1
|
Wodelo W, Wampande EM, Andama A, Kateete DP, Ssekatawa K. Polymorphisms in Immune Genes and Their Association with Tuberculosis Susceptibility: An Analysis of the African Population. Appl Clin Genet 2024; 17:33-46. [PMID: 38567200 PMCID: PMC10986402 DOI: 10.2147/tacg.s457395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
Tuberculosis remains a global health concern, with substantial mortality rates worldwide. Genetic factors play a significant role in influencing susceptibility to tuberculosis. This review examines the current progress in studying polymorphisms within immune genes associated with tuberculosis susceptibility, focusing on African populations. The roles of various proteins, including Toll-like receptors, Dendritic Cell-Specific Intercellular Adhesion Molecule-3 Grabbing Non-Integrin, vitamin D nuclear receptor, soluble C-type lectins such as surfactant proteins A and D, C-type Lectin Domain Family 4 Member E, and mannose-binding lectin, phagocyte cytokines such as Interleukin-1, Interleukin-6, Interleukin-10, Interleukin-12, and Interleukin-18, and chemokines such as Interleukin-8, monocyte chemoattractant protein 1, Regulated upon activation, normal T-cell expressed and secreted are explored in the context of tuberculosis susceptibility. We also address the potential impact of genetic variants on protein functions, as well as how these findings align with the genetic polymorphisms not associated with tuberculosis. Functional studies in model systems provide insights into the intricate host-pathogen interactions and susceptibility mechanisms. Despite progress, gaps in knowledge remain, highlighting the need for further investigations. This review emphasizes the association of Single Nucleotide Polymorphisms with diverse aspects of tuberculosis pathogenesis, including disease detection and Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Wycliff Wodelo
- Department of Immunology and Molecular Biology, School of Biomedical Science, College of Health Science, Makerere University, Kampala, Uganda
| | - Eddie M Wampande
- Department of Immunology and Molecular Biology, School of Biomedical Science, College of Health Science, Makerere University, Kampala, Uganda
- Department of Veterinary Medicine, School of Veterinary Medicine and Animal Resources, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Alfred Andama
- Department of Medical Microbiology, School of Medicine, College of Health Science, Makerere University, Kampala, Uganda
| | - David Patrick Kateete
- Department of Immunology and Molecular Biology, School of Biomedical Science, College of Health Science, Makerere University, Kampala, Uganda
| | - Kenneth Ssekatawa
- Department of Science, Technical and Vocational Education, Makerere University, Kampala, Uganda
- Africa Center Excellence in Materials Product Development and Nanotechnology (MAPRONANO ACE), Makerere University, Kampala, Uganda
| |
Collapse
|
2
|
The Vi Capsular Polysaccharide of Salmonella Typhi Promotes Macrophage Phagocytosis by Binding the Human C-Type Lectin DC-SIGN. mBio 2022; 13:e0273322. [PMID: 36286551 PMCID: PMC9765441 DOI: 10.1128/mbio.02733-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Capsular polysaccharides are common virulence factors of extracellular, but not intracellular bacterial pathogens, due to the antiphagocytic properties of these surface structures. It is therefore paradoxical that Salmonella enterica subspecies enterica serovar Typhi, an intracellular pathogen, synthesizes a virulence-associated (Vi) capsule, which exhibits antiphagocytic properties. Here, we show that the Vi capsular polysaccharide has different functions when S. Typhi interacts with distinct subsets of host phagocytes. The Vi capsular polysaccharide allowed S. Typhi to selectively evade phagocytosis by human neutrophils while promoting human macrophage phagocytosis. A screen of C-type lectin receptors identified human DC-SIGN as the receptor involved in macrophage binding and phagocytosis of capsulated S. Typhi. Consistent with the anti-inflammatory activity of DC-SIGN, purified Vi capsular polysaccharide reduced inflammatory responses in macrophages. These data suggest that binding of the human C-type lectin receptor DC-SIGN by the Vi capsular polysaccharide contributes to the pathogenesis of typhoid fever. IMPORTANCE Salmonella enterica subspecies enterica serovar Typhi is the causative agent of typhoid fever. The recent emergence of S. Typhi strains which are resistant to antibiotic therapy highlights the importance of vaccination in managing typhoid fever. The virulence-associated (Vi) capsular polysaccharide is an effective vaccine against typhoid fever, but the role the capsule plays during pathogenesis remains incompletely understood. Here, we identify the human C-type lectin receptor DC-SIGN as the receptor for the Vi capsular polysaccharide. Binding of capsulated S. Typhi to DC-SIGN resulted in phagocytosis of the pathogen by macrophages and induction of an anti-inflammatory cytokine response. Thus, the interaction of the Vi capsular polysaccharide with human DC-SIGN contributes to the pathogenesis of typhoid fever and should be further investigated in the context of vaccine development.
Collapse
|
3
|
Mycobacterial Adhesion: From Hydrophobic to Receptor-Ligand Interactions. Microorganisms 2022; 10:microorganisms10020454. [PMID: 35208908 PMCID: PMC8875947 DOI: 10.3390/microorganisms10020454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 11/24/2022] Open
Abstract
Adhesion is crucial for the infective lifestyles of bacterial pathogens. Adhesion to non-living surfaces, other microbial cells, and components of the biofilm extracellular matrix are crucial for biofilm formation and integrity, plus adherence to host factors constitutes a first step leading to an infection. Adhesion is, therefore, at the core of pathogens’ ability to contaminate, transmit, establish residency within a host, and cause an infection. Several mycobacterial species cause diseases in humans and animals with diverse clinical manifestations. Mycobacterium tuberculosis, which enters through the respiratory tract, first adheres to alveolar macrophages and epithelial cells leading up to transmigration across the alveolar epithelium and containment within granulomas. Later, when dissemination occurs, the bacilli need to adhere to extracellular matrix components to infect extrapulmonary sites. Mycobacteria causing zoonotic infections and emerging nontuberculous mycobacterial pathogens follow divergent routes of infection that probably require adapted adhesion mechanisms. New evidence also points to the occurrence of mycobacterial biofilms during infection, emphasizing a need to better understand the adhesive factors required for their formation. Herein, we review the literature on tuberculous and nontuberculous mycobacterial adhesion to living and non-living surfaces, to themselves, to host cells, and to components of the extracellular matrix.
