacking to predict MSC immunosuppressive efficacy in the clinical setting. Nevertheless, MSCs are approved in Japan and Europe for the treatment of graft-versus-host and Crohn's fistular diseases, but not in the United States for any clinical indication. We discuss potential mechanisms of action for the therapeutic effects of MSC transplantation, experimental models that dissect tissue modulating function of MSCs, and approaches for identifying MSC effects in vivo by integrating biomarkers of disease and MSC activity.
Collapse
Affiliation(s)
- Mauro Krampera
- Section of Hematology and Bone Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy.
| | - Katarina Le Blanc
- Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Stockholm, Sweden; Center of Allogeneic Stem Cell Transplantation and Cellular Therapy (CAST), Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| |
Collapse
|
33
|
Calcat-i-Cervera S, Sanz-Nogués C, O'Brien T. When Origin Matters: Properties of Mesenchymal Stromal Cells From Different Sources for Clinical Translation in Kidney Disease. Front Med (Lausanne) 2021; 8:728496. [PMID: 34616756 PMCID: PMC8488400 DOI: 10.3389/fmed.2021.728496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Advanced therapy medicinal products (ATMPs) offer new prospects to improve the treatment of conditions with unmet medical needs. Kidney diseases are a current major health concern with an increasing global prevalence. Chronic renal failure appears after many years of impairment, which opens a temporary window to apply novel therapeutic approaches to delay or halt disease progression. The immunomodulatory, anti-inflammatory, and pro-regenerative properties of mesenchymal stromal cells (MSCs) have sparked interest for their use in cell-based regenerative therapies. Currently, several early-phase clinical trials have been completed and many are ongoing to explore MSC safety and efficacy in a wide range of nephropathies. However, one of the current roadblocks to the clinical translation of MSC therapies relates to the lack of standardization and harmonization of MSC manufacturing protocols, which currently hinders inter-study comparability. Studies have shown that cell culture processing variables can have significant effects on MSC phenotype and functionality, and these are highly variable across laboratories. In addition, heterogeneity within MSC populations is another obstacle. Furthermore, MSCs may be isolated from several sources which adds another variable to the comparative assessment of outcomes. There is now a growing body of literature highlighting unique and distinctive properties of MSCs according to the tissue origin, and that characteristics such as donor, age, sex and underlying medical conditions may alter the therapeutic effect of MSCs. These variables must be taken into consideration when developing a cell therapy product. Having an optimal scale-up strategy for MSC manufacturing is critical for ensuring product quality while minimizing costs and time of production, as well as avoiding potential risks. Ideally, optimal scale-up strategies must be carefully considered and identified during the early stages of development, as making changes later in the bioprocess workflow will require re-optimization and validation, which may have a significant long-term impact on the cost of the therapy. This article provides a summary of important cell culture processing variables to consider in the scale-up of MSC manufacturing as well as giving a comprehensive review of tissue of origin-specific biological characteristics of MSCs and their use in current clinical trials in a range of renal pathologies.
Collapse
Affiliation(s)
| | | | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), CÚRAM, Biomedical Science Building, National University of Ireland, Galway, Ireland
| |
Collapse
|
34
|
Ni W, Zhang Y, Yin Z. The protective mechanism of Klotho gene-modified bone marrow mesenchymal stem cells on acute kidney injury induced by rhabdomyolysis. Regen Ther 2021; 18:255-267. [PMID: 34466631 PMCID: PMC8367782 DOI: 10.1016/j.reth.2021.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/21/2021] [Accepted: 07/13/2021] [Indexed: 01/09/2023] Open
Abstract
Background Studies have shown that the Klotho gene has tremendous potential for future therapeutic purposes in both acute and chronic kidney diseases (CKD). This study aimed to investigate the possible protective mechanisms of the Klotho gene against acute kidney injury (AKI) induced by rhabdomyolysis (RM). Methods In this study, bone marrow mesenchymal stem cells (BMSCs) were transfected with recombinant adenoviruses expressing the Klotho gene (BMSCs-Klotho) and by those expressing empty vector (BMSCs-EV). After successful transfection, we tested the proliferation, secretion and migration abilities of the BMSCs-Klotho compared with those of the BMSCs-EV and BMSCs. Then, 30 male C57BL/6 mice were examined, with 6 mice randomly assigned to the control group (PBS injected into the tail vein, CON) or one of the four treatment groups treated with either BMSCs-Klotho (AKI+BMSCs-Klotho), BMSCs-EV (AKI+BMSCs-EV), BMSCs (AKI+BMSCs) or PBS (AKI+PBS) after induction of RM. Seventy-two h after treatment, serum creatinine (SCr) and blood urea nitrogen (BUN) levels were obtained to assess renal function, and renal tissue was obtained to measure kidney tissue damage. Additionally, kidney protective mechanism-related indexes, such as EPO, IGF-1, KIM-1 and HIF-1, were analysed using Western blot analysis and immunohistochemistry. Results The results obtained showed that the proliferation, secretory and migration abilities of the BMSCs were significantly increased after transfection with the Klotho gene. Treatment with BMSCs-Klotho, BMSCs-EV or BMSCs improved renal function compared to treatment with PBS. However, the improvement observed in renal function in the BMSCs-Klotho group was better than that of the other groups. Histological analysis demonstrated that tissue damage was significantly decreased in the mice in the AKI+BMSCs-Klotho, AKI+BMSCs-EV or AKI+BMSCs groups compared to that in the mice in the AKI+PBS group. However, the best recovery was observed in the mice treated with BMSCs-Klotho concomitantly. Furthermore, the expression of protective factors erythropoietin (EPO) and insulin-like growth factor 1 (IGF-1) increased obviously, and the injury biomarkers kidney injury molecule 1 (KIM-1) and hypoxia inducible factor 1 (HIF-1) decreased notably in the group of BMSCs-Klotho, BMSCs-EV and BMSCs. Additionally, the levels of the aforementioned protein indicators in the AKI+BMSCs-Klotho group were not different from those in the CON group. Conclusion Klotho overexpression exerted positive effects on BMSCs and markedly promoted recovery from RM-induced AKI. These findings suggest that the overexpression of the Klotho gene might be a good candidate for further therapy for AKI in clinical trials.
