1
|
Chaudhary R, Azam MA, Dowand B, Singh A, Rehman M, Agarwal V, Kumar A, Kaushik AS, Srivastava S, Srivastava S, Mishra V. Chronic stress-mediated dysregulations in inflammatory, immune and oxidative circuitry impairs the therapeutic response of methotrexate in experimental autoimmune disease models. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4305-4334. [PMID: 39453502 DOI: 10.1007/s00210-024-03529-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
Chronic stress is significantly implicated in the worsening of autoimmune disorders, contributing to elevated inflammation and diminished therapeutic efficacy. Here, in this study, we investigated the detrimental impact of an 8-week chronic unpredictable stress (CUS) protocol on the progression of arthritis and psoriasis using collagen-induced arthritis (CIA) and imiquimod (IMQ)-induced psoriasis rat models, respectively. Our objective was to elucidate how prolonged stress exacerbates disease severity and impairs the effectiveness of treatment drug. Following the induction of CIA and IMQ, rats were subjected to an 8-week CUS paradigm designed to simulate chronic stress conditions. Moreover, after 5 weeks of CUS, methotrexate (MTX; 2 mg/kg, administered once weekly for 3 weeks, intraperitoneally) was introduced as a therapeutic intervention. The severity of CUS-induced effects and the therapeutic impairment of MTX in arthritis and psoriasis rats were assessed through pathological examination of joint and epidermal tissues, respectively. Additionally, we measured various pro-inflammatory cytokine levels, including NF-κB (nuclear factor kappa B), IFN-γ (interferon-gamma), TNF-α (tumour necrosis factor alpha), IL (interleukin)-1β, IL-6, IL-17 and IL-23 using enzyme-linked immunosorbent assay (ELISA), analysed immune cells through complete haematological profiling and evaluated oxidative stress markers. Our findings revealed that CUS significantly aggravated the pathological features of both arthritis and psoriasis. Prolonged stress exposure led to heightened inflammatory responses, increased oxidative stress and more severe tissue damage. Moreover, the therapeutic efficacy of MTX was notably reduced in stressed rats compared to non-stressed, underscoring the detrimental effects of chronic stress on treatment outcomes. Taken together, our results emphasize the importance of considering chronic stress as a critical factor in the management of autoimmune diseases.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, U.P., India
| | - Mohd Akhtar Azam
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, U.P., India
| | - Bhavana Dowand
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, U.P., India
| | - Alpana Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, U.P., India
| | - Mujeeba Rehman
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, U.P., India
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, U.P., India
| | - Anand Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, U.P., India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, U.P., India
| | - Sukriti Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, U.P., India
| | - Siddhi Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, U.P., India
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, U.P., India.
| |
Collapse
|
2
|
Bederska-Łojewska D, Szczepanik K, Turek J, Machaczka A, Gąsior Ł, Pochwat B, Piotrowska J, Rospond B, Szewczyk B. Dietary Zinc Restriction and Chronic Restraint Stress Affect Mice Physiology, Immune Organ Morphology, and Liver Function. Nutrients 2024; 16:3934. [PMID: 39599720 PMCID: PMC11597199 DOI: 10.3390/nu16223934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Preclinical and clinical studies suggest that zinc deficiency and chronic stress contribute to depressive symptoms. Our study explores the intricate relationship between these factors by examining their physiological and biochemical effects across various organs in C57Bl/6J mice. METHODS The mice were divided into four groups: control, chronic restraint stress for 3 weeks, a zinc-restricted diet (<3 mg/kg) for 4 weeks, and a combination of stress and zinc restriction. Mice spleen and thymus weights were measured, and hematoxylin-eosin staining was conducted for liver and intestinal morphometry. Moreover, metallothionein (MT-1, MT-2, and MT-3), zinc transporter (ZnT-1), oxidative stress markers (TBARS, SOD, and GSH-Px), and zinc, iron, and copper concentrations in the liver were evaluated. Immunohistochemical analysis of the jejunum for ZIP1 and ZIP4 was also performed. CONCLUSIONS Our findings reveal that dietary zinc restriction and chronic stress induce structural changes in the intestines and immune organs and impact metallothionein expression, oxidative stress, and liver iron and copper homeostasis.
Collapse
Affiliation(s)
- Dorota Bederska-Łojewska
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Kraków, Poland (B.S.)
| | - Kinga Szczepanik
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, ul. Krakowska 1, 32-083 Balice, Poland;
| | - Justyna Turek
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Kraków, Poland (B.S.)
| | - Agata Machaczka
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Kraków, Poland (B.S.)
| | - Łukasz Gąsior
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Kraków, Poland (B.S.)
| | - Bartłomiej Pochwat
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Kraków, Poland (B.S.)
| | - Joanna Piotrowska
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland
| | - Bartłomiej Rospond
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland
| | - Bernadeta Szewczyk
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Kraków, Poland (B.S.)
| |
Collapse
|
3
|
Bolton C. Review of evidence linking exposure to environmental stressors and associated alterations in the dynamics of immunosenescence (ISC) with the global increase in multiple sclerosis (MS). Immun Ageing 2024; 21:73. [PMID: 39438909 PMCID: PMC11494837 DOI: 10.1186/s12979-024-00473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Historical survey confirms that, over the latter part of the 20th century, autoimmune-based diseases, including multiple sclerosis (MS), have shown a worldwide increase in incidence and prevalence. Analytical population studies have established that the exponential rise in MS is not solely due to improvements in diagnosis and healthcare but relates to an increase in autoimmune risk factors. Harmful environmental exposures, including non-communicable social determinants of health, anthropogens and indigenous or transmissible microbes, constitute a group of causal determinants that have been closely linked with the global rise in MS cases. Exposure to environmental stressors has profound effects on the adaptive arm of the immune system and, in particular, the associated intrinsic process of immune ageing or immunosenescence (ISC). Stressor-related disturbances to the dynamics of ISC include immune cell-linked untimely or premature (p) alterations and an accelerated replicative (ar) change. A recognised immune-associated feature of MS is pISC and current evidence supports the presence of an arISC during the disease. Moreover, collated data illustrates the immune-associated alterations that characterise pISC and arISC are inducible by environmental stressors strongly implicated in causing duplicate changes in adaptive immune cells during MS. The close relationship between exposure to environmental risk factors and the induction of pISC and arISC during MS offers a valid mechanism through which pro-immunosenescent stressors may act and contribute to the recorded increase in the global rate and number of new cases of the disease. Confirmation of alterations to the dynamics of ISC during MS provides a rational and valuable therapeutic target for the use of senolytic drugs to either prevent accumulation and enhance ablation of less efficient untimely senescent adaptive immune cells or decelerate the dysregulated process of replicative proliferation. A range of senotherapeutics are available including kinase and transcriptase inhibitors, rapalogs, flavanols and genetically-engineered T cells and the use of selective treatments to control emerging and unspecified aspects of pISC and arISC are discussed.
Collapse
|
4
|
Stepanichev MY, Onufriev MV, Moiseeva YV, Nedogreeva OA, Novikova MR, Kostryukov PA, Lazareva NA, Manolova AO, Mamedova DI, Ovchinnikova VO, Kastberger B, Winter S, Gulyaeva NV. N-Pep-Zn Improves Cognitive Functions and Acute Stress Response Affected by Chronic Social Isolation in Aged Spontaneously Hypertensive Rats (SHRs). Biomedicines 2024; 12:2261. [PMID: 39457574 PMCID: PMC11503999 DOI: 10.3390/biomedicines12102261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Aging and chronic stress are regarded as the most important risk factors of cognitive decline. Aged spontaneously hypertensive rats (SHRs) represent a suitable model of age-related vascular brain diseases. The aim of this study was to explore the effects of chronic isolation stress in aging SHRs on their cognitive functions and response to acute stress, as well as the influence of the chronic oral intake of N-Pep-Zn, the Zn derivative of N-PEP-12. METHODS Nine-month-old SHRs were subjected to social isolation for 3 months (SHRiso group), and one group received N-pep-Zn orally (SHRisoP, 1.5 mg/100 g BW). SHRs housed in groups served as the control (SHRsoc). The behavioral study included the following tests: sucrose preference, open field, elevated plus maze, three-chamber sociability and social novelty and spatial learning and memory in a Barnes maze. Levels of corticosterone, glucose and proinflammatory cytokines in blood plasma as well as salivary amylase activity were measured. Restraint (60 min) was used to test acute stress response. RESULTS Isolation negatively affected the SHRs learning and memory in the Barnes maze, while the treatment of isolated rats with N-Pep-Zn improved their long-term memory and working memory impairments, making the SHRisoP comparable to the SHRsoc group. Acute stress induced a decrease in the relative thymus weight in the SHRiso group (but not SHRsoc), whereas treatment with N-Pep-Zn prevented thymus involution. N-pep-Zn mitigated the increment in blood cortisol and glucose levels induced by acute stress. CONCLUSIONS N-pep-Zn enhanced the adaptive capabilities towards chronic (isolation) and acute (immobilization) stress in aged SHRs and prevented cognitive disturbances induced by chronic isolation, probably affecting the hypothalamo-pituitary-adrenal, sympathetic, and immune systems.
Collapse
Affiliation(s)
- Mikhail Y. Stepanichev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Mikhail V. Onufriev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| | - Yulia V. Moiseeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Olga A. Nedogreeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Margarita R. Novikova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Pavel A. Kostryukov
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Natalia A. Lazareva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Anna O. Manolova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Diana I. Mamedova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Victoria O. Ovchinnikova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | | | - Stefan Winter
- Ever Pharma, Oberburgau 3, 4866 Unterach am Attersee, Austria
| | - Natalia V. Gulyaeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| |
Collapse
|
5
|
Furukawa R, Wakitani S, Kawabata R, Yasuda M. Dynamics of the thymic transcriptome at stages of acute thymic involution in Japanese Black calves with a poor prognosis. Vet J 2024; 307:106225. [PMID: 39147230 DOI: 10.1016/j.tvjl.2024.106225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Transcriptome analysis was performed on the thymus of Japanese Black calves that were necropsied due to poor prognosis, to characterize changes associated with acute thymic involution. Gene expression profiles obtained by DNA microarray analysis of eight calf thymuses were classified into three patterns that correlated with the histopathological stage of acute thymic involution. Using principal component analysis, the first principal component of the global gene expression levels in the calf thymus was associated with the stage of acute thymic involution, suggesting that histopathological changes greatly influence the gene expression profile. Gene ontology enrichment analysis revealed that genes related to cell proliferation, wound healing, and inflammatory responses were the main contributors to the first principal component. Real-time RT-PCR showed that the thymus had lower expression of PCNA, KIFC1, and HES6, and higher expression of SYNPO2, PDGFRB, and TWIST1 during acute thymic involution. Immunohistochemistry demonstrated a decrease in the rate of Ki67-positive cells in the thymic cortex during the late stage of acute thymic involution. The rate of cleaved caspase-1-positive cells increased in the thymic cortex at an earlier stage than the increase in the rate of cleaved caspase-3-positive cells. Vimentin, which was almost absent in the non-involuted thymic cortex, appeared in the thymic cortex during acute thymic involution. These results suggest that in farmed calves with a poor prognosis, inflammatory responses and impaired thymocyte proliferation are primarily involved in acute thymic involution.
Collapse
Affiliation(s)
- Ryogo Furukawa
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Shoichi Wakitani
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan.
| | - Risako Kawabata
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Masahiro Yasuda
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| |
Collapse
|
6
|
Mychaleckyj JC, Normeshie C, Keene KL, Hauck FR. Organ weights and length anthropometry measures at autopsy for sudden infant death syndrome cases and other infant deaths in the Chicago infant mortality study. Am J Hum Biol 2024; 36:e24126. [PMID: 38957054 DOI: 10.1002/ajhb.24126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
Organ weights are a possible diagnostic or pathophysiological clue to distinguishing sudden infant death syndrome (SIDS) cases from other infant deaths but suffer from major confounding. Using autopsy data from the Chicago Infant Mortality Study, a majority African-American case-control study of deceased infants under 1 year conducted 1993-96, we assessed differences in the weights of brain, thymus, kidneys, lungs, liver, spleen, total body, and four length anthropometry measures in SIDS-diagnosed infants compared to controls. Using exact and coarsened matching, we ran Bayesian linear models with these anthropometry outcomes and repeated the analyses substituting the corresponding fitted allometrically-scaled organ weight indices to account for body size. After detailed analysis and adjustment for potential confounders, we found that matched SIDS infants were generally bigger than controls, with higher mean brain, liver, spleen, thymus, lung, and total body weights, and higher mean head and chest circumference, crown-heel, crown-rump lengths. SIDS infants also had higher mean thymus, liver, spleen, lung and total body weight indices. The association with thymus weight was proportionately greater in magnitude than any other outcome measure and independent of body size. The results of these more detailed analyses are consistent with recent findings from other studies with differing racial compositions, and substantially confirm the primary organ sites for more detailed mechanistic research into the biological dysregulation contributing to underlying pathophysiology of SIDS.
