1
|
Wang J, Li J, Zhou L, Hou H, Zhang K. Regulation of epidermal barrier function and pathogenesis of psoriasis by serine protease inhibitors. Front Immunol 2024; 15:1498067. [PMID: 39737188 PMCID: PMC11683130 DOI: 10.3389/fimmu.2024.1498067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Serine protease inhibitors (Serpins) are a protein superfamily of protease inhibitors that are thought to play a role in the regulation of inflammation, immunity, tumorigenesis, coagulation, blood pressure and cancer metastasis. Serpins is enriched in the skin and play a vital role in modulating the epidermal barrier and maintaining skin homeostasis. Psoriasis is a chronic inflammatory immune-mediated skin disease. At present, most serpins focus on the pathogenesis of psoriasis vulgaris. Only a small number, such as the mutation of SerpinA1/A3/B3, are involved in the pathogenesis of GPP. SerpinA12 and SerpinG1 are significantly elevated in the serum of patients with psoriatic arthritis, but their specific mechanism of action in psoriatic arthritis has not been reported. Some Serpins, including SerpinA12, SerpinB2/B3/B7, play multiple roles in skin barrier function and pathogenesis of psoriasis. The decrease in the expression of SerpinA12, SerpinB7 deficiency and increase in expression of SerpinB3/4 in the skin can promote inflammation and poor differentiation of keratinocyte, with damaged skin barrier. Pso p27, derived from SerpinB3/B4, is an autoantigen that can enhance immune response in psoriasis. SerpinB2 plays a role in maintaining epidermal barrier integrity and inhibiting keratinocyte proliferation. Here we briefly introduce the structure, functional characteristics, expression and distribution of serpins in skin and focus on the regulation of serpins in the epidermal barrier function and the pathogenic role of serpins in psoriasis.
Collapse
Affiliation(s)
- Juanjuan Wang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
| | - Ling Zhou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
| | - Hui Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital, Taiyuan, China
| |
Collapse
|
2
|
Ignacio A, Shah K, Bernier-Latmani J, Köller Y, Coakley G, Moyat M, Hamelin R, Armand F, Wong NC, Ramay H, Thomson CA, Burkhard R, Wang H, Dufour A, Geuking MB, McDonald B, Petrova TV, Harris NL, McCoy KD. Small intestinal resident eosinophils maintain gut homeostasis following microbial colonization. Immunity 2022; 55:1250-1267.e12. [PMID: 35709757 DOI: 10.1016/j.immuni.2022.05.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/29/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022]
Abstract
The intestine harbors a large population of resident eosinophils, yet the function of intestinal eosinophils has not been explored. Flow cytometry and whole-mount imaging identified eosinophils residing in the lamina propria along the length of the intestine prior to postnatal microbial colonization. Microscopy, transcriptomic analysis, and mass spectrometry of intestinal tissue revealed villus blunting, altered extracellular matrix, decreased epithelial cell turnover, increased gastrointestinal motility, and decreased lipid absorption in eosinophil-deficient mice. Mechanistically, intestinal epithelial cells released IL-33 in a microbiota-dependent manner, which led to eosinophil activation. The colonization of germ-free mice demonstrated that eosinophil activation in response to microbes regulated villous size alterations, macrophage maturation, epithelial barrier integrity, and intestinal transit. Collectively, our findings demonstrate a critical role for eosinophils in facilitating the mutualistic interactions between the host and microbiota and provide a rationale for the functional significance of their early life recruitment in the small intestine.
Collapse
Affiliation(s)
- Aline Ignacio
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Kathleen Shah
- Global Health Institute, Swiss Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jeremiah Bernier-Latmani
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne (UNIL), Chemin des Boveresses 155, Epalinges, Switzerland
| | - Yasmin Köller
- Maurice Müller Laboratories, Department of Biomedical Research, Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
| | - Gillian Coakley
- Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, VIC, Australia
| | - Mati Moyat
- Global Health Institute, Swiss Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland; Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, VIC, Australia
| | - Romain Hamelin
- Proteomics Core Facility, Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland
| | - Florence Armand
- Proteomics Core Facility, Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland
| | - Nick C Wong
- Monash Bioinformatics Platform, Monash University, Clayton, VIC 3168, Australia
| | - Hena Ramay
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Carolyn A Thomson
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Regula Burkhard
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute of Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Haozhe Wang
- Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, VIC, Australia
| | - Antoine Dufour
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Markus B Geuking
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute of Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Braedon McDonald
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4A1, Canada
| | - Tatiana V Petrova
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne (UNIL), Chemin des Boveresses 155, Epalinges, Switzerland; Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology Lausanne, Route Cantonale, 1015 Lausanne, Switzerland
| | - Nicola L Harris
- Global Health Institute, Swiss Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland; Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, VIC, Australia.
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
3
|
Mortimer NT, Fischer ML, Waring AL, Kr P, Kacsoh BZ, Brantley SE, Keebaugh ES, Hill J, Lark C, Martin J, Bains P, Lee J, Vrailas-Mortimer AD, Schlenke TA. Extracellular matrix protein N-glycosylation mediates immune self-tolerance in Drosophila melanogaster. Proc Natl Acad Sci U S A 2021; 118:e2017460118. [PMID: 34544850 PMCID: PMC8488588 DOI: 10.1073/pnas.2017460118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 12/26/2022] Open
Abstract
In order to respond to infection, hosts must distinguish pathogens from their own tissues. This allows for the precise targeting of immune responses against pathogens and also ensures self-tolerance, the ability of the host to protect self tissues from immune damage. One way to maintain self-tolerance is to evolve a self signal and suppress any immune response directed at tissues that carry this signal. Here, we characterize the Drosophila tuSz1 mutant strain, which mounts an aberrant immune response against its own fat body. We demonstrate that this autoimmunity is the result of two mutations: 1) a mutation in the GCS1 gene that disrupts N-glycosylation of extracellular matrix proteins covering the fat body, and 2) a mutation in the Drosophila Janus Kinase ortholog that causes precocious activation of hemocytes. Our data indicate that N-glycans attached to extracellular matrix proteins serve as a self signal and that activated hemocytes attack tissues lacking this signal. The simplicity of this invertebrate self-recognition system and the ubiquity of its constituent parts suggests it may have functional homologs across animals.