Collapse
Affiliation(s)
- WenHui Ni
- Department of Renal Medicine, First People's Hospital of Zhangjiagang City, China
| | - Ying Zhang
- Department of Renal Medicine, Xuzhou Medical University Affiliated Hospital, China
| | - Zhongcheng Yin
- Department of Renal Medicine, Xuzhou Medical University Affiliated Hospital, China
| |
Collapse
|
35
|
Galipeau J. Macrophages at the nexus of mesenchymal stromal cell potency: The emerging role of chemokine cooperativity. Stem Cells 2021; 39:1145-1154. [PMID: 33786935 PMCID: PMC8453730 DOI: 10.1002/stem.3380] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/12/2021] [Indexed: 05/10/2023]
Abstract
Pharmacological depletion of macrophages in vivo with liposomal clodronate renders mice unresponsive to adoptive transfer of mesenchymal stromal cells (MSCs) for affecting outcomes of acute inflammatory pathology. This experimental observation identifies host macrophages as necessary in mediating the salutary anti-inflammatory properties of MSCs as a cellular pharmaceutical. This theory is supported by the observation that transfusion of MSCs leads to the prompt phagocytosis of nearly half of lung entrapped MSCs by lung resident macrophages, triggering an interleukin (IL)-10 suppressive efferocytotic response. In addition, non-phagocytosed MSCs with COX2 competency shape the immune milieu by inducing tissue macrophages to express IL-10. Additional experimental evidence identifies MSC-borne IL-6, IDO and TSG-6 as directly involved in macrophage polarization. Along similar lines of functional convergence, implantation of CCL2+ MSCs in the extravascular space where interaction with lung resident perivascular macrophages is not operative, also leads to IL-10 polarization of CCR2+ macrophages within acute injured tissue far removed from MSC depot. Intriguingly, MSC-derived CCL2 on its own is not sufficient to polarize macrophages and requires heterodimerization with MSC-borne CXCL12 to trigger macrophage IL-10 polarization via CCR2, but not CXCR4. Such chemokine cooperativity opens a new venue for analysis of MSC potency especially considering the rich chemokine secretome of MSC exposed to inflammatory stimulus. As an aggregate, these data highlight a necessary MSC and host macrophage functional dyad that may inform potency attribute analysis of MSCs-including the chemokine interactome-that may be directly linked to in vivo clinical anti-inflammatory and regenerative response.
Collapse
Affiliation(s)
- Jacques Galipeau
- Department of Medicine, School of Medicine and Public HealthUniversity of Wisconsin in MadisonMadisonWisconsinUSA
- University of Wisconsin Carbone Comprehensive CancerMadisonWisconsinUSA
- University of Wisconsin Program for Advanced Cell TherapyMadisonWisconsinUSA
| |
Collapse
|
36
|
Paris GC, Azevedo AA, Ferreira AL, Azevedo YMA, Rainho MA, Oliveira GP, Silva KR, Cortez EAC, Stumbo AC, Carvalho SN, de Carvalho L, Thole AA. Therapeutic potential of mesenchymal stem cells in multiple organs affected by COVID-19. Life Sci 2021; 278:119510. [PMID: 33865879 PMCID: PMC8049196 DOI: 10.1016/j.lfs.2021.119510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 01/08/2023]
Abstract
Currently, the world has been devastated by an unprecedented pandemic in this century. The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the agent of coronavirus disease 2019 (COVID-19), has been causing disorders, dysfunction and morphophysiological alterations in multiple organs as the disease evolves. There is a great scientific community effort to obtain a therapy capable of reaching the multiple affected organs in order to contribute for tissue repair and regeneration. In this regard, mesenchymal stem cells (MSCs) have emerged as potential candidates concerning the promotion of beneficial actions at different stages of COVID-19. MSCs are promising due to the observed therapeutic effects in respiratory preclinical models, as well as in cardiac, vascular, renal and nervous system models. Their immunomodulatory properties and secretion of paracrine mediators, such as cytokines, chemokines, growth factors and extracellular vesicles allow for long range tissue modulation and, particularly, blood-brain barrier crossing. This review focuses on SARS-CoV-2 impact to lungs, kidneys, heart, vasculature and central nervous system while discussing promising MSC's therapeutic mechanisms in each tissue. In addition, MSC's therapeutic effects in high-risk groups for COVID-19, such as obese, diabetic and hypertensive patients are also explored.