Collapse
Affiliation(s)
- Josyf C Mychaleckyj
- Department of Public Health Sciences, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Cornelius Normeshie
- Department of Family Medicine, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Keith L Keene
- Department of Public Health Sciences, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Fern R Hauck
- Department of Family Medicine, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
7
|
Kuo JF, Wu HY, Tung CW, Huang WH, Lin CS, Wang CC. Induction of Thymus Atrophy and Disruption of Thymocyte Development by Fipronil through Dysregulation of IL-7-Associated Genes. Chem Res Toxicol 2024; 37:1488-1500. [PMID: 39141674 PMCID: PMC11409377 DOI: 10.1021/acs.chemrestox.4c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The susceptibility of the immune system to immunotoxic chemicals is evident, particularly in the thymus, a vital primary immune organ prone to atrophy due to exposure to toxicants. Fipronil (FPN), a widely used insecticide, is of concern due to its potential neurotoxicity, hepatotoxicity, and immunotoxicity. Our previous study showed that FPN disturbed the antigen-specific T-cell functionality in vivo. As T-cell lineage commitment and thymopoiesis are closely interconnected with the normal function of the T-cell-mediated immune responses, this study aims to further examine the toxic effects of FPN on thymocyte development. In this study, 4-week-old BALB/c mice received seven doses of FPN (1, 5, 10 mg/kg) by gavage. Thymus size, medulla/cortex ratio, total thymocyte counts, double-positive thymocyte population, and IL-7-positive cells decreased dose-dependently. IL-7 aids the differentiation of early T-cell precursors into mature T cells, and several essential genes contribute to the maturation of T cells in the thymus. Foxn1 ensures that the thymic microenvironment is suitable for the maturation of T-cell precursors. Lyl1 is involved in specifying lymphoid cells and maintaining T-cell development in the thymus. The c-Kit/SCF collaboration fosters a supportive thymic milieu to promote the formation of functional T cells. The expression of IL-7, IL-7R, c-Kit, SCF, Foxn1, and Lyl1 genes in the thymus was significantly diminished in FPN-treated groups with the concordance with the reduction of IL-7 signaling proteins (IL-7, IL-7R, c-KIT, SCF, LYL1, FOXO3A, and GABPA), suggesting that the dysregulation of T-cell lineage-related genes may contribute to the thymic atrophy induced by FPN. In addition, FPN disturbed the functionality of thymocytes with an increase of IL-4 and IFN-γ production and a decrease of IL-2 secretion after T-cell mitogen stimulation ex vivo. Collectively, FPN significantly deregulated genes related to T-cell progenitor differentiation, survival, and expansion, potentially leading to impaired thymopoiesis.
Collapse
Affiliation(s)
- Jui-Fang Kuo
- School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Hsin-Ying Wu
- Laboratory Animal Center, National Health Research Institutes, Miaoli County 350, Taiwan
| | - Chun-Wei Tung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350, Taiwan
| | - Wei-Hsiang Huang
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei 106, Taiwan
| | - Chen-Si Lin
- School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Chia-Chi Wang
- School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
8
|
Stankiewicz LN, Rossi FMV, Zandstra PW. Rebuilding and rebooting immunity with stem cells. Cell Stem Cell 2024; 31:597-616. [PMID: 38593798 DOI: 10.1016/j.stem.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Advances in modern medicine have enabled a rapid increase in lifespan and, consequently, have highlighted the immune system as a key driver of age-related disease. Immune regeneration therapies present exciting strategies to address age-related diseases by rebooting the host's primary lymphoid tissues or rebuilding the immune system directly via biomaterials or artificial tissue. Here, we identify important, unanswered questions regarding the safety and feasibility of these therapies. Further, we identify key design parameters that should be primary considerations guiding technology design, including timing of application, interaction with the host immune system, and functional characterization of the target patient population.
Collapse
Affiliation(s)
- Laura N Stankiewicz
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Fabio M V Rossi
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Peter W Zandstra
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
9
|
Bumbea VI, Bumbea H, Vladareanu AM. Immune dysfunction in patients with end stage kidney disease; Immunosenescence - Review. ROMANIAN JOURNAL OF INTERNAL MEDICINE = REVUE ROUMAINE DE MEDECINE INTERNE 2024; 62:12-19. [PMID: 37991332 DOI: 10.2478/rjim-2023-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Indexed: 11/23/2023]
Abstract
The body's defense against environmental factors is realized by physical barriers and cells of both the innate and adaptive immune systems. Patients with end stage kidney disease (ESKD), especially those treated by hemodialysis, have changes in both the function and the number or percent of different leukocyte subsets. Changes were described at the level of monocytes and lymphocyte subsets, which are associated with immunodeficiencies and pro-inflammatory status correlated with degenerative changes and increased cardiovascular risk. These abnormalities have been compared over the past years with alterations appearing as a result ageing. Also, similitudes regarding immunosenescence observed in ESKD patients, in combination with chronic inflammation, are described as the so-called "inflammaging syndrome".
Collapse
Affiliation(s)
| | - Horia Bumbea
- University Emergency Hospital, Bucharest, Hematology Department, Romania
- Carol Davila, Bucharest, University of Medicine and Pharmacy Romania
| | - Ana Maria Vladareanu
- University Emergency Hospital, Bucharest, Hematology Department, Romania
- Carol Davila, Bucharest, University of Medicine and Pharmacy Romania
| |
Collapse
|
10
|
Qu D, Preuss V, Hagemeier L, Radomsky L, Beushausen K, Keil J, Nora S, Vennemann B, Falk CS, Klintschar M. Age-related cytokine imbalance in the thymus in sudden infant death syndrome (SIDS). Pediatr Res 2024; 95:949-958. [PMID: 37679518 PMCID: PMC10920197 DOI: 10.1038/s41390-023-02809-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Sudden infant death syndrome (SIDS) has been considered to be triggered by a combination of underlying immune dysregulation and infections. The thymus is a crucial lymphatic organ responsible for T cell development in infancy. We hypothesized that an altered thymic immune status may be detectable by intrathymic cytokine profiling in SIDS. METHODS 27 cytokines in protein lysates of thymus tissue and thymus weights were assessed in 26 SIDS cases and 16 infants who died of other reasons. RESULTS Seventeen out of 27 cytokines were increased in thymic tissue of SIDS compared to controls without infections, and the most significant discrepancy was in infants younger than 20 weeks. The thymic cytokine profiles in SIDS cases were similar to those in controls with severe infection; however, the magnitude of the cytokine concentration elevation in SIDS was less pronounced, indicating sub-clinical infections in SIDS. In contrast to SIDS, intrathymic cytokine concentrations and thymus weight were increased with age in control children. CONCLUSIONS Elevated thymic cytokine expression and thymus weight, as well as impaired age-related alterations in SIDS, may be influenced by subclinical infection, which may play a role in initiating SIDS in infants with a compromised immune response. IMPACT STATEMENT Increased thymic weight and cytokine concentration may suggest possible subclinical infection in SIDS. Elevated thymic weight and cytokine concentration mainly in SIDS cases aged <20 weeks. Age-related impairment in the thymic weight and cytokine expression may be impaired by subclinical infection in SIDS.
Collapse
Affiliation(s)
- Dong Qu
- Institute of Legal Medicine, Hannover Medical School, Hannover, Germany
| | - Vanessa Preuss
- Institute of Legal Medicine, Hannover Medical School, Hannover, Germany
| | - Lars Hagemeier
- Institute of Legal Medicine, Hannover Medical School, Hannover, Germany
| | - Lena Radomsky
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, DZIF, TTU-IICH, Hannover-Braunschweig site, Hannover, Germany
| | - Kerstin Beushausen
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Jana Keil
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Schaumann Nora
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | | | - Christine S Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, DZIF, TTU-IICH, Hannover-Braunschweig site, Hannover, Germany
| | - Michael Klintschar
- Institute of Legal Medicine, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
11
|
Lapmanee S, Supkamonseni N, Bhubhanil S, Treesaksrisakul N, Sirithanakorn C, Khongkow M, Namdee K, Surinlert P, Tipbunjong C, Wongchitrat P. Stress-induced changes in cognitive function and intestinal barrier integrity can be ameliorated by venlafaxine and synbiotic supplementations. PeerJ 2024; 12:e17033. [PMID: 38435986 PMCID: PMC10908264 DOI: 10.7717/peerj.17033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/08/2024] [Indexed: 03/05/2024] Open
Abstract
Stress profoundly impacts various aspects of both physical and psychological well-being. Our previous study demonstrated that venlafaxine (Vlx) and synbiotic (Syn) treatment attenuated learned fear-like behavior and recognition memory impairment in immobilized-stressed rats. In this study, we further investigated the physical, behavior, and cellular mechanisms underlying the effects of Syn and/or Vlx treatment on brain and intestinal functions in stressed rats. Adult male Wistar rats, aged 8 weeks old were subjected to 14 days of immobilization stress showed a decrease in body weight gain and food intake as well as an increase in water consumption, urinary corticosterone levels, and adrenal gland weight. Supplementation of Syn and/or Vlx in stressed rats resulted in mitigation of weight loss, restoration of normal food and fluid intake, and normalization of corticosterone levels. Behavioral analysis showed that treatment with Syn and/or Vlx enhanced depressive-like behaviors and improved spatial learning-memory impairment in stressed rats. Hippocampal dentate gyrus showed stress-induced neuronal cell death, which was attenuated by Syn and/or Vlx treatment. Stress-induced ileum inflammation and increased intestinal permeability were both effectively reduced by the supplementation of Syn. In addition, Syn and Vlx partly contributed to affecting the expression of the glial cell-derived neurotrophic factor in the hippocampus and intestines of stressed rats, suggesting particularly protective effects on both the gut barrier and the brain. This study highlights the intricate interplay between stress physiological responses in the brain and gut. Syn intervention alleviate stress-induced neuronal cell death and modulate depression- and memory impairment-like behaviors, and improve stress-induced gut barrier dysfunction which were similar to those of Vlx. These findings enhance our understanding of stress-related health conditions and suggest the synbiotic intervention may be a promising approach to ameliorate deleterious effects of stress on the gut-brain axis.
Collapse
Affiliation(s)
- Sarawut Lapmanee
- Department of Basic Medical Sciences, Faculty of Medicine, Siam University, Bangkok, Thailand
| | - Nattapon Supkamonseni
- Department of Basic Medical Sciences, Faculty of Medicine, Siam University, Bangkok, Thailand
| | - Sakkarin Bhubhanil
- Department of Basic Medical Sciences, Faculty of Medicine, Siam University, Bangkok, Thailand
| | | | - Chaiyos Sirithanakorn
- Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Mattaka Khongkow
- National Nanotechnology Centre, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Katawut Namdee
- National Nanotechnology Centre, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Piyaporn Surinlert
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
- Thammasat University Research Unit in Synthesis and Applications of Graphene, Thammasat University, Pathumthani, Thailand
| | - Chittipong Tipbunjong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Prapimpun Wongchitrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
12
|
Baumgartner F, Bamopoulos SA, Faletti L, Hsiao HJ, Holz M, Gonzalez-Menendez I, Solé-Boldo L, Horne A, Gosavi S, Özerdem C, Singh N, Liebig S, Ramamoorthy S, Lehmann M, Demel U, Kühl AA, Wartewig T, Ruland J, Wunderlich FT, Schick M, Walther W, Rose-John S, Haas S, Quintanilla-Martinez L, Feske S, Ehl S, Glauben R, Keller U. Activation of gp130 signaling in T cells drives T H17-mediated multi-organ autoimmunity. Sci Signal 2024; 17:eadc9662. [PMID: 38377177 DOI: 10.1126/scisignal.adc9662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
The IL-6-gp130-STAT3 signaling axis is a major regulator of inflammation. Activating mutations in the gene encoding gp130 and germline gain-of-function mutations in STAT3 (STAT3GOF) are associated with multi-organ autoimmunity, severe morbidity, and adverse prognosis. To dissect crucial cellular subsets and disease biology involved in activated gp130 signaling, the gp130-JAK-STAT3 axis was constitutively activated using a transgene, L-gp130, specifically targeted to T cells. Activating gp130 signaling in T cells in vivo resulted in fatal, early onset, multi-organ autoimmunity in mice that resembled human STAT3GOF disease. Female mice had more rapid disease progression than male mice. On a cellular level, gp130 signaling induced the activation and effector cell differentiation of T cells, promoted the expansion of T helper type 17 (TH17) cells, and impaired the activity of regulatory T cells. Transcriptomic profiling of CD4+ and CD8+ T cells from these mice revealed commonly dysregulated genes and a gene signature that, when applied to human transcriptomic data, improved the segregation of patients with transcriptionally diverse STAT3GOF mutations from healthy controls. The findings demonstrate that increased gp130-STAT3 signaling leads to TH17-driven autoimmunity that phenotypically resembles human STAT3GOF disease.
