1
|
Gao Y, Cai C, Adamo S, Biteus E, Kamal H, Dager L, Miners KL, Llewellyn-Lacey S, Ladell K, Amratia PS, Bentley K, Kollnberger S, Wu J, Akhirunnesa M, Jones SA, Julin P, Lidman C, Stanton RJ, Goepfert PA, Peluso MJ, Deeks SG, Davies HE, Aleman S, Buggert M, Price DA. Identification of soluble biomarkers that associate with distinct manifestations of long COVID. Nat Immunol 2025; 26:692-705. [PMID: 40307449 PMCID: PMC12043503 DOI: 10.1038/s41590-025-02135-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 03/14/2025] [Indexed: 05/02/2025]
Abstract
Long coronavirus disease (COVID) is a heterogeneous clinical condition of uncertain etiology triggered by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we used ultrasensitive approaches to profile the immune system and the plasma proteome in healthy convalescent individuals and individuals with long COVID, spanning geographically independent cohorts from Sweden and the United Kingdom. Symptomatic disease was not consistently associated with quantitative differences in immune cell lineage composition or antiviral T cell immunity. Healthy convalescent individuals nonetheless exhibited higher titers of neutralizing antibodies against SARS-CoV-2 than individuals with long COVID, and extensive phenotypic analyses revealed a subtle increase in the expression of some co-inhibitory receptors, most notably PD-1 and TIM-3, among SARS-CoV-2 nonspike-specific CD8+ T cells in individuals with long COVID. We further identified a shared plasma biomarker signature of disease linking breathlessness with apoptotic inflammatory networks centered on various proteins, including CCL3, CD40, IKBKG, IL-18 and IRAK1, and dysregulated pathways associated with cell cycle progression, lung injury and platelet activation, which could potentially inform the diagnosis and treatment of long COVID.
Collapse
Affiliation(s)
- Yu Gao
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Curtis Cai
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Sarah Adamo
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Elsa Biteus
- Division of Infectious Diseases and Dermatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Center for Clinical Research Sörmland, Uppsala University, Uppsala, Sweden
| | - Habiba Kamal
- Division of Infectious Diseases and Dermatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Lena Dager
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Kelly L Miners
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Pragati S Amratia
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Kirsten Bentley
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Simon Kollnberger
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Jinghua Wu
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Mily Akhirunnesa
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Samantha A Jones
- Department of Respiratory Medicine, University Hospital Llandough, Penarth, UK
| | - Per Julin
- Post-COVID Policlinic, Karolinska University Hospital, Stockholm, Sweden
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Christer Lidman
- Division of Infectious Diseases and Dermatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Richard J Stanton
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Paul A Goepfert
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael J Peluso
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Helen E Davies
- Department of Respiratory Medicine, University Hospital Llandough, Penarth, UK
| | - Soo Aleman
- Division of Infectious Diseases and Dermatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK.
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK.
| |
Collapse
|
2
|
Yang X, Zhen C, Huang H, Jiao Y, Fan X, Zhang C, Song J, Wang S, Zhou C, Yang X, Yuan J, Zhang J, Xu R, Wang FS. Implications of accumulation of clonally expanded and senescent CD4 +GNLY + T cells in immunological non-responders of HIV-1 infection. Emerg Microbes Infect 2024; 13:2396868. [PMID: 39239709 PMCID: PMC11441045 DOI: 10.1080/22221751.2024.2396868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/02/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024]
Abstract
Increased CD4+GNLY+ T cells have been confirmed to be inversely associated with CD4+ T cell count in immunological non-responders (INRs), however, the underlying mechanisms are unknown. This study aimed to elucidate the characteristics of CD4+GNLY+ T cells and their relationship with immune restoration. Single-cell RNA sequencing, single-cell TCR sequencing, and flow cytometry were used to analyze the frequency, phenotypes, and function of CD4+GNLY+ T cells. Moreover, Enzyme linked immunosorbent assay was performed to detect plasma cytokines production in patients. CD4+GNLY+ T cells were found to be highly clonally expanded, characterized by higher levels of cytotoxicity, senescence, P24, and HIV-1 DNA than CD4+GNLY- T cells. Additionally, the frequency of CD4+GNLY+ T cells increased after ART, and further increased in INRs, and were positively associated with the antiretroviral therapy duration in INR. Furthermore, increased IL-15 levels in INRs positively correlated with the frequency and senescence of CD4+GNLY+ T cells, suggesting that CD4+GNLY+ T cells may provide new insights for understanding the poor immune reconstitution of INRs. In conclusion, increased, highly clonally expanded, and senescent CD4+GNLY+ T cells may contribute to poor immune reconstitution in HIV-1 infection.
Collapse
Affiliation(s)
- Xiuhan Yang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Cheng Zhen
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Huihuang Huang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Yanmei Jiao
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Xing Fan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Chao Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Jinwen Song
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Songshan Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Chunbao Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - XinXin Yang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Jinhong Yuan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Jiyuan Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Ruonan Xu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| | - Fu-Sheng Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Park LM, Lannigan J, Low Q, Jaimes MC, Bonilla DL. OMIP-109: 45-color full spectrum flow cytometry panel for deep immunophenotyping of the major lineages present in human peripheral blood mononuclear cells with emphasis on the T cell memory compartment. Cytometry A 2024; 105:807-815. [PMID: 39466962 DOI: 10.1002/cyto.a.24900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 10/30/2024]
Abstract
The need for more in-depth exploration of the human immune system has moved the flow cytometry field forward with advances in instrumentation, reagent development and availability, and user-friendly implementation of data analysis methods. We developed a high-quality human 45-color panel, for comprehensive characterization of major cell lineages present in circulation including T cells, γδ T cells, NKT-like cells, B cells, NK cells, monocytes, basophils, dendritic cells, and ILCs. Assay optimization steps are described in detail to ensure that each marker in the panel was optimally resolved. In addition, we highlight the outstanding discernment of cell activation, exhaustion, memory, and differentiation states of CD4+ and CD8+ T cells using this 45-color panel. The panel enabled an in-depth description of very distinct phenotypes associated with the complexity of the T cell memory response. Furthermore, we present how this panel can be effectively used for cell sorting on instruments with a similar optical layout to achieve the same level of resolution. Functional evaluation of sorted specific rare cell subsets demonstrated significantly different patterns of immunological responses to stimulation, supporting functional and phenotypic differences within the T cell memory subsets. In summary, the combination of full spectrum profiling technology and careful assay design and optimization results in a high resolution multiparametric 45-color assay. This panel offers the opportunity to fully characterize immunological profiles present in peripheral blood in the context of infectious diseases, autoimmunity, neurodegeneration, immunotherapy, and biomarker discovery.
Collapse
Affiliation(s)
- Lily M Park
- Cytek Biosciences, Inc., Scientific Commercialization, Fremont, California, USA
| | - Joanne Lannigan
- Flow Cytometry Support Services, LLC, Alexandria, Virginia, USA
| | - Quentin Low
- Cytek Biosciences, Inc., Scientific Commercialization, Fremont, California, USA
| | - Maria C Jaimes
- Cytek Biosciences, Inc., Scientific Commercialization, Fremont, California, USA
| | - Diana L Bonilla
- Cytek Biosciences, Inc., Scientific Commercialization, Fremont, California, USA
| |
Collapse
|
4
|
Chuensirikulchai K, Pata S, Laopajon W, Takheaw N, Kotemul K, Jindaphun K, Khummuang S, Kasinrerk W. Identification of different functions of CD8 + T cell subpopulations by a novel monoclonal antibody. Immunology 2024; 173:321-338. [PMID: 38922845 DOI: 10.1111/imm.13826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The explicit identification of CD8+ T cell subpopulation is important for deciphering the role of CD8+ T cells for protecting our body against invading pathogens and cancer. Our generated monoclonal antibody (mAb), named FE-1H10, recognized two novel subpopulations of peripheral blood CD8+ T cells, FE-1H10+ and FE-1H10- CD8+ T cells. The molecule recognized by mAb FE-1H10 (FE-1H10 molecules) had a higher distribution on effector memory CD8+ T cell subsets. The functions of FE-1H10- and FE-1H10+ CD8+ T cells were investigated. T cell proliferation assays revealed that FE-1H10- CD8+ T cells exhibited a higher proliferation rate than FE-1H10+ CD8+ T cells, whereas FE-1H10+ CD8+ T cells produced higher levels of IFN-γ and TNF-α than FE-1H10- CD8+ T cells. In T cell cytotoxicity assays, FE-1H10+ CD8+ T cells were able to kill target cells better than FE-1H10- CD8+ T cells. RNA-sequencing analysis confirmed that these subpopulations were distinct: FE-1H10+ CD8+ T cells have higher expression of genes involved in effector functions (IFNG, TNF, GZMB, PRF1, GNLY, FASL, CX3CR1) while FE-1H10- CD8+ T cells have greater expression of genes related to memory CD8+ T cell populations (CCR7, SELL, TCF7, CD40LG). The results suggested that mAb FE-1H10 identifies two novel distinctive CD8+ T cell subpopulations. The FE-1H10+ CD8+ T cells carried a superior functionality in response to tumour cells. The uncover of these novel CD8+ T cell subpopulations may be the basis knowledge of an optional immunotherapy for the selection of potential CD8+ T cells in cancer treatment.
Collapse
Affiliation(s)
| | - Supansa Pata
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Witida Laopajon
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Nuchjira Takheaw
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Kamonporn Kotemul
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Kanyaruck Jindaphun
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Saichit Khummuang
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Watchara Kasinrerk
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
5
|
Chiang SCC, Covill LE, Tesi B, Campbell TM, Schlums H, Nejati-Zendegani J, Mördrup K, Wood S, Theorell J, Sekine T, Al-Herz W, Akar HH, Belen FB, Chan MY, Devecioglu O, Aksu T, Ifversen M, Malinowska I, Sabel M, Unal E, Unal S, Introne WJ, Krzewski K, Gilmour KC, Ehl S, Ljunggren HG, Nordenskjöld M, Horne A, Henter JI, Meeths M, Bryceson YT. Efficacy of T-cell assays for the diagnosis of primary defects in cytotoxic lymphocyte exocytosis. Blood 2024; 144:873-887. [PMID: 38958468 PMCID: PMC11375501 DOI: 10.1182/blood.2024024499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 07/04/2024] Open
Abstract
ABSTRACT Primary hemophagocytic lymphohistiocytosis (HLH) is a life-threatening disorder associated with autosomal recessive variants in genes required for perforin-mediated lymphocyte cytotoxicity. A rapid diagnosis is crucial for successful treatment. Although defective cytotoxic T lymphocyte (CTL) function causes pathogenesis, quantification of natural killer (NK)-cell exocytosis triggered by K562 target cells currently represents a standard diagnostic procedure for primary HLH. We have prospectively evaluated different lymphocyte exocytosis assays in 213 patients referred for evaluation for suspected HLH and related hyperinflammatory syndromes. A total of 138 patients received a molecular diagnosis consistent with primary HLH. Assessment of Fc receptor-triggered NK-cell and T-cell receptor (TCR)-triggered CTL exocytosis displayed higher sensitivity and improved specificity for the diagnosis of primary HLH than routine K562 cell-based assays, with these assays combined providing a sensitivity of 100% and specificity of 98.3%. By comparison, NK-cell exocytosis after K562 target cell stimulation displayed a higher interindividual variability, in part explained by differences in NK-cell differentiation or large functional reductions after shipment. We thus recommend combined analysis of TCR-triggered CTL and Fc receptor-triggered NK-cell exocytosis for the diagnosis of patients with suspected familial HLH or atypical manifestations of congenital defects in lymphocyte exocytosis.
Collapse
MESH Headings
- Humans
- Exocytosis
- T-Lymphocytes, Cytotoxic/immunology
- Lymphohistiocytosis, Hemophagocytic/diagnosis
- Lymphohistiocytosis, Hemophagocytic/immunology
- Lymphohistiocytosis, Hemophagocytic/genetics
- Lymphohistiocytosis, Hemophagocytic/pathology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Adolescent
- Child
- Adult
- Female
- K562 Cells
- Male
- Child, Preschool
- Middle Aged
- Infant
- Young Adult
- Aged
- Sensitivity and Specificity
- Prospective Studies
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
Collapse
Affiliation(s)
- Samuel C. C. Chiang
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Laura E. Covill
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Bianca Tesi
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Tessa M. Campbell
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Heinrich Schlums
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jelve Nejati-Zendegani
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Karina Mördrup
- Unit of Pediatric Rheumatology, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Stephanie Wood
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jakob Theorell
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Takuya Sekine
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Himmet Haluk Akar
- Department of Pediatric Immunology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Fatma Burcu Belen
- Department of Pediatrics, Baskent University Medical Faculty, Ankara, Turkey
| | - Mei Yoke Chan
- Haematology/Oncology Service, Department of Paediatric Subspecialties, Kandang Kerbau Women’s and Children’s Hospital, Singapore, Singapore
| | - Omer Devecioglu
- Department of Pediatric Hematology-Oncology, Istanbul Medical School, Istanbul, Turkey
| | - Tekin Aksu
- Division of Pediatric Hematology, Hacettepe University, Ankara, Turkey
| | - Marianne Ifversen
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Iwona Malinowska
- Department of Pediatrics, Hematology and Oncology, Medical University of Warsaw, Warsaw, Poland
| | - Magnus Sabel
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Queen Silvia Children’s Hospital, Gothenburg, Sweden
| | - Ekrem Unal
- Faculty of Health Sciences, Medical Point Hospital, Hasan Kalyoncu University, Gaziantep, Turkey
| | - Sule Unal
- Division of Pediatric Hematology, Hacettepe University, Ankara, Turkey
| | - Wendy J. Introne
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Konrad Krzewski
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Kimberly C. Gilmour
- Immunology, NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans-Gustaf Ljunggren
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - AnnaCarin Horne
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Marie Meeths
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Yenan T. Bryceson
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Morán-Plata FJ, Muñoz-García N, González-González M, Pozo J, Carretero-Domínguez S, Mateos S, Barrena S, Belhassen-García M, Lau C, Teixeira MDA, Santos AH, Yeguas A, Balanzategui A, García-Sancho AM, Orfao A, Almeida J. A novel NKp80-based strategy for universal identification of normal, reactive and tumor/clonal natural killer-cells in blood. Front Immunol 2024; 15:1423689. [PMID: 39040115 PMCID: PMC11260609 DOI: 10.3389/fimmu.2024.1423689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024] Open
Abstract
Purpose Natural killer (NK) cells are traditionally identified by flow cytometry using a combination of markers (CD16/CD56/CD3), because a specific NK-cell marker is still missing. Here we investigated the utility of CD314, CD335 and NKp80, compared to CD16/CD56/CD3, for more robust identification of NK-cells in human blood, for diagnostic purposes. Methods A total of 156 peripheral blood (PB) samples collected from healthy donors (HD) and patients with diseases frequently associated with loss/downregulation of classical NK-cell markers were immunophenotyped following EuroFlow protocols, aimed at comparing the staining profile of total blood NK-cells for CD314, CD335 and NKp80, and the performance of distinct marker combinations for their accurate identification. Results NKp80 showed a superior performance (vs. CD314 and CD335) for the identification of NK-cells in HD blood. Besides, NKp80 improved the conventional CD16/CD56/CD3-based strategy to identify PB NK-cells in HD and reactive processes, particularly when combined with CD16 for further accurate NK-cell-subsetting. Although NKp80+CD16 improved the identification of clonal/tumor NK-cells, particularly among CD56- cases (53%), aberrant downregulation of NKp80 was observed in 25% of patients, in whom CD56 was useful as a complementary NK-cell marker. As NKp80 is also expressed on T-cells, we noted increased numbers of NKp80+ cytotoxic T-cells at the more advanced maturation stages, mostly in adults. Conclusion Here we propose a new robust approach for the identification of PB NK-cells, based on the combination of NKp80 plus CD16. However, in chronic lymphoproliferative disorders of NK-cells, addition of CD56 is recommended to identify clonal NK-cells, due to their frequent aberrant NKp80- phenotype.