Collapse
Affiliation(s)
- Gustavo C Paris
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Aline A Azevedo
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Adriana L Ferreira
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Yanca M A Azevedo
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mateus A Rainho
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Genilza P Oliveira
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Karina R Silva
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Erika A C Cortez
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana C Stumbo
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Simone N Carvalho
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lais de Carvalho
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alessandra A Thole
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
37
|
Wong CY. Current advances of stem cell-based therapy for kidney diseases. World J Stem Cells 2021; 13:914-933. [PMID: 34367484 PMCID: PMC8316868 DOI: 10.4252/wjsc.v13.i7.914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/10/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
Kidney diseases are a prevalent health problem around the world. Multidrug therapy used in the current routine treatment for kidney diseases can only delay disease progression. None of these drugs or treatments can reverse the progression to an end-stage of the disease. Therefore, it is crucial to explore novel therapeutics to improve patients’ quality of life and possibly cure, reverse, or alleviate the kidney disease. Stem cells have promising potentials as a form of regenerative medicine for kidney diseases due to their unlimited replication and their ability to differentiate into kidney cells in vitro. Mounting evidences from the administration of stem cells in an experimental kidney disease model suggested that stem cell-based therapy has therapeutic or renoprotective effects to attenuate kidney damage while improving the function and structure of both glomerular and tubular compartments. This review summarises the current stem cell-based therapeutic approaches to treat kidney diseases, including the various cell sources, animal models or in vitro studies. The challenges of progressing from proof-of-principle in the laboratory to widespread clinical application and the human clinical trial outcomes reported to date are also highlighted. The success of cell-based therapy could widen the scope of regenerative medicine in the future.
Collapse
Affiliation(s)
- Chee-Yin Wong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
- Research Department, Cytopeutics, Cyberjaya 63000, Selangor, Malaysia
| |
Collapse
|
38
|
Li N, Wang X, Wang P, Fan H, Hou S, Gong Y. Emerging medical therapies in crush syndrome - progress report from basic sciences and potential future avenues. Ren Fail 2021; 42:656-666. [PMID: 32662306 PMCID: PMC7470165 DOI: 10.1080/0886022x.2020.1792928] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Crush injury is a disease that is commonly found in victims of earthquakes, debris flows, mine disasters, explosions, terrorist attacks, local wars, and other accidents. The complications that arise due to the crush injury inflicted on victims give rise to crush syndrome (CS). If not treated in time, the mortality rate of CS is very high. The most important measure that can be taken to reduce mortality in such situations is to immediately start treatment. However, the traditional treatment methods such as fluid resuscitation, diuresis, and hemodialysis are not feasible enough to be carried out at the disaster scene. So there is a need for developing new treatments that are efficient and convenient. Because it is difficult to diagnose in the disaster area and reach the treatment equipment and treat on time. It has become a new research needs to be directed into identifying new medical treatment targets and methods using the etiology and pathophysiological mechanisms of CS. In recent years, a large number of new anti-oxidant and anti-inflammatory drug therapies have been shown to be highly efficacious in CS rat/mouse models. Some of them are expected to become specific drugs for the emergency treatment of a large number of patients who may develop CS in the aftermath of earthquakes, wars, and other disasters in the future. Hence, we have reviewed the latest research on the medical therapy of CS as a source for anyone wishing to pursue research in this direction.