Collapse
Affiliation(s)
- Francis Baumgartner
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité (Junior) (Digital) Clinician Scientist Program, 10178 Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, a partnership between DKFZ and Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Stefanos A Bamopoulos
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité (Junior) (Digital) Clinician Scientist Program, 10178 Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, a partnership between DKFZ and Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Laura Faletti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Hsiang-Jung Hsiao
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Maximilian Holz
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, a partnership between DKFZ and Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Irene Gonzalez-Menendez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University, 72076 Tübingen, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, a partnership between DKFZ and Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
| | - Llorenç Solé-Boldo
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Arik Horne
- German Cancer Consortium (DKTK), partner site Berlin, a partnership between DKFZ and Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) Heidelberg, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sanket Gosavi
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Ceren Özerdem
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Nikita Singh
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Sven Liebig
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Senthilkumar Ramamoorthy
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, 79110 Freiburg, Germany
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Malte Lehmann
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- iPATH.Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Uta Demel
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité (Junior) (Digital) Clinician Scientist Program, 10178 Berlin, Germany
| | - Anja A Kühl
- iPATH.Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Tim Wartewig
- Institute for Clinical Chemistry and Pathobiochemistry, Technische Universität München, 81675 Munich, Germany
- Center of Molecular and Cellular Oncology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Jürgen Ruland
- Institute for Clinical Chemistry and Pathobiochemistry, Technische Universität München, 81675 Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and Technische Universität München, 81675 Munich, Germany
| | - Frank T Wunderlich
- Obesity and Cancer, Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Markus Schick
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, a partnership between DKFZ and Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Wolfgang Walther
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Robert-Rössle Str. 10, 13125 Berlin, Germany
- EPO GmbH Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Simon Haas
- German Cancer Consortium (DKTK), partner site Berlin, a partnership between DKFZ and Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ - ZMBH Alliance, 69120 Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University, 72076 Tübingen, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, a partnership between DKFZ and Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Rainer Glauben
- German Cancer Consortium (DKTK), partner site Berlin, a partnership between DKFZ and Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Ulrich Keller
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, a partnership between DKFZ and Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
13
|
Petrova E, López-Gay JM, Fahrner M, Leturcq F, de Villartay JP, Barbieux C, Gonschorek P, Tsoi LC, Gudjonsson JE, Schilling O, Hovnanian A. Comparative analyses of Netherton syndrome patients and Spink5 conditional knock-out mice uncover disease-relevant pathways. Commun Biol 2024; 7:152. [PMID: 38316920 PMCID: PMC10844249 DOI: 10.1038/s42003-024-05780-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Netherton syndrome (NS) is a rare skin disease caused by loss-of-function mutations in the serine peptidase inhibitor Kazal type 5 (SPINK5) gene. Disease severity and the lack of efficacious treatments call for a better understanding of NS mechanisms. Here we describe a novel and viable, Spink5 conditional knock-out (cKO) mouse model, allowing to study NS progression. By combining transcriptomics and proteomics, we determine a disease molecular profile common to mouse models and NS patients. Spink5 cKO mice and NS patients share skin barrier and inflammation signatures defined by up-regulation and increased activity of proteases, IL-17, IL-36, and IL-20 family cytokine signaling. Systemic inflammation in Spink5 cKO mice correlates with disease severity and is associated with thymic atrophy and enlargement of lymph nodes and spleen. This systemic inflammation phenotype is marked by neutrophils and IL-17/IL-22 signaling, does not involve primary T cell immunodeficiency and is independent of bacterial infection. By comparing skin transcriptomes and proteomes, we uncover several putative substrates of tissue kallikrein-related proteases (KLKs), demonstrating that KLKs can proteolytically regulate IL-36 pro-inflammatory cytokines. Our study thus provides a conserved molecular framework for NS and reveals a KLK/IL-36 signaling axis, adding new insights into the disease mechanisms and therapeutic targets.
Collapse
Affiliation(s)
- Evgeniya Petrova
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute and University of Paris, Paris, France.
| | - Jesús María López-Gay
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Paris, F-75248, Cedex 05, France
- Sorbonne University, UPMC University Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005, Paris, France
| | - Matthias Fahrner
- Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Freiburg, Germany
| | - Florent Leturcq
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute and University of Paris, Paris, France
| | - Jean-Pierre de Villartay
- Imagine Institute, Laboratory "Genome Dynamics in the Immune System", INSERM UMR 11635, Paris, France
| | - Claire Barbieux
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute and University of Paris, Paris, France
| | - Patrick Gonschorek
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Oliver Schilling
- Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Freiburg, Germany
| | - Alain Hovnanian
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute and University of Paris, Paris, France.
- Department of Genomic Medicine of rare diseases, Necker Hospital for Sick Children, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France.
- University of Paris Cité, Paris, France.
| |
Collapse
|
14
|
Nevo S, Frenkel N, Kadouri N, Gome T, Rosenthal N, Givony T, Avin A, Peligero Cruz C, Kedmi M, Lindzen M, Ben Dor S, Damari G, Porat Z, Haffner-Krausz R, Keren-Shaul H, Yarden Y, Munitz A, Leshkowitz D, Goldfarb Y, Abramson J. Tuft cells and fibroblasts promote thymus regeneration through ILC2-mediated type 2 immune response. Sci Immunol 2024; 9:eabq6930. [PMID: 38215193 DOI: 10.1126/sciimmunol.abq6930] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/15/2023] [Indexed: 01/14/2024]
Abstract
The thymus is a primary lymphoid organ that is essential for the establishment of adaptive immunity through generation of immunocompetent T cells. In response to various stress signals, the thymus undergoes acute but reversible involution. However, the mechanisms governing its recovery are incompletely understood. Here, we used a dexamethasone-induced acute thymic involution mouse model to investigate how thymic hematopoietic cells (excluding T cells) contribute to thymic regeneration. scRNA-seq analysis revealed marked transcriptional and cellular changes in various thymic populations and highlighted thymus-resident innate lymphoid cells type 2 (ILC2) as a key cell type involved in the response to damage. We identified that ILC2 are activated by the alarmins IL-25 and IL-33 produced in response to tissue damage by thymic tuft cells and fibroblasts, respectively. Moreover, using mouse models deficient in either tuft cells and/or IL-33, we found that these alarmins are required for effective thymus regeneration after dexamethasone-induced damage. We also demonstrate that upon their damage-dependent activation, thymic ILC2 produce several effector molecules linked to tissue regeneration, such as amphiregulin and IL-13, which in turn promote thymic epithelial cell differentiation. Collectively, our study elucidates a previously undescribed role for thymic tuft cells and fibroblasts in thymus regeneration through activation of the type 2 immune response.
Collapse
Affiliation(s)
- Shir Nevo
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Noga Frenkel
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Kadouri
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tom Gome
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Rosenthal
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Givony
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ayelet Avin
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Cristina Peligero Cruz
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Merav Kedmi
- Genomics Unit, Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Moshit Lindzen
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben Dor
- Bioinformatics Unit, Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Golda Damari
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Porat
- Flow Cytometry Unit, Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | | | - Hadas Keren-Shaul
- Genomics Unit, Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Yosef Yarden
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ariel Munitz
- Department of Microbiology and Clinical Immunology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Dena Leshkowitz
- Bioinformatics Unit, Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Goldfarb
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jakub Abramson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
15
|
Jiang Q, Ma X, Zhu G, Si W, He L, Yang G. Altered T cell development in an animal model of multiple sclerosis. Exp Neurol 2024; 371:114579. [PMID: 37866699 DOI: 10.1016/j.expneurol.2023.114579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system (CNS), leading to demyelination and axonal degeneration. Experimental autoimmune encephalomyelitis (EAE) is an animal model of MS that has significantly improved our understanding of MS. Studies have observed early thymic involution in MS patients, suggesting the potential involvement of the thymus in CNS autoimmunity. However, our knowledge of the thymus's role in autoimmune disorders affecting the CNS remains limited. In this study, we examined the effects of EAE induction on thymopoiesis and observed alterations in T cell development. These changes were characterized by increased apoptosis and decreased proliferation of thymocytes at the EAE peak stage. We also identified a blockade in the transition from CD4-CD8- double-negative thymocytes to CD4+CD8+ double-positive cells, as evidenced by the accumulation of double-negative stage 1 thymocytes at both the EAE onset and peak stages. Furthermore, positive selection was disrupted in the thymus of EAE mice at both stages, leading to an elevated proportion and number of CD4+CD8- and CD4-CD8+ single-positive cells. Meanwhile, we observed an augmented production of regulatory T cells in the thymus of EAE mice. Moreover, peripheral blood analysis of EAE mice at the onset stage showed expanded T cell subsets but not at the peak stage. We also observed altered expression patterns in thymus-derived CD4+CD8- and CD4-CD8+ single-positive cells between MS patients and healthy controls. Our findings demonstrate a modified T cell development in EAE/MS, providing valuable insights into the potential of modulating thymic function as a targeted therapeutic approach to MS/EAE.
Collapse
Affiliation(s)
- Qianling Jiang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Xin Ma
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Gaochen Zhu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Wen Si
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Lingyu He
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Guan Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China.
| |
Collapse
|
16
|
Ruck L, Wiegand S, Kühnen P. Relevance and consequence of chronic inflammation for obesity development. Mol Cell Pediatr 2023; 10:16. [PMID: 37957462 PMCID: PMC10643747 DOI: 10.1186/s40348-023-00170-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Increasing prevalence of morbid obesity accompanied by comorbidities like type 2 diabetes mellitus (T2DM) led to a demand for improving therapeutic strategies and pharmacological intervention options. Apart from genetics, inflammation processes have been hypothesized to be of importance for the development of obesity and related aspects like insulin resistance. MAIN TEXT Within this review, we provide an overview of the intricate interplay between chronic inflammation of the adipose tissue and the hypothalamus and the development of obesity. Further understanding of this relationship might improve the understanding of the underlying mechanism and may be of relevance for the establishment of new treatment strategies.
Collapse
Affiliation(s)
- Lisa Ruck
- Klinik Für Pädiatrische Endokrinologie und Diabetologie, Charité Universitätsmedizin, Berlin, Germany.
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany.
| | - Susanna Wiegand
- Abteilung Interdisziplinär, Sozial-Pädiatrisches Zentrum, Charité Universitätsmedizin, Berlin, Germany
| | - Peter Kühnen
- Klinik Für Pädiatrische Endokrinologie und Diabetologie, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
17
|
Alamdaran SA, Mahdavi Rashed M, Yekta M, Teimouri Sani F. Changes in the thymus gland with age: A sonographic evaluation. ULTRASOUND (LEEDS, ENGLAND) 2023; 31:204-211. [PMID: 37538966 PMCID: PMC10395379 DOI: 10.1177/1742271x221124484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/28/2022] [Indexed: 08/05/2023]
Abstract
Background Ultrasound evaluation of normal, ectopic, asymmetric, and hyperplastic thymus and also its differentiation from abnormalities are challenging in children, and few studies have addressed this issue. This study aimed to investigate the thymus sonographic changes with age. Methods In this cross-sectional study, 118 healthy children were categorised into six age groups. Sonographic features of the thymus, including volume, anatomical position, symmetry, and echo-texture, were recorded. Results The thymus was visible at all ages from the suprasternal view. In 77.5% of participants, the thymus gland volume in lobes was symmetrical; however, left (21.2%) and right (1.3%) predominance were also found. The most common position of the thymus was in front of the great vessels (100%) with suprasternal extension (97.5%). The mean volume of thymus was 21.3 ± 10.5 (mm). There was no significant difference in the volumes of the thymus between different age groups. The predominant echo-texture of the thymus in different age groups was hypoechoic with thin echogenic septa (liver-like) in below 2-3 years of age, the appearance of echogenic foci and hyperechoic echo-texture (liver-like with starry sky) in 2-14 years, and uniform hyperechoic echo-texture (fatty liver-like) or geographic echo-texture with coarse reticular pattern in above 14 years. Conclusion In children, the thymus gland is visible in ultrasound examination in all age groups from the suprasternal view; however, the echo-texture of the normal thymus changes with age. There was no significant correlation between age and sex with total thymic volume. The specificity of these appearances has made ultrasound a problem-solving modality in children.
Collapse
Affiliation(s)
- Seyed Ali Alamdaran
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Mahdavi Rashed
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Yekta
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Teimouri Sani
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Kozlakidis Z, Shi P, Abarbanel G, Klein C, Sfera A. Recent Developments in Protein Lactylation in PTSD and CVD: Novel Strategies and Targets. BIOTECH 2023; 12:38. [PMID: 37218755 PMCID: PMC10204439 DOI: 10.3390/biotech12020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023] Open
Abstract
In 1938, Corneille Heymans received the Nobel Prize in physiology for discovering that oxygen sensing in the aortic arch and carotid sinus was mediated by the nervous system. The genetics of this process remained unclear until 1991 when Gregg Semenza while studying erythropoietin, came upon hypoxia-inducible factor 1, for which he obtained the Nobel Prize in 2019. The same year, Yingming Zhao found protein lactylation, a posttranslational modification that can alter the function of hypoxia-inducible factor 1, the master regulator of cellular senescence, a pathology implicated in both post-traumatic stress disorder (PTSD) and cardiovascular disease (CVD). The genetic correlation between PTSD and CVD has been demonstrated by many studies, of which the most recent one utilizes large-scale genetics to estimate the risk factors for these conditions. This study focuses on the role of hypertension and dysfunctional interleukin 7 in PTSD and CVD, the former caused by stress-induced sympathetic arousal and elevated angiotensin II, while the latter links stress to premature endothelial cell senescence and early vascular aging. This review summarizes the recent developments and highlights several novel PTSD and CVD pharmacological targets. They include lactylation of histone and non-histone proteins, along with the related biomolecular actors such as hypoxia-inducible factor 1α, erythropoietin, acid-sensing ion channels, basigin, and Interleukin 7, as well as strategies to delay premature cellular senescence by telomere lengthening and resetting the epigenetic clock.