Collapse
Affiliation(s)
- Nathan T Mortimer
- School of Biological Sciences, Illinois State University, Normal, IL 61790;
| | - Mary L Fischer
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | - Ashley L Waring
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | - Pooja Kr
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | - Balint Z Kacsoh
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Susanna E Brantley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | | | - Joshua Hill
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | - Chris Lark
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | - Julia Martin
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | - Pravleen Bains
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | - Jonathan Lee
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | | | - Todd A Schlenke
- Department of Entomology, University of Arizona, Tucson, AZ 85719
| |
Collapse
|
4
|
Valent P, Degenfeld-Schonburg L, Sadovnik I, Horny HP, Arock M, Simon HU, Reiter A, Bochner BS. Eosinophils and eosinophil-associated disorders: immunological, clinical, and molecular complexity. Semin Immunopathol 2021; 43:423-438. [PMID: 34052871 PMCID: PMC8164832 DOI: 10.1007/s00281-021-00863-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Eosinophils and their mediators play a crucial role in various reactive states such as bacterial and viral infections, chronic inflammatory disorders, and certain hematologic malignancies. Depending on the underlying pathology, molecular defect(s), and the cytokine- and mediator-cascades involved, peripheral blood and tissue hypereosinophilia (HE) may develop and may lead to organ dysfunction or even organ damage which usually leads to the diagnosis of a HE syndrome (HES). In some of these patients, the etiology and impact of HE remain unclear. These patients are diagnosed with idiopathic HE. In other patients, HES is diagnosed but the etiology remains unknown — these patients are classified as idiopathic HES. For patients with HES, early therapeutic application of agents reducing eosinophil counts is usually effective in avoiding irreversible organ damage. Therefore, it is important to systematically explore various diagnostic markers and to correctly identify the disease elicitors and etiology. Depending on the presence and type of underlying disease, HES are classified into primary (clonal) HES, reactive HES, and idiopathic HES. In most of these patients, effective therapies can be administered. The current article provides an overview of the pathogenesis of eosinophil-associated disorders, with special emphasis on the molecular, immunological, and clinical complexity of HE and HES. In addition, diagnostic criteria and the classification of eosinophil disorders are reviewed in light of new developments in the field.
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel, 18-20 1090, Vienna, Austria. .,Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria.
| | - Lina Degenfeld-Schonburg
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel, 18-20 1090, Vienna, Austria
| | - Irina Sadovnik
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel, 18-20 1090, Vienna, Austria.,Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig Maximilian University, Munich, Germany
| | - Michel Arock
- Laboratory of Hematology, Pitié-Salpêtrière Hospital, Paris, France
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland.,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia.,Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
5
|
Vaher H, Kivihall A, Runnel T, Raam L, Prans E, Maslovskaja J, Abram K, Kaldvee B, Mrowietz U, Weidinger S, Kingo K, Rebane A. SERPINB2 and miR-146a/b are coordinately regulated and act in the suppression of psoriasis-associated inflammatory responses in keratinocytes. Exp Dermatol 2019; 29:51-60. [PMID: 31630447 DOI: 10.1111/exd.14049] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/13/2019] [Accepted: 10/16/2019] [Indexed: 01/04/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease with numerous involved factors. miR-146a and miR-146b (miR-146a/b) are anti-inflammatory miRNAs that are increased in psoriatic skin. SERPINB2 has been shown to be upregulated in the inflammation and infections. Here we aimed to study the relationship between miR-146a/b and SERPINB2 and to delineate the role of SERPINB2 in association of plaque psoriasis. We report increased SERPINB2 expression in the skin of psoriasis patients, which was in a positive relationship with psoriasis severity and in a negative relationship with miR-146a/b in psoriatic lesions. In cultured keratinocytes, both cellular and secreted SERPINB2 levels were strongly induced in response to IFN-γ and TNF-α. Interestingly, SERPINB2 mRNA was downregulated by IL-17A and the combination of TNF-α and IL-17A at time points when miR-146a was increased. The predicted binding site for miR-146a/b in 3' untranslated region of SERPINB2 revealed no activity in luciferase assay, while siRNA silencing of miR-146a/b direct targets IRAK1 and CARD10 resulted in reduced expression of SERPINB2, suggesting that miR-146a/b indirectly control SERPINB2 expression in the skin. The siRNA silencing of SERPINB2 increased the expression of IL-8, CXCL5 and CCL5 and migration of neutrophils revealing its anti-inflammatory role in keratinocytes. Our data together suggest that SERPINB2 and miR-146a/b are part of disease-related network of molecules that are coordinately regulated and act in controlling the inflammatory responses in psoriatic skin.