Collapse
Affiliation(s)
- Ning Li
- Institute of Disaster Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Xinyue Wang
- Institute of Disaster Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Pengtao Wang
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China.,General Hospital of Tianjin Medical University, Tianjin, China
| | - Haojun Fan
- Institute of Disaster Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Shike Hou
- Institute of Disaster Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Yanhua Gong
- Institute of Disaster Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| |
Collapse
|
39
|
Jamalkhah M, Asaadi Y, Azangou-Khyavy M, Khanali J, Soleimani M, Kiani J, Arefian E. MSC-derived exosomes carrying a cocktail of exogenous interfering RNAs an unprecedented therapy in era of COVID-19 outbreak. J Transl Med 2021; 19:164. [PMID: 33888147 PMCID: PMC8061879 DOI: 10.1186/s12967-021-02840-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/16/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The onset of the SARS-CoV-2 pandemic has resulted in ever-increasing casualties worldwide, and after 15 months, standard therapeutic regimens are yet to be discovered. MAIN BODY Due to the regenerative and immunomodulatory function of MSCs, they can serve as a suitable therapeutic option in alleviating major COVID-19 complications like acute respiratory distress syndrome. However, the superior properties of their cognate exosomes as a cell-free product make them preferable in the clinic. Herein, we discuss the current clinical status of these novel therapeutic strategies in COVID-19 treatment. We then delve into the potential of interfering RNAs incorporation as COVID-19 gene therapy and introduce targets involved in SARS-CoV-2 pathogenesis. Further, we present miRNAs and siRNAs candidates with promising results in targeting the mentioned targets. CONCLUSION Finally, we present a therapeutic platform of mesenchymal stem cell-derived exosomes equipped with exogenous iRNAs, that can be employed as a novel therapeutic modality in COVID-19 management aiming to prevent further viral spread within the lung, hinder the virus life cycle and pathogenesis such as immune suppression, and ultimately, enhance the antiviral immune response.
Collapse
Affiliation(s)
- Monire Jamalkhah
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Yasaman Asaadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | | | - Javad Khanali
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
40
|
Li W, Liu W, Wang W, Wang J, Ma T, Chen J, Wu H, Liu C. Sinusoidal electromagnetic fields accelerate bone regeneration by boosting the multifunctionality of bone marrow mesenchymal stem cells. Stem Cell Res Ther 2021; 12:234. [PMID: 33849651 PMCID: PMC8042357 DOI: 10.1186/s13287-021-02302-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 12/26/2022] Open
Abstract
Background The repair of critical-sized bone defects is always a challenging problem. Electromagnetic fields (EMFs), used as a physiotherapy for bone defects, have been suspected to cause potential hazards to human health due to the long-term exposure. To optimize the application of EMF while avoiding its adverse effects, a combination of EMF and tissue engineering techniques is critical. Furthermore, a deeper understanding of the mechanism of action of EMF will lead to better applications in the future. Methods In this research, bone marrow mesenchymal stem cells (BMSCs) seeded on 3D-printed scaffolds were treated with sinusoidal EMFs in vitro. Then, 5.5 mm critical-sized calvarial defects were created in rats, and the cell scaffolds were implanted into the defects. In addition, the molecular and cellular mechanisms by which EMFs regulate BMSCs were explored with various approaches to gain deeper insight into the effects of EMFs. Results The cell scaffolds treated with EMF successfully accelerated the repair of critical-sized calvarial defects. Further studies revealed that EMF could not directly induce the differentiation of BMSCs but improved the sensitivity of BMSCs to BMP signals by upregulating the quantity of specific BMP (bone morphogenetic protein) receptors. Once these receptors receive BMP signals from the surrounding milieu, a cascade of reactions is initiated to promote osteogenic differentiation via the BMP/Smad signalling pathway. Moreover, the cytokines secreted by BMSCs treated with EMF can better facilitate angiogenesis and osteoimmunomodulation which play fundamental roles in bone regeneration. Conclusion In summary, EMF can promote the osteogenic potential of BMSCs and enhance the paracrine function of BMSCs to facilitate bone regeneration. These findings highlight the profound impact of EMF on tissue engineering and provide a new strategy for the clinical treatment of bone defects.
Collapse
Affiliation(s)
- Weigang Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Wenbin Liu
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Wei Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jiachen Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Tian Ma
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jingyuan Chen
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Chaoxu Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
41
|
Textor SC, Abumoawad A, Saad A, Ferguson C, Dietz A. Stem Cell Therapy for Microvascular Injury Associated with Ischemic Nephropathy. Cells 2021; 10:cells10040765. [PMID: 33807289 PMCID: PMC8066553 DOI: 10.3390/cells10040765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
Ischemic nephropathy reflects progressive loss of kidney function due to large vessel atherosclerotic occlusive disease. Recent studies indicate that this process is characterized by microvascular rarefaction, increased tissue hypoxia and activation of inflammatory processes of tissue injury. This review summarizes the rationale and application of functional MR imaging to evaluate tissue oxygenation in human subjects that defines the limits of renal adaptation to reduction in blood flow, development of increasingly severe tissue hypoxia and recruitment of inflammatory injury pathways in ischemic nephropathy. Human mesenchymal stromal/stem cells (MSC) are capable of modifying angiogenic pathways and immune responses, but the potency of these effects vary between individuals and various clinical characteristics including age and chronic kidney disease and levels of hypoxia. We summarize recently completed first-in-human studies applying intrarenal infusion of autologous adipose-derived MSC in human subjects with ischemic nephropathy that demonstrate a rise in blood flow and reduction in tissue hypoxia consistent with partial repair of microvascular injury, even without restoring main renal arterial blood flow. Inflammatory biomarkers in the renal vein of post-stenotic kidneys fell after MSC infusion. These changes were associated with modest but significant dose-related increments in kidney function. These data provide support a role for autologous MSC in repair of microvascular injury associated with tissue hypoxia.