Collapse
Affiliation(s)
- Zisis Kozlakidis
- International Agency for Research on Cancer, World Health Organization (IARC/WHO), 69372 Lyon, France
| | - Patricia Shi
- Department of Psychiatry, Loma Linda University, Loma Linda, CA 92350, USA
| | - Ganna Abarbanel
- Patton State Hospital, University of California, Riverside, CA 92521, USA
| | | | - Adonis Sfera
- Patton State Hospital, University of California, Riverside, CA 92521, USA
- Department of Psychiatry, University of California, Riverside, CA 92521, USA
| |
Collapse
|
19
|
Yaglova NV, Nazimova SV, Obernikhin SS, Yaglov VV. Differences in Age-Related Changes in the Thymus in Rats Developmentally Exposed to Endocrine Disrupter Dichlorodiphenyltrichloroethane. Bull Exp Biol Med 2023; 174:689-692. [PMID: 37043066 DOI: 10.1007/s10517-023-05771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 04/13/2023]
Abstract
We studied features of age-related changes in the thymus of mature male Wistar rats developmentally exposed to the endocrine disruptor dichlorodiphenyltrichloroethane (DDT). The study was carried out at the stage of early thymus involution. Differences in the thymus morphology associated with imbalance of morphogenetic processes in the cortex and medulla were observed after puberty in rats developmentally exposed to DDT. Increased proliferation of thymocytes, higher content of lymphoblasts, and concomitant decrease in T-cell migration in comparison with the control were found. Our findings indicate lower functional maturity of the thymus and prolonged disorders in the program of postnatal thymus development induced by the endocrine disruptor DDT.
Collapse
Affiliation(s)
- N V Yaglova
- Laboratory of Endocrine System Development, A. P. Avtsyn Research Institute of Human Morphology, A. P. Petrovsky Russian Research Center of Surgery, Moscow, Russia.
| | - S V Nazimova
- Laboratory of Endocrine System Development, A. P. Avtsyn Research Institute of Human Morphology, A. P. Petrovsky Russian Research Center of Surgery, Moscow, Russia
| | - S S Obernikhin
- Laboratory of Endocrine System Development, A. P. Avtsyn Research Institute of Human Morphology, A. P. Petrovsky Russian Research Center of Surgery, Moscow, Russia
| | - V V Yaglov
- Laboratory of Endocrine System Development, A. P. Avtsyn Research Institute of Human Morphology, A. P. Petrovsky Russian Research Center of Surgery, Moscow, Russia
| |
Collapse
|
20
|
Petrušić M, Stojić-Vukanić Z, Pilipović I, Kosec D, Prijić I, Leposavić G. Thymic changes as a contributing factor in the increased susceptibility of old Albino Oxford rats to EAE development. Exp Gerontol 2023; 171:112009. [PMID: 36334894 DOI: 10.1016/j.exger.2022.112009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
The study was aimed to examine putative contribution of thymic involution to ageing-associated increase in susceptibility of Albino Oxford (AO) rats to the development of clinical EAE, and vice versa influence of the disease on the progression of thymic involution. To this end we examined (i) the parameters of thymocyte negative selection efficacy, the thymic generation of CD4+CD25+Foxp3+ T regulatory cells (Tregs) and thymic capacity to instruct/predetermine IL-17-producing T-cell differentiation, and thymopietic efficacy-associated accumulation of "inflammescent" cytotoxic CD28- T cells in the periphery, and (ii) the key underlying mechanisms in young and old non-immunised AO rats and their counterparts immunised for EAE (on the 16th day post-immunisation when the disease in old rats reached the plateau) using flow cytometry analysis and/or RT-qPCR. It was found that thymic involution impairs: (i) the efficacy of negative selection (by affecting thymocyte expression of CD90, negative regulator of selection threshold and the expression of thymic stromal cell integrity factors) and (ii) Treg generation (by diminishing expression of cytokines supporting their differentiation/maturation). Additionally, the results suggest that thymic involution facilitates CD8+ T-cell differentiation into IL-17-producing cells (previously linked to the development of clinical EAE in old AO rats). Furthermore, they confirmed that ageing-related decrease in thymic T-cell output (as indicated by diminished frequency of recent thymic emigrants in peripheral blood) resulted in the accumulation of CD28- T cells in peripheral blood and, upon immunisation, in the target organ. On the other hand, the development of EAE (most likely by increasing circulatory levels of proinflammatory cytokines) contributed to the decline in thymic output of T cells, including Tregs, and thereby to the progression/maintenance of clinical EAE. Thus, in AO rats thymic involution via multi-layered mechanisms may favour the development of clinically manifested autoimmunity, which, in turn, precipitates the thymus atrophy.
Collapse
Affiliation(s)
- Marija Petrušić
- Department of Pathobiology, University of Belgrade, Faculty of Pharmacy, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, University of Belgrade, Faculty of Pharmacy, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Duško Kosec
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivana Prijić
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, University of Belgrade, Faculty of Pharmacy, 450 Vojvode Stepe, 11221 Belgrade, Serbia.
| |
Collapse
|
21
|
Foster MA, Bentley C, Hazeldine J, Acharjee A, Nahman O, Shen-Orr SS, Lord JM, Duggal NA. Investigating the potential of a prematurely aged immune phenotype in severely injured patients as predictor of risk of sepsis. Immun Ageing 2022; 19:60. [PMID: 36471343 PMCID: PMC9720981 DOI: 10.1186/s12979-022-00317-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/24/2022] [Indexed: 12/07/2022]
Abstract
BACKGROUND Traumatic injury elicits a hyperinflammatory response and remodelling of the immune system leading to immuneparesis. This study aimed to evaluate whether traumatic injury results in a state of prematurely aged immune phenotype to relate this to clinical outcomes and a greater risk of developing additional morbidities post-injury. METHODS AND FINDINGS Blood samples were collected from 57 critically injured patients with a mean Injury Severity Score (ISS) of 26 (range 15-75 years), mean age of 39.67 years (range 20-84 years), and 80.7% males, at days 3, 14, 28 and 60 post-hospital admission. 55 healthy controls (HC), mean age 40.57 years (range 20-85 years), 89.7% males were also recruited. The phenotype and frequency of adaptive immune cells were used to calculate the IMM-AGE score, an indicator of the degree of phenotypic ageing of the immune system. IMM-AGE was elevated in trauma patients at an early timepoint (day 3) in comparison with healthy controls (p < 0.001), driven by an increase in senescent CD8 T cells (p < 0.0001), memory CD8 T cells (p < 0.0001) and regulatory T cells (p < 0.0001) and a reduction in naïve CD8 T cells (p < 0.001) and overall T cell lymphopenia (p < 0 .0001). These changes persisted to day 60. Furthermore, the IMM-AGE scores were significantly higher in trauma patients (mean score 0.72) that developed sepsis (p = 0.05) in comparison with those (mean score 0.61) that did not. CONCLUSIONS The profoundly altered peripheral adaptive immune compartment after critical injury can be used as a potential biomarker to identify individuals at a high risk of developing sepsis and this state of prematurely aged immune phenotype in biologically young individuals persists for up to two months post-hospitalisation, compromising the host immune response to infections. Reversing this aged immune system is likely to have a beneficial impact on short- and longer-term outcomes of trauma survivors.
Collapse
Affiliation(s)
- Mark A Foster
- NIHR-Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Royal Centre for Defence Medicine, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Conor Bentley
- NIHR-Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Royal Centre for Defence Medicine, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Jon Hazeldine
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Animesh Acharjee
- Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ornit Nahman
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shai S Shen-Orr
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Janet M Lord
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Niharika A Duggal
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
| |
Collapse
|
22
|
Chronic stress causes striatal disinhibition mediated by SOM-interneurons in male mice. Nat Commun 2022; 13:7355. [PMID: 36446783 PMCID: PMC9709160 DOI: 10.1038/s41467-022-35028-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022] Open
Abstract
Chronic stress (CS) is associated with a number of neuropsychiatric disorders, and it may also contribute to or exacerbate motor function. However, the mechanisms by which stress triggers motor symptoms are not fully understood. Here, we report that CS functionally alters dorsomedial striatum (DMS) circuits in male mice, by affecting GABAergic interneuron populations and somatostatin positive (SOM) interneurons in particular. Specifically, we show that CS impairs communication between SOM interneurons and medium spiny neurons, promoting striatal overactivation/disinhibition and increased motor output. Using probabilistic machine learning to analyze animal behavior, we demonstrate that in vivo chemogenetic manipulation of SOM interneurons in DMS modulates motor phenotypes in stressed mice. Altogether, we propose a causal link between dysfunction of striatal SOM interneurons and motor symptoms in models of chronic stress.
Collapse
|
23
|
Lin YM, Hegde S, Cong Y, Shi XZ. Mechanisms of lymphoid depletion in bowel obstruction. Front Physiol 2022; 13:1005088. [PMID: 36213246 PMCID: PMC9533077 DOI: 10.3389/fphys.2022.1005088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022] Open
Abstract
Background and aims: Bowel obstruction (BO) causes not only gastrointestinal dysfunctions but also systemic responses such as sepsis, infections, and immune impairments. The mechanisms involved are not well understood. In this study, we tested the hypothesis that BO leads to lymphoid depletion in primary and peripheral lymphoid organs, which may contribute to systemic responses. We also sought to uncover mechanisms of lymphoid depletion in BO. Methods: Partial colon obstruction was induced with a band in the distal colon of Sprague-Dawley rats, and wild-type and osteopontin knockout (OPN-/-) mice. Obstruction was maintained for 7 days in rats and 4 days in mice. Thymus, bone marrow, spleen, and mesenteric lymph node (MLN) were taken for flow cytometry analysis. Results: The weight of thymus, spleen, and MLN was significantly decreased in BO rats, compared to sham. B and T lymphopoiesis in the bone marrow and thymus was suppressed, and numbers of lymphocytes, CD4+, and CD8+ T cells in the spleen and MLN were all decreased in BO. Depletion of gut microbiota blocked BO-associated lymphopenia in the MLN. Corticosterone antagonism partially attenuated BO-associated reduction of lymphocytes in the thymus and bone marrow. Plasma OPN levels and OPN expression in the distended colon were increased in BO. Deletion of the OPN gene did not affect splenic lymphopenia, but attenuated suppression of lymphopoiesis in the bone marrow and thymus in BO. Conclusions: BO suppresses lymphocyte generation and maintenance in lymphoid organs. Mechanical distention-induced OPN, corticosterone, and gut microbiota are involved in the immune phenotype in BO.
Collapse
Affiliation(s)
- You-Min Lin
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States,Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Shrilakshmi Hegde
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Xuan-Zheng Shi
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States,*Correspondence: Xuan-Zheng Shi,
| |
Collapse
|
24
|
McGuire MT, Tuckett AZ, Myint F, Zakrzewski JL. A Minimally Invasive, Accurate, and Efficient Technique for Intrathymic Injection in Mice. J Vis Exp 2022:10.3791/64309. [PMID: 36094273 PMCID: PMC9553093 DOI: 10.3791/64309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Intrathymic injection in mouse models is an important technique for studying thymic and immune function, including genetic and acquired T cell disorders. This requires methods for the direct deposition of reagents and/or cells into the thymus of living mice. Traditional methods of intrathymic injection include thoracic surgery or minimally invasive percutaneous blind injections, both of which have significant limitations. Ultra-high frequency ultrasound imaging devices have made image-guided percutaneous injections possible in mice, greatly improving the injection accuracy of the percutaneous injection approach and enabling the injection of smaller targets. However, image-guided injections rely on the utilization of an integrated rail system, making this a rigid and time-consuming procedure. A unique, safe, and efficient method for percutaneous intrathymic injections in mice is presented here, eliminating reliance on the rail system for injections. The technique relies on using a high-resolution micro-ultrasound unit to image the mouse thymus noninvasively. Using a free-hand technique, a radiologist can place a needle tip directly into the mouse thymus under sonographic guidance. Mice are cleaned and anesthetized before imaging. For an experienced radiologist adept at ultrasound-guided procedures, the learning period for the stated technique is quite short, typically within one session. The method has a low morbidity and mortality rate for the mice and is much faster than current mechanically assisted techniques for percutaneous injection. It allows the investigator to efficiently perform precise and reliable percutaneous injections of thymuses of any size (including very small organs such as the thymus of aged or immunodeficient mice) with minimal stress on the animal. This method enables the injection of individual lobes if desired and facilities large-scale experiments due to the time-saving nature of the procedure.