Collapse
Affiliation(s)
- Helen Vaher
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Anet Kivihall
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Toomas Runnel
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Liisi Raam
- Department of Dermatology and Venereology, University of Tartu, Tartu, Estonia.,Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Ele Prans
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Julia Maslovskaja
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kristi Abram
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Bret Kaldvee
- Department of Dermatology and Venereology, University of Tartu, Tartu, Estonia.,Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Ulrich Mrowietz
- Department of Dermatology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Stephan Weidinger
- Department of Dermatology, Venerology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Külli Kingo
- Department of Dermatology and Venereology, University of Tartu, Tartu, Estonia.,Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Ana Rebane
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
6
|
Baos S, Calzada D, Cremades-Jimeno L, Sastre J, Picado C, Quiralte J, Florido F, Lahoz C, Cárdaba B. Nonallergic Asthma and Its Severity: Biomarkers for Its Discrimination in Peripheral Samples. Front Immunol 2018; 9:1416. [PMID: 29977241 PMCID: PMC6021512 DOI: 10.3389/fimmu.2018.01416] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/06/2018] [Indexed: 12/12/2022] Open
Abstract
Asthma is a complex and heterogeneous respiratory disorder characterized by chronic airway inflammation. It has generally been associated with allergic mechanisms related to type 2 airway inflammation. Nevertheless, between 10 and 33% of asthmatic individuals have nonallergic asthma (NA). Several targeted treatments are in clinical development for patients with Th2 immune response, but few biomarkers are been defined for low or non-Th2-mediated inflammation asthma. We have recently defined by gene expression a set of genes as potential biomarkers of NA, mainly associated with disease severity: IL10, MSR1, PHLDA1, SERPINB2, CHI3L1, IL8, and PI3. Here, we analyzed their protein expression and specificity using sera and isolated peripheral blood mononuclear cells (PBMCs). First, protein quantification was carried out using ELISA (in sera) or Western blot (proteins extracted from PBMCs by Trizol procedure), depending on the biomarker in 30 healthy controls (C) subjects and 30 NA patients. A receiver operating characteristic curve analysis was performed by using the R program to study the specificity and sensitivity of the candidate biomarkers at a gene- and protein expression level. Four kinds of comparisons were performed: total NA group vs C group, severe NA patients vs C, moderate-mild NA patients vs C, and severe NA patients vs moderate-mild NA patients. We found that all the single genes showed good sensitivity vs specificity for some phenotypic discrimination, with CHI3L1 and PI3 exhibiting the best results for C vs NA: CHI3L1 area under the curve (AUC) (CI 95%): 0.95 (0.84-1.00) and PI3 AUC: 0.99 (0.98-1.00); C vs severe NA: PI3 AUC: 1 (0.99-1.00); and C vs moderate-mild NA: CHI3L1 AUC: 1 (0.99-1.00) and PI3 AUC: 0.99 (0.96-1.00). However, the results for discriminating asthma disease and severity with protein expression were better when two or three biomarkers were combined. In conclusion, individual genes and combinations of proteins have been evaluated as reliable biomarkers for classifying NA subjects and their severity. These new panels could be good diagnostic tests.
Collapse
Affiliation(s)
- Selene Baos
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - David Calzada
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lucía Cremades-Jimeno
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Joaquín Sastre
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Allergy Department, Fundación Jiménez Díaz, Madrid, Spain
| | - César Picado
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Service of Pneumology, Hospital Clinic, Universitat de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Joaquín Quiralte
- Allergy Department, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Fernando Florido
- Allergy Department, Hospital Universitario San Cecilio, Granada, Spain
| | - Carlos Lahoz
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Blanca Cárdaba
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
7
|
Baos S, Calzada D, Cremades L, Sastre J, Quiralte J, Florido F, Lahoz C, Cárdaba B. Biomarkers associated with disease severity in allergic and nonallergic asthma. Mol Immunol 2016; 82:34-45. [PMID: 28011367 DOI: 10.1016/j.molimm.2016.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/02/2016] [Accepted: 12/08/2016] [Indexed: 12/29/2022]
Abstract
Asthma is a complex, chronic respiratory disease with a wide clinical spectrum. Use of high-throughput technologies has generated a great deal of data that require validation. In this work the objective was to validate molecular biomarkers related to asthmatic disease types in peripheral blood samples and define their relationship with disease severity. With this purpose, ninety-four previously described genes were analyzed by qRT-PCR in 30 healthy control (HC) subjects, 30 patients with nonallergic asthma (NA), 30 with allergic asthma (AA), and 14 patients with allergy (rhinitis) but without asthma (AR). RNA was extracted from peripheral blood mononuclear cells (PBMCs) using the TRIzol method. After data normalization, principal component analysis (PCA) was performed, and multiple approaches were used to test for differential gene expression. Relevance was defined by RQ (relative quantification) and corrected P value (<0.05). Protein levels of IL-8 and MSR1 were determined by ELISA and Western blot, respectively. PCA showed 4 gene expression clusters that correlated with the 4 clinical phenotypes. Analysis of differential gene expression between clinical groups and HCs revealed 26 statistically relevant genes in NA and 69 in AA. Protein interaction analysis revealed IL-8 to be a central protein. Average levels of IL-8 were higher in the asthma patients' sera (NA: 452.28±357.72, AA: 327.46±377pg/ml) than in HCs (286.09±179.10), but without reaching statistical significance. Nine genes, especially MSR1, were strongly associated with severe NA. In conclusion, several molecular biomarkers of asthma have been defined, some of which could be useful for the diagnosis or prognosis of disease severity.