Collapse
Affiliation(s)
- F. Javier Morán-Plata
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), and Department of Medicine, University of Salamanca, Salamanca, Spain
- Cytometry Service, NUCLEUS, University of Salamanca, Salamanca, Spain
| | - Noemí Muñoz-García
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), and Department of Medicine, University of Salamanca, Salamanca, Spain
- Cytometry Service, NUCLEUS, University of Salamanca, Salamanca, Spain
| | - María González-González
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), and Department of Medicine, University of Salamanca, Salamanca, Spain
- Cytometry Service, NUCLEUS, University of Salamanca, Salamanca, Spain
| | - Julio Pozo
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), and Department of Medicine, University of Salamanca, Salamanca, Spain
- Cytometry Service, NUCLEUS, University of Salamanca, Salamanca, Spain
| | - Sonia Carretero-Domínguez
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), and Department of Medicine, University of Salamanca, Salamanca, Spain
- Cytometry Service, NUCLEUS, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Sheila Mateos
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), and Department of Medicine, University of Salamanca, Salamanca, Spain
- Cell-purification Service, NUCLEUS, University of Salamanca, Salamanca, Spain
| | - Susana Barrena
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), and Department of Medicine, University of Salamanca, Salamanca, Spain
- Cytometry Service, NUCLEUS, University of Salamanca, Salamanca, Spain
| | - Moncef Belhassen-García
- Department of Internal Medicine, University Hospital of Salamanca, Salamanca, Spain
- Department of Infectious Diseases, University Hospital of Salamanca, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Salamanca, Spain
| | - Catarina Lau
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP), Porto, Portugal
| | - Maria Dos Anjos Teixeira
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP), Porto, Portugal
| | - Ana Helena Santos
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP), Porto, Portugal
| | - Ana Yeguas
- Department of Hematology, University Hospital of Salamanca, Salamanca, Spain
| | - Ana Balanzategui
- Department of Hematology, University Hospital of Salamanca, Salamanca, Spain
- Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandro Martín García-Sancho
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), and Department of Medicine, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, Salamanca, Spain
- Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Orfao
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), and Department of Medicine, University of Salamanca, Salamanca, Spain
- Cytometry Service, NUCLEUS, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Julia Almeida
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), and Department of Medicine, University of Salamanca, Salamanca, Spain
- Cytometry Service, NUCLEUS, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Ranek JS, Stallaert W, Milner JJ, Redick M, Wolff SC, Beltran AS, Stanley N, Purvis JE. DELVE: feature selection for preserving biological trajectories in single-cell data. Nat Commun 2024; 15:2765. [PMID: 38553455 PMCID: PMC10980758 DOI: 10.1038/s41467-024-46773-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024] Open
Abstract
Single-cell technologies can measure the expression of thousands of molecular features in individual cells undergoing dynamic biological processes. While examining cells along a computationally-ordered pseudotime trajectory can reveal how changes in gene or protein expression impact cell fate, identifying such dynamic features is challenging due to the inherent noise in single-cell data. Here, we present DELVE, an unsupervised feature selection method for identifying a representative subset of molecular features which robustly recapitulate cellular trajectories. In contrast to previous work, DELVE uses a bottom-up approach to mitigate the effects of confounding sources of variation, and instead models cell states from dynamic gene or protein modules based on core regulatory complexes. Using simulations, single-cell RNA sequencing, and iterative immunofluorescence imaging data in the context of cell cycle and cellular differentiation, we demonstrate how DELVE selects features that better define cell-types and cell-type transitions. DELVE is available as an open-source python package: https://github.com/jranek/delve .
Collapse
Affiliation(s)
- Jolene S Ranek
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wayne Stallaert
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Justin Milner
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Margaret Redick
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samuel C Wolff
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adriana S Beltran
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Human Pluripotent Cell Core, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Natalie Stanley
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jeremy E Purvis
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Rayamajhi SJ, Ponisio MR, Mehta-Shah N. Gamma delta lymphoma: a pictorial review of F-18 fluorodeoxyglucose PET/CT findings and a brief review of the literature. Br J Radiol 2024; 97:41-52. [PMID: 38263839 PMCID: PMC11027300 DOI: 10.1093/bjr/tqad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 01/25/2024] Open
Abstract
Gamma Delta (γδ) T-cell lymphomas are uncommon and aggressive neoplasms originating from the γδ receptor-bearing lymphocytes. The most frequent entities include primary hepatosplenic γδ T-cell lymphomas, primary cutaneous γδ lymphoma, and monomorphic epitheliotropic T-cell lymphoma. F-18 fluorodeoxyglucose (FDG) PET/CT is an important modality in the staging of Hodgkin's and various non-Hodgkin's lymphoma. However, literature is scare on imaging findings of γδ lymphoma on F-18 FDG PET/CT. In this review, we discuss briefly the clinical and biological features and present the spectrum of F-18 FDG PET/CT findings of γδ lymphoma.
Collapse
Affiliation(s)
- Sampanna J Rayamajhi
- Division of Nuclear Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Maria R Ponisio
- Division of Nuclear Medicine, Washington University Medical School, 510 S Kingshighway Blvd Ste 7, Saint Louis, MO 63110, United States
| | - Neha Mehta-Shah
- Division of Oncology, Washington University Medical School, 660 S Euclid Ave, Saint Louis, MO 63110, United States
| |
Collapse
|
9
|
Vojdani A, Koksoy S, Vojdani E, Engelman M, Benzvi C, Lerner A. Natural Killer Cells and Cytotoxic T Cells: Complementary Partners against Microorganisms and Cancer. Microorganisms 2024; 12:230. [PMID: 38276215 PMCID: PMC10818828 DOI: 10.3390/microorganisms12010230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Natural killer (NK) cells and cytotoxic T (CD8+) cells are two of the most important types of immune cells in our body, protecting it from deadly invaders. While the NK cell is part of the innate immune system, the CD8+ cell is one of the major components of adaptive immunity. Still, these two very different types of cells share the most important function of destroying pathogen-infected and tumorous cells by releasing cytotoxic granules that promote proteolytic cleavage of harmful cells, leading to apoptosis. In this review, we look not only at NK and CD8+ T cells but also pay particular attention to their different subpopulations, the immune defenders that include the CD56+CD16dim, CD56dimCD16+, CD57+, and CD57+CD16+ NK cells, the NKT, CD57+CD8+, and KIR+CD8+ T cells, and ILCs. We examine all these cells in relation to their role in the protection of the body against different microorganisms and cancer, with an emphasis on their mechanisms and their clinical importance. Overall, close collaboration between NK cells and CD8+ T cells may play an important role in immune function and disease pathogenesis. The knowledge of how these immune cells interact in defending the body against pathogens and cancers may help us find ways to optimize their defensive and healing capabilities with methods that can be clinically applied.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Laboratory, Inc., Los Angeles, CA 90035, USA
| | - Sadi Koksoy
- Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA; (S.K.); (M.E.)
| | | | - Mark Engelman
- Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA; (S.K.); (M.E.)
| | - Carina Benzvi
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Ramat Gan 52621, Israel; (C.B.); (A.L.)
| | - Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Ramat Gan 52621, Israel; (C.B.); (A.L.)
| |
Collapse
|
10
|
Lord JM, Veenith T, Sullivan J, Sharma-Oates A, Richter AG, Greening NJ, McAuley HJC, Evans RA, Moss P, Moore SC, Turtle L, Gautam N, Gilani A, Bajaj M, Wain LV, Brightling C, Raman B, Marks M, Singapuri A, Elneima O, Openshaw PJM, Duggal NA. Accelarated immune ageing is associated with COVID-19 disease severity. Immun Ageing 2024; 21:6. [PMID: 38212801 PMCID: PMC10782727 DOI: 10.1186/s12979-023-00406-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND The striking increase in COVID-19 severity in older adults provides a clear example of immunesenescence, the age-related remodelling of the immune system. To better characterise the association between convalescent immunesenescence and acute disease severity, we determined the immune phenotype of COVID-19 survivors and non-infected controls. RESULTS We performed detailed immune phenotyping of peripheral blood mononuclear cells isolated from 103 COVID-19 survivors 3-5 months post recovery who were classified as having had severe (n = 56; age 53.12 ± 11.30 years), moderate (n = 32; age 52.28 ± 11.43 years) or mild (n = 15; age 49.67 ± 7.30 years) disease and compared with age and sex-matched healthy adults (n = 59; age 50.49 ± 10.68 years). We assessed a broad range of immune cell phenotypes to generate a composite score, IMM-AGE, to determine the degree of immune senescence. We found increased immunesenescence features in severe COVID-19 survivors compared to controls including: a reduced frequency and number of naïve CD4 and CD8 T cells (p < 0.0001); increased frequency of EMRA CD4 (p < 0.003) and CD8 T cells (p < 0.001); a higher frequency (p < 0.0001) and absolute numbers (p < 0.001) of CD28-ve CD57+ve senescent CD4 and CD8 T cells; higher frequency (p < 0.003) and absolute numbers (p < 0.02) of PD-1 expressing exhausted CD8 T cells; a two-fold increase in Th17 polarisation (p < 0.0001); higher frequency of memory B cells (p < 0.001) and increased frequency (p < 0.0001) and numbers (p < 0.001) of CD57+ve senescent NK cells. As a result, the IMM-AGE score was significantly higher in severe COVID-19 survivors than in controls (p < 0.001). Few differences were seen for those with moderate disease and none for mild disease. Regression analysis revealed the only pre-existing variable influencing the IMM-AGE score was South Asian ethnicity ([Formula: see text] = 0.174, p = 0.043), with a major influence being disease severity ([Formula: see text] = 0.188, p = 0.01). CONCLUSIONS Our analyses reveal a state of enhanced immune ageing in survivors of severe COVID-19 and suggest this could be related to SARS-Cov-2 infection. Our data support the rationale for trials of anti-immune ageing interventions for improving clinical outcomes in these patients with severe disease.
Collapse
Affiliation(s)
- Janet M Lord
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Office 6, University of Birmingham Research Labs, Institute of Inflammation and Ageing, Queen Elizabeth Hospital, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham, UK
| | - Tonny Veenith
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham, UK
| | - Jack Sullivan
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Office 6, University of Birmingham Research Labs, Institute of Inflammation and Ageing, Queen Elizabeth Hospital, Birmingham, UK
| | | | - Alex G Richter
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Neil J Greening
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, UK
| | - Hamish J C McAuley
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, UK
| | - Rachael A Evans
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Shona C Moore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Lance Turtle
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Nandan Gautam
- Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - Ahmed Gilani
- Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - Manan Bajaj
- Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - Louise V Wain
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, UK
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Christopher Brightling
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, UK
| | - Betty Raman
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Michael Marks
- London School of Hygiene and Tropical Medicine, University of London, London, UK
| | - Amisha Singapuri
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, UK
| | - Omer Elneima
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, UK
| | | | - Niharika A Duggal
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Office 6, University of Birmingham Research Labs, Institute of Inflammation and Ageing, Queen Elizabeth Hospital, Birmingham, UK.
| |
Collapse
|
11
|
Sekine T, Galgano D, Casoni GP, Meeths M, Cron RQ, Bryceson YT. CD8 + T Cell Biology in Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:129-144. [PMID: 39117812 DOI: 10.1007/978-3-031-59815-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Familial forms of hemophagocytic lymphohistiocytosis (HLH) are caused by loss-of-function mutations in genes encoding perforin as well as those required for release of perforin-containing cytotoxic granule constituent. Perforin is expressed by subsets of CD8+ T cells and NK cells, representing lymphocytes that share mechanism of target cell killing yet display distinct modes of target cell recognition. Here, we highlight recent findings concerning the genetics of familial HLH that implicate CD8+ T cells in the pathogenesis of HLH and discuss mechanistic insights from animal models as well as patients that reveal how CD8+ T cells may contribute to or drive disease, at least in part through release of IFN-γ. Intriguingly, CD8+ T cells and NK cells may act differentially in severe hyperinflammatory diseases such as HLH. We also discuss how CD8+ T cells may promote or drive pathology in other cytokine release syndromes (CSS). Moreover, we review the molecular mechanisms underpinning CD8+ T cell-mediated lymphocyte cytotoxicity, key to the development of familial HLH. Together, recent insights to the pathophysiology of CSS in general and HLH in particular are providing promising new therapeutic targets.
Collapse
Affiliation(s)
- Takuya Sekine
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Donatella Galgano
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Giovanna P Casoni
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marie Meeths
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Randy Q Cron
- Division of Pediatric Rheumatology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Yenan T Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
- Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
12
|
Zhang XX, Wu XH. Decreased CD56+CD16-CD94+uNK cells in the mid-luteal phase in women with recurrent implantation failure are associated with IL-15 deficiency. Am J Reprod Immunol 2023; 90:e13794. [PMID: 38009057 DOI: 10.1111/aji.13794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/18/2023] [Accepted: 10/21/2023] [Indexed: 11/28/2023] Open
Abstract
PROBLEM Whether the abnormal development of uterine natural killer (uNK) cells contributes to women with recurrent implantation failure (RIF) remains unclear. METHOD OF STUDY We characterized the development of uNK cells and peripheral blood NK cells (pbNK) in the mid-luteal phase in women with RIF (n = 31) and controls (n = 14) by flow cytometry. Endometrial IL-15 mRNA expression was studied by quantitative reverse transcription-PCR. The GSE58144 dataset was used to validate the correlation results. RESULTS We found decreased proportions of stage 4 CD56+CD16-CD94+ uNK cells (median: 9.56% vs. 17.78%, P .014) and increased proportions of stage 6 CD56+CD16+CD57+ uNK cells (median: 1.54% vs. 0.74%, P = .020) in the mid-luteal endometrium of women with RIF compared to fertile women. We also found that there was no quantitative correlation between uNK cells and the corresponding pbNK cell subpopulations (P > .05). In addition, IL-15 mRNA levels in the mid-luteal endometrium were positively correlated with the proportion of CD56+ uNK cells (r = .392, P = .008), especially with stage 4 uNK cell populations (r = .408, P = .005). CONCLUSIONS We showed that the proportion of stage 4 uNK cells decreased in the RIF group compared to controls, and the decrease in stage 4 uNK cells correlated positively with low IL-15 mRNA expression. We suggest that the reduced stage 4 uNK cells in women with RIF are associated with IL-15 deficiency.