Collapse
Affiliation(s)
| | | | - Faith Myint
- Center for Discovery and Innovation, Hackensack Meridian Health
| | - Johannes L Zakrzewski
- Center for Discovery and Innovation, Hackensack Meridian Health; Department of Pediatrics, Hackensack University Medical Center; Department of Oncology, Georgetown University;
| |
Collapse
|
25
|
Shive C, Pandiyan P. Inflammation, Immune Senescence, and Dysregulated Immune Regulation in the Elderly. FRONTIERS IN AGING 2022; 3:840827. [PMID: 35821823 PMCID: PMC9261323 DOI: 10.3389/fragi.2022.840827] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/30/2022] [Indexed: 12/22/2022]
Abstract
An optimal immune response requires the appropriate interaction between the innate and the adaptive arms of the immune system as well as a proper balance of activation and regulation. After decades of life, the aging immune system is continuously exposed to immune stressors and inflammatory assaults that lead to immune senescence. In this review, we will discuss inflammaging in the elderly, specifically concentrating on IL-6 and IL-1b in the context of T lymphocytes, and how inflammation is related to mortality and morbidities, specifically cardiovascular disease and cancer. Although a number of studies suggests that the anti-inflammatory cytokine TGF-b is elevated in the elderly, heightened inflammation persists. Thus, the regulation of the immune response and the ability to return the immune system to homeostasis is also important. Therefore, we will discuss cellular alterations in aging, concentrating on senescent T cells and CD4+ CD25+ FOXP3+ regulatory T cells (Tregs) in aging
Collapse
Affiliation(s)
- Carey Shive
- Louis Stokes Cleveland VA Medical Center, United States Department of Veterans Affairs, Cleveland, OH, United States.,Case Western Reserve University, Cleveland, OH, United States
| | - Pushpa Pandiyan
- Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
26
|
Lagou MK, Anastasiadou DP, Karagiannis GS. A Proposed Link Between Acute Thymic Involution and Late Adverse Effects of Chemotherapy. Front Immunol 2022; 13:933547. [PMID: 35844592 PMCID: PMC9283860 DOI: 10.3389/fimmu.2022.933547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Epidemiologic data suggest that cancer survivors tend to develop a protuberant number of adverse late effects, including second primary malignancies (SPM), as a result of cytotoxic chemotherapy. Besides the genotoxic potential of these drugs that directly inflict mutational burden on genomic DNA, the precise mechanisms contributing to SPM development are poorly understood. Cancer is nowadays perceived as a complex process that goes beyond the concept of genetic disease and includes tumor cell interactions with complex stromal and immune cell microenvironments. The cancer immunoediting theory offers an explanation for the development of nascent neoplastic cells. Briefly, the theory suggests that newly emerging tumor cells are mostly eliminated by an effective tissue immunosurveillance, but certain tumor variants may occasionally escape innate and adaptive mechanisms of immunological destruction, entering an equilibrium phase, where immunologic tumor cell death "equals" new tumor cell birth. Subsequent microenvironmental pressures and accumulation of helpful mutations in certain variants may lead to escape from the equilibrium phase, and eventually cause an overt neoplasm. Cancer immunoediting functions as a dedicated sentinel under the auspice of a highly competent immune system. This perspective offers the fresh insight that chemotherapy-induced thymic involution, which is characterized by the extensive obliteration of the sensitive thymic epithelial cell (TEC) compartment, can cause long-term defects in thymopoiesis and in establishment of diverse T cell receptor repertoires and peripheral T cell pools of cancer survivors. Such delayed recovery of T cell adaptive immunity may result in prolonged hijacking of the cancer immunoediting mechanisms, and lead to development of persistent and mortal infections, inflammatory disorders, organ-specific autoimmunity lesions, and SPMs. Acknowledging that chemotherapy-induced thymic involution is a potential risk factor for the emergence of SPM demarcates new avenues for the rationalized development of pharmacologic interventions to promote thymic regeneration in patients receiving cytoreductive chemotherapies.
Collapse
Affiliation(s)
- Maria K. Lagou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment and Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, United States
| | - Dimitra P. Anastasiadou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment and Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, United States
| | - George S. Karagiannis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment and Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, United States
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein Cancer Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
27
|
Bhalla P, Su DM, van Oers NSC. Thymus Functionality Needs More Than a Few TECs. Front Immunol 2022; 13:864777. [PMID: 35757725 PMCID: PMC9229346 DOI: 10.3389/fimmu.2022.864777] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/03/2022] [Indexed: 12/18/2022] Open
Abstract
The thymus, a primary lymphoid organ, produces the T cells of the immune system. Originating from the 3rd pharyngeal pouch during embryogenesis, this organ functions throughout life. Yet, thymopoiesis can be transiently or permanently damaged contingent on the types of systemic stresses encountered. The thymus also undergoes a functional decline during aging, resulting in a progressive reduction in naïve T cell output. This atrophy is evidenced by a deteriorating thymic microenvironment, including, but not limited, epithelial-to-mesenchymal transitions, fibrosis and adipogenesis. An exploration of cellular changes in the thymus at various stages of life, including mouse models of in-born errors of immunity and with single cell RNA sequencing, is revealing an expanding number of distinct cell types influencing thymus functions. The thymus microenvironment, established through interactions between immature and mature thymocytes with thymus epithelial cells (TEC), is well known. Less well appreciated are the contributions of neural crest cell-derived mesenchymal cells, endothelial cells, diverse hematopoietic cell populations, adipocytes, and fibroblasts in the thymic microenvironment. In the current review, we will explore the contributions of the many stromal cell types participating in the formation, expansion, and contraction of the thymus under normal and pathophysiological processes. Such information will better inform approaches for restoring thymus functionality, including thymus organoid technologies, beneficial when an individuals’ own tissue is congenitally, clinically, or accidentally rendered non-functional.
Collapse
Affiliation(s)
- Pratibha Bhalla
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Dong-Ming Su
- Department of Microbiology, Immunology & Genetics, The University of North Texas Health Sciences Center, Fort Worth, TX, United States
| | - Nicolai S C van Oers
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
28
|
Iovino L, Cooper K, deRoos P, Kinsella S, Evandy C, Ugrai T, Mazziotta F, Ensbey KS, Granadier D, Hopwo K, Smith C, Gagnon A, Galimberti S, Petrini M, Hill GR, Dudakov JA. Activation of the zinc-sensing receptor GPR39 promotes T-cell reconstitution after hematopoietic cell transplant in mice. Blood 2022; 139:3655-3666. [PMID: 35357432 PMCID: PMC9227099 DOI: 10.1182/blood.2021013950] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/10/2022] [Indexed: 11/20/2022] Open
Abstract
Prolonged lymphopenia represents a major clinical problem after cytoreductive therapies such as chemotherapy and the conditioning required for hematopoietic stem cell transplant (HCT), contributing to the risk of infections and malignant relapse. Restoration of T-cell immunity depends on tissue regeneration in the thymus, the primary site of T-cell development, although the capacity of the thymus to repair itself diminishes over its lifespan. However, although boosting thymic function and T-cell reconstitution is of considerable clinical importance, there are currently no approved therapies for treating lymphopenia. Here we found that zinc (Zn) is critically important for both normal T-cell development and repair after acute damage. Accumulated Zn in thymocytes during development was released into the extracellular milieu after HCT conditioning, where it triggered regeneration by stimulating endothelial cell production of BMP4 via the cell surface receptor GPR39. Dietary supplementation of Zn was sufficient to promote thymic function in a mouse model of allogeneic HCT, including enhancing the number of recent thymic emigrants in circulation although direct targeting of GPR39 with a small molecule agonist enhanced thymic function without the need for prior Zn accumulation in thymocytes. Together, these findings not only define an important pathway underlying tissue regeneration but also offer an innovative preclinical approach to treat lymphopenia in HCT recipients.
Collapse
Affiliation(s)
- Lorenzo Iovino
- Program in Immunology, Clinical Research Division, and
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Hematology, University of Pisa, Pisa, Italy
| | - Kirsten Cooper
- Program in Immunology, Clinical Research Division, and
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Paul deRoos
- Program in Immunology, Clinical Research Division, and
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Sinéad Kinsella
- Program in Immunology, Clinical Research Division, and
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Cindy Evandy
- Program in Immunology, Clinical Research Division, and
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Tamas Ugrai
- School of Oceanography, University of Washington, Seattle, WA
| | - Francesco Mazziotta
- Department of Hematology, University of Pisa, Pisa, Italy
- School of Oceanography, University of Washington, Seattle, WA
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Kathleen S Ensbey
- Program in Immunology, Clinical Research Division, and
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - David Granadier
- Program in Immunology, Clinical Research Division, and
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA
- Medical Scientist Training Program, University of Washington, Seattle, WA; and
| | - Kayla Hopwo
- Program in Immunology, Clinical Research Division, and
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Colton Smith
- Program in Immunology, Clinical Research Division, and
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Alex Gagnon
- School of Oceanography, University of Washington, Seattle, WA
| | | | - Mario Petrini
- Department of Hematology, University of Pisa, Pisa, Italy
| | - Geoffrey R Hill
- Program in Immunology, Clinical Research Division, and
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
| | - Jarrod A Dudakov
- Program in Immunology, Clinical Research Division, and
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
| |
Collapse
|
29
|
Developmental Exposure to Endocrine Disrupter DDT Interferes with Age-Related Involution of Thymus. Int J Mol Sci 2022; 23:ijms23126678. [PMID: 35743120 PMCID: PMC9223823 DOI: 10.3390/ijms23126678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
The impact of endocrine-disrupting chemicals on the development and involution of the immune system is a possible reason for the increased incidence of disorders associated with inappropriate immune function. The thymus is a lymphoid and also an endocrine organ, and, accordingly, its development and functioning may be impaired by endocrine disruptors. The aim was to evaluate age-related thymus involution in mature rats exposed to the endocrine disruptor DDT during prenatal and postnatal ontogeny. Methodology included in vivo experiment on male Wistar rats exposed to low doses of DDT during prenatal and postnatal development and morphological assessment of thymic involution, including the immunohistochemical detection of proliferating thymocytes. The study was carried out at the early stage of involution. Results: DDT-exposed rats exhibited a normal anatomy, and the relative weight of the thymus was within the control ranges. Histological and immunohistochemical examinations revealed increased cellularity of the cortex and the medulla, higher content of lymphoblasts, and more intensive proliferation rate of thymocytes compared to the control. Evaluation of thymic epithelial cells revealed a higher rate of thymic corpuscles formation. Conclusion: The data obtained indicate that endocrine disrupter DDT disturbs postnatal development of the thymus. Low-dose exposure to DDT during ontogeny does not suppress growth rate but violates the developmental program of the thymus by slowing down the onset of age-related involution and maintaining high cell proliferation rate. It may result in excessive formation of thymus-dependent areas in peripheral lymphoid organs and altered immune response.
Collapse
|
30
|
Jing Y, Kong Y, McGinty J, Blahnik-Fagan G, Lee T, Orozco-Figueroa S, Bettini ML, James EA, Bettini M. T-Cell Receptor/HLA Humanized Mice Reveal Reduced Tolerance and Increased Immunogenicity of Posttranslationally Modified GAD65 Epitope. Diabetes 2022; 71:1012-1022. [PMID: 35179565 PMCID: PMC9044133 DOI: 10.2337/db21-0993] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022]
Abstract
Accumulating evidence supports a critical role for posttranslationally modified (PTM) islet neoantigens in type 1 diabetes. However, our understanding regarding thymic development and peripheral activation of PTM autoantigen-reactive T cells is still limited. Using HLA-DR4 humanized mice, we observed that deamidation of GAD65115-127 generates a more immunogenic epitope that recruits T cells with promiscuous recognition of both the deamidated and native epitopes and reduced frequency of regulatory T cells. Using humanized HLA/T-cell receptor (TCR) mice, we observed that TCRs reactive to the native or deamidated GAD65115-127 led to efficient development of CD4+ effector T cells; however, regulatory T-cell development was reduced in mice expressing the PTM-reactive TCR, which was partially restored with exogenous PTM peptide. Upon priming, both the native-specific and the deamidated-specific T cells accumulated in pancreatic islets, suggesting that both specificities can recognize endogenous GAD65 and contribute to anti-β-cell responses. Collectively, our observations in polyclonal and single TCR systems suggest that while effector T-cell responses can exhibit cross-reactivity between native and deamidated GAD65 epitopes, regulatory T-cell development is reduced in response to the deamidated epitope, pointing to regulatory T-cell development as a key mechanism for loss of tolerance to PTM antigenic targets.