Collapse
Affiliation(s)
- Selene Baos
- Immunology Department, IIS-Jiménez Díaz Foundation, UAM, Madrid, Spain; CIBERES, CIBER of Respiratory Diseases, Spain
| | - David Calzada
- Immunology Department, IIS-Jiménez Díaz Foundation, UAM, Madrid, Spain
| | - Lucía Cremades
- Immunology Department, IIS-Jiménez Díaz Foundation, UAM, Madrid, Spain
| | - Joaquín Sastre
- CIBERES, CIBER of Respiratory Diseases, Spain; Allergy Department, Jiménez Díaz Foundation, Madrid, Spain
| | - Joaquín Quiralte
- Allergy Department, Vírgen del Rocío University Hospital, Seville, Spain
| | - Fernando Florido
- Allergy Department, San Cecilio University Hospital, Granada, Spain
| | - Carlos Lahoz
- Immunology Department, IIS-Jiménez Díaz Foundation, UAM, Madrid, Spain; CIBERES, CIBER of Respiratory Diseases, Spain
| | - Blanca Cárdaba
- Immunology Department, IIS-Jiménez Díaz Foundation, UAM, Madrid, Spain; CIBERES, CIBER of Respiratory Diseases, Spain.
| |
Collapse
|
8
|
Li X, Luo JY, Zhang L, Yang YN, Xie X, Liu F, Chen BD, Ma YT. Variant of PAI-2 gene is associated with coronary artery disease and recurrent coronary event risk in Chinese Han population. Lipids Health Dis 2015; 14:148. [PMID: 26573152 PMCID: PMC4647573 DOI: 10.1186/s12944-015-0150-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/03/2015] [Indexed: 11/26/2022] Open
Abstract
Background Plasminogen activator inhibitor −2 (PAI-2) is an important molecular that plays a crucial role in vascular homeostasis and constitutes a critical response mechanism to cardiovascular injury, such as atherosclerosis, coronary artery disease (CAD). Methods The aim of the current study was to explore the association between the variants in PAI-2 gene and CAD and its prognoses. The three variants (rs8093048, rs9946657, rs9320032) of the PAI-2 gene were detected in 407 patients with CAD and 518 control subjects. All patients with CAD underwent one-year follow-up for major adverse cardiac events (MACE). Results The frequencies of the TT genotype and T allele of rs8093048 was significantly higher in CAD patients than that in control subjects (7.6 % vs.3.5 %, P = 0.003, 28.1 % vs.21.7 %, P < 0.001, respectively). Multifactor logistic regression analysis showed that the TT genotype of rs8093048 was a risk factor for CAD (OR = 1.455, 95 % CI: 1.069-1.980, P = 0.017). In addition, the follow-up data showed that CAD patients with rs8093048 TT genotype had significantly higher rate of refractory angina and MACE than those with CC or CT genotype (P = 0.032, P = 0.009, respectively). Cox regression analysis showed that rs8093048 TT genotype was the risk factor for the MACE (Hazard ratio = 5.672, 95 % CI = 1.992-16.152, P = 0.001). Conclusion We firstly found that the variant of PAI-2 gene was associated with CAD and recurrent coronary event risk in Chinese Han population, in Xinjiang.
Collapse
Affiliation(s)
- Xia Li
- Department of Geriatrics, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, China.
| | - Jun-Yi Luo
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China.
| | - Lei Zhang
- Department of Geriatrics, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, China.
| | - Yi-Ning Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China.
| | - Xiang Xie
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China.
| | - Fen Liu
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, Xinjiang, 830054, China.
| | - Bang-Dang Chen
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, Xinjiang, 830054, China.
| | - Yi-Tong Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China.
| |
Collapse
|
9
|
Keebaugh ES, Schlenke TA. Insights from natural host-parasite interactions: the Drosophila model. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:111-23. [PMID: 23764256 PMCID: PMC3808516 DOI: 10.1016/j.dci.2013.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 06/01/2013] [Accepted: 06/01/2013] [Indexed: 05/15/2023]
Abstract
Immune responses against opportunistic pathogens have been extensively studied in Drosophila, leading to a detailed map of the genetics behind innate immunity networks including the Toll, Imd, Jak-Stat, and JNK pathways. However, immune mechanisms of other organisms, such as plants, have primarily been investigated using natural pathogens. It was the use of natural pathogens in plant research that revealed the plant R-Avr system, a specialized immune response derived from antagonistic coevolution between plant immune proteins and their natural pathogens' virulence proteins. Thus, we recommend that researchers begin to use natural Drosophila pathogens to identify novel immune strategies that may have arisen through antagonistic coevolution with common natural pathogens. In this review, we address the benefits of using natural pathogens in research, describe the known natural pathogens of Drosophila, and discuss the future prospects for research on natural pathogens of Drosophila.
Collapse
Affiliation(s)
- Erin S Keebaugh
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, United States.