Collapse
Affiliation(s)
- Xin-Xian Zhang
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, Hebei, China
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang, Gynecology and Obstetrics Hospital Affiliated to Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Obstetrics and Gynecology, Key Laboratory of Maternal and Fetal Medicine of Hebei Province, Shijiazhuang, Hebei, China
| | - Xiao-Hua Wu
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, Hebei, China
- Reproductive Medicine Center, The Fourth Hospital of Shijiazhuang, Gynecology and Obstetrics Hospital Affiliated to Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Obstetrics and Gynecology, Key Laboratory of Maternal and Fetal Medicine of Hebei Province, Shijiazhuang, Hebei, China
| |
Collapse
|
13
|
de Fàbregues O, Sellés M, Ramos-Vicente D, Roch G, Vila M, Bové J. Relevance of tissue-resident memory CD8 T cells in the onset of Parkinson's disease and examination of its possible etiologies: infectious or autoimmune? Neurobiol Dis 2023; 187:106308. [PMID: 37741513 DOI: 10.1016/j.nbd.2023.106308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/05/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023] Open
Abstract
Tissue-resident memory CD8 T cells are responsible for local immune surveillance in different tissues, including the brain. They constitute the first line of defense against pathogens and cancer cells and play a role in autoimmunity. A recently published study demonstrated that CD8 T cells with markers of residency containing distinct granzymes and interferon-γ infiltrate the parenchyma of the substantia nigra and contact dopaminergic neurons in an early premotor stage of Parkinson's disease. This infiltration precedes α-synuclein aggregation and neuronal loss in the substantia nigra, suggesting a relevant role for CD8 T cells in the onset of the disease. To date, the nature of the antigen that initiates the adaptive immune response remains unknown. This review will discuss the role of tissue-resident memory CD8 T cells in brain immune homeostasis and in the onset of Parkinson's disease and other neurological diseases. We also discuss how aging and genetic factors can affect the CD8 T cell immune response and how animal models can be misleading when studying human-related immune response. Finally, we speculate about a possible infectious or autoimmune origin of Parkinson's disease.
Collapse
Affiliation(s)
- Oriol de Fàbregues
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain; Movement Disorders Unit, Neurology Department, Vall d'Hebron University Hospital
| | - Maria Sellés
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - David Ramos-Vicente
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Gerard Roch
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Catalonia, Spain; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| | - Jordi Bové
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain.
| |
Collapse
|
14
|
Diggins NL, Hancock MH. Viral miRNA regulation of host gene expression. Semin Cell Dev Biol 2023; 146:2-19. [PMID: 36463091 PMCID: PMC10101914 DOI: 10.1016/j.semcdb.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
Viruses have evolved a multitude of mechanisms to combat barriers to productive infection in the host cell. Virally-encoded miRNAs are one such means to regulate host gene expression in ways that benefit the virus lifecycle. miRNAs are small non-coding RNAs that regulate protein expression but do not trigger the adaptive immune response, making them powerful tools encoded by viruses to regulate cellular processes. Diverse viruses encode for miRNAs but little sequence homology exists between miRNAs of different viral species. Despite this, common cellular pathways are targeted for regulation, including apoptosis, immune evasion, cell growth and differentiation. Herein we will highlight the viruses that encode miRNAs and provide mechanistic insight into how viral miRNAs aid in lytic and latent infection by targeting common cellular processes. We also highlight how viral miRNAs can mimic host cell miRNAs as well as how viral miRNAs have evolved to regulate host miRNA expression. These studies dispel the myth that viral miRNAs are subtle regulators of gene expression, and highlight the critical importance of viral miRNAs to the virus lifecycle.
Collapse
Affiliation(s)
- Nicole L Diggins
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR, USA
| | - Meaghan H Hancock
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
15
|
Kudryavtsev I, Zinchenko Y, Serebriakova M, Akisheva T, Rubinstein A, Savchenko A, Borisov A, Belenjuk V, Malkova A, Yablonskiy P, Kudlay D, Starshinova A. A Key Role of CD8+ T Cells in Controlling of Tuberculosis Infection. Diagnostics (Basel) 2023; 13:2961. [PMID: 37761328 PMCID: PMC10528134 DOI: 10.3390/diagnostics13182961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The main role in the control of tuberculosis infection is played by macrophages and Th1 and CD8+ T cells. The study aimed to identify the most diagnostically significant CD8+ T cell subsets in tuberculosis patients. METHODS Peripheral blood samples from patients with clinical, radiological, and bacteriologically confirmed pulmonary tuberculosis (TB, n = 32) and healthy subjects (HC, n = 31) were collected and analyzed using 10-color flow cytometry. RESULTS The frequency of the EM4 CD3+CD8+ cells was reduced in the peripheral blood of patients with pulmonary tuberculosis, while the relative and absolute number of EM1 CD3+CD8+ cells increased compared to the control group. CD57 expression was reduced in patients with pulmonary tuberculosis on EM1, EM2, and pE1 CD3+CD8+ cells, whereas the EM3 cells had a high level of CD57 expression. The relative and absolute number of Tc2 (CCR6-CXCR3-) cells in peripheral blood in patients with pulmonary tuberculosis was increased, while the frequency of Tc1 (CCR6-CXCR3+) was decreased, compared to healthy donors. CONCLUSIONS Patients with pulmonary tuberculosis have an abnormal CD3+CD8+ cell profile and demonstrate their impaired maturation and functional activity.
Collapse
Affiliation(s)
- Igor Kudryavtsev
- Institution of Experimental Medicine, Department of Immunology, 197376 St-Petersburg, Russia; (I.K.); (M.S.); (T.A.); (A.R.)
- Almazov National Medical Research Centre, 197341 St-Petersburg, Russia
| | - Yulia Zinchenko
- Research Institute of Phthisiopulmonology, 191036 St-Petersburg, Russia; (Y.Z.); (P.Y.)
| | - Maria Serebriakova
- Institution of Experimental Medicine, Department of Immunology, 197376 St-Petersburg, Russia; (I.K.); (M.S.); (T.A.); (A.R.)
| | - Tatiana Akisheva
- Institution of Experimental Medicine, Department of Immunology, 197376 St-Petersburg, Russia; (I.K.); (M.S.); (T.A.); (A.R.)
| | - Artem Rubinstein
- Institution of Experimental Medicine, Department of Immunology, 197376 St-Petersburg, Russia; (I.K.); (M.S.); (T.A.); (A.R.)
| | - Andrei Savchenko
- Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia; (A.S.); (A.B.); (V.B.)
| | - Alexandr Borisov
- Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia; (A.S.); (A.B.); (V.B.)
| | - Vasilij Belenjuk
- Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia; (A.S.); (A.B.); (V.B.)
| | - Anna Malkova
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel;
| | - Piotr Yablonskiy
- Research Institute of Phthisiopulmonology, 191036 St-Petersburg, Russia; (Y.Z.); (P.Y.)
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St-Petersburg, Russia
| | - Dmitry Kudlay
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- NRC Institute of Immunology FMBA of Russia, 115552 Moscow, Russia
| | - Anna Starshinova
- Almazov National Medical Research Centre, 197341 St-Petersburg, Russia
| |
Collapse
|
16
|
Zwijnenburg AJ, Pokharel J, Varnaitė R, Zheng W, Hoffer E, Shryki I, Comet NR, Ehrström M, Gredmark-Russ S, Eidsmo L, Gerlach C. Graded expression of the chemokine receptor CX3CR1 marks differentiation states of human and murine T cells and enables cross-species interpretation. Immunity 2023; 56:1955-1974.e10. [PMID: 37490909 DOI: 10.1016/j.immuni.2023.06.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/02/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023]
Abstract
T cells differentiate into functionally distinct states upon antigen encounter. These states are delineated by different cell surface markers for murine and human T cells, which hamper cross-species translation of T cell properties. We aimed to identify surface markers that reflect the graded nature of CD8+ T cell differentiation and delineate functionally comparable states in mice and humans. CITEseq analyses revealed that graded expression of CX3CR1, encoding the chemokine receptor CX3CR1, correlated with the CD8+ T cell differentiation gradient. CX3CR1 expression distinguished human and murine CD8+ and CD4+ T cell states, as defined by migratory and functional properties. Graded CX3CR1 expression, refined with CD62L, accurately captured the high-dimensional T cell differentiation continuum. Furthermore, the CX3CR1 expression gradient delineated states with comparable properties in humans and mice in steady state and on longitudinally tracked virus-specific CD8+ T cells in both species. Thus, graded CX3CR1 expression provides a strategy to translate the behavior of distinct T cell differentiation states across species.
Collapse
Affiliation(s)
- Anthonie Johan Zwijnenburg
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Jyoti Pokharel
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Renata Varnaitė
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Wenning Zheng
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Elena Hoffer
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Iman Shryki
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Natalia Ramirez Comet
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Marcus Ehrström
- Department of Reconstructive Plastic Surgery, Karolinska University Hospital, 17176 Stockholm, Sweden; Nordiska Kliniken, 11151 Stockholm, Sweden
| | - Sara Gredmark-Russ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden; Laboratory for Molecular Infection Medicine Sweden, 90187 Umeå, Sweden
| | - Liv Eidsmo
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden; Leo Foundation Skin Immunology Center, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Carmen Gerlach
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden.
| |
Collapse
|
17
|
Gil-Manso S, Herrero-Quevedo D, Carbonell D, Martínez-Bonet M, Bernaldo-de-Quirós E, Kennedy-Batalla R, Gallego-Valle J, López-Esteban R, Blázquez-López E, Miguens-Blanco I, Correa-Rocha R, Gomez-Verdejo V, Pion M. Multidimensional analysis of immune cells from COVID-19 patients identified cell subsets associated with the severity at hospital admission. PLoS Pathog 2023; 19:e1011432. [PMID: 37311004 PMCID: PMC10263360 DOI: 10.1371/journal.ppat.1011432] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND SARS-CoV-2 emerged as a new coronavirus causing COVID-19, and it has been responsible for more than 760 million cases and 6.8 million deaths worldwide until March 2023. Although infected individuals could be asymptomatic, other patients presented heterogeneity and a wide range of symptoms. Therefore, identifying those infected individuals and being able to classify them according to their expected severity could help target health efforts more effectively. METHODOLOGY/PRINCIPAL FINDINGS Therefore, we wanted to develop a machine learning model to predict those who will develop severe disease at the moment of hospital admission. We recruited 75 individuals and analysed innate and adaptive immune system subsets by flow cytometry. Also, we collected clinical and biochemical information. The objective of the study was to leverage machine learning techniques to identify clinical features associated with disease severity progression. Additionally, the study sought to elucidate the specific cellular subsets involved in the disease following the onset of symptoms. Among the several machine learning models tested, we found that the Elastic Net model was the better to predict the severity score according to a modified WHO classification. This model was able to predict the severity score of 72 out of 75 individuals. Besides, all the machine learning models revealed that CD38+ Treg and CD16+ CD56neg HLA-DR+ NK cells were highly correlated with the severity. CONCLUSIONS/SIGNIFICANCE The Elastic Net model could stratify the uninfected individuals and the COVID-19 patients from asymptomatic to severe COVID-19 patients. On the other hand, these cellular subsets presented here could help to understand better the induction and progression of the symptoms in COVID-19 individuals.
Collapse
Affiliation(s)
- Sergio Gil-Manso
- Advanced ImmunoRegulation Group, Gregorio Marañón Health Research Institute (IiSGM), General University Hospital Gregorio Marañón, Madrid, Spain
| | - Diego Herrero-Quevedo
- Signal Processing and Communications Department, University Carlos III de Madrid, Leganés, Madrid, Spain
| | - Diego Carbonell
- Department of Hematology, General University Hospital Gregorio Marañón (HGUGM), Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Marta Martínez-Bonet
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IiSGM), General University Hospital Gregorio Marañón, Madrid, Spain
| | - Esther Bernaldo-de-Quirós
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IiSGM), General University Hospital Gregorio Marañón, Madrid, Spain
| | - Rebeca Kennedy-Batalla
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IiSGM), General University Hospital Gregorio Marañón, Madrid, Spain
| | - Jorge Gallego-Valle
- Advanced ImmunoRegulation Group, Gregorio Marañón Health Research Institute (IiSGM), General University Hospital Gregorio Marañón, Madrid, Spain
| | - Rocío López-Esteban
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IiSGM), General University Hospital Gregorio Marañón, Madrid, Spain
| | - Elena Blázquez-López
- Gastroenterology—Digestive Service, General University Hospital Gregorio Marañón, Network of Hepatic and Digestive Diseases (CIBEREHD), Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Iria Miguens-Blanco
- Emergency Department, General University Hospital Gregorio Marañón, Madrid, Spain
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IiSGM), General University Hospital Gregorio Marañón, Madrid, Spain
| | - Vanessa Gomez-Verdejo
- Signal Processing and Communications Department, University Carlos III de Madrid, Leganés, Madrid, Spain
| | - Marjorie Pion
- Advanced ImmunoRegulation Group, Gregorio Marañón Health Research Institute (IiSGM), General University Hospital Gregorio Marañón, Madrid, Spain
| |
Collapse
|
18
|
Ranek JS, Stallaert W, Milner J, Stanley N, Purvis JE. Feature selection for preserving biological trajectories in single-cell data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540043. [PMID: 37214963 PMCID: PMC10197710 DOI: 10.1101/2023.05.09.540043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Single-cell technologies can readily measure the expression of thousands of molecular features from individual cells undergoing dynamic biological processes, such as cellular differentiation, immune response, and disease progression. While examining cells along a computationally ordered pseudotime offers the potential to study how subtle changes in gene or protein expression impact cell fate decision-making, identifying characteristic features that drive continuous biological processes remains difficult to detect from unenriched and noisy single-cell data. Given that all profiled sources of feature variation contribute to the cell-to-cell distances that define an inferred cellular trajectory, including confounding sources of biological variation (e.g. cell cycle or metabolic state) or noisy and irrelevant features (e.g. measurements with low signal-to-noise ratio) can mask the underlying trajectory of study and hinder inference. Here, we present DELVE (dynamic selection of locally covarying features), an unsupervised feature selection method for identifying a representative subset of dynamically-expressed molecular features that recapitulates cellular trajectories. In contrast to previous work, DELVE uses a bottom-up approach to mitigate the effect of unwanted sources of variation confounding inference, and instead models cell states from dynamic feature modules that constitute core regulatory complexes. Using simulations, single-cell RNA sequencing data, and iterative immunofluorescence imaging data in the context of the cell cycle and cellular differentiation, we demonstrate that DELVE selects features that more accurately characterize cell populations and improve the recovery of cell type transitions. This feature selection framework provides an alternative approach for improving trajectory inference and uncovering co-variation amongst features along a biological trajectory. DELVE is implemented as an open-source python package and is publicly available at: https://github.com/jranek/delve.
Collapse
Affiliation(s)
- Jolene S. Ranek
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wayne Stallaert
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Justin Milner
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Natalie Stanley
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeremy E. Purvis
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
19
|
Spagnuolo A, Gridelli C. The Role of Immunotherapy in the First-Line Treatment of Elderly Advanced Non-Small Cell Lung Cancer. Cancers (Basel) 2023; 15:cancers15082319. [PMID: 37190247 DOI: 10.3390/cancers15082319] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 04/01/2023] [Indexed: 05/17/2023] Open
Abstract
Immune checkpoint inhibitors have changed the history of NSCLC treatment by becoming, alone or in combination with platinum-based chemotherapy, a mainstay of first-line therapy for advanced NSCLC. This increasingly dictates the identification of predictive biomarkers of response that can guide patient selection, in order to rationalize and personalize therapies, particularly in elderly patients. Immunotherapy in these patients raises questions of efficacy and tolerability related to aging, which is accompanied by a progressive decline in various body functions. Physical, biological and psychological changes contribute to individual validity status and, preferably, 'fit' patients are generally enrolled in clinical trials. In elderly patients, especially frail and complex patients with more than one chronic disease, data are poor and specific prospective studies are needed. This review reports the main available results on the use of immune checkpoint inhibitors in older patients with advanced NSCLC, in terms of efficacy and toxicity, and aims to highlight the need to better predict which patients might benefit from immunotherapy agents by probing knowledge and integrating information on immune system changes and age-related physiopathological modifications.