Collapse
Affiliation(s)
- Yi Jing
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| | - Yuelin Kong
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| | - John McGinty
- Benaroya Research Institute at Virginia Mason, Seattle, WA
| | | | - Thomas Lee
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| | - Stephanie Orozco-Figueroa
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Matthew L. Bettini
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| | - Eddie A. James
- Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Maria Bettini
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
- Corresponding author: Maria Bettini,
| |
Collapse
|
31
|
Khayal EES, Alabiad MA, Elkholy MR, Shalaby AM, Nosery Y, El-Sheikh AA. The immune modulatory role of marjoram extract on imidacloprid induced toxic effects in thymus and spleen of adult rats. Toxicology 2022; 471:153174. [PMID: 35398170 DOI: 10.1016/j.tox.2022.153174] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 01/24/2023]
Abstract
Imidacloprid (IMID), one of environmental persistent neonicotinoid insecticides, has been used a long time ago and categorized from insecticide induced moderate toxicity by World Health Organization (WHO). Marjoram, is one of the most worldwide used herbs in Egypt due to its antioxidant, anti-inflammatory, anti-genotoxic, anti-mutagenic, anticoagulant, and beneficial effects. This study aimed to evaluate the protective role of marjoram extract on the immunotoxic response and oxidative stress induced by IMID in the immune lymphoid organs (thymus and spleen) of rats. Fifty adult male albino rats were divided randomly into five groups; negative and positive (distilled water) control, marjoram extract (200 mg/kg/day), IMID (22.5 mg/kg/day), marjoram extract + IMID (200 mg/kg +22.5 mg/kg) orally for 8 weeks. Marjoram pretreatment reversed reduced animals body, thymus and spleen weights attributed to IMID. It amended the significantly elevated total leukocytes, neutrophils percentage, increased immunoglobulin G and the significantly reduction of lymphocytes percentage, phagocytic activity, phagocytic index and lysozyme activity induced by IMID. Moreover, marjoram administration significantly reduced thymic and splenic gene expression of interleukin-1β, interleukin-6, tumor necrosis factor-α and increased interleukin-10, in addition, it decreased thymic and splenic contents of malondialdehyde and restored the reduced antioxidant enzymes' activities following IMID exposure. Marjoram ameliorated IMID induced histopathological alterations in thymus and spleen and adjusted IMID immunomodulatory effects by increased the downregulation of CD4 and CD8 immune reactive cell expression. Conclusion, Marjoram has a protective role to reverse IMID immune toxic effects in thymus and spleen tissues of rats by its antioxidant, anti-inflammatory and immunomodulatory defense mechanisms.
Collapse
Affiliation(s)
- Eman El-Sayed Khayal
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Mohamed Ali Alabiad
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Mahmoud Ramadan Elkholy
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Amany Mohamed Shalaby
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt.
| | - Yousef Nosery
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Arwa A El-Sheikh
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
32
|
ISASHIKI Y, OHASHI Y, IMATAKE S, BAAKHTARI M, RAMAH A, KIDA T, YANAGITA T, YASUDA M. Studies on the immune status of calves with chronic inflammation and thymus atrophy. J Vet Med Sci 2022; 84:734-742. [PMID: 35400674 PMCID: PMC9246677 DOI: 10.1292/jvms.22-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The thymus is a primary lymphoid organ where the primary T cell repertoire is generated.
Thymus atrophy is induced by various conditions, including infectious diseases,
glucocorticoid treatment, and poor breeding management. Cattle with thymus atrophy tend to
exhibit weak calf syndrome, a condition in which approximately half of neonates die
shortly after birth. Calves with thymus atrophy that survive the first month typically
contract chronic inflammatory diseases. In this study, we analyzed the populations of the
peripheral blood mononuclear cells and thymocytes in calves with thymus atrophy. In
addition, we evaluated polarization of master gene and cytokine mRNA expression in
peripheral blood CD4+ cells in the calves. The population of
CD4+CD8+ cells in thymus of the calves with thymus atrophy was
lower than that of control calves. IL10 mRNA expression in peripheral
blood CD4+ cells of calves with thymus atrophy was significantly lower than
that of control calves. TBX21 mRNA expression in peripheral
CD4+ cells of thymus atrophy calves was tended to be higher than that of the
control group. In addition, FOXP3 mRNA expression in peripheral
CD4+ cells of the thymus atrophy calves was tended to be lower than that of
the control calves. Thymus atrophy calves exhibited chronic inflammatory disease leading,
in severe situations, to conditions such as pneumonia with caseous necrosis. These severe
inflammatory responses likely are due to decreases in IL10 mRNA
expression, impairing control of macrophages, one of the main cell fractions of natural
immunity.
Collapse
Affiliation(s)
- Yumi ISASHIKI
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki
| | - Yuki OHASHI
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki
| | - Shoichiro IMATAKE
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki
| | - Mahmoud BAAKHTARI
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki
| | - Amany RAMAH
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki
| | - Tetsuo KIDA
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki
| | - Tenya YANAGITA
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki
| | - Masahiro YASUDA
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki
| |
Collapse
|
33
|
Gryksa K, Neumann ID. Consequences of pandemic-associated social restrictions: Role of social support and the oxytocin system. Psychoneuroendocrinology 2022; 135:105601. [PMID: 34837776 PMCID: PMC8605825 DOI: 10.1016/j.psyneuen.2021.105601] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022]
Abstract
During pandemics, governments take drastic actions to prevent the spreading of the disease, as seen during the present COVID-19 crisis. Sanctions of lockdown, social distancing and quarantine urge people to exclusively work and teach at home and to restrict social contacts to a minimum; lonely people get into further isolation, while families` nerves are strained to the extreme. Overall, this results in a dramatic and chronic increase in the level of psychosocial stress over several months mainly caused by i) social isolation and ii) psychosocial stress associated with overcrowding, social tension in families, and domestic violence. Moreover, pandemic-associated social restrictions are accompanied by loss of an essential stress buffer and important parameter for general mental and physical health: social support. Chronic psychosocial stress and, in particular, social isolation and lack of social support affect not only mental health, but also the brain oxytocin system and the immune system. Hence, pandemic-associated social restrictions are expected to increase the risk of developing psychopathologies, such as depression, anxiety-related and posttraumatic stress disorders, on the one hand, but also to induce a general inflammatory state and to impair the course of infectious disorders on the other. Due to its pro-social and stress-buffering effects, resulting in an anti-inflammatory state in case of disease, the role of the neuropeptide oxytocin will be discussed and critically considered as an emerging treatment option in cases of pandemic-induced psychosocial stress, viral infection and during recovery. In this review, we aim to critically focus on possible short- and long-term consequences of social restrictions on mental health and the immune system, while discussion oxytocin as a possible treatment option.
Collapse
Affiliation(s)
- Katharina Gryksa
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
34
|
AbdelMassih A, El Shershaby M, Gaber H, Habib M, Gamal N, Husseiny R, AlShehry N, Amin A, Heikal B, El-Husseiny N, Moursi M, Ismail HA, Senoussy S, ElSharkawy R, AlZayat HA, ElMahdy G, Moawad H, Genena A, ElKiki A, Reda M, Khalil M, Al Ramady R, Radwan N, Khaled-Ibn-ElWalid M, Amin H, Hozaien R, Kamel A, Fouda R. Should we vaccinate the better seroconverters or the most vulnerable? Game changing insights for COVID-19 vaccine prioritization policies. EGYPTIAN PEDIATRIC ASSOCIATION GAZETTE 2021. [PMCID: PMC8637024 DOI: 10.1186/s43054-021-00086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background With the rapid rise in COVID 19 cases incomparable to the number of vaccinations available, there has been a demand to prioritize the older age groups receiving the vaccine as they have more risk of morbidity and mortality and thus better outcome from vaccination. Main body Some studies showed a lower seroconversion rate in older group patients; thus, we discuss the necessity to reprioritize vaccinations to younger age groups who have better seroconversion rates, but we may face some ethical dilemma that could hinder our hypothesis. Decreased seroconversion rates in adults are attributable to immuno-senescence which involves a decrease in humoral and cellular-mediated immunity with age. Despite this fact, there remains some ethical dilemma that can hinder widespread vaccination of younger generations, the most important of which is the unknown long-term effects of COVID-19 vaccines due their fast-tracking under the pressure of the pandemic. Short conclusion Prioritizing children vaccination against COVID-19 seems an interesting strategy that can help in containing the pandemic. Resolving some ethical dilemma needs to be done before implementing such strategy.
Collapse
|
35
|
Kinsella S, Evandy CA, Cooper K, Iovino L, deRoos PC, Hopwo KS, Granadier DW, Smith CW, Rafii S, Dudakov JA. Attenuation of apoptotic cell detection triggers thymic regeneration after damage. Cell Rep 2021; 37:109789. [PMID: 34610317 PMCID: PMC8627669 DOI: 10.1016/j.celrep.2021.109789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 07/02/2021] [Accepted: 09/10/2021] [Indexed: 01/21/2023] Open
Abstract
The thymus, which is the primary site of T cell development, is particularly sensitive to insult but also has a remarkable capacity for repair. However, the mechanisms orchestrating regeneration are poorly understood, and delayed repair is common after cytoreductive therapies. Here, we demonstrate a trigger of thymic regeneration, centered on detecting the loss of dying thymocytes that are abundant during steady-state T cell development. Specifically, apoptotic thymocytes suppressed production of the regenerative factors IL-23 and BMP4 via TAM receptor signaling and activation of the Rho-GTPase Rac1, the intracellular pattern recognition receptor NOD2, and micro-RNA-29c. However, after damage, when profound thymocyte depletion occurs, this TAM-Rac1-NOD2-miR29c pathway is attenuated, increasing production of IL-23 and BMP4. Notably, pharmacological inhibition of Rac1-GTPase enhanced thymic function after acute damage. These findings identify a complex trigger of tissue regeneration and offer a regenerative strategy for restoring immune competence in patients whose thymic function has been compromised.
Collapse
Affiliation(s)
- Sinéad Kinsella
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Cindy A Evandy
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kirsten Cooper
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Lorenzo Iovino
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Paul C deRoos
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kayla S Hopwo
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - David W Granadier
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Colton W Smith
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Shahin Rafii
- Department of Genetic Medicine and Ansary Stem Cell Institute, Weill Cornell Medical College, New York, NY 10021, USA
| | - Jarrod A Dudakov
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Immunology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
36
|
Fraszczak J, Arman KM, Lacroix M, Vadnais C, Gaboury L, Möröy T. Severe Inflammatory Reactions in Mice Expressing a GFI1 P2A Mutant Defective in Binding to the Histone Demethylase KDM1A (LSD1). THE JOURNAL OF IMMUNOLOGY 2021; 207:1599-1615. [PMID: 34408010 DOI: 10.4049/jimmunol.2001146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/07/2021] [Indexed: 11/19/2022]
Abstract
GFI1 is a DNA-binding transcription factor that regulates hematopoiesis by repressing target genes through its association with complexes containing histone demethylases such as KDM1A (LSD1) and histone deacetylases (HDACs). To study the consequences of the disruption of the complex between GFI1 and histone-modifying enzymes, we have used knock-in mice harboring a P2A mutation in GFI1 coding region that renders it unable to bind LSD1 and associated histone-modifying enzymes such as HDACs. GFI1P2A mice die prematurely and show increased numbers of memory effector and regulatory T cells in the spleen accompanied by a severe systemic inflammation with high serum levels of IL-6, TNF-α, and IL-1β and overexpression of the gene encoding the cytokine oncostatin M (OSM). We identified lung alveolar macrophages, CD8 T cell from the spleen and thymic eosinophils, and monocytes as the sources of these cytokines in GFI1P2A mice. Chromatin immunoprecipitation showed that GFI1/LSD1 complexes occupy sites at the Osm promoter and an intragenic region of the Tnfα gene and that a GFI1P2A mutant still remains bound at these sites even without LSD1. Methylation and acetylation of histone H3 at these sites were enriched in cells from GFI1P2A mice, the H3K27 acetylation being the most significant. These data suggest that the histone modification facilitated by GFI1 is critical to control inflammatory pathways in different cell types, including monocytes and eosinophils, and that a disruption of GFI1-associated complexes can lead to systemic inflammation with fatal consequences.
Collapse
Affiliation(s)
| | - Kaifee Mohammad Arman
- Institut de Recherches Cliniques de Montréal, Montreal, Canada.,Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Marion Lacroix
- Institut de Recherches Cliniques de Montréal, Montreal, Canada.,Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Charles Vadnais
- Institut de Recherches Cliniques de Montréal, Montreal, Canada
| | - Louis Gaboury
- Unité de Recherche en Histologie et Pathologie Moléculaire, Institut de Recherche en Immunologie et en Cancérologie, Montreal, Canada.,Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montreal, Canada; and
| | - Tarik Möröy
- Institut de Recherches Cliniques de Montréal, Montreal, Canada; .,Division of Experimental Medicine, McGill University, Montreal, Canada.,Département de Microbiologie Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montreal, Canada
| |
Collapse
|
37
|
Stojić-Vukanić Z, Pilipović I, Arsenović-Ranin N, Dimitrijević M, Leposavić G. Sex-specific remodeling of T-cell compartment with aging: Implications for rat susceptibility to central nervous system autoimmune diseases. Immunol Lett 2021; 239:42-59. [PMID: 34418487 DOI: 10.1016/j.imlet.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/12/2021] [Accepted: 08/12/2021] [Indexed: 11/15/2022]
Abstract
The incidence of multiple sclerosis (MS) and susceptibility of animals to experimental autoimmune encephalomyelitis (EAE), the most commonly used experimental model of MS, decrease with aging. Generally, autoimmune diseases develop as the ultimate outcome of an imbalance between damaging immune responses against self and regulatory immune responses (keeping the former under control). Thus, in this review the age-related changes possibly underlying this balance were discussed. Specifically, considering the central role of T cells in MS/EAE, the impact of aging on overall functional capacity (reflecting both overall count and individual functional cell properties) of self-reactive conventional T cells (Tcons) and FoxP3+ regulatory T cells (Tregs), as the most potent immunoregulatory/suppressive cells, was analyzed, as well. The analysis encompasses three distinct compartments: thymus (the primary lymphoid organ responsible for the elimination of self-reactive T cells - negative selection and the generation of Tregs, compensating for imperfections of the negative selection), peripheral blood/lymphoid tissues ("afferent" compartment), and brain/spinal cord tissues ("target" compartment). Given that the incidence of MS and susceptibility of animals to EAE are greater in women/females than in age-matched men/males, sex as independent variable was also considered. In conclusion, with aging, sex-specific alterations in the balance of self-reactive Tcons/Tregs are likely to occur not only in the thymus/"afferent" compartment, but also in the "target" compartment, reflecting multifaceted changes in both T-cell types. Their in depth understanding is important not only for envisaging effects of aging, but also for designing interventions to slow-down aging without any adverse effect on incidence of autoimmune diseases.