| | | |
Collapse
|
10
|
Secretion of SerpinB2 from endothelial cells activated with inflammatory stimuli. Exp Cell Res 2013; 319:1213-9. [DOI: 10.1016/j.yexcr.2013.02.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/18/2013] [Accepted: 02/21/2013] [Indexed: 11/19/2022]
|
11
|
Valent P, Gleich GJ, Reiter A, Roufosse F, Weller PF, Hellmann A, Metzgeroth G, Leiferman KM, Arock M, Sotlar K, Butterfield JH, Cerny-Reiterer S, Mayerhofer M, Vandenberghe P, Haferlach T, Bochner BS, Gotlib J, Horny HP, Simon HU, Klion AD. Pathogenesis and classification of eosinophil disorders: a review of recent developments in the field. Expert Rev Hematol 2012; 5:157-76. [PMID: 22475285 DOI: 10.1586/ehm.11.81] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Eosinophils and their products play an essential role in the pathogenesis of various reactive and neoplastic disorders. Depending on the underlying disease, molecular defect and involved cytokines, hypereosinophilia may develop and may lead to organ damage. In other patients, persistent eosinophilia is accompanied by typical clinical findings, but the causative role and impact of eosinophilia remain uncertain. For patients with eosinophil-mediated organ pathology, early therapeutic intervention with agents reducing eosinophil counts can be effective in limiting or preventing irreversible organ damage. Therefore, it is important to approach eosinophil disorders and related syndromes early by using established criteria, to perform all appropriate staging investigations, and to search for molecular targets of therapy. In this article, we review current concepts in the pathogenesis and evolution of eosinophilia and eosinophil-related organ damage in neoplastic and non-neoplastic conditions. In addition, we discuss classifications of eosinophil disorders and related syndromes as well as diagnostic algorithms and standard treatment for various eosinophil-related disorders.
Collapse
Affiliation(s)
- Peter Valent
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Hypereosinophilic syndromes (HES) are a heterogeneous group of disorders that range from asymptomatic eosinophilia > 1,500/mL to aggressive disease complicated by life-threatening end organ involvement, including endomyocardial fibrosis and thromboembolism. To complicate matters further, similar clinical manifestations can occur in the setting of marked eosinophilia due to helminth infection, drug hypersensitivity, and other causes. In the past, therapy was guided only by the exclusion of these secondary causes of eosinophilia and the severity of the clinical manifestations. More recently, the availability of novel targeted therapies and a better understanding of the etiologies of some subtypes of HES have necessitated a more structured approach.
Collapse
Affiliation(s)
- Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | | |
Collapse
|
13
|
Schroder WA, Gardner J, Le TT, Duke M, Burke ML, Jones MK, McManus DP, Suhrbier A. SerpinB2 deficiency modulates Th1⁄Th2 responses after schistosome infection. Parasite Immunol 2011; 32:764-8. [PMID: 21086717 DOI: 10.1111/j.1365-3024.2010.01241.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
SerpinB2, also known as plasminogen activator inhibitor type-2, is a major product of macrophages and is upregulated during many infections. Although SerpinB2 inhibits urokinase plasminogen activator in vitro, evidence that this represents its physiological role in vivo is not compelling. We have recently shown that SerpinB2-/-mice generate enhanced Th1 responses after immunization with a Th1 immunogen. Herein,we show that Schistosoma japonicum granulomas induced liver SerpinB2 mRNA expression by >600-fold in wild-type mice. In SerpinB2-/- mice, worm and egg burden, and granuloma number and volume were unaffected. However, granulomas in these mice were associated with reduced fibrosis (as determined by Sirius red staining and image analysis) and increased iNOS, IL-6, IL-10 and TNFa and decreased Arg 1 and IL-13 mRNA expression. SerpinB2-/- mice immunized with soluble egg antigen (SEA) also showed reduced levels of SEA-specific IgG1. SerpinB2 deficiency thus promoted certain Th1 and reduced certain Th2 responses in response to this Th2 immunogen.
Collapse
Affiliation(s)
- W A Schroder
- Queensland Institute of Medical Research, Brisbane, Qld., Australia
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Components of the plasminogen-plasmin system participate in a wide variety of physiologic and pathologic processes, including tumor growth, invasion and metastasis, through their effect on angiogenesis and cell migration. These components are found in most tumors and their expression not only signifies their function but also carries a prognostic value. Their expression is in turn modulated by cytokines and growth factors, many of which are up-regulated in cancer. Though both tPA and uPA are expressed in tumor cells, uPA with its receptor (uPAR) is mostly involved in cellular functions, while tPA with its receptor Annexin II on endothelial surface, regulates intravascular fibrin deposition. Among the inhibitors of fibrinolysis, PAI-1 is a major player in the pathogenesis of many vascular diseases as well as in cancer. Therapeutic interventions, either using plasminogen activators or experimental inhibitor agents against PAI-1, have shown encouraging results in experimental tumors but not been verified clinically.
Collapse
Affiliation(s)
- Hau C Kwaan
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | | |
Collapse
|
15
|
Zuckerman ST, Kao WJ. LC/MS identification of 12 intracellular cytoskeletal and inflammatory proteins from monocytes adherent on surface-adsorbed fibronectin-derived peptides. J Biomed Mater Res A 2008; 85:513-29. [PMID: 17729253 PMCID: PMC5578865 DOI: 10.1002/jbm.a.31306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The extent and duration of the host response determines device efficacy, yet the mechanism is poorly understood. U937 promonocytic cells were cultured on peptide-adsorbed tissue-culture polystyrene to better understand surface-modulated intracellular events. Phosphotyrosine proteins were enriched by immunoprecipitation and analyzed by nanospray HPLC-coupled tandem mass spectrometry (LC/MS). Tyrosine-phosphorylated proteins were chosen based on physiological significance and previous densitometry results, which identified a set of proteins ranging from approximately 200 to approximately 23 kDa showing altered phosphorylation levels in response to various surface-adsorbed ligands and phosphorylation inhibitor AG18. Although LC/MS has been used for nearly a decade, its application to the field of biomaterials is relatively novel. Twelve intracellular proteins identified by nanospray LC/MS are potentially related to the host response. Eight of the twelve proteins are related to the cytoskeleton including: moesin, heat shock protein 90beta, alpha-tubulin, elongation factor 1alpha, beta actin, vimentin, plasminogen activator inhibitor 2, and heterogeneous ribonuclear protein A2. The remaining four proteins: high mobility group box 1, caspase recruitment domain 5, glycoprotein 96, and heterogeneous nuclear ribonucleoprotein D0 modulate inflammation. The specific effect each peptide has upon modulating the phosphorylation state of these proteins cannot be determined from this work; however, 12 viable targets have been identified for further investigation into the role each plays in the surface-mediated monocyte response.