Collapse
Affiliation(s)
- Alessia Spagnuolo
- Division of Medical Oncology, 'S. G. Moscati' Hospital, 83100 Avellino, Italy
| | - Cesare Gridelli
- Division of Medical Oncology, 'S. G. Moscati' Hospital, 83100 Avellino, Italy
| |
Collapse
|
20
|
Savchenko AA, Kudryavtsev IV, Isakov DV, Sadowski IS, Belenyuk VD, Borisov AG. Recombinant Human Interleukin-2 Corrects NK Cell Phenotype and Functional Activity in Patients with Post-COVID Syndrome. Pharmaceuticals (Basel) 2023; 16:ph16040537. [PMID: 37111294 PMCID: PMC10144656 DOI: 10.3390/ph16040537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
Post-COVID syndrome develops in 10–20% of people who have recovered from COVID-19 and it is characterized by impaired function of the nervous, cardiovascular, and immune systems. Previously, it was found that patients who recovered from infection with the SARS-CoV-2 virus had a decrease in the number and functional activity of NK cells. The aim of the study was to assess the effectiveness of recombinant human IL-2 (rhIL-2) administered to correct NK cell phenotype and functional activity in patients with post-COVID syndrome. Patients were examined after 3 months for acute COVID-19 of varying severity. The phenotype of the peripheral blood NK cells was studied by flow cytometry. It was found that disturbances in the cell subset composition in patients with post-COVID syndrome were characterized by low levels of mature (p = 0.001) and cytotoxic NK cells (p = 0.013), with increased release of immature NK cells (p = 0.023). Functional deficiency of NK cells in post-COVID syndrome was characterized by lowered cytotoxic activity due to the decreased count of CD57+ (p = 0.001) and CD8+ (p < 0.001) NK cells. In the treatment of patients with post-COVID syndrome with recombinant IL-2, peripheral blood NK cell count and functional potential were restored. In general, the effectiveness of using rhIL-2 in treatment of post-COVID syndrome has been proven in patients with low levels of NK cells.
Collapse
Affiliation(s)
- Andrei A. Savchenko
- Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| | - Igor V. Kudryavtsev
- Institute of Experimental Medicine, 197376 St. Petersburg, Russia
- School of Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Dmitry V. Isakov
- Institute of Experimental Medicine, Pavlov First St. Petersburg State Medical University of the Russian Federation Ministry of Healthcare, 197022 St. Petersburg, Russia
| | - Ivan S. Sadowski
- Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| | - Vasily D. Belenyuk
- Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| | - Alexandr G. Borisov
- Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| |
Collapse
|
21
|
Hunt RM, Elzayat MT, Markofski MM, Laughlin M, LaVoy EC. Characterization of transitional memory CD4+ and CD8+ T-cell mobilization during and after an acute bout of exercise. Front Sports Act Living 2023; 5:1120454. [PMID: 37139298 PMCID: PMC10149718 DOI: 10.3389/fspor.2023.1120454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/21/2023] [Indexed: 05/05/2023] Open
Abstract
T-cell subsets, including naïve (NA), central memory (CM), transitional memory (TM), effector memory (EM), and RA + effector memory (EMRA), differ in phenotype and function. T-cells are mobilized by exercise, with differences in the magnitude of mobilization between subsets. However, the response of TM T-cells to exercise has not yet been described. Further, T-cells expressing the late differentiation marker CD57 are known to be highly responsive to exercise, but the relative response of CD57 + and CD57- within T-cell subsets is unknown. We therefore aimed to characterize the exercise-induced mobilization of TM T-cells, as well as to compare the exercise response of CD57 + and CD57- cells within T-cell subsets. Methods Seventeen participants (7 female; aged 18-40 years) cycled 30 min at 80% of their estimated maximum heart rate. Venous blood obtained pre, post, and 1H post-exercise was analyzed by flow cytometry. CD45RA, CCR7, and CD28 expression within CD4 + and CD8+ T-cells identified NA, CM, TM, EM, and EMRA subsets. CD57 expression within EM, EMRA, and CD28+ T-cells was also quantified. The relative mobilization of each subset was compared by calculating fold change in cell concentration during (ingress, post/pre) and after exercise (egress,1H post/post). Cytomegalovirus (CMV) serostatus was determined by ELISA and was considered in models. Results TM CD8+ T-cell concentration was greater post-exercise than pre-exercise (138.59 ± 56.42 cells/µl vs. 98.51 ± 39.68 cells/µl, p < 0.05), and the proportion of CD8 + with a TM phenotype was elevated 1H post-exercise (1H: 32.44 ± 10.38% vs. Pre: 30.15 ± 8.77%, p < 0.05). The relative mobilization during and after exercise of TM T-cells did not differ from NA and CM but was less than EM and EMRA subsets. Similar results were observed within CD4+ T-cells. CD57 + subsets of CD28+ T-cells and of EM and EMRA CD8+ T-cells exhibited a greater relative mobilization than CD57- subsets (all p < 0.05). Conclusion These results indicate TM CD4 + and CD8+ T-cells are transiently mobilized into the blood with exercise, but not to as great of an extent as later differentiated EM and EMRA T-cells. Results also indicate CD57 identifies highly exercise responsive cells within CD8+ T-cell subsets.
Collapse
Affiliation(s)
- Rebekah M. Hunt
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, United States
| | - Mahmoud T. Elzayat
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, United States
| | - Melissa M. Markofski
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, United States
| | - Mitzi Laughlin
- Houston Methodist Orthopedics and Sports Medicine, Houston Methodist, Houston, TX, United States
| | - Emily C. LaVoy
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, United States
- Correspondence: Emily C. LaVoy
| |
Collapse
|
22
|
Zou S, Xiang Y, Guo W, Zhu Q, Wu S, Tan Y, Yan Y, Shen L, Feng Y, Liang K. Phenotype and function of peripheral blood γδ T cells in HIV infection with tuberculosis. Front Cell Infect Microbiol 2022; 12:1071880. [PMID: 36619740 PMCID: PMC9816428 DOI: 10.3389/fcimb.2022.1071880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Background Although γδ T cells play an essential role in immunity against Human Immunodeficiency Virus (HIV) or Mycobacterium tuberculosis (MTB), they are poorly described in HIV infection with tuberculosis (TB). Methods The phenotypic and functional properties of peripheral blood γδ T cells in patients with HIV/TB co-infection were analyzed compared to healthy controls and patients with HIV mono-infection or TB by direct intracellular cytokine staining (ICS). Results The percentage of Vδ1 subset in HIV/TB group was significantly higher than that in TB group, while the decreased frequency of the Vδ2 and Vγ2Vδ2 subsets were observed in HIV/TB group than in TB group. The percentage of CD4+CD8- Vδ2 subset in HIV/TB group was markedly lower than in TB group. However, the percentage of CD4+CD8+ Vδ2 subset in HIV/TB group was markedly higher than HIV group or TB group. A lower percentage TNF-α and a higher percentage of IL-17A of Vδ2 subset were observed in HIV/TB group than that in HIV mono-infection. The percentage of perforin-producing Vδ2 subset was significantly lower in HIV/TB group than that in HIV group and TB group. Conclusions Our data suggested that HIV/TB co-infection altered the balance of γδ T cell subsets. The influence of HIV/TB co-infection on the function of γδ T cells to produce cytokines was complicated, which will shed light on further investigations on the mechanisms of the immune response against HIV and/or MTB infection.
Collapse
Affiliation(s)
- Shi Zou
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yanni Xiang
- Department of Intensive Care Medicine, Yichang Central People's Hospital, Yichang, China
| | - Wei Guo
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China,Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China,Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Qi Zhu
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, China
| | - Songjie Wu
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China,Department of Nosocomial Infection Management, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuting Tan
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yajun Yan
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ling Shen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, United States,*Correspondence: Ling Shen, ; Yong Feng, ; Ke Liang,
| | - Yong Feng
- Department of Medical Microbiology, Wuhan University School of Basic Medical Sciences, Wuhan, China,*Correspondence: Ling Shen, ; Yong Feng, ; Ke Liang,
| | - Ke Liang
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China,Department of Nosocomial Infection Management, Zhongnan Hospital of Wuhan University, Wuhan, China,Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, China,*Correspondence: Ling Shen, ; Yong Feng, ; Ke Liang,
| |
Collapse
|
23
|
Abad-Fernández M, Hernández-Walias FJ, Ruiz de León MJ, Vivancos MJ, Pérez-Elías MJ, Moreno A, Casado JL, Quereda C, Dronda F, Moreno S, Vallejo A. HTLV-2 Enhances CD8 + T Cell-Mediated HIV-1 Inhibition and Reduces HIV-1 Integrated Proviral Load in People Living with HIV-1. Viruses 2022; 14:v14112472. [PMID: 36366570 PMCID: PMC9695633 DOI: 10.3390/v14112472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
People living with HIV-1 and HTLV-2 concomitantly show slower CD4+ T cell depletion and AIDS progression, more frequency of the natural control of HIV-1, and lower mortality rates. A similar beneficial effect of this infection has been reported on HCV coinfection reducing transaminases, increasing the spontaneous clearance of HCV infection and delaying the development of hepatic fibrosis. Given the critical role of CD8+ T cells in controlling HIV-1 infection, we analysed the role of CD8+ T cell-mediated cytotoxic activity in coinfected individuals living with HIV-1. One hundred and twenty-eight individuals living with HIV-1 in four groups were studied: two groups with HTLV-2 infection, including individuals with HCV infection (N = 41) and with a sustained virological response (SVR) after HCV treatment (N = 25); and two groups without HTLV-2 infection, including individuals with HCV infection (N = 25) and with a sustained virological response after treatment (N = 37). We found that CD8+ T cell-mediated HIV-1 inhibition in vitro was higher in individuals with HTLV-2. This inhibition activity was associated with a higher frequency of effector memory CD8+ T cells, higher levels of granzyme A and granzyme B cytolytic enzymes, and perforin. Hence, cellular and soluble cytolytic factors may contribute to the lower HIV-1 pre-ART viral load and the HIV-1 proviral load during ART therapy associated with HTLV-2 infection. Herein, we confirmed and expanded previous findings on the role of HTLV-2 in the beneficial effect on the pathogenesis of HIV-1 in coinfected individuals.
Collapse
Affiliation(s)
- María Abad-Fernández
- Department of Microbiology & Immunology, UNC Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Correspondence: (M.A.-F.); (A.V.)
| | - Francisco J. Hernández-Walias
- Laboratory of Inmunovirología, Ramón y Cajal Institute for Health Investigation (IRyCIS), University Hospital Ramón y Cajal, 28034 Madrid, Spain
- Department of Infectious Diseases, Ramón y Cajal Institute for Health Investigation (IRyCIS), University Hospital Ramón y Cajal, 28034 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - María J. Ruiz de León
- Laboratory of Inmunovirología, Ramón y Cajal Institute for Health Investigation (IRyCIS), University Hospital Ramón y Cajal, 28034 Madrid, Spain
- Department of Infectious Diseases, Ramón y Cajal Institute for Health Investigation (IRyCIS), University Hospital Ramón y Cajal, 28034 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - María J. Vivancos
- Department of Infectious Diseases, Ramón y Cajal Institute for Health Investigation (IRyCIS), University Hospital Ramón y Cajal, 28034 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - María J. Pérez-Elías
- Department of Infectious Diseases, Ramón y Cajal Institute for Health Investigation (IRyCIS), University Hospital Ramón y Cajal, 28034 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Ana Moreno
- Department of Infectious Diseases, Ramón y Cajal Institute for Health Investigation (IRyCIS), University Hospital Ramón y Cajal, 28034 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - José L. Casado
- Department of Infectious Diseases, Ramón y Cajal Institute for Health Investigation (IRyCIS), University Hospital Ramón y Cajal, 28034 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Carmen Quereda
- Department of Infectious Diseases, Ramón y Cajal Institute for Health Investigation (IRyCIS), University Hospital Ramón y Cajal, 28034 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Fernando Dronda
- Department of Infectious Diseases, Ramón y Cajal Institute for Health Investigation (IRyCIS), University Hospital Ramón y Cajal, 28034 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Santiago Moreno
- Department of Infectious Diseases, Ramón y Cajal Institute for Health Investigation (IRyCIS), University Hospital Ramón y Cajal, 28034 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Alejandro Vallejo
- Laboratory of Inmunovirología, Ramón y Cajal Institute for Health Investigation (IRyCIS), University Hospital Ramón y Cajal, 28034 Madrid, Spain
- Department of Infectious Diseases, Ramón y Cajal Institute for Health Investigation (IRyCIS), University Hospital Ramón y Cajal, 28034 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: (M.A.-F.); (A.V.)
| |
Collapse
|
24
|
Valenzuela-Vázquez L, Nuñez-Enriquez JC, Sánchez-Herrera J, Medina-Sanson A, Pérez-Saldivar ML, Jiménez-Hernández E, Martiín-Trejo JA, Del Campo-Martínez MDLÁ, Flores-Lujano J, Amador-Sánchez R, Mora-Ríos FG, Peñaloza-González JG, Duarte-Rodríguez DA, Torres-Nava JR, Espinosa-Elizondo RM, Cortés-Herrera B, Flores-Villegas LV, Merino-Pasaye LE, Almeida-Hernández C, Ramírez-Colorado R, Solís-Labastida KA, Medrano-López F, Pérez-Gómez JA, Velázquez-Aviña MM, Martínez-Ríos A, Aguilar-De los Santos A, Santillán-Juárez JD, Gurrola-Silva A, García-Velázquez AJ, Mata-Rocha M, Hernández-Echáurregui GA, Sepúlveda-Robles OA, Rosas-Vargas H, Mancilla-Herrera I, Jimenez-Morales S, Hidalgo-Miranda A, Martinez-Duncker I, Waight JD, Hance KW, Madauss KP, Mejía-Aranguré JM, Cruz-Munoz ME. NK cells with decreased expression of multiple activating receptors is a dominant phenotype in pediatric patients with acute lymphoblastic leukemia. Front Oncol 2022; 12:1023510. [PMID: 36419901 PMCID: PMC9677112 DOI: 10.3389/fonc.2022.1023510] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
NK cells have unique attributes to react towards cells undergoing malignant transformation or viral infection. This reactivity is regulated by activating or inhibitory germline encoded receptors. An impaired NK cell function may result from an aberrant expression of such receptors, a condition often seen in patients with hematological cancers. Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer worldwide and NK cells have emerged as crucial targets for developing immunotherapies. However, there are important gaps concerning the phenotype and behavior of NK cells during emergence of ALL. In this study we analyze the phenotype and function of NK cells from peripheral blood in pediatric patients with ALL at diagnosis. Our results showed that NK cells exhibited an altered phenotype highlighted by a significant reduction in the overall expression and percent representation of activating receptors compared to age-matched controls. No significant differences were found for the expression of inhibitory receptors. Moreover, NK cells with a concurrent reduced expression in various activating receptors, was the dominant phenotype among patients. An alteration in the relative frequencies of NK cells expressing NKG2A and CD57 within the mature NK cell pool was also observed. In addition, NK cells from patients displayed a significant reduction in the ability to sustain antibody-dependent cellular cytotoxicity (ADCC). Finally, an aberrant expression of activating receptors is associated with the phenomenon of leukemia during childhood.