Collapse
Affiliation(s)
- Stephen C. Textor
- Mayo Clinic, Division of Nephrology and Hypertension, Rochester, MN 55905, USA;
- Correspondence:
| | - Abdu Abumoawad
- Department of Medicine University of Missouri, Kansas, MO 64108, USA;
| | - Ahmed Saad
- Department of Medicine Creighton University School of Medicine, Omaha, NE 68124, USA;
| | | | - Allan Dietz
- Mayo Clinic, Human Cell Therapy Laboratory, Rochester, MN 55905, USA;
| |
Collapse
|
42
|
Ouyang L, Cao J, Dai Q, Qiu D. New insight of immuno-engineering in osteoimmunomodulation for bone regeneration. Regen Ther 2021; 18:24-29. [PMID: 33778136 PMCID: PMC7985270 DOI: 10.1016/j.reth.2021.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022] Open
Abstract
With the continuous development of bone tissue engineering, the importance of immune response in bone tissue regeneration is gradually recognized. The new bone tissue engineering products should possess immunoregulatory functions, harmonizing the interactions between the bone's immune defense and regeneration systems, and promoting tissue regeneration. This article will interpret the relationship between the bone immune system, bone tissue regeneration, as well as the immunoregulatory function of bone biomaterials and seed stem cells in bone tissue engineering. This review locates arears for foucusing efforts at providing novel designs ideas about the development of immune-mediation targeted bone tissue engineering products and the evaluation strategy for the osteoimmunomodulation property of bone biomaterials.
Collapse
Affiliation(s)
- Long Ouyang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiankun Cao
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiang Dai
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Daojing Qiu
- Department of Orthopedics, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
43
|
Hosszu A, Kaucsar T, Seeliger E, Fekete A. Animal Models of Renal Pathophysiology and Disease. Methods Mol Biol 2021; 2216:27-44. [PMID: 33475992 DOI: 10.1007/978-1-0716-0978-1_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Renal diseases remain devastating illnesses with unacceptably high rates of mortality and morbidity worldwide. Animal models are essential tools to better understand the pathomechanisms of kidney-related illnesses and to develop new, successful therapeutic strategies. Magnetic resonance imaging (MRI) has been actively explored in the last decades for assessing renal function, perfusion, tissue oxygenation as well as the degree of fibrosis and inflammation. This chapter aims to provide a comprehensive overview of animal models of acute and chronic kidney diseases, highlighting MRI-specific considerations, advantages, and pitfalls, and thus assisting the researcher in experiment planning.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers.
Collapse
Affiliation(s)
- Adam Hosszu
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Tamas Kaucsar
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Erdmann Seeliger
- Working Group Integrative Kidney Physiology, Institute of Physiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Andrea Fekete
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
44
|
Yu S, Lv Z, Gao Z, Shi J, Sheng Q, Zheng L, Zhou J, Wang X. Hydrogen Promotes the M1 Macrophage Conversion During the Polarization of Macrophages in Necrotizing Enterocolitis. Front Pediatr 2021; 9:710382. [PMID: 34869093 PMCID: PMC8635714 DOI: 10.3389/fped.2021.710382] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/16/2021] [Indexed: 01/02/2023] Open
Abstract
Background: Hydrogen is protective against intestinal injury in necrotizing enterocolitis (NEC), mainly through to alleviate inflammation response. The M1 macrophages can promote inflammation. We hypothesized that hydrogen would promote the M1 macrophages conversion during the polarization and reduce the inflammatory factors in NEC. Methods: We used M1 and M2 macrophages induced from RAW264.7 cells and bone marrow-derived macrophages, models of NEC and macrophages derived from spleens, abdominal lymph nodes and lamina propria in model mice. Cytokines, CD16/32 and CD206 were measured by quantitative PCR, flow cytometry. Nuclear factor-κB (NF-κB) p65 were determined by western blot. Histology staining were used to assess the severity of NEC. Results: Macrophages were successfully polarized to M1 or M2 by assessing the expression of inflammatory factors. Pro-inflammatory factors and CD16/32 in M1 macrophages were decreased, and the expression of CD16/32 in lamina propria were inhibited after treatment with hydrogen, but the changes has no effects in other tissues. Hydrogen inhibited the NF-κB p65 in M1 macrophages nucleus and distal ileum of NEC. HE staining showed hydrogen could attenuate the severity of NEC. Conclusion: Hydrogen could attenuate the severity of NEC through promoting M1 macrophages conversion by inhibited the expression of NF-κB p65 in the nucleus.