Collapse
Affiliation(s)
- Sean T. Zuckerman
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, 53705 USA
- School of Pharmacy, University of Wisconsin-Madison, WI, 53705 USA
| | - Weiyuan John Kao
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, 53705 USA
- School of Pharmacy, University of Wisconsin-Madison, WI, 53705 USA
- Correspondence should be addressed to 777 Highland Ave., University of Wisconsin-Madison, Madison, WI 53705. Tel: 608 263-2998, Fax: 608 262-5345,
| |
Collapse
|
16
|
Dyer KD, Czapiga M, Foster B, Foster PS, Kang EM, Lappas CM, Moser JM, Naumann N, Percopo CM, Siegel SJ, Swartz JM, Ting-De Ravin S, Rosenberg HF. Eosinophils from lineage-ablated Delta dblGATA bone marrow progenitors: the dblGATA enhancer in the promoter of GATA-1 is not essential for differentiation ex vivo. THE JOURNAL OF IMMUNOLOGY 2007; 179:1693-9. [PMID: 17641035 DOI: 10.4049/jimmunol.179.3.1693] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A critical role for eosinophils in remodeling of allergic airways was observed in vivo upon disruption of the dblGATA enhancer that regulates expression of GATA-1, which resulted in an eosinophil-deficient phenotype in the DeltadblGATA mouse. We demonstrate here that bone marrow progenitors isolated from DeltadblGATA mice can differentiate into mature eosinophils when subjected to cytokine stimulation ex vivo. Cultured DeltadblGATA eosinophils contain cytoplasmic granules with immunoreactive major basic protein and they express surface Siglec F and transcripts encoding major basic protein, eosinophil peroxidase, and GATA-1, -2, and -3 to an extent indistinguishable from cultured wild-type eosinophils. Fibroblast coculture and bone marrow cross-transplant experiments indicate that the in vivo eosinophil deficit is an intrinsic progenitor defect, and remains unaffected by interactions with stromal cells. Interestingly, and in contrast to those from the wild type, a majority of the GATA-1 transcripts from cultured DeltadblGATA progenitors express a variant GATA-1 transcript that includes a first exon (1E(B)), located approximately 3700 bp downstream to the previously described first exon found in hemopoietic cells (1E(A)) and approximately 42 bp upstream to another variant first exon, 1E(C). These data suggest that cultured progenitors are able to circumvent the effects of the DeltadblGATA ablation by using a second, more proximal, promoter and use this mechanism to generate quantities of GATA-1 that will support eosinophil growth and differentiation.
Collapse
Affiliation(s)
- Kimberly D Dyer
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases/National Institutes of Health (NIAID/NIH), Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kliem H, Welter H, Kraetzl WD, Steffl M, Meyer HHD, Schams D, Berisha B. Expression and localisation of extracellular matrix degrading proteases and their inhibitors during the oestrous cycle and after induced luteolysis in the bovine corpus luteum. Reproduction 2007; 134:535-47. [PMID: 17709571 DOI: 10.1530/rep-06-0172] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The corpus luteum (CL) offers the opportunity to study high proliferative processes during its development and degradation processes during its regression. We examined the mRNA expression of matrix metalloproteases (MMP)-1, MMP-2, MMP-9, MMP-14, MMP-19, tissue inhibitor of MMP (TIMP)-1, TIMP-2, tissue plasminogen activator (tPA), urokinase plasminogen activator (uPA), uPA-receptor (uPAR), PA-inhibitors (PAI)-1, PAI-2 in follicles 20 h after GnRH application, CLs during days 1–2, 3–4, 5–7 and 8–12 of the oestrous cycle as well as after induced luteolysis. Cows in the mid-luteal phase were injected with Cloprostenol and the CLs were collected at 0.5, 2, 4, 12, 24, 48 and 64 h after PGF2α injection. Real-time RT-PCR determined mRNA expressions. Expression from 20 h after GnRH to day 12: MMP-1, MMP-2, MMP-14 and tPA showed a clear expression, but no regulation. TIMP-1 and uPAR mRNA increased when compared with the follicular phase. TIMP-2, MMP-9, MMP-19 and uPA increased from the follicular phase to days 8–12. PAI-1 and PAI-2 expression increased from days 1–7 and decreased to days 8–12. Induced luteolysis: MMP-1, MMP-2, MMP-9, MMP-14, MMP-19 and TIMP-1 all increased at different time points and intensities, whereas TIMP-2 was constantly decreased from 24 to 64 h. The plasminogen activator system and their inhibitors were up-regulated from 2 to 64 h, tPA was already increased after 0.5 h. Immunohistochemistry for MMP-1, MMP-2, MMP-14: an increased staining for MMP-1 and MMP-14 was seen in large luteal cells beginning 24 h after PGF2α application. MMP-2 showed a strong increase in staining in endothelial cells at 48 h.