Collapse
Affiliation(s)
- Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Mirjana Dimitrijević
- Department of Immunology, University of Belgrade - Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia.
| |
Collapse
|
38
|
VSIG4(+) peritoneal macrophages induce apoptosis of double-positive thymocyte via the secretion of TNF-α in a CLP-induced sepsis model resulting in thymic atrophy. Cell Death Dis 2021; 12:526. [PMID: 34023853 PMCID: PMC8139869 DOI: 10.1038/s41419-021-03806-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/29/2022]
Abstract
Thymic atrophy in sepsis is a critical disadvantage because it induces immunosuppression and increases the mortality rate as the disease progresses. However, the exact mechanism of thymic atrophy has not been fully elucidated. In this study, we discovered a novel role for VSIG4-positive peritoneal macrophages (V4(+) cells) as the principal cells that induce thymic atrophy and thymocyte apoptosis. In CLP-induced mice, V4(+) cells were activated after ingestion of invading microbes, and the majority of these cells migrated into the thymus. Furthermore, these cells underwent a phenotypic shift from V4(+) to V4(−) and from MHC II(low) to MHC II(+). In coculture with thymocytes, V4(+) cells mainly induced apoptosis in DP thymocytes via the secretion of TNF-α. However, there was little effect on CD4 or CD8 SP and DN thymocytes. V4(−) cells showed low levels of activity compared to V4(+) cells. Thymic atrophy in CLP-induced V4(KO) mice was much less severe than that in CLP-induced wild-type mice. In addition, V4(KO) peritoneal macrophages also showed similar activity to V4(−) cells. Taken together, the current study demonstrates that V4(+) cells play important roles in inducing immunosuppression via thymic atrophy in the context of severe infection. These data also suggest that controlling the function of V4(+) cells may play a crucial role in the development of new therapies to prevent thymocyte apoptosis in sepsis.
Collapse
|
39
|
Rubinstein L, Paul AM, Houseman C, Abegaz M, Tabares Ruiz S, O’Neil N, Kunis G, Ofir R, Cohen J, Ronca AE, Globus RK, Tahimic CGT. Placenta-Expanded Stromal Cell Therapy in a Rodent Model of Simulated Weightlessness. Cells 2021; 10:940. [PMID: 33921854 PMCID: PMC8073415 DOI: 10.3390/cells10040940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/05/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
Long duration spaceflight poses potential health risks to astronauts during flight and re-adaptation after return to Earth. There is an emerging need for NASA to provide successful and reliable therapeutics for long duration missions when capability for medical intervention will be limited. Clinically relevant, human placenta-derived therapeutic stromal cells (PLX-PAD) are a promising therapeutic alternative. We found that treatment of adult female mice with PLX-PAD near the onset of simulated weightlessness by hindlimb unloading (HU, 30 d) was well-tolerated and partially mitigated decrements caused by HU. Specifically, PLX-PAD treatment rescued HU-induced thymic atrophy, and mitigated HU-induced changes in percentages of circulating neutrophils, but did not rescue changes in the percentages of lymphocytes, monocytes, natural killer (NK) cells, T-cells and splenic atrophy. Further, PLX-PAD partially mitigated HU effects on the expression of select cytokines in the hippocampus. In contrast, PLX-PAD failed to protect bone and muscle from HU-induced effects, suggesting that the mechanisms which regulate the structure of these mechanosensitive tissues in response to disuse are discrete from those that regulate the immune- and central nervous system (CNS). These findings support the therapeutic potential of placenta-derived stromal cells for select physiological deficits during simulated spaceflight. Multiple countermeasures are likely needed for comprehensive protection from the deleterious effects of prolonged spaceflight.
Collapse
Affiliation(s)
- Linda Rubinstein
- Universities Space Research Association, Columbia, MD 21046, USA; (L.R.); (A.M.P.)
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
| | - Amber M. Paul
- Universities Space Research Association, Columbia, MD 21046, USA; (L.R.); (A.M.P.)
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA
| | - Charles Houseman
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| | - Metadel Abegaz
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| | - Steffy Tabares Ruiz
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| | - Nathan O’Neil
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| | - Gilad Kunis
- Pluristem Ltd., Haifa 31905, Israel; (G.K.); (R.O.)
| | - Racheli Ofir
- Pluristem Ltd., Haifa 31905, Israel; (G.K.); (R.O.)
| | - Jacob Cohen
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
| | - April E. Ronca
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
- Wake Forest Medical School, Winston-Salem, NC 27101, USA
| | - Ruth K. Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
| | - Candice G. T. Tahimic
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
- KBR, Houston, TX 77002, USA
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| |
Collapse
|
40
|
Gao Y, Liu R, He C, Basile J, Vesterlund M, Wahren-Herlenius M, Espinoza A, Hokka-Zakrisson C, Zadjali F, Yoshimura A, Karlsson M, Carow B, Rottenberg ME. SOCS3 Expression by Thymic Stromal Cells Is Required for Normal T Cell Development. Front Immunol 2021; 12:642173. [PMID: 33815395 PMCID: PMC8012910 DOI: 10.3389/fimmu.2021.642173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
The suppressor of cytokine signaling 3 (SOCS3) is a major regulator of immune responses and inflammation as it negatively regulates cytokine signaling. Here, the role of SOCS3 in thymic T cell formation was studied in Socs3fl/flActin-creER mice (Δsocs3) with a tamoxifen inducible and ubiquitous Socs3 deficiency. Δsocs3 thymi showed a 90% loss of cellularity and altered cortico-medullary organization. Thymocyte differentiation and proliferation was impaired at the early double negative (CD4-CD8-) cell stage and apoptosis was increased during the double positive (CD4+CD8+) cell stage, resulting in the reduction of recent thymic emigrants in peripheral organs. Using bone marrow chimeras, transplanting thymic organoids and using mice deficient of SOCS3 in thymocytes we found that expression in thymic stromal cells rather than in thymocytes was critical for T cell development. We found that SOCS3 in thymic epithelial cells (TECs) binds to the E3 ubiquitin ligase TRIM 21 and that Trim21−/− mice showed increased thymic cellularity. Δsocs3 TECs showed alterations in the expression of genes involved in positive and negative selection and lympho-stromal interactions. SOCS3-dependent signal inhibition of the common gp130 subunit of the IL-6 receptor family was redundant for T cell formation. Together, SOCS3 expression in thymic stroma cells is critical for T cell development and for maintenance of thymus architecture.
Collapse
Affiliation(s)
- Yu Gao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ruining Liu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Chenfei He
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Juan Basile
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Vesterlund
- SciLife Lab, Department of Oncology-Patohology, Karolinska Institutet, Stockholm, Sweden
| | - Marie Wahren-Herlenius
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | | - Fahad Zadjali
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Mikael Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Berit Carow
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Martin E Rottenberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
41
|
Kellogg C, Equils O. The role of the thymus in COVID-19 disease severity: implications for antibody treatment and immunization. Hum Vaccin Immunother 2021; 17:638-643. [PMID: 33064620 PMCID: PMC7993178 DOI: 10.1080/21645515.2020.1818519] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/27/2020] [Indexed: 12/20/2022] Open
Abstract
The thymus is a largely neglected organ but plays a significant role in the regulation of adaptive immune responses. The effect of aging on the thymus and immune senescence is well established, and the resulting inflammaging is found to be implicated in the development of many chronic diseases including atherosclerosis, hypertension and type 2 diabetes. Both aging and diseases of inflammaging are associated with severe COVID-19 disease, and a dysfunctional thymus may be a predisposing factor. In addition, insults on the thymus during childhood may lead to abnormal thymic function and may explain severe COVID-19 disease among younger individuals; therefore, measurement of thymic function may assist COVID-19 care. Those with poor thymic function may be treated prophylactically with convalescent serum or recombinant antibodies, and they may respond better to high-dose or adjuvanted COVID-19 vaccines. Treatments inducing thymic regeneration may improve patients' overall health and may be incorporated in COVID-19 management.
Collapse
Affiliation(s)
- Caitlyn Kellogg
- University of California, San Diego School of Medicine, San Diego, CA, USA
- Public Health Education , MiOra Foundation, Los Angeles, CA, USA
| | - Ozlem Equils
- Public Health Education , MiOra Foundation, Los Angeles, CA, USA
| |
Collapse
|
42
|
Ito M, Wang Q, Hao D, Sawada H, Huang B, Guo L, Daugherty A, Li XA. Ultrasound Monitoring of Thymus Involution in Septic Mice. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:769-776. [PMID: 33358338 PMCID: PMC8725176 DOI: 10.1016/j.ultrasmedbio.2020.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/17/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Thymus involution is characterized by a progressive regression of thymus size and contributes to immunosuppression in sepsis. High-frequency ultrasonography is a non-invasive monitoring system in multiple organs, including the thymus, in mice. However, thymus involution has not been studied using ultrasonography in septic mice. This study reports ultrasound approaches to monitoring septic thymus involution in mice. Sepsis was induced by cecum ligation and puncture (CLP). Mice were euthanized at three time points: baseline and days 3 and 10 after CLP. Thymus areas and volumes were measured using 2-D and 3-D ultrasound approaches. Thymus weights were measured ex vivo. Compared with values at baseline, both thymus area and volume decreased significantly at days 3 and 10. In addition, thymus areas and volumes correlated positively with thymus weights. In conclusion, ultrasonography provides reliable thymus measurements and is an optimal technique for monitoring thymus involution in septic mice.
Collapse
Affiliation(s)
- Misa Ito
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA; Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Qian Wang
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Dan Hao
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA; Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Hisashi Sawada
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Bin Huang
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA; Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| | - Ling Guo
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Alan Daugherty
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA; Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Xiang-An Li
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA; Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky, USA; Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA; Lexington Veteran Affairs Health Care System, Lexington, Kentucky, USA.
| |
Collapse
|
43
|
Trinh T, Broxmeyer HE. Role for Leptin and Leptin Receptors in Stem Cells During Health and Diseases. Stem Cell Rev Rep 2021; 17:511-522. [PMID: 33598894 PMCID: PMC7889057 DOI: 10.1007/s12015-021-10132-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2021] [Indexed: 12/14/2022]
Abstract
Hematopoietic stem cells (HSCs) give rise to all blood and immune cells in the body. These rare cells reside in the hypoxic niche of the bone marrow (BM) where they are subjected to a complex network of regulatory factors including cellular and molecular components. To sustain hematopoiesis over the lifetime of an individual, HSCs maintain distinctive metabolic programs, and in recent years nutritional factors have been increasingly recognized as critical regulators of HSC numbers and functions. Leptin (LEP), a neuroendocrine messenger, and its receptor (LEPR) are well-known for their immunomodulatory and energy balancing effects; yet, how LEP/LEPR signaling plays a role in hematopoiesis is under-appreciated. In this review, we summarize and highlight recent work that demonstrated involvement of LEP/LEPR in hematopoiesis under steady state or stress-associated situations as well as in pathological conditions such as cardiovascular diseases and malignancies. Although the field is only in its infancy, these studies suggest evidence of potential clinical applications and proof-of-principle for more in-depth future research.
Collapse
Affiliation(s)
- Thao Trinh
- Departments of Microbiology/Immunology, Indiana University School of Medicine, 950 West Walnut Street, Bldg. R2, Room 302, Indianapolis, IN, 46202-5121, USA
| | - Hal E Broxmeyer
- Departments of Microbiology/Immunology, Indiana University School of Medicine, 950 West Walnut Street, Bldg. R2, Room 302, Indianapolis, IN, 46202-5121, USA.
| |
Collapse
|
44
|
Shang L, Duah M, Xu Y, Liang Y, Wang D, Xia F, Li L, Sun Z, Yan Z, Xu K, Pan B. Dynamic of plasma IL-22 level is an indicator of thymic output after allogeneic hematopoietic cell transplantation. Life Sci 2021; 265:118849. [PMID: 33278390 DOI: 10.1016/j.lfs.2020.118849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 12/29/2022]
Abstract
AIMS Interleukin-22 (IL-22) promotes thymus recovery and improves T-cell recovery in preclinical allogeneic hematopoietic cell transplant models. However, the correlation between IL-22 and thymus recovery is unknown in human transplant. MATERIALS AND METHODS In this study, plasma IL-22 levels of transplanted humans were analyzed peri-transplant. Thymic output was assessed by detecting blood signal joint T-cell receptor excision circles (TRECs). Flow cytometry was applied to measure T-cell subsets. KEY FINDINGS Plasma IL-22 level positively correlated with blood TRECs level at days 14 and 28 posttransplant. Multiple linear regression analysis showed plasma IL-22 level, occurrence of acute graft-versus-host disease (aGVHD) and age were significantly associated with blood TRECs level at day 28 after allotransplant. An increase of plasma IL-22 level during day 14 and day 28 correlated with faster recovery of blood TRECs and naïve T-cell levels in allotransplant recipients. Recipients with high TRECs levels at day 28 had lower incidence of aGVHD comparing with those who with low TRECs levels according to a median split of their TRECs levels, an effect also seen in the high IL-22 level and low IL-22 level cohorts. Other factors such as age and infection had impacts on plasma IL-22 level in allotransplants. SIGNIFICANCE Our findings suggest that dynamic change of plasma IL-22 level is an indicator of thymic output and occurrence of aGVHD. Monitoring plasma IL-22 level might help to assess recovery of thymus function in human allotransplants.