Collapse
Affiliation(s)
- Lucero Valenzuela-Vázquez
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Juan Carlos Nuñez-Enriquez
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Jacqueline Sánchez-Herrera
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Aurora Medina-Sanson
- Servicio de Oncología Pediátrica, Hospital Infantil de México, “Dr. Federico Gómez Sántos”, Secretaria de Salud, Ciudad de México, Mexico
| | - María Luisa Pérez-Saldivar
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Elva Jiménez-Hernández
- Servicio de Hematología Pediátrica, Hospital General “Gaudencio González Garza”, Centro Médico Nacional (CMN) “La Raza”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Jorge Alfonso Martiín-Trejo
- Servicio de Hematología Pediátrica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - María de Los Ángeles Del Campo-Martínez
- Servicio de Hematología Pediátrica, Hospital General “Gaudencio González Garza”, Centro Médico Nacional (CMN) “La Raza”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Janet Flores-Lujano
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Raquel Amador-Sánchez
- Hospital General Regional No. 1 “Carlos McGregor Sánchez Navarro”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Félix Gustavo Mora-Ríos
- Departamento de Hematología, Hospital General Regional Ignacio Zaragoza del Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | | | - David Aldebarán Duarte-Rodríguez
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - José Refugio Torres-Nava
- Servicio de Oncología, Hospital Pediátrico de Moctezuma, Secretaría de Salud de la Ciudad de México (CDMX), Mexico City, Mexico
| | | | - Beatriz Cortés-Herrera
- Servicio de Hematología Pediátrica, Hospital General de México, Secretaria de Salud (SS), Mexico City, Mexico
| | - Luz Victoria Flores-Villegas
- Servicio de Hematología Pediátrica, Centro Médico Nacional (CMN) “20 de Noviembre”, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Laura Elizabeth Merino-Pasaye
- Servicio de Hematología Pediátrica, Centro Médico Nacional (CMN) “20 de Noviembre”, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Carolina Almeida-Hernández
- Hospital General de Ecatepec “Las Américas”, Instituto de Salud del Estado de México (ISEM), Mexico City, Mexico
| | - Rosario Ramírez-Colorado
- Hospital Pediátrico La Villa, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - Karina Anastacia Solís-Labastida
- Servicio de Hematología Pediátrica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Francisco Medrano-López
- Hospital General Regional (HGR) No. 72 “Dr. Vicente Santos Guajardo”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Jessica Arleet Pérez-Gómez
- Hospital General Regional (HGR) No. 72 “Dr. Vicente Santos Guajardo”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Annel Martínez-Ríos
- Departamento de Hematología, Hospital General Regional Ignacio Zaragoza del Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | | | - Jessica Denisse Santillán-Juárez
- Servicio de Hemato-oncología Pediátrica, Hospital Regional No. 1° de Octubre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Alma Gurrola-Silva
- Hospital Regional Tipo B de Alta Especialidad Bicentenario de la Independencia, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado, Mexico City, Mexico
| | - Alejandra Jimena García-Velázquez
- Servicio de Hemato-oncología Pediátrica, Hospital Regional No. 1° de Octubre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Minerva Mata-Rocha
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Omar Alejandro Sepúlveda-Robles
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Ismael Mancilla-Herrera
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Silvia Jimenez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Ivan Martinez-Duncker
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | | | | | | | - Juan Manuel Mejía-Aranguré
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Juan Manuel Mejía-Aranguré, ; Mario Ernesto Cruz-Munoz,
| | - Mario Ernesto Cruz-Munoz
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- *Correspondence: Juan Manuel Mejía-Aranguré, ; Mario Ernesto Cruz-Munoz,
| |
Collapse
|
25
|
Anikeeva N, Steblyanko M, Kuri-Cervantes L, Buggert M, Betts MR, Sykulev Y. The immune synapses reveal aberrant functions of CD8 T cells during chronic HIV infection. Nat Commun 2022; 13:6436. [PMID: 36307445 PMCID: PMC9616955 DOI: 10.1038/s41467-022-34157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 10/14/2022] [Indexed: 02/05/2023] Open
Abstract
Chronic HIV infection causes persistent low-grade inflammation that induces premature aging of the immune system including senescence of memory and effector CD8 T cells. To uncover the reasons of gradually diminished potency of CD8 T cells from people living with HIV, here we expose the T cells to planar lipid bilayers containing ligands for T-cell receptor and a T-cell integrins and analyze the cellular morphology, dynamics of synaptic interface formation and patterns of the cellular degranulation. We find a large fraction of phenotypically naive T cells from chronically infected people are capable to form mature synapse with focused degranulation, a signature of a differentiated T cells. Further, differentiation of aberrant naive T cells may lead to the development of anomalous effector T cells undermining their capacity to control HIV and other pathogens that could be contained otherwise.
Collapse
Affiliation(s)
- Nadia Anikeeva
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Maria Steblyanko
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Leticia Kuri-Cervantes
- Department of Microbiology and Institute of Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcus Buggert
- Department of Microbiology and Institute of Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Michael R Betts
- Department of Microbiology and Institute of Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuri Sykulev
- Departments of Immunology and Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA.
- Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Kudryavtsev IV, Arsentieva NA, Korobova ZR, Isakov DV, Rubinstein AA, Batsunov OK, Khamitova IV, Kuznetsova RN, Savin TV, Akisheva TV, Stanevich OV, Lebedeva AA, Vorobyov EA, Vorobyova SV, Kulikov AN, Sharapova MA, Pevtsov DE, Totolian AA. Heterogenous CD8+ T Cell Maturation and 'Polarization' in Acute and Convalescent COVID-19 Patients. Viruses 2022; 14:1906. [PMID: 36146713 PMCID: PMC9504186 DOI: 10.3390/v14091906] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The adaptive antiviral immune response requires interaction between CD8+ T cells, dendritic cells, and Th1 cells for controlling SARS-CoV-2 infection, but the data regarding the role of CD8+ T cells in the acute phase of COVID-19 and post-COVID-19 syndrome are still limited. METHODS . Peripheral blood samples collected from patients with acute COVID-19 (n = 71), convalescent subjects bearing serum SARS-CoV-2 N-protein-specific IgG antibodies (n = 51), and healthy volunteers with no detectable antibodies to any SARS-CoV-2 proteins (HC, n = 46) were analyzed using 10-color flow cytometry. RESULTS Patients with acute COVID-19 vs. HC and COVID-19 convalescents showed decreased absolute numbers of CD8+ T cells, whereas the frequency of CM and TEMRA CD8+ T cells in acute COVID-19 vs. HC was elevated. COVID-19 convalescents vs. HC had increased naïve and CM cells, whereas TEMRA cells were decreased compared to HC. Cell-surface CD57 was highly expressed by the majority of CD8+ T cells subsets during acute COVID-19, but convalescents had increased CD57 on 'naïve', CM, EM4, and pE1 2-3 months post-symptom onset. CXCR5 expression was altered in acute and convalescent COVID-19 subjects, whereas the frequencies of CXCR3+ and CCR4+ cells were decreased in both patient groups vs. HC. COVID-19 convalescents had increased CCR6-expressing CD8+ T cells. Moreover, CXCR3+CCR6- Tc1 cells were decreased in patients with acute COVID-19 and COVID-19 convalescents, whereas Tc2 and Tc17 levels were increased compared to HC. Finally, IL-27 negatively correlated with the CCR6+ cells in acute COVID-19 patients. CONCLUSIONS We described an abnormal CD8+ T cell profile in COVID-19 convalescents, which resulted in lower frequencies of effector subsets (TEMRA and Tc1), higher senescent state (upregulated CD57 on 'naïve' and memory cells), and higher frequencies of CD8+ T cell subsets expressing lung tissue and mucosal tissue homing molecules (Tc2, Tc17, and Tc17.1). Thus, our data indicate that COVID-19 can impact the long-term CD8+ T cell immune response.
Collapse
Affiliation(s)
- Igor V. Kudryavtsev
- Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Natalia A. Arsentieva
- Laboratory of Immunology, Saint Petersburg Pasteur Institute, Mira 14, 197101 Saint Petersburg, Russia
| | - Zoia R. Korobova
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
- Laboratory of Immunology, Saint Petersburg Pasteur Institute, Mira 14, 197101 Saint Petersburg, Russia
| | - Dmitry V. Isakov
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Artem A. Rubinstein
- Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
| | - Oleg K. Batsunov
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
- Laboratory of Immunology, Saint Petersburg Pasteur Institute, Mira 14, 197101 Saint Petersburg, Russia
| | - Irina V. Khamitova
- Laboratory of Immunology, Saint Petersburg Pasteur Institute, Mira 14, 197101 Saint Petersburg, Russia
| | - Raisa N. Kuznetsova
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
- Laboratory of Immunology, Saint Petersburg Pasteur Institute, Mira 14, 197101 Saint Petersburg, Russia
| | - Tikhon V. Savin
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
- Laboratory of Immunology, Saint Petersburg Pasteur Institute, Mira 14, 197101 Saint Petersburg, Russia
| | - Tatiana V. Akisheva
- Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
| | - Oksana V. Stanevich
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
- Smorodintsev Research Institute of Influenza, Prof. Popov St. 15/17, 197376 Saint Petersburg, Russia
| | - Aleksandra A. Lebedeva
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Evgeny A. Vorobyov
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Snejana V. Vorobyova
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Alexander N. Kulikov
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Maria A. Sharapova
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Dmitrii E. Pevtsov
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Areg A. Totolian
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
- Laboratory of Immunology, Saint Petersburg Pasteur Institute, Mira 14, 197101 Saint Petersburg, Russia
| |
Collapse
|
27
|
Single-cell RNA sequencing depicts the local cell landscape in thyroid-associated ophthalmopathy. Cell Rep Med 2022; 3:100699. [PMID: 35896115 PMCID: PMC9418739 DOI: 10.1016/j.xcrm.2022.100699] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/18/2022] [Accepted: 07/08/2022] [Indexed: 12/03/2022]
Abstract
There is a specific reactivity and characteristic remodeling of the periocular tissue in thyroid-associated ophthalmopathy (TAO). However, local cell changes responsible for these pathological processes have not been sufficiently identified. Here, single-cell RNA sequencing is performed to characterize the transcriptional changes of cellular components in the orbital connective tissue in individuals with TAO. Our study shows that lipofibroblasts with RASD1 expression are highly involved in inflammation and adipogenesis during TAO. ACKR1+ endothelial cells and adipose tissue macrophages may engage in TAO pathogenesis. We find CD8+CD57+ cytotoxic T lymphocytes with the terminal differentiation phenotype to be another source of interferon-γ, a molecule actively engaging in TAO pathogenesis. Cell-cell communication analysis reveals increased activity of CXCL8/ACKR1 and TNFSF4/TNFRSF4 interactions in TAO. This study provides a comprehensive local cell landscape of TAO and may be valuable for future therapy investigation. A local transcriptional landscape of orbital connective tissue in TAO is developed RASD1-expressing lipofibroblasts are highly involved in adipogenesis and inflammation ACKR1+ endothelial cells contribute to inflammatory cell infiltration in TAO Adipose tissue macrophages engage in lipid metabolism and inflammatory response in TAO
Collapse
|
28
|
Aviles-Padilla K, Angelo LS, Fan D, Paust S. CXCR6 + and NKG2C + Natural Killer Cells Are Distinct With Unique Phenotypic and Functional Attributes Following Bone Marrow Transplantation. Front Immunol 2022; 13:886835. [PMID: 35844621 PMCID: PMC9277058 DOI: 10.3389/fimmu.2022.886835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/03/2022] [Indexed: 01/07/2023] Open
Abstract
Reactivation of human cytomegalovirus (HCMV) is a life-threatening complication in transplant patients. Natural Killer (NK) cells are the first lymphocyte lineage to reconstitute following an allogeneic hematopoietic stem cell transplant (HSCT). Amongst them, NK cell Group 2 isoform C/Killer cell lectin-like receptor subfamily C, member 2 (NKG2C)-expressing NK cells contribute significantly to patient protection upon HCMV reactivation. NKG2C+ NK cells are capable of immunological memory, albeit NK cell memory is not restricted to them. Hepatic C-X-C Motif Chemokine Receptor 6 (CXCR6)-expressing NK cells also mediate memory responses in mice and humans. Small numbers of them circulate and can thus be studied in peripheral blood samples. We hypothesize that NKG2C+ and CXCR6+ NK cell subsets are distinct. To test our hypothesis, we used multi-parametric flow cytometry to determine the phenotypes and effector functions of CD56bright vs. CD56dim and NKG2C+ vs. CXCR6+ human NK cell subsets in the peripheral blood (PB) of pediatric transplant recipients monthly while monitoring patients for HCMV reactivation. Interestingly, we did not find any NKG2C+CXCR6+ NK cells in the transplant recipients' peripheral blood, suggesting that NKG2C+ and CXCR6+ NK cells are distinct. Also, NKG2C-CXCR6- NK cells, rather than NKG2C+ NK cells, made up most NK cells post-transplant, even in transplant recipients with HCMV viremia. In contrast to NKG2C+ NK cells, CXCR6+ NK cells appeared phenotypically less differentiated but were highly proliferative and produced IFN-γ and TNF α . Our findings contribute to our understanding of post-transplant NK cell development and its implications for human health.
Collapse
Affiliation(s)
- Kevin Aviles-Padilla
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States
| | - Laura S. Angelo
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States
| | - Dwight Fan
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States,The Developing Investigative Scholar’s Program (DISP), Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital and Rice University, Houston, TX, United States
| | - Silke Paust
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States,The Developing Investigative Scholar’s Program (DISP), Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital and Rice University, Houston, TX, United States,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States,*Correspondence: Silke Paust,
| |
Collapse
|
29
|
The use of immunotherapy in older patients with advanced non-small cell lung cancer. Cancer Treat Rev 2022; 106:102394. [DOI: 10.1016/j.ctrv.2022.102394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 12/17/2022]
|
30
|
Bethke M, Varga G, Weinhage T, Sabharwal H, Mellgren K, Randau G, Rolfing M, Wittkowski H, Foell D, Michgehl U, Burkhardt B. Patient parameters and response after administration of rituximab in pediatric mature B-cell non-Hodgkin lymphoma. Pediatr Blood Cancer 2022; 69:e29514. [PMID: 34939314 DOI: 10.1002/pbc.29514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/25/2021] [Accepted: 11/20/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND Mature aggressive B-cell lymphomas are heterogenous malignancies that make up more than half of all diagnosed non-Hodgkin lymphoma in children and adolescents. The overall survival rate increased over the last decades to 80%-90% due to fine tuning of polychemotherapy. However, new therapeutic implications are needed to further increase the overall survival. Current clinical trials analyze the therapeutic effect of rituximab in pediatric patients, while the mechanism of action in vivo is still not fully understood. METHODS Effector molecules important for tumor defense were analyzed before and at day 5 after rituximab treatment via flow cytometry. Serum rituximab levels were measured with an ELISA. RESULTS We evaluated patient parameters that may affect treatment response in relation to rituximab administration and serum rituximab levels. We indeed found a reduction of Fcγ receptor (FcγR) II levels after rituximab treatment in monocyte subtypes, whereas FcγRI expression was significantly increased. Serum levels of proinflammatory marker proteins S100A8/A9 and S100A12 significantly decreased after treatment to normal levels from an overall proinflammatory state before treatment. CD57, perforin, and granzyme B expression decreased after treatment, comprising a less cytolytic natural killer (NK) cell population. CONCLUSION The highlighted effects of rituximab treatment on patient's immune response help in understanding the biology behind tumor defense mechanisms and effector function. After subsequent studies, these novel insights might be translated into patient care and could contribute to improve treatment of pediatric patients with mature aggressive B-cell lymphoma.