Collapse
Affiliation(s)
- H Kliem
- Physiology Weihenstephan, Technical University Munich, 85354 Freising, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Eosinophils are pleiotropic multi-functional leukocytes involved in initiation and propagation of diverse inflammatory responses. Recent studies examining eosinophil biology have focused on delineating the molecular basis of FIP1L1/PDGRFalpha-fusion gene induced HES, the molecular steps involved in eosinophil recruitment in tumor-associated eosinophilia and EGID, and the role of eosinophils in asthma. In this review, these studies are summarized, focusing on the implications of these findings in the understanding the role of eosinophils in diseases.
Collapse
MESH Headings
- Animals
- Antigen Presentation
- Asthma/immunology
- Asthma/physiopathology
- Chemokine CCL11
- Chemokines, CC/physiology
- Chemotaxis, Leukocyte/physiology
- Cytokines/metabolism
- Cytokines/physiology
- Disease Models, Animal
- Eosinophil Granule Proteins/physiology
- Eosinophilia/etiology
- Eosinophils/immunology
- Eosinophils/physiology
- Humans
- Hypereosinophilic Syndrome/genetics
- Hypereosinophilic Syndrome/physiopathology
- Inflammation/blood
- Inflammation/etiology
- Inflammation/immunology
- Inflammation Mediators/physiology
- Intestinal Diseases, Parasitic/immunology
- Intestinal Diseases, Parasitic/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/complications
- Mice
- Mice, Knockout
- Mice, Transgenic
- Neoplasms/blood
- Neoplasms/complications
- Oncogene Proteins, Fusion/physiology
- Radiation Chimera
- Receptor, Platelet-Derived Growth Factor alpha/physiology
- mRNA Cleavage and Polyadenylation Factors/physiology
Collapse
Affiliation(s)
- Simon P Hogan
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA.
| |
Collapse
|
19
|
Fulkerson PC, Fischetti CA, McBride ML, Hassman LM, Hogan SP, Rothenberg ME. A central regulatory role for eosinophils and the eotaxin/CCR3 axis in chronic experimental allergic airway inflammation. Proc Natl Acad Sci U S A 2006; 103:16418-23. [PMID: 17060636 PMCID: PMC1637597 DOI: 10.1073/pnas.0607863103] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To clarify the role and regulation of eosinophils, we subjected several key eosinophil-related genetically engineered mice to a chronic model of allergic airway inflammation aiming to identify results that were independent of the genetic targeting strategy. In particular, mice with defects in eosinophil development (Deltadbl-GATA) and eosinophil recruitment [mice deficient in CCR3 (CCR3 knockout) and mice deficient in both eotaxin-1 and eotaxin-2 (eotaxin-1/2 double knockout)] were subjected to Aspergillus fumigatus-induced allergic airway inflammation. Allergen-induced eosinophil recruitment into the airway was abolished by 98%, 94%, and 99% in eotaxin-1/2 double knockout, CCR3 knockout, and Deltadbl-GATA mice, respectively. Importantly, allergen-induced type II T helper lymphocyte cytokine production was impaired in the lungs of eosinophil- and CCR3-deficient mice. The absence of eosinophils correlated with reduction in allergen-induced mucus production. Notably, by using global transcript expression profile analysis, a large subset (29%) of allergen-induced genes was eosinophil- and CCR3-dependent; pathways downstream from eosinophils were identified, including in situ activation of coagulation in the lung. In summary, we present multiple lines of independent evidence that eosinophils via CCR3 have a central role in chronic allergic airway disease.
Collapse
MESH Headings
- Allergens/immunology
- Animals
- Bronchial Hyperreactivity/genetics
- Bronchial Hyperreactivity/immunology
- Bronchial Hyperreactivity/metabolism
- Bronchial Hyperreactivity/pathology
- Cell Movement
- Chemokine CCL11
- Chemokines, CC/deficiency
- Chemokines, CC/genetics
- Chemokines, CC/immunology
- Chemokines, CC/metabolism
- Chronic Disease
- Cytokines/biosynthesis
- Disease Models, Animal
- Eosinophils/cytology
- Eosinophils/immunology
- Eosinophils/metabolism
- Gene Expression Profiling
- Gene Expression Regulation
- Guanine Nucleotide Exchange Factors/deficiency
- Guanine Nucleotide Exchange Factors/genetics
- Guanine Nucleotide Exchange Factors/metabolism
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Ligands
- Mast Cells/metabolism
- Mice
- Mice, Knockout
- Mucus/immunology
- Mucus/metabolism
- Receptors, CCR3
- Receptors, Chemokine/deficiency
- Receptors, Chemokine/genetics
- Receptors, Chemokine/immunology
- Receptors, Chemokine/metabolism
Collapse
Affiliation(s)
- Patricia C. Fulkerson
- *Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, 231 Bethesda Avenue, Cincinnati, OH 45257-0524; and
| | - Christine A. Fischetti
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039
| | - Melissa L. McBride
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039
| | - Lynn M. Hassman
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039
| | - Simon P. Hogan
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039
| | - Marc E. Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
20
|
Swartz JM, Dyer KD, Cheever AW, Ramalingam T, Pesnicak L, Domachowske JB, Lee JJ, Lee NA, Foster PS, Wynn TA, Rosenberg HF. Schistosoma mansoni infection in eosinophil lineage-ablated mice. Blood 2006; 108:2420-7. [PMID: 16772607 PMCID: PMC1895572 DOI: 10.1182/blood-2006-04-015933] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 05/29/2006] [Indexed: 12/30/2022] Open
Abstract
We explore the controversial issue of the role of eosinophils in host defense against helminthic parasites using the established Schistosoma mansoni infection model in 2 novel mouse models of eosinophil lineage ablation (DeltadblGATA and TgPHIL). No eosinophils were detected in bone marrow of infected DeltadblGATA or TgPHIL mice, despite the fact that serum IL-5 levels in these infected mice exceeded those in infected wild type by approximately 4-fold. Liver granulomata from infected DeltadblGATA and TgPHIL mice were likewise depleted of eosinophils compared with those from their respective wild types. No eosinophil-dependent differences in granuloma number, size, or fibrosis were detected at weeks 8 or 12 of infection, and differential accumulation of mast cells was observed among the DeltadblGATA mice only at week 12. Likewise, serum levels of liver transaminases, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) increased in all mice in response to S mansoni infection, with no eosinophil-dependent differences in hepatocellular damage observed. Finally, eosinophil ablation had no effect on worm burden or on egg deposition. Overall, our data indicate that eosinophil ablation has no impact on traditional measures of disease in the S mansoni infection model in mice. However, eosinophils may have unexplored immunomodulatory contributions to this disease process.