Collapse
Affiliation(s)
- Shenghua Yu
- Department of Pediatric Surgery, Shanghai Children's Hospital, Shanghai, China
| | - ZhiBao Lv
- Department of Pediatric Surgery, Shanghai Children's Hospital, Shanghai, China
| | - Zhimei Gao
- Department of Center Laboratory, Shanghai Children's Hospital, Shanghai, China
| | - Jingyi Shi
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai, China
| | - Qingfeng Sheng
- Department of Pediatric Surgery, Shanghai Children's Hospital, Shanghai, China
| | - Lulu Zheng
- Department of Pediatric Surgery, Shanghai Children's Hospital, Shanghai, China
| | - Junmei Zhou
- Department of Center Laboratory, Shanghai Children's Hospital, Shanghai, China
| | - Xueli Wang
- Department of Pathology, Shanghai Children's Hospital, Shanghai, China
| |
Collapse
|
45
|
Liu Y, Fang J. Mesenchymal Stem Cells as Therapeutic Agents and Novel Carriers for the Delivery of Candidate Genes in Acute Kidney Injury. Stem Cells Int 2020; 2020:8875554. [PMID: 33381189 PMCID: PMC7748887 DOI: 10.1155/2020/8875554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/06/2020] [Accepted: 11/27/2020] [Indexed: 01/07/2023] Open
Abstract
Acute kidney injury (AKI) is a heterogeneous syndrome characterized by a dramatic increase in serum creatinine. Mild AKI may merely be confined to kidney damage and resolve within days; however, severe AKI commonly involves extrarenal organ dysfunction and is associated with high mortality. There is no specific pharmaceutical treatment currently available that can reverse the course of this disease. Notably, mesenchymal stem cells (MSCs) show great promise for the management of AKI by targeting multiple pathophysiological pathways to facilitate tubular epithelial cell repair. It has been well established that the unique characteristics of MSCs make them ideal vectors for gene therapy. Thus, genetic modification has been attempted to achieve improved therapeutic outcomes in the management of AKI by overexpressing trophic cytokines or facilitating MSC delivery to renal tissues. The present article provides a comprehensive review of genetic modification strategies targeted at optimizing the therapeutic potential of MSCs in AKI.
Collapse
Affiliation(s)
- Yuxiang Liu
- Shanxi Medical University, No. 56, Xinjiannan Road, Taiyuan, 030001 Shanxi, China
| | - Jingai Fang
- First Hospital of Shanxi Medical University, No. 85, Jiefangnan Road, Taiyuan, 030001 Shanxi, China
| |
Collapse
|
46
|
Ellison-Hughes GM, Colley L, O'Brien KA, Roberts KA, Agbaedeng TA, Ross MD. The Role of MSC Therapy in Attenuating the Damaging Effects of the Cytokine Storm Induced by COVID-19 on the Heart and Cardiovascular System. Front Cardiovasc Med 2020; 7:602183. [PMID: 33363221 PMCID: PMC7756089 DOI: 10.3389/fcvm.2020.602183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/17/2020] [Indexed: 01/08/2023] Open
Abstract
The global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19) has led to 47 m infected cases and 1. 2 m (2.6%) deaths. A hallmark of more severe cases of SARS-CoV-2 in patients with acute respiratory distress syndrome (ARDS) appears to be a virally-induced over-activation or unregulated response of the immune system, termed a "cytokine storm," featuring elevated levels of pro-inflammatory cytokines such as IL-2, IL-6, IL-7, IL-22, CXCL10, and TNFα. Whilst the lungs are the primary site of infection for SARS-CoV-2, in more severe cases its effects can be detected in multiple organ systems. Indeed, many COVID-19 positive patients develop cardiovascular complications, such as myocardial injury, myocarditis, cardiac arrhythmia, and thromboembolism, which are associated with higher mortality. Drug and cell therapies targeting immunosuppression have been suggested to help combat the cytokine storm. In particular, mesenchymal stromal cells (MSCs), owing to their powerful immunomodulatory ability, have shown promise in early clinical studies to avoid, prevent or attenuate the cytokine storm. In this review, we will discuss the mechanistic underpinnings of the cytokine storm on the cardiovascular system, and how MSCs potentially attenuate the damage caused by the cytokine storm induced by COVID-19. We will also address how MSC transplantation could alleviate the long-term complications seen in some COVID-19 patients, such as improving tissue repair and regeneration.