Collapse
Affiliation(s)
- Maria Bethke
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Münster, Germany
| | - Georg Varga
- Department of Pediatric Rheumatology and Immunology, University Hospital Muenster, Münster, Germany
| | - Toni Weinhage
- Department of Pediatric Rheumatology and Immunology, University Hospital Muenster, Münster, Germany
| | - Harshana Sabharwal
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Münster, Germany
| | - Karin Mellgren
- Department of Pediatric Oncology and Hematology, Sahlgrenska University Hospital, The Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Gerrit Randau
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Münster, Germany
| | - Meike Rolfing
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Münster, Germany
| | - Helmut Wittkowski
- Department of Pediatric Rheumatology and Immunology, University Hospital Muenster, Münster, Germany
| | - Dirk Foell
- Department of Pediatric Rheumatology and Immunology, University Hospital Muenster, Münster, Germany
| | - Ulf Michgehl
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Münster, Germany
| | - Birgit Burkhardt
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Münster, Germany
| |
Collapse
|
31
|
CD8 + T Cell Senescence: Lights and Shadows in Viral Infections, Autoimmune Disorders and Cancer. Int J Mol Sci 2022; 23:ijms23063374. [PMID: 35328795 PMCID: PMC8955595 DOI: 10.3390/ijms23063374] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
CD8+ T lymphocytes are a heterogeneous class of cells that play a crucial role in the adaptive immune response against pathogens and cancer. During their lifetime, they acquire cytotoxic functions to ensure the clearance of infected or transformed cells and, in addition, they turn into memory lymphocytes, thus providing a long-term protection. During ageing, the thymic involution causes a reduction of circulating T cells and an enrichment of memory cells, partially explaining the lowering of the response towards novel antigens with implications in vaccine efficacy. Moreover, the persistent stimulation by several antigens throughout life favors the switching of CD8+ T cells towards a senescent phenotype contributing to a low-grade inflammation that is a major component of several ageing-related diseases. In genetically predisposed young people, an immunological stress caused by viral infections (e.g., HIV, CMV, SARS-CoV-2), autoimmune disorders or tumor microenvironment (TME) could mimic the ageing status with the consequent acceleration of T cell senescence. This, in turn, exacerbates the inflamed conditions with dramatic effects on the clinical progression of the disease. A better characterization of the phenotype as well as the functions of senescent CD8+ T cells can be pivotal to prevent age-related diseases, to improve vaccine strategies and, possibly, immunotherapies in autoimmune diseases and cancer.
Collapse
|
32
|
Lyu N, Yi JZ, Zhao M. Immunotherapy in older patients with hepatocellular carcinoma. Eur J Cancer 2021; 162:76-98. [PMID: 34954439 DOI: 10.1016/j.ejca.2021.11.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/31/2021] [Accepted: 11/21/2021] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of cancer globally and is currently the third leading cause of cancer-related deaths. Recently, immunotherapy using immune checkpoint inhibitors (ICIs) has been shown with encouraging anticancer activity and safety in clinical trials. To reverse the phenomenon of tumours evading immune response, ICIs can be used to stimulate the natural antitumour potential of cancer cells by blocking the relevant checkpoints to activate T cells. However, the components and functions of the immune system may undergo a series of changes with ageing, known as 'immunosenescence,' potentially affecting the antitumour effect and safety of immunotherapy. In the current phase III clinical trials of ICIs including nivolumab, pembrolizumab and atezolizumab, the proportion of patients with HCC older than 65 years in CheckMate 459, KEYNOTE-240 and IMbrave150 is 51%, 58% and 50%, respectively, which is less than 70%-73% of epidemiological investigation. Therefore, the elderly population recruited in clinical trials may not accurately represent the real-world elderly patients with HCC, which affects the extrapolation of the efficacy and safety profile obtained in clinical trials to the elderly population in the real world. This review provides the latest advances in ICIs immuno-treatment available for HCC and relevant information about their therapeutic effects and safety on elderly patients. We discuss the benefits of ICIs for older HCC patients, and relevant recommendations about conducting further clinical trials are proposed for more complete answers to this clinical issue.
Collapse
Affiliation(s)
- Ning Lyu
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jun-Zhe Yi
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ming Zhao
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
33
|
Anghileri E, Patanè M, Di Ianni N, Sambruni I, Maffezzini M, Milani M, Maddaloni L, Pollo B, Eoli M, Pellegatta S. Deciphering the Labyrinthine System of the Immune Microenvironment in Recurrent Glioblastoma: Recent Original Advances and Lessons from Clinical Immunotherapeutic Approaches. Cancers (Basel) 2021; 13:6156. [PMID: 34944776 PMCID: PMC8699787 DOI: 10.3390/cancers13246156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 01/15/2023] Open
Abstract
The interpretation of the presence and function of immune infiltration in glioblastoma (GBM) is still debated. Over the years, GBM has been considered a cold tumor that is less infiltrated by effector cells and characterized by a high proportion of immunosuppressive innate immune cells, including GBM-associated microglia/macrophages (GAMs). In this context, the failure of checkpoint inhibitors, particularly in recurrent GBM (rGBM), caused us to look beyond the clinical results and consider the point of view of immune cells. The tumor microenvironment in rGBM can be particularly hostile, even when exposed to standard immunomodulatory therapies, and tumor-infiltrating lymphocytes (TILs), when present, are either dysfunctional or terminally exhausted. However, after checkpoint blockade therapy, it was possible to observe specific recruitment of adaptive immune cells and an efficient systemic immune response. In this review article, we attempt to address current knowledge regarding the tumor and immune microenvironment in rGBM. Furthermore, immunosuppression induced by GAMs and TIL dysfunction was revisited to account for genetic defects that can determine resistance to therapies and manipulate the immune microenvironment upon recurrence. Accordingly, we reevaluated the microenvironment of some of our rGBM patients treated with dendritic cell immunotherapy, with the goal of identifying predictive immune indicators of better treatment response.
Collapse
Affiliation(s)
- Elena Anghileri
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.A.); (N.D.I.); (I.S.); (M.M.); (M.M.); (L.M.); (M.E.)
| | - Monica Patanè
- Unit of Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (M.P.); (B.P.)
| | - Natalia Di Ianni
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.A.); (N.D.I.); (I.S.); (M.M.); (M.M.); (L.M.); (M.E.)
- Unit of Immunotherapy of Brain Tumors, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133 Milan, Italy
| | - Irene Sambruni
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.A.); (N.D.I.); (I.S.); (M.M.); (M.M.); (L.M.); (M.E.)
- Unit of Immunotherapy of Brain Tumors, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133 Milan, Italy
| | - Martina Maffezzini
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.A.); (N.D.I.); (I.S.); (M.M.); (M.M.); (L.M.); (M.E.)
- Unit of Immunotherapy of Brain Tumors, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133 Milan, Italy
| | - Micaela Milani
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.A.); (N.D.I.); (I.S.); (M.M.); (M.M.); (L.M.); (M.E.)
- Unit of Immunotherapy of Brain Tumors, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133 Milan, Italy
| | - Luisa Maddaloni
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.A.); (N.D.I.); (I.S.); (M.M.); (M.M.); (L.M.); (M.E.)
| | - Bianca Pollo
- Unit of Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (M.P.); (B.P.)
| | - Marica Eoli
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.A.); (N.D.I.); (I.S.); (M.M.); (M.M.); (L.M.); (M.E.)
| | - Serena Pellegatta
- Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.A.); (N.D.I.); (I.S.); (M.M.); (M.M.); (L.M.); (M.E.)
- Unit of Immunotherapy of Brain Tumors, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133 Milan, Italy
| |
Collapse
|
34
|
Rouhani SJ, Trujillo JA, Pyzer AR, Yu J, Fessler J, Cabanov A, Higgs EF, Cron KR, Zha Y, Lu Y, Bloodworth JC, Abasiyanik MF, Okrah S, Flood BA, Hatogai K, Leung MY, Pezeshk A, Kozloff L, Reschke R, Strohbehn GW, Chervin CS, Kumar M, Schrantz S, Madariaga ML, Beavis KG, Yeo KTJ, Sweis RF, Segal J, Tay S, Izumchenko E, Mueller J, Chen LS, Gajewski TF. Severe COVID-19 infection is associated with aberrant cytokine production by infected lung epithelial cells rather than by systemic immune dysfunction. RESEARCH SQUARE 2021:rs.3.rs-1083825. [PMID: 34845442 PMCID: PMC8629200 DOI: 10.21203/rs.3.rs-1083825/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mechanisms explaining progression to severe COVID-19 remain poorly understood. It has been proposed that immune system dysregulation/over-stimulation may be implicated, but it is not clear how such processes would lead to respiratory failure. We performed comprehensive multiparameter immune monitoring in a tightly controlled cohort of 128 COVID-19 patients, and used the ratio of oxygen saturation to fraction of inspired oxygen (SpO2 / FiO2) as a physiologic measure of disease severity. Machine learning algorithms integrating 139 parameters identified IL-6 and CCL2 as two factors predictive of severe disease, consistent with the therapeutic benefit observed with anti-IL6-R antibody treatment. However, transcripts encoding these cytokines were not detected among circulating immune cells. Rather, in situ analysis of lung specimens using RNAscope and immunofluorescent staining revealed that elevated IL-6 and CCL2 were dominantly produced by infected lung type II pneumocytes. Severe disease was not associated with higher viral load, deficient antibody responses, or dysfunctional T cell responses. These results refine our understanding of severe COVID-19 pathophysiology, indicating that aberrant cytokine production by infected lung epithelial cells is a major driver of immunopathology. We propose that these factors cause local immune regulation towards the benefit of the virus.
Collapse
Affiliation(s)
- Sherin J Rouhani
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Jonathan A Trujillo
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Athalia R Pyzer
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Jovian Yu
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Jessica Fessler
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Alexandra Cabanov
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Emily F Higgs
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Kyle R Cron
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Yuanyuan Zha
- The Human Immunological Monitoring Facility, University of Chicago, Chicago, IL 60637
| | - Yihao Lu
- Department of Public Health Sciences, The University of Chicago, Chicago, IL 60637
| | - Jeffrey C Bloodworth
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | | | - Susan Okrah
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Blake A Flood
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Ken Hatogai
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Michael Yk Leung
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Apameh Pezeshk
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Lara Kozloff
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Robin Reschke
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Garth W Strohbehn
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Carolina Soto Chervin
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Madan Kumar
- Department of Pediatrics, Section of Infectious Diseases, University of Chicago
| | - Stephen Schrantz
- Department of Medicine, Section of Infectious Diseases, University of Chicago
| | | | - Kathleen G Beavis
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Kiang-Teck J Yeo
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Randy F Sweis
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Jeremy Segal
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Jeffrey Mueller
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| | - Lin S Chen
- Department of Public Health Sciences, The University of Chicago, Chicago, IL 60637
| | - Thomas F Gajewski
- Department of Pathology, University of Chicago, 5841 S. Maryland Ave, MC2115, Chicago, IL
| |
Collapse
|
35
|
Abstract
Cellular immunity may be involved in organ damage and rehabilitation in patients with coronavirus disease 2019 (COVID-19). We aimed to delineate immunological features of COVID-19 patients with pulmonary sequelae (PS) 1 year after discharge. Fifty COVID-19 survivors were recruited and classified according to radiological characteristics, including 24 patients with PS and 26 patients without PS. Phenotypic and functional characteristics of immune cells were evaluated by multiparametric flow cytometry. Patients with PS had an increased proportion of natural killer (NK) cells and a lower percentage of B cells than patients without PS. Phenotypic and functional features of T cells in patients with PS were predominated by the accumulation of CD4-positive (CD4+) T cells secreting interleukin 17A (IL-17A), short-lived effector-like CD8+ T cells (CD27-negative [CD27−] CD62L−), and senescent T cells with excessive secretion of granzyme B/perforin/interferon gamma (IFN-γ). NK cells were characterized by the excessive secretion of granzyme B and perforin and the downregulation of NKP30 and NKP46; highly activated NKT and γδ T cells exhibited NKP30 and TIM-3 upregulation and NKB1 downregulation in patients with PS. However, immunosuppressive cells were comparable between the two groups. The interrelationship of immune cells in COVID-19 was intrinsically identified, whereby T cells secreting IL-2, IL-4, and IL-17A were enriched among CD28+ and CD57− cells and cells secreting perforin/granzyme B/IFN-γ/tumor necrosis factor alpha (TNF-α)-expressed markers of terminal differentiation. CD57+ NK cells, CD4+Perforin+ T cells, and CD8+ CD27+ CD62L+ T cells were identified as the independent predictors for residual lesions. Overall, our findings unveil the profound imbalance of immune landscape that may correlate with organ damage and rehabilitation in COVID-19.
Collapse
|
36
|
Lee SW, Choi HY, Lee GW, Kim T, Cho HJ, Oh IJ, Song SY, Yang DH, Cho JH. CD8 + TILs in NSCLC differentiate into TEMRA via a bifurcated trajectory: deciphering immunogenicity of tumor antigens. J Immunother Cancer 2021; 9:jitc-2021-002709. [PMID: 34593620 PMCID: PMC8487216 DOI: 10.1136/jitc-2021-002709] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2021] [Indexed: 01/21/2023] Open
Abstract
Background CD8+ tumor-infiltrating lymphocytes (TILs) comprise phenotypically and functionally heterogeneous subpopulations. Of these, effector memory CD45RA re-expressing CD8+ T cells (Temra) have been discovered and characterized as the most terminally differentiated subset. However, their exact ontogeny and physiological importance in association with tumor progression remain poorly understood. Methods We analyzed primary tumors and peripheral blood samples from 26 patients with non-small cell lung cancer and analyzed their phenotypes and functional characteristics using flow cytometry, RNA-sequencing, and bioinformatics. Results We found that tumor-infiltrating Temra (tilTemra) cells largely differ from peripheral blood Temra (pTemra), with distinct transcriptomes and functional properties. Notably, although majority of the pTemra was CD27−CD28− double-negative (DN), a large fraction of tilTemra population was CD27+CD28+ double-positive (DP), a characteristic of early-stage, less differentiated effector cells. Trajectory analysis revealed that CD8+ TILs undergo a divergent sequence of events for differentiation into either DP or DN tilTemra. Such a differentiation toward DP tilTemra relied on persistent expression of CD27 and CD28 and was associated with weak T cell receptor engagement. Thus, a higher proportion of DP Temra was correlated with lower immunogenicity of tumor antigens and consequently lower accumulation of CD8+ TILs. Conclusions These data suggest a complex interplay between CD8+ T cells and tumors and define DP Temra as a unique subset of tumor-specific CD8+ TILs that are produced in patients with relatively low immunogenic cancer types, predicting immunogenicity of tumor antigens and CD8+ TIL counts, a reliable biomarker for successful cancer immunotherapy.