Collapse
Affiliation(s)
- Jonathan M Swartz
- Laboratory of Allergic Diseases, NIAID, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892-1883, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Haile WB, Coleman JL, Benach JL. Reciprocal upregulation of urokinase plasminogen activator and its inhibitor, PAI-2, by Borrelia burgdorferi affects bacterial penetration and host-inflammatory response. Cell Microbiol 2006; 8:1349-60. [PMID: 16882037 DOI: 10.1111/j.1462-5822.2006.00717.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The mammalian plasminogen activation system (PAS) is a complex system involved in multiple physiological and pathological processes. Borrelia burgdorferi interacts with certain components of the PAS. Here we further investigate this interaction to determine its effect on bacterial dissemination and host cell migration in vitro. We show that stimulation of monocytic cells with B. burgdorferi induces the transient production and secretion of urokinase plasminogen activator (uPA), shortly followed by its physiological inhibitor, plasminogen activator inhibitor-2 (PAI-2). Mono Mac 6 (MM6) cells as well as peripheral blood monocytes enhanced transmigration of B. burgdorferi across a barrier coated with fibronectin mediated by uPA. Moreover, the induction of PAI-2 or the addition of recombinant PAI-2 did not have a significant effect on the uPA-potentiated transmigration of B. burgdorferi. In contrast, the induction of PAI-2 by B. burgdorferi resulted in significantly diminished invasion by monocytic cells across a reconstituted basement membrane (matrigel), which could be partially restored by treatment with purified uPA. These results show that the PAS plays a twofold role in the pathogenesis of B. burgdorferi infection, both by enhancing bacterial dissemination and by diminishing host-cell inflammatory migration.
Collapse
Affiliation(s)
- Woldeab B Haile
- Center for Infectious Diseases, Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5120, USA
| | | | | |
Collapse
|
22
|
Di Giusto DA, Sutherland APR, Jankova L, Harrop SJ, Curmi PMG, King GC. Plasminogen activator inhibitor-2 is highly tolerant to P8 residue substitution--implications for serpin mechanistic model and prediction of nsSNP activities. J Mol Biol 2005; 353:1069-80. [PMID: 16214170 DOI: 10.1016/j.jmb.2005.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2005] [Revised: 09/02/2005] [Accepted: 09/06/2005] [Indexed: 11/18/2022]
Abstract
The serine protease inhibitor (serpin) superfamily is involved in a wide range of cellular processes including fibrinolysis, angiogenesis, apoptosis, inflammation, metastasis and viral pathogenesis. Here, we investigate the unique mousetrap inhibition mechanism of serpins through saturation mutagenesis of the P8 residue for a typical family member, plasminogen activator inhibitor-2 (PAI-2). A number of studies have proposed an important role for the P8 residue in the efficient insertion and stabilisation of the cleaved reactive centre loop (RCL), which is a key event in the serpin inhibitory mechanism. The importance of this residue for inhibition of the PAI-2 protease target urinary plasminogen activator (urokinase, uPA) is confirmed, although a high degree of tolerance to P8 substitution is observed. Out of 19 possible PAI-2 P8 mutants, 16 display inhibitory activities within an order of magnitude of the wild-type P8 Thr species. Crystal structures of complexes between PAI-2 and RCL-mimicking peptides with P8 Met or Asp mutations are determined, and structural comparison with the wild-type complex substantiates the ability of the S8 pocket to accommodate disparate side-chains. These data indicate that the identity of the P8 residue is not a determinant of efficient RCL insertion, and provide further evidence for functional plasticity of key residues within enzyme structures. Poor correlation of observed PAI-2 P8 mutant activities with a range of physicochemical, evolutionary and thermodynamic predictive indices highlights the practical limitations of existing approaches to predicting the molecular phenotype of protein variants.
Collapse
Affiliation(s)
- Daniel A Di Giusto
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Plasminogen activator inhibitor type-2 (PAI-2) is a nonconventional serine protease inhibitor (serpin) with unique and tantalizing properties that is generally considered to be an authentic and physiological inhibitor of urokinase. However, the fact that only a small percentage of PAI-2 is secreted has been a long-standing argument for alternative roles for this serpin. Indeed, PAI-2 has been shown to have a number of intracellular roles: it can alter gene expression, influence the rate of cell proliferation and differentiation, and inhibit apoptosis in a manner independent of urokinase inhibition. Despite these recent advances in defining the intracellular function of PAI-2, it still remains one of the most mysterious and enigmatic members of the serpin superfamily.
Collapse
Affiliation(s)
- Robert L Medcalf
- Australian Centre for Blood Diseases, Monash University, Prahran, Victoria, Australia.
| | | |
Collapse
|