Collapse
Affiliation(s)
- Longmei Shang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221002, China
| | - Maxwell Duah
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221002, China
| | - Yan Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221002, China
| | - Yiwen Liang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221002, China
| | - Dong Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221002, China
| | - Fan Xia
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221002, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221002, China
| | - Lingling Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221002, China
| | - Zengtian Sun
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221002, China
| | - Zhiling Yan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221002, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221002, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221002, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221002, China.
| | - Bin Pan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221002, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221002, China.
| |
Collapse
|
45
|
Petrova E, Hovnanian A. Advances in understanding of Netherton syndrome and therapeutic implications. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1857724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Evgeniya Petrova
- Laboratory of genetic skin diseases, Université de Paris, Imagine Institute, INSERM UMR1163, Paris, France
| | - Alain Hovnanian
- Laboratory of genetic skin diseases, Université de Paris, Imagine Institute, INSERM UMR1163, Paris, France
- Departement of Genetics, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
46
|
Hyperdense Thymic Atrophy After Chemotherapy in Pediatric Patients With Extrathoracic Malignancies. J Comput Assist Tomogr 2020; 44:865-869. [PMID: 32976257 DOI: 10.1097/rct.0000000000001101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of the study was to evaluate computed tomography (CT) imaging findings of hyperdense thymic atrophy after chemotherapy in pediatric patients with extrathoracic malignancies. METHODS Seventy-eight pediatric patients with extrathoracic malignancies, who developed thymic atrophy after chemotherapy, were included in this study. All patients underwent CT imaging before and after chemotherapy. We retrospectively reviewed the CT images. Hyperdense thymic atrophy was defined as thymic atrophy with high CT attenuation (≥80 HU). RESULTS Hyperdense thymic atrophy after chemotherapy was observed in 7 (9%) of 78 patients. Age (4.3 ± 2.4 vs 8.4 ± 5.4 years, P < 0.01), thymic CT attenuation before chemotherapy (70.4 ± 18.8 vs 55.2 ± 11.9 HU, P < 0.01), reduction rate in thymic area (0.76 ± 0.06 vs 0.60 ± 0.22, P < 0.01), and thymic CT attenuation change (30.3 ± 15.2 vs -16.8 ± 24.0 HU, P < 0.01) were significantly different between patients with and without hyperdense thymic atrophy after chemotherapy. Thymic CT attenuation after chemotherapy (61.2 ± 23.8 vs 33.8 ± 30.1 HU, P < 0.01) and thymic CT attenuation change (-1.3 ± 21.2 vs -19.3 ± 27.9 HU, P < 0.01) were significantly different between patients 5 years or younger (n = 29) and 6 years or older (n = 49). CONCLUSIONS Hyperdense thymic atrophy after chemotherapy was observed in 9% of pediatric patients with extrathoracic malignancies. It was associated with younger age, greater thymic CT attenuation before chemotherapy, larger reduction rate in thymic area, and greater thymic CT attenuation change.
Collapse
|
47
|
Li B, Li W, Liu W, Xing J, Wu Y, Ma Y, Xu D, Li Y. Comprehensive analysis of lncRNAs, miRNAs and mRNAs related to thymic development and involution in goose. Genomics 2020; 113:1176-1188. [PMID: 33276006 DOI: 10.1016/j.ygeno.2020.11.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022]
Abstract
Thymic involution is a sign of immunosenescence, but little is known about it in goose. miRNAs and lncRNAs are critical factors regulating organ growth and development. In this study, we comprehensively analyzed the profiles of lncRNAs, miRNAs and mRNAs during the development and involution of the thymus in Magang goose. The results showed that 2436 genes, 16 miRNAs and 417 lncRNAs were differentially co-expressed between the developmental (20-embryo age, 3-day post-hatch and 3-month age) and degenerative (6-month age) stages. The functional analysis showed that these differentially expressed genes were significantly enriched in cell proliferation, cell adhesion, apoptotic signaling pathway, and Notch signaling pathway. In addition, we established a gene-gene network through the STRING database and identified 50 key genes. Finally, we constructed a miRNA-mRNA network followed by a lncRNA-miRNA-mRNA network. These results suggest that lncRNAs and miRNAs may be involved in the regulation of thymic development and involution in goose.
Collapse
Affiliation(s)
- Bingxin Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Wanyan Li
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenjun Liu
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jingjing Xing
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yingying Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yongjiang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Danning Xu
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
48
|
Ayasoufi K, Pfaller CK, Evgin L, Khadka RH, Tritz ZP, Goddery EN, Fain CE, Yokanovich LT, Himes BT, Jin F, Zheng J, Schuelke MR, Hansen MJ, Tung W, Parney IF, Pease LR, Vile RG, Johnson AJ. Brain cancer induces systemic immunosuppression through release of non-steroid soluble mediators. Brain 2020; 143:3629-3652. [PMID: 33253355 PMCID: PMC7954397 DOI: 10.1093/brain/awaa343] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 01/09/2023] Open
Abstract
Immunosuppression of unknown aetiology is a hallmark feature of glioblastoma and is characterized by decreased CD4 T-cell counts and downregulation of major histocompatibility complex class II expression on peripheral blood monocytes in patients. This immunosuppression is a critical barrier to the successful development of immunotherapies for glioblastoma. We recapitulated the immunosuppression observed in glioblastoma patients in the C57BL/6 mouse and investigated the aetiology of low CD4 T-cell counts. We determined that thymic involution was a hallmark feature of immunosuppression in three distinct models of brain cancer, including mice harbouring GL261 glioma, B16 melanoma, and in a spontaneous model of diffuse intrinsic pontine glioma. In addition to thymic involution, we determined that tumour growth in the brain induced significant splenic involution, reductions in peripheral T cells, reduced MHC II expression on blood leucocytes, and a modest increase in bone marrow resident CD4 T cells. Using parabiosis we report that thymic involution, declines in peripheral T-cell counts, and reduced major histocompatibility complex class II expression levels were mediated through circulating blood-derived factors. Conversely, T-cell sequestration in the bone marrow was not governed through circulating factors. Serum isolated from glioma-bearing mice potently inhibited proliferation and functions of T cells both in vitro and in vivo. Interestingly, the factor responsible for immunosuppression in serum is non-steroidal and of high molecular weight. Through further analysis of neurological disease models, we determined that the immunosuppression was not unique to cancer itself, but rather occurs in response to brain injury. Non-cancerous acute neurological insults also induced significant thymic involution and rendered serum immunosuppressive. Both thymic involution and serum-derived immunosuppression were reversible upon clearance of brain insults. These findings demonstrate that brain cancers cause multifaceted immunosuppression and pinpoint circulating factors as a target of intervention to restore immunity.
Collapse
Affiliation(s)
| | - Christian K Pfaller
- Mayo Clinic Department of Molecular Medicine, Rochester, MN, USA
- Paul-Ehrlich-Institute, Division of Veterinary Medicine, Langen, Germany
| | - Laura Evgin
- Mayo Clinic Department of Molecular Medicine, Rochester, MN, USA
| | - Roman H Khadka
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Zachariah P Tritz
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Emma N Goddery
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Cori E Fain
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Lila T Yokanovich
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Benjamin T Himes
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Department of Neurologic Surgery, Rochester, MN, USA
| | - Fang Jin
- Mayo Clinic Department of Immunology, Rochester, MN, USA
| | - Jiaying Zheng
- Mayo Clinic Department of Molecular Medicine, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Matthew R Schuelke
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Department of Molecular Medicine, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
- Department of Immunology, Mayo Clinic Medical Scientist Training Program, Rochester, Minnesota, USA
| | | | - Wesley Tung
- Mayo Clinic Department of Immunology, Rochester, MN, USA
| | - Ian F Parney
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Department of Neurologic Surgery, Rochester, MN, USA
| | - Larry R Pease
- Mayo Clinic Department of Immunology, Rochester, MN, USA
| | - Richard G Vile
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Department of Molecular Medicine, Rochester, MN, USA
| | - Aaron J Johnson
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Department of Molecular Medicine, Rochester, MN, USA
- Mayo Clinic Department of Neurology, Rochester, MN, USA
| |
Collapse
|
49
|
Bae D, Choi Y, Lee J, Ha N, Suh D, Baek J, Park J, Son W. M-134, a novel HDAC6-selective inhibitor, markedly improved arthritic severity in a rodent model of rheumatoid arthritis when combined with tofacitinib. Pharmacol Rep 2020; 73:185-201. [PMID: 33188511 DOI: 10.1007/s43440-020-00188-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/06/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although tofacitinib has shown highly significant efficacy for rheumatoid arthritis (RA), there are still a considerable number of patients that are non-responders owing to its limited effectiveness and various adverse effects. Thus, alternative options with better efficacy and lower toxicity are desired. Here, M-134, a recently developed HDAC6 inhibitor, was examined for its therapeutic potential when combined with tofacitinib in a rat model of RA. METHODS The single or combined administration of M-134 and tofacitinib was examined in complete Freund's adjuvant-induced arthritis (AIA) or collagen-induced arthritis (CIA) rodent models. To evaluate the therapeutic and adverse effects, the following factors were observed: macroscopic or microscopic scoring of all four paws; the expression of ICAM-1, VCAM-1, and IP-10 in the joints and that of various cytokines and chemokines in the plasma; the weight of the thymus and the liver; and changes in hematological enzymes. RESULTS Combination treatment showed strong synergistic effects as measured by the clinical score and histological changes, without adverse effects such as weight loss in the thymus and increased liver enzymes (ALT and AST). Additionally, it also reduced ICAM-1, VCAM-1, and IP-10 expression in the joints, and M-134 increased the efficacy of tofacitinib by regulating various cytokines, such as interleukin (IL)-1β, IL-17, and TNF-α, in the serum of AIA rats. Differences in the cytokine expression for each drug were found in the CIA model. CONCLUSIONS M-134 and tofacitinib combination therapy is a potential option for the treatment of RA through the regulation of cytokines, chemokines, and adhesion molecules.
Collapse
Affiliation(s)
- Daekwon Bae
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, Republic of Korea
| | - Youngil Choi
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, Republic of Korea
| | - Jiyoung Lee
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Nina Ha
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, Republic of Korea
| | - Donghyeon Suh
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, Republic of Korea
| | - Jiyeon Baek
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, Republic of Korea
| | - Jinsol Park
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, Republic of Korea
| | - Woochan Son
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea.
| |
Collapse
|
50
|
de Barros SC, Suterwala BT, He C, Ge S, Chick B, Blumberg GK, Kim K, Klein S, Zhu Y, Wang X, Casero D, Crooks GM. Pleiotropic Roles of VEGF in the Microenvironment of the Developing Thymus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:2423-2436. [PMID: 32989093 PMCID: PMC7679052 DOI: 10.4049/jimmunol.1901519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/27/2020] [Indexed: 01/04/2023]
Abstract
Neonatal life marks the apogee of murine thymic growth. Over the first few days after birth, growth slows and the murine thymus switches from fetal to adult morphology and function; little is known about the cues driving this dramatic transition. In this study, we show for the first time (to our knowledge) the critical role of vascular endothelial growth factor (VEGF) on thymic morphogenesis beyond its well-known role in angiogenesis. During a brief window a few days after birth, VEGF inhibition induced rapid and profound remodeling of the endothelial, mesenchymal and epithelial thymic stromal compartments, mimicking changes seen during early adult maturation. Rapid transcriptional changes were seen in each compartment after VEGF inhibition, including genes involved in migration, chemotaxis, and cell adhesion as well as induction of a proinflammatory and proadipogenic signature in endothelium, pericytes, and mesenchyme. Thymocyte numbers fell subsequent to the stromal changes. Expression patterns and functional blockade of the receptors VEGFR2 and NRP1 demonstrated that VEGF mediates its pleiotropic effects through distinct receptors on each microenvironmental compartment of the developing mouse thymus.
Collapse
Affiliation(s)
- Stephanie C de Barros
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Batul T Suterwala
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Chongbin He
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Shundi Ge
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Brent Chick
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Garrett K Blumberg
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Kenneth Kim
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Sam Klein
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Yuhua Zhu
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Xiaoyan Wang
- Department of General Internal Medicine and Health Services Research, University of California Los Angeles, Los Angeles, CA 90095
| | - David Casero
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Gay M Crooks
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095;
- Department of Pediatrics, University of California Los Angeles, Los Angeles, CA 90095; and
- Broad Stem Cell Research Center, University of California Los Angeles, Los Angeles, CA 90095
| |
Collapse
|