Collapse
Affiliation(s)
- Sung-Woo Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongsangbukdo, Republic of Korea
| | - He Yun Choi
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun Hospital, Hwasunup, Jeollanamdo, Republic of Korea
| | - Gil-Woo Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongsangbukdo, Republic of Korea
| | - Therasa Kim
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun Hospital, Hwasunup, Jeollanamdo, Republic of Korea
| | - Hyun-Ju Cho
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun Hospital, Hwasunup, Jeollanamdo, Republic of Korea
| | - In-Jae Oh
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun Hospital, Hwasunup, Jeollanamdo, Republic of Korea
| | - Sang Yun Song
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Medical School, Hwasun Hospital, Hwasunup, Jeollanamdo, Republic of Korea
| | - Deok Hwan Yang
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun Hospital, Hwasunup, Jeollanamdo, Republic of Korea
| | - Jae-Ho Cho
- Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasunup, Jeollanamdo, Republic of Korea .,Medical Research Center for Combinatorial Tumor Immunotherapy, Chonnam National University Medical School, Hwasunup, Jeollanamdo, Republic of Korea.,Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasunup, Jeollanamdo, Republic of Korea.,BioMedical Sciences Graduate Program, Chonnam National University Medical School, Hwasunup, Jeollanamdo, Republic of Korea
| |
Collapse
|
37
|
Al-Omar MS, Jabir M, Karsh E, Kadhim R, Sulaiman GM, Taqi ZJ, Khashan KS, Mohammed HA, Khan RA, Mohammed SAA. Gold Nanoparticles and Graphene Oxide Flakes Enhance Cancer Cells' Phagocytosis through Granzyme-Perforin-Dependent Biomechanism. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1382. [PMID: 34073808 PMCID: PMC8225074 DOI: 10.3390/nano11061382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/20/2022]
Abstract
The study aimed to investigate the roles of gold nanoparticles (GNPs) and graphene oxide flakes (GOFs) as phagocytosis enhancers against cancer cells. The nanomaterials were characterized through SEM and UV-VIS absorptions. The GNPs and GOFs increased the macrophages' phagocytosis ability in engulfing, thereby annihilating the cancer cells in both in vitro and in vivo conditions. The GNPs and GOFs augmented serine protease class apoptotic protein, granzyme, passing through the aquaporin class protein, perforin, with mediated delivery through the cell membrane site for the programmed, calibrated, and conditioned cancer cells killing. Additionally, protease inhibitor 3,4-dichloroisocoumarin (DCI) significantly reduced granzyme and perforin activities of macrophages. The results demonstrated that the GOFs and GNPs increased the activation of phagocytic cells as a promising strategy for controlling cancer cells by augmenting the cell mortality through the granzyme-perforin-dependent mechanism.
Collapse
Affiliation(s)
- Mohsen S. Al-Omar
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia; (M.S.A.-O.); (H.A.M.)
- Medicinal Chemistry and Pharmacognosy Department, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Majid Jabir
- Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq; (E.K.); (R.K.); (Z.J.T.); (K.S.K.)
| | - Esraa Karsh
- Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq; (E.K.); (R.K.); (Z.J.T.); (K.S.K.)
| | - Rua Kadhim
- Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq; (E.K.); (R.K.); (Z.J.T.); (K.S.K.)
| | - Ghassan M. Sulaiman
- Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq; (E.K.); (R.K.); (Z.J.T.); (K.S.K.)
| | - Zainab J. Taqi
- Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq; (E.K.); (R.K.); (Z.J.T.); (K.S.K.)
| | - Khawla S. Khashan
- Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq; (E.K.); (R.K.); (Z.J.T.); (K.S.K.)
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia; (M.S.A.-O.); (H.A.M.)
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Riaz A. Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia; (M.S.A.-O.); (H.A.M.)
| | - Salman A. A. Mohammed
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| |
Collapse
|
38
|
Inverse relationship between oligoclonal expanded CD69- TTE and CD69+ TTE cells in bone marrow of multiple myeloma patients. Blood Adv 2021; 4:4593-4604. [PMID: 32986791 DOI: 10.1182/bloodadvances.2020002237] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
CD8+CD57+ terminal effector T (TTE) cells are a component of marrow-infiltrating lymphocytes and may contribute to the altered immune responses in multiple myeloma (MM) patients. We analyzed TTE cells in the bone marrow (BM) and peripheral blood (PB) of age-matched controls and patients with monoclonal gammopathy of undetermined significance (MGUS), smoldering MM (SMM), and newly diagnosed (ND) MM using flow cytometry, mass cytometry, and FlowSOM clustering. TTE cells are heterogeneous in all subjects, with BM containing both CD69- and CD69+ subsets, while only CD69- cells are found in PB. Within the BM-TTE compartment, CD69- and CD69+ cells are found in comparable proportions in controls, while CD69- cells are dominant in MGUS and SMM and predominantly either CD69- or CD69+ cells in NDMM. A positive relationship between CD69+TTE and CD69-TTE cells is observed in the BM of controls, lost in MGUS, and converted to an inverse relationship in NDMM. CD69-TTE cells include multiple oligoclonal expansions of T-cell receptor/Vβ families shared between BM and PB of NDMM. Oligoclonal expanded CD69-TTE cells from the PB include myeloma-reactive cells capable of killing autologous CD38hi plasma cells in vitro, involving degranulation and high expression of perforin and granzyme. In contrast to CD69-TTE cells, oligoclonal expansions are not evident within CD69+TTE cells, which possess low perforin and granzyme expression and high inhibitory checkpoint expression and resemble T resident memory cells. Both CD69-TTE and CD69+TTE cells from the BM of NDMM produce large amounts of the inflammatory cytokines interferon-γ and tumor necrosis factor α. The balance between CD69- and CD69+ cells within the BM-TTE compartment may regulate immune responses in NDMM and contribute to the clinical heterogeneity of the disease.
Collapse
|
39
|
Mold JE, Modolo L, Hård J, Zamboni M, Larsson AJM, Stenudd M, Eriksson CJ, Durif G, Ståhl PL, Borgström E, Picelli S, Reinius B, Sandberg R, Réu P, Talavera-Lopez C, Andersson B, Blom K, Sandberg JK, Picard F, Michaëlsson J, Frisén J. Divergent clonal differentiation trajectories establish CD8 + memory T cell heterogeneity during acute viral infections in humans. Cell Rep 2021; 35:109174. [PMID: 34038736 DOI: 10.1016/j.celrep.2021.109174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 02/15/2021] [Accepted: 05/04/2021] [Indexed: 02/08/2023] Open
Abstract
The CD8+ T cell response to an antigen is composed of many T cell clones with unique T cell receptors, together forming a heterogeneous repertoire of effector and memory cells. How individual T cell clones contribute to this heterogeneity throughout immune responses remains largely unknown. In this study, we longitudinally track human CD8+ T cell clones expanding in response to yellow fever virus (YFV) vaccination at the single-cell level. We observed a drop in clonal diversity in blood from the acute to memory phase, suggesting that clonal selection shapes the circulating memory repertoire. Clones in the memory phase display biased differentiation trajectories along a gradient from stem cell to terminally differentiated effector memory fates. In secondary responses, YFV- and influenza-specific CD8+ T cell clones are poised to recapitulate skewed differentiation trajectories. Collectively, we show that the sum of distinct clonal phenotypes results in the multifaceted human T cell response to acute viral infections.
Collapse
Affiliation(s)
- Jeff E Mold
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Laurent Modolo
- LBBE, UMR CNRS 5558, Université Lyon 1, Villeurbanne, France LBMC UMR 5239 CNRS/ENS Lyon, Lyon, France
| | - Joanna Hård
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Margherita Zamboni
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Anton J M Larsson
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Moa Stenudd
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Carl-Johan Eriksson
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ghislain Durif
- LBBE, UMR CNRS 5558, Université Lyon 1, Villeurbanne, France LBMC UMR 5239 CNRS/ENS Lyon, Lyon, France
| | - Patrik L Ståhl
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Erik Borgström
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Simone Picelli
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Björn Reinius
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Pedro Réu
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Carlos Talavera-Lopez
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Kim Blom
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Franck Picard
- LBBE, UMR CNRS 5558, Université Lyon 1, Villeurbanne, France LBMC UMR 5239 CNRS/ENS Lyon, Lyon, France
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden.
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
40
|
CD45RB Status of CD8 + T Cell Memory Defines T Cell Receptor Affinity and Persistence. Cell Rep 2021; 30:1282-1291.e5. [PMID: 32023448 DOI: 10.1016/j.celrep.2020.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/18/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
The identity of CD45 isoforms on the T cell surface changes following the activation of naive T cells and impacts intracellular signaling. In this study, we find that the anti-viral memory CD8+ T pool is unexpectedly comprised of both CD45RBhi and CD45RBlo populations. Relative to CD45RBlo memory T cells, CD45RBhi memory T cells have lower affinity and display greater clonal diversity, as well as a persistent CD27hi phenotype. The CD45RBhi memory population displays a homeostatic survival advantage in vivo relative to CD45RBlo memory, and long-lived high-affinity cells that persisted long term convert from CD45RBlo to CD45RBhi. Human CD45RO+ memory is comprised of both CD45RBhi and CD45RBlo populations with distinct phenotypes, and antigen-specific memory to two viruses is predominantly CD45RBhi. These data demonstrate that CD45RB status is distinct from the conventional central/effector T cell memory classification and has potential utility for monitoring and characterizing pathogen-specific CD8+ T cell responses.
Collapse
|
41
|
Herda S, Heimann A, Obermayer B, Ciraolo E, Althoff S, Ruß J, Grunert C, Busse A, Bullinger L, Pezzutto A, Blankenstein T, Beule D, Na IK. Long-term in vitro expansion ensures increased yield of central memory T cells as perspective for manufacturing challenges. Int J Cancer 2021; 148:3097-3110. [PMID: 33600609 DOI: 10.1002/ijc.33523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 01/15/2021] [Accepted: 01/27/2021] [Indexed: 11/07/2022]
Abstract
Adoptive T cell therapy (ATT) has revolutionized the treatment of cancer patients. A sufficient number of functional T cells are indispensable for ATT efficacy; however, several ATT dropouts have been reported due to T cell expansion failure or lack of T cell persistence in vivo. With the aim of providing ATT also to those patients experiencing insufficient T cell manufacturing via standard protocol, we evaluated if minimally manipulative prolongation of in vitro expansion (long-term [LT] >3 weeks with IL-7 and IL-15 cytokines) could result in enhanced T cell yield with preserved T cell functionality. The extended expansion resulted in a 39-fold increase of murine CD8+ T central memory cells (Tcm). LT expanded CD8+ and CD4+ Tcm cells retained a gene expression profile related to Tcm and T memory stem cells (Tscm). In vivo transfer of LT expanded Tcm revealed persistence and antitumor capacity. We confirmed our in vitro findings on human T cells, on healthy donors and diffuse large B cell lymphoma patients, undergoing salvage therapy. Our study demonstrates the feasibility of an extended T cell expansion as a practicable alternative for patients with insufficient numbers of T cells after the standard manufacturing process thereby increasing ATT accessibility.
Collapse
Affiliation(s)
- Stefanie Herda
- Experimental and Clinical Research Center, Berlin, Germany
| | - Andreas Heimann
- Experimental and Clinical Research Center, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Benedikt Obermayer
- Core Unit Bioinformatics - CUBI, Berlin Institute of Health, Berlin, Germany
| | - Elisa Ciraolo
- Experimental and Clinical Research Center, Berlin, Germany
| | | | - Josefine Ruß
- Experimental and Clinical Research Center, Berlin, Germany
| | | | - Antonia Busse
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Antonio Pezzutto
- Berlin Institute of Health, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thomas Blankenstein
- Berlin Institute of Health, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Institute of Immunology, Charité, Campus Berlin Buch, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics - CUBI, Berlin Institute of Health, Berlin, Germany
| | - Il-Kang Na
- Experimental and Clinical Research Center, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
42
|
Leonardi AJ, Proenca RB. Akt-Fas to Quell Aberrant T Cell Differentiation and Apoptosis in Covid-19. Front Immunol 2020; 11:600405. [PMID: 33408715 PMCID: PMC7779612 DOI: 10.3389/fimmu.2020.600405] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/27/2020] [Indexed: 12/26/2022] Open
Abstract
Aberrant T cell differentiation and lymphopenia are hallmarks of severe COVID-19 disease. Since T cells must race to cull infected cells, they are quick to differentiate and achieve cytotoxic function. With this responsiveness, comes hastened apoptosis, due to a coupled mechanism of death and differentiation in both CD4+ and CD8+ lymphocytes via CD95 (Fas) and serine-threonine kinase (Akt). T cell lymphopenia in severe cases may represent cell death or peripheral migration. These facets depict SARS-Cov-2 as a lympho-manipulative pathogen; it distorts T cell function, numbers, and death, and creates a dysfunctional immune response. Whether preservation of T cells, prevention of their aberrant differentiation, and expansion of their population may alter disease course is unknown. Its investigation requires experimental interrogation of the linked differentiation and death pathway by agents known to uncouple T cell proliferation and differentiation in both CD4+ and CD8+ T cells.
Collapse
Affiliation(s)
- Anthony J. Leonardi
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Rui B. Proenca
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
43
|
Ahmed R, Miners KL, Lahoz-Beneytez J, Jones RE, Roger L, Baboonian C, Zhang Y, Wang ECY, Hellerstein MK, McCune JM, Baird DM, Price DA, Macallan DC, Asquith B, Ladell K. CD57 + Memory T Cells Proliferate In Vivo. Cell Rep 2020; 33:108501. [PMID: 33326780 PMCID: PMC7758161 DOI: 10.1016/j.celrep.2020.108501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/26/2020] [Accepted: 11/18/2020] [Indexed: 01/15/2023] Open
Abstract
A central paradigm in the field of lymphocyte biology asserts that replicatively senescent memory T cells express the carbohydrate epitope CD57. These cells nonetheless accumulate with age and expand numerically in response to persistent antigenic stimulation. Here, we use in vivo deuterium labeling and ex vivo analyses of telomere length, telomerase activity, and intracellular expression of the cell-cycle marker Ki67 to distinguish between two non-exclusive scenarios: (1) CD57+ memory T cells do not proliferate and instead arise via phenotypic transition from the CD57- memory T cell pool; and/or (2) CD57+ memory T cells self-renew via intracompartmental proliferation. Our results provide compelling evidence in favor of the latter scenario and further suggest in conjunction with mathematical modeling that self-renewal is by far the most abundant source of newly generated CD57+ memory T cells. Immunological memory therefore appears to be intrinsically sustainable among highly differentiated subsets of T cells that express CD57.
Collapse
Affiliation(s)
- Raya Ahmed
- Institute for Infection and Immunity, St. George's, University of London, London SW17 0RE, UK
| | - Kelly L Miners
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | | | - Rhiannon E Jones
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Laureline Roger
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Christina Baboonian
- Institute for Infection and Immunity, St. George's, University of London, London SW17 0RE, UK
| | - Yan Zhang
- Institute for Infection and Immunity, St. George's, University of London, London SW17 0RE, UK
| | - Eddie C Y Wang
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Marc K Hellerstein
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | - Joseph M McCune
- HIV Frontiers Program, Global Health Innovative Technology Solutions, Bill & Melinda Gates Foundation, Seattle, WA 98109, USA
| | - Duncan M Baird
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | - Derek C Macallan
- Institute for Infection and Immunity, St. George's, University of London, London SW17 0RE, UK; St George's University Hospitals NHS Foundation Trust, London SW17 0QT, UK.
| | - Becca Asquith
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK.