Collapse
Affiliation(s)
- Georgina M. Ellison-Hughes
- Faculty of Life Sciences & Medicine, Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London Guy's Campus, London, United Kingdom
| | - Liam Colley
- School of Sport, Health, and Exercise Sciences, Bangor University, Bangor, United Kingdom
| | - Katie A. O'Brien
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Kirsty A. Roberts
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Thomas A. Agbaedeng
- Faculty of Health & Medical Sciences, Centre for Heart Rhythm Disorders, School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Mark D. Ross
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| |
Collapse
|
47
|
Goenka V, Borkar T, Desai A, Das RK. Therapeutic potential of mesenchymal stem cells in treating both types of diabetes mellitus and associated diseases. J Diabetes Metab Disord 2020; 19:1979-1993. [PMID: 33520872 PMCID: PMC7843693 DOI: 10.1007/s40200-020-00647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
Diabetes mellitus is a common lifestyle disease which can be classified into type 1 diabetes mellitus and type 2 diabetes mellitus. While both result in hyperglycemia due to lack of insulin action and further associated chronic ailments, there is a marked distinction in the cause for each type due to which both require a different prophylaxis. As observed, type 1 diabetes is caused due to the autoimmune action of the body resulting in the destruction of pancreatic islet cells. On the other hand, type 2 diabetes is caused either due to insulin resistance of target cells or lack of insulin production as per physiological requirements. Attempts to cure the disease have been made by bringing drastic changes in the patients' lifestyle; parenteral administration of insulin; prescription of drugs such as biguanides, meglitinides, and amylin; pancreatic transplantation; and immunotherapy. While these attempts cause a certain degree of relief to the patient, none of these can cure diabetes mellitus. However, a new treatment strategy led by the discovery of mesenchymal stem cells and their unique immunomodulatory and multipotent properties has inspired therapies to treat diabetes by essentially reversing the conditions causing the disease. The current review aims to enumerate the role of various mesenchymal stem cells and the different approaches to treat both types of diabetes and its associated diseases as well.
Collapse
Affiliation(s)
- Vidul Goenka
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | - Tanhai Borkar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | - Aska Desai
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | - Raunak Kumar Das
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore, Tamil Nadu India
| |
Collapse
|
48
|
Abstract
Over the past decade, the clinical application of mesenchymal stromal cells (MSCs) has generated growing enthusiasm as an innovative cell-based approach in solid organ transplantation (SOT). These expectations arise from a significant number of both transplant- and non-transplant-related experimental studies investigating the complex anti-inflammatory, immunomodulatory, and tissue-repair properties of MSCs. Promising preclinical results have prompted clinical trials using MSC-based therapy in SOT. In the present review, the general properties of MSCs are summarized, with a particular emphasis on MSC-mediated impact on the immune system and in the ischemic conditioning strategy. Next, we chronologically detail all clinical trials using MSCs in the field of SOT. Finally, we envision the challenges and perspectives of MSC-based cell therapy in SOT.
Collapse
|
49
|
Ren Y, Chen Y, Zheng X, Wang H, Kang X, Tang J, Qu L, Shao X, Wang S, Li S, Liu G, Yang L. Human amniotic epithelial cells ameliorate kidney damage in ischemia-reperfusion mouse model of acute kidney injury. Stem Cell Res Ther 2020; 11:410. [PMID: 32967729 PMCID: PMC7510147 DOI: 10.1186/s13287-020-01917-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/16/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a common clinical disease with complex pathophysiology and limited therapeutic choices. This prompts the need for novel therapy targeting multiple aspects of this disease. Human amnion epithelial cell (hAEC) is an ideal stem cell source. Increasing evidence suggests that exosomes may act as critical cell-cell communicators. Accordingly, we assessed the therapeutic potential of hAECs and their derived exosomes (hAECs-EXO) in ischemia reperfusion mouse model of AKI and explored the underlying mechanisms. METHODS The hAECs were primary cultured, and hAECs-EXO were isolated and characterized. An ischemic-reperfusion injury-induced AKI (IRI-AKI) mouse model was established to mimic clinical ischemic kidney injury with different disease severity. Mouse blood creatinine level was used to assess renal function, and kidney specimens were processed to detect cell proliferation, apoptosis, and capillary density. Macrophage infiltration was analyzed by flow cytometry. hAEC-derived exosomes (hAECs-EXO) were used to treat hypoxia-reoxygenation (H/R) injured HK-2 cells and mouse bone marrow-derived macrophages to evaluate their protective effect in vitro. Furthermore, hAECs-EXO were subjected to liquid chromatography-tandem mass spectrometry for proteomic profiling. RESULTS We found that systematically administered hAECs could improve mortality and renal function in IRI-AKI mice, decrease the number of apoptotic cells, prevent peritubular capillary loss, and modulate kidney local immune response. However, hAECs showed very low kidney tissue integration. Exosomes isolated from hAECs recapitulated the renal protective effects of their source cells. In vitro, hAECs-EXO protected HK-2 cells from H/R injury-induced apoptosis and promoted bone marrow-derived macrophage polarization toward M2 phenotype. Proteomic analysis on hAECs-EXO revealed proteins involved in extracellular matrix organization, growth factor signaling pathways, cytokine production, and immunomodulation. These findings demonstrated that paracrine of exosomes might be the key mechanism of hAECs in alleviating renal ischemia reperfusion injury. CONCLUSIONS We reported hAECs could improve survival and ameliorate renal injury in mice with IRI-AKI. The anti-apoptotic, pro-angiogenetic, and immunomodulatory capabilities of hAECs are at least partially, through paracrine pathways. hAECs-EXO might be a promising clinical therapeutic tool, overcoming the weaknesses and risks associated with the use of native stem cells, for patients with AKI.