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; Neonatal Unit, Singleton Hospital, Swansea Bay University Health Board, Swansea SA2 8QA, UK.
| |
Collapse
|
44
|
Mei KC, Liao YP, Jiang J, Chiang M, Khazaieli M, Liu X, Wang X, Liu Q, Chang CH, Zhang X, Li J, Ji Y, Melano B, Telesca D, Xia T, Meng H, Nel AE. Liposomal Delivery of Mitoxantrone and a Cholesteryl Indoximod Prodrug Provides Effective Chemo-immunotherapy in Multiple Solid Tumors. ACS NANO 2020; 14:13343-13366. [PMID: 32940463 PMCID: PMC8023019 DOI: 10.1021/acsnano.0c05194] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We developed a custom-designed liposome carrier for codelivery of a potent immunogenic cell death (ICD) stimulus plus an inhibitor of the indoleamine 2,3-dioxygenase (IDO-1) pathway to establish a chemo-immunotherapy approach for solid tumors in syngeneic mice. The carrier was constructed by remote import of the anthraquinone chemotherapeutic agent, mitoxantrone (MTO), into the liposomes, which were further endowed with a cholesterol-conjugated indoximod (IND) prodrug in the lipid bilayer. For proof-of-principle testing, we used IV injection of the MTO/IND liposome in a CT26 colon cancer model to demonstrate the generation of a robust immune response, characterized by the appearance of ICD markers (CRT and HMGB-1) as well as evidence of cytotoxic cancer cell death, mediated by perforin and granzyme B. Noteworthy, the cytotoxic effects involved natural killer (NK) cell, which suggests a different type of ICD response. The immunotherapy response was significantly augmented by codelivery of the IND prodrug, which induced additional CRT expression, reduced number of Foxp3+ Treg, and increased perforin release, in addition to extending animal survival beyond the effect of an MTO-only liposome. The outcome reflects the improved pharmacokinetics of MTO delivery to the cancer site by the carrier. In light of the success in the CT26 model, we also assessed the platform efficacy in further breast cancer (EMT6 and 4T1) and renal cancer (RENCA) models, which overexpress IDO-1. Encapsulated MTO delivery was highly effective for inducing chemo-immunotherapy responses, with NK participation, in all tumor models. Moreover, the growth inhibitory effect of MTO was enhanced by IND codelivery in EMT6 and 4T1 tumors. All considered, our data support the use of encapsulated MTO delivery for chemo-immunotherapy, with the possibility to boost the immune response by codelivery of an IDO-1 pathway inhibitor.
Collapse
Affiliation(s)
- Kuo-Ching Mei
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Jinhong Jiang
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Michelle Chiang
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Mercedeh Khazaieli
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Xiangsheng Liu
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Xiang Wang
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Qi Liu
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Chong Hyun Chang
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Xiao Zhang
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
| | - Juan Li
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
| | - Ying Ji
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
| | - Brenda Melano
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Donatello Telesca
- Department of Biostatistics, University of California, Los Angeles, California, 90095, United States
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Huan Meng
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, 90095, United States
| | - Andre E. Nel
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, 90095, United States
| |
Collapse
|
45
|
Silva M, Martin KC, Mondal N, Sackstein R. sLeX Expression Delineates Distinct Functional Subsets of Human Blood Central and Effector Memory T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:1920-1932. [PMID: 32868410 PMCID: PMC10636707 DOI: 10.4049/jimmunol.1900679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
Sialyl Lewis X (sLeX) regulates T cell trafficking from the vasculature into skin and sites of inflammation, thereby playing a critical role in immunity. In healthy persons, only a small proportion of human blood T cells express sLeX, and their function is not fully defined. Using a combination of biochemical and functional studies, we find that human blood sLeX+CD4+T cells comprise a subpopulation expressing high levels of Th2 and Th17 cytokines, chemokine receptors CCR4 and CCR6, and the transcription factors GATA-3 and RORγT. Additionally, sLeX+CD4+T cells exclusively contain the regulatory T cell population (CD127lowCD25high and FOXP3+) and characteristically display immune-suppressive molecules, including the coinhibitor receptors PD-1 and CTLA-4. Among CD8+T cells, sLeX expression distinguishes a subset displaying low expression of cytotoxic effector molecules, perforin and granzyme β, with reduced degranulation and CD57 expression and, consistently, marginal cytolytic capacity after TCR engagement. Furthermore, sLeX+CD8+T cells present a pattern of features consistent with Th cell-like phenotype, including release of pertinent Tc2 cytokines and elevated expression of CD40L. Together, these findings reveal that sLeX display is associated with unique functional specialization of both CD4+ and CD8+T cells and indicate that circulating T cells that are primed to migrate to lesional sites at onset of inflammation are not poised for cytotoxic function.
Collapse
Affiliation(s)
- Mariana Silva
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115
- Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA 02115
| | - Kyle C Martin
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115
- Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA 02115
- Department of Translational Medicine and Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199; and
| | - Nandini Mondal
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115
- Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA 02115
| | - Robert Sackstein
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115;
- Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA 02115
- Department of Translational Medicine and Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199; and
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
46
|
Nguyen S, Sada-Japp A, Petrovas C, Betts MR. Jigsaw falling into place: A review and perspective of lymphoid tissue CD8+ T cells and control of HIV. Mol Immunol 2020; 124:42-50. [PMID: 32526556 PMCID: PMC7279761 DOI: 10.1016/j.molimm.2020.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/28/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
CD8+ T cells are crucial for immunity against viral infections, including HIV. Several characteristics of CD8+ T cells, such as polyfunctionality and cytotoxicity, have been correlated with effective control of HIV. However, most of these correlates have been established in the peripheral blood. Meanwhile, HIV primarily replicates in lymphoid tissues. Therefore, it is unclear which aspects of CD8+ T cell biology are shared and which are different between blood and lymphoid tissues in the context of HIV infection. In this review, we will recapitulate the latest advancements of our knowledge on lymphoid tissue CD8+ T cells during HIV infection and discuss the insights these advancements might provide for the development of a HIV cure.
Collapse
Affiliation(s)
- Son Nguyen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alberto Sada-Japp
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Constantinos Petrovas
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
47
|
Piatosa B, Wolska-Kuśnierz B, Tkaczyk K, Heropolitanska-Pliszka E, Grycuk U, Wakulinska A, Gregorek H. T Lymphocytes in Patients With Nijmegen Breakage Syndrome Demonstrate Features of Exhaustion and Senescence in Flow Cytometric Evaluation of Maturation Pathway. Front Immunol 2020; 11:1319. [PMID: 32695108 PMCID: PMC7338427 DOI: 10.3389/fimmu.2020.01319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/26/2020] [Indexed: 01/10/2023] Open
Abstract
Patients with Nijmegen Breakage Syndrome (NBS) suffer from recurrent infections due to humoral and cellular immune deficiency. Despite low number of T lymphocytes and their maturation defect, the clinical manifestations of cell-mediated deficiency are not as severe as in case of patients with other types of combined immune deficiencies and similar T cell lymphopenia. In this study, multicolor flow cytometry was used for evaluation of peripheral T lymphocyte maturation according to the currently known differentiation pathway, in 46 patients with genetically confirmed NBS and 46 sex and age-matched controls. Evaluation of differential expression of CD27, CD31, CD45RA, CD95, and CD197 revealed existence of cell subsets so far not described in NBS patients. Although recent thymic emigrants and naïve T lymphocyte cell populations were significantly lower, the generation of antigen-primed T cells was similar or even greater in NBS patients than in healthy controls. Moreover, the senescent and exhausted T cell populations defined by expression of CD57, KLRG1, and PD1 were more numerous than in healthy people. Although this hypothesis needs further investigations, such properties might be related to an increased susceptibility to malignancy and milder clinical course than expected in view of T cell lymphopenia in patients with NBS.
Collapse
Affiliation(s)
- Barbara Piatosa
- Histocompatibility Laboratory, Children's Memorial Health Institute, Warsaw, Poland
| | | | - Katarzyna Tkaczyk
- Histocompatibility Laboratory, Children's Memorial Health Institute, Warsaw, Poland
| | | | - Urszula Grycuk
- Histocompatibility Laboratory, Children's Memorial Health Institute, Warsaw, Poland
| | - Anna Wakulinska
- Department of Oncology, Children's Memorial Health Institute, Warsaw, Poland
| | - Hanna Gregorek
- Department of Microbiology and Clinical Immunology, Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
48
|
CD4 + and CD8 + cytotoxic T lymphocytes may induce mesenchymal cell apoptosis in IgG 4-related disease. J Allergy Clin Immunol 2020; 147:368-382. [PMID: 32485263 DOI: 10.1016/j.jaci.2020.05.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/08/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND IgG4-related disease (IgG4-RD) is an immune-mediated fibrotic disorder that has been linked to CD4+ cytotoxic T lymphocytes (CD4+CTLs). The effector phenotype of CD4+CTLs and the relevance of both CD8+ cytotoxic T lymphocytes (CD8+CTLs) and apoptotic cell death remain undefined in IgG4-RD. OBJECTIVE We sought to define CD4+CTL heterogeneity, characterize the CD8+CTL response in the blood and in lesions, and determine whether enhanced apoptosis may contribute to the pathogenesis of IgG4-RD. METHODS Blood analyses were undertaken using flow cytometry, cell sorting, transcriptomic analyses at the population and single-cell levels, and next-generation sequencing for the TCR repertoire. Tissues were interrogated using multicolor immunofluorescence. Results were correlated with clinical data. RESULTS We establish that among circulating CD4+CTLs in IgG4-RD, CD27loCD28loCD57hi cells are the dominant effector subset, exhibit marked clonal expansion, and differentially express genes relevant to cytotoxicity, activation, and enhanced metabolism. We also observed prominent infiltration of granzyme A-expressing CD8+CTLs in disease tissues and clonal expansion in the blood of effector/memory CD8+ T cells with an activated and cytotoxic phenotype. Tissue studies revealed an abundance of cells undergoing apoptotic cell death disproportionately involving nonimmune, nonendothelial cells of mesenchymal origin. Apoptotic cells showed significant upregulation of HLA-DR. CONCLUSIONS CD4+CTLs and CD8+CTLs may induce apoptotic cell death in tissues of patients with IgG4-RD with preferential targeting of nonendothelial, nonimmune cells of mesenchymal origin.
Collapse
|
49
|
Nelson DB, Mitchell KG, Wang J, Fujimoto J, Godoy M, Behrens C, Zheng X, Zhang J, Sepesi B, Vaporciyan AA, Hofstetter WL, Mehran RJ, Rice DC, Walsh GL, Swisher SG, Moran CA, Kalhor N, Weissferdt A, Wistuba II, Roth JA, Antonoff MB. Immune regulatory markers of lepidic-pattern adenocarcinomas presenting as ground glass opacities. J Thorac Dis 2020; 12:329-337. [PMID: 32274099 PMCID: PMC7139029 DOI: 10.21037/jtd.2020.01.42] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background The tumor immune microenvironment of lepidic-pattern adenocarcinoma remains poorly understood. In this study, we characterized tumor infiltrating lymphocytes (TILs) and percent PD-L1 expression among adenocarcinoma presenting as either radiographic ground glass opacities (GGOs) or solid lesions. Methods Pathologic specimens of patients with clinical stage I lung adenocarcinoma were analyzed using tissue microarray sectioning. The invasive portion of the tumor was selected for the tissue core. Lepidic growth pattern was confirmed among the GGO lesions using whole section analysis. Progression was defined as pN+ or subsequent recurrence. Results A total of 181 patients were identified, among whom 13 (7%) represented GGOs without clinical progression, 113 (62%) represented radiographic solid lesions that never progressed, and 55 (30%) represented radiographic solid lesions that ultimately did progress. CD57+ cell density, a marker for antigen-specific, oligoclonal T cells and NK cells, differed among the three cohorts, with the highest cell density observed within radiographically solid lesions without progression, and lower cell density both in the radiographic solid lesions that progressed and GGOs. Other TIL phenotypes were not statistically different between cohorts. Of substantial clinical interest, median percent PD-L1 positive cells within GGOs was 14, whereas that of radiographic solid lesions without progression was 22, and radiographic solid lesions that subsequently progressed was 27 (P=0.07). Conclusions Lepidic pattern adenocarcinoma presenting as GGOs and radiographic solid lesions show differential immune regulation. Further studies to investigate whether GGOs representing adenocarcinoma have varying susceptibility to immune checkpoint inhibitor therapy are warranted.
Collapse
Affiliation(s)
- David B Nelson
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kyle G Mitchell
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Deparment of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Myrna Godoy
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carmen Behrens
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaofeng Zheng
- Deparment of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boris Sepesi
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ara A Vaporciyan
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wayne L Hofstetter
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Reza J Mehran
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David C Rice
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Garrett L Walsh
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen G Swisher
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cesar A Moran
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neda Kalhor
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Annikka Weissferdt
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mara B Antonoff
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
50
|
Sablik KA, Jordanova ES, Pocorni N, Clahsen-van Groningen MC, Betjes MGH. Immune Cell Infiltrate in Chronic-Active Antibody-Mediated Rejection. Front Immunol 2020; 10:3106. [PMID: 32117198 PMCID: PMC7010725 DOI: 10.3389/fimmu.2019.03106] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Little is known about immune cell infiltrate type in the kidney allograft of patients with chronic-active antibody-mediated rejection (c-aABMR). Methods: In this study, multiplex immunofluorescent staining was performed on 20 cases of biopsy-proven c-aABMR. T-cell subsets (CD3, CD8, Foxp3, and granzyme B), macrophages (CD68 and CD163), B cells (CD20), and natural killer cells (CD57) were identified and counted in the glomeruli (cells/glomerulus) and the tubulointerstitial (TI) compartment [cells/high-power field (HPF)]. Results: In the glomerulus, T cells and macrophages were the dominant cell types with a mean of 5.5 CD3+ cells/glomerulus and 4 CD68+ cells/glomerulus. The majority of T cells was CD8+ (62%), and most macrophages were CD68+CD163+ (68%). The TI compartment showed a mean of 116 CD3+ cells/HPF, of which 54% were CD8+. Macrophage count was 21.5 cells/HPF with 39% CD68+CD163+. CD20+ cells were sporadically present in glomeruli, whereas B-cell aggregates in the TI compartment were frequently observed. Natural killer cells were rarely identified. Remarkably, increased numbers of CD3+FoxP3+ cells in the TI compartment were associated with decreased graft survival (p = 0.004). Conclusions: Renal allograft biopsies showing c-aABMR show a predominance of infiltrating CD8+ T cells, and increased numbers of interstitial FoxP3+ T cells are associated with inferior allograft survival.
Collapse
Affiliation(s)
- Kasia A Sablik
- Department of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, Netherlands
| | - Ekaterina S Jordanova
- Department of Gynecology, Center for Gynecologic Oncology, Amsterdam UMC, Amsterdam, Netherlands
| | - Noelle Pocorni
- Department of Gynecology, Center for Gynecologic Oncology, Amsterdam UMC, Amsterdam, Netherlands
| | | | - Michiel G H Betjes
- Department of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|