Collapse
Affiliation(s)
- Yifei Ren
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, People's Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, People's Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, People's Republic of China
| | - Ying Chen
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, People's Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, People's Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, People's Republic of China
| | - Xizi Zheng
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, People's Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, People's Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, People's Republic of China
- Renal Pathology Center, Peking University First Hospital, Beijing, 100034, People's Republic of China
| | - Hui Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, People's Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, People's Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, People's Republic of China
- Laboratory of Electron Microscopy, Pathological Center, Peking University First Hospital, Beijing, 100034, People's Republic of China
| | - Xin Kang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, People's Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, People's Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, People's Republic of China
| | - Jiawei Tang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, People's Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, People's Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, People's Republic of China
| | - Lei Qu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, People's Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, People's Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, People's Republic of China
- Renal Pathology Center, Peking University First Hospital, Beijing, 100034, People's Republic of China
| | - Xiaoyan Shao
- Shanghai iCELL Biotechnology Co Ltd., Shanghai, 200333, People's Republic of China
| | - Suxia Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, People's Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, People's Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, People's Republic of China
- Laboratory of Electron Microscopy, Pathological Center, Peking University First Hospital, Beijing, 100034, People's Republic of China
| | - Shuangling Li
- Department of Critical Care Medicine, Peking University First Hospital, Beijing, 100034, People's Republic of China
| | - Gang Liu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, People's Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, People's Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, People's Republic of China
- Renal Pathology Center, Peking University First Hospital, Beijing, 100034, People's Republic of China
| | - Li Yang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, People's Republic of China.
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, People's Republic of China.
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, People's Republic of China.
- Renal Pathology Center, Peking University First Hospital, Beijing, 100034, People's Republic of China.
| |
Collapse
|
50
|
Charlton JR, Xu Y, Wu T, deRonde KA, Hughes JL, Dutta S, Oxley GT, Cwiek A, Cathro HP, Charlton NP, Conaway MR, Baldelomar EJ, Parvin N, Bennett KM. Magnetic resonance imaging accurately tracks kidney pathology and heterogeneity in the transition from acute kidney injury to chronic kidney disease. Kidney Int 2020; 99:173-185. [PMID: 32916180 DOI: 10.1016/j.kint.2020.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 01/09/2023]
Abstract
Acute kidney injury (AKI) increases the risk for chronic kidney disease (CKD). However, there are few tools to detect microstructural changes after AKI. Here, cationic ferritin-enhanced magnetic resonance imaging (CFE-MRI) was applied to examine the heterogeneity of kidney pathology in the transition from AKI to CKD. Adult male mice received folic acid followed by cationic ferritin and were euthanized at four days (AKI), four weeks (CKD-4) or 12 weeks (CKD-12). Kidneys were examined by histologic methods and CFE-MRI. In the CKD-4 and CKD-12 groups, glomerular number was reduced and atubular cortical lesions were observed. Apparent glomerular volume was larger in the AKI, CKD-4 and CKD-12 groups compared to controls. Glomerular hypertrophy occurred with ageing. Interglomerular distance and glomerular density were combined with other MRI metrics to distinguish the AKI and CKD groups from controls. Despite significant heterogeneity, the noninvasive (MRI-based) metrics were as accurate as invasive (histological) metrics at distinguishing AKI and CKD from controls. To assess the toxicity of cationic ferritin in a CKD model, CKD-4 mice received cationic ferritin and were examined one week later. The CKD-4 groups with and without cationic ferritin were similar, except the iron content of the kidney, liver, and spleen was greater in the CKD-4 plus cationic ferritin group. Thus, our study demonstrates the accuracy and safety of CFE-MRI to detect whole kidney pathology allowing for the development of novel biomarkers of kidney disease and providing a foundation for future in vivo longitudinal studies in mouse models of AKI and CKD to track nephron fate.
Collapse
Affiliation(s)
- Jennifer R Charlton
- Department of Pediatrics, Division Nephrology, University of Virginia, Charlottesville, Virginia, USA.
| | - Yanzhe Xu
- ASU-Mayo Center for Innovative Imaging, School of Computing, Informatics, Decision Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Teresa Wu
- ASU-Mayo Center for Innovative Imaging, School of Computing, Informatics, Decision Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Kim A deRonde
- Department of Pediatrics, Division Nephrology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Shourik Dutta
- School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Gavin T Oxley
- University of Virginia, Charlottesville, Virginia, USA
| | | | - Helen P Cathro
- Department of Pathology University of Virginia, Charlottesville, Virginia, USA
| | - Nathan P Charlton
- Department of Toxicology, University of Virginia, Virginia, Charlottesville, USA
| | - Mark R Conaway
- Division of Translational Research and Applied Statistics Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Edwin J Baldelomar
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Neda Parvin
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kevin M Bennett
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|