Collapse
|
4
|
Li YP, Wang MQ, Liu CR, Deng HL, Wu Y, Dang SS, Xu LH. Polymorphisms in the DC-SIGN gene and their association with the severity of hand, foot, and mouth disease caused by enterovirus 71. Arch Virol 2021; 166:1133-1140. [PMID: 33590343 DOI: 10.1007/s00705-021-04991-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022]
Abstract
Severe hand, foot, and mouth disease (HFMD) caused by enterovirus 71 (EV71) infection is associated with high mortality and disability. DC-SIGN, a receptor for EV71, is widely distributed in dendritic cells and may influence the severity of HFMD caused by EV71 infection. This observational study attempts to explore whether single-nucleotide polymorphisms (SNPs) in DC-SIGN are related to the severity of EV71-associated HFMD. Based on linkage disequilibrium and functional predictions, two DC-SIGN SNPs were selected and tested to explore their potential association with the severity of HFMD caused by EV71 infection. Two hundred sixteen Han Chinese children with HFMD caused by EV71 were enrolled to obtain clinical data, including the severity of HFMD, serum DC-SIGN levels, and DC-SIGN SNPs. We found a significant association between the rs7248637 polymorphism (A vs. G: OR = 0.644, 95% CI = 0.515-0.806) and the severity of HFMD caused by EV71 infection, as well as the rs4804800 polymorphism (A vs. G: OR = 1.539, 95% CI =1.229-1.928). These two DC-SIGN SNPs may have an effect on the severity of HFMD caused by EV71 infection.
Collapse
MESH Headings
- Asian People/genetics
- Cell Adhesion Molecules/blood
- Cell Adhesion Molecules/genetics
- Child
- Child, Preschool
- China/epidemiology
- Enterovirus A, Human
- Enterovirus Infections/epidemiology
- Enterovirus Infections/genetics
- Enterovirus Infections/pathology
- Female
- Genetic Association Studies
- Genetic Predisposition to Disease/genetics
- Genotype
- Hand, Foot and Mouth Disease/epidemiology
- Hand, Foot and Mouth Disease/genetics
- Hand, Foot and Mouth Disease/pathology
- Humans
- Infant
- Lectins, C-Type/blood
- Lectins, C-Type/genetics
- Male
- Polymorphism, Single Nucleotide
- Receptors, Cell Surface/blood
- Receptors, Cell Surface/genetics
- Severity of Illness Index
Collapse
Affiliation(s)
- Ya-Ping Li
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Mu-Qi Wang
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Chen-Rui Liu
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hui-Ling Deng
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, 710003, China
| | - Yuan Wu
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
- Intensive Care Unit, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Shuang-Suo Dang
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Li-Hong Xu
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
5
|
Valand N, Girija UV. Candida Pathogenicity and Interplay with the Immune System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:241-272. [PMID: 34661898 DOI: 10.1007/978-3-030-67452-6_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Candida species are opportunistic fungal pathogens that are part of the normal skin and mucosal microflora. Overgrowth of Candida can cause infections such as thrush or life-threatening invasive candidiasis in immunocompromised patients. Though Candida albicans is highly prevalent, several non-albicans species are also isolated from nosocomial infections. Candida sp. are over presented in the gut of people with Crohn's disease and certain types of neurological disorders, with hyphal form and biofilms being the most virulent states. In addition, Candida uses several secreted and cell surface molecules such as pH related antigen 1, High affinity glucose transporter, Phosphoglycerate mutase 1 and lipases to establish pathogenicity. A strong innate immune response is elicited against Candida via dendritic cells, neutrophils and macrophages. All three complement pathways are also activated. Production of proinflammatory cytokines IL-10 and IL-12 signal differentiation of CD4+ cells into Th1 and Th2 cells, whereas IL-6, IL-17 and IL-23 induce Th17 cells. Importance of T-lymphocytes is reflected in depleted T-cell count patients being more prone to Candidiasis. Anti- Candida antibodies also play a role against candidiasis using various mechanisms such as targeting virulent enzymes and exhibiting direct candidacidal activity. However, the significance of antibody response during infection remains controversial. Furthermore, some of the Candida strains have evolved molecular strategies to evade the sophisticated host attack by proteolysis of components of immune system and interfering with immune signalling pathways. Emergence of several non-albicans species that are resistant to current antifungal agents makes treatment more difficult. Therefore, deeper insight into interactions between Candida and the host immune system is required for discovery of novel therapeutic options.
Collapse
Affiliation(s)
- Nisha Valand
- Leicester School of Allied Health and Life sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK
| | - Umakhanth Venkatraman Girija
- Leicester School of Allied Health and Life sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK.
| |
Collapse
|
6
|
Uribe-Querol E, Rosales C. Phagocytosis: Our Current Understanding of a Universal Biological Process. Front Immunol 2020; 11:1066. [PMID: 32582172 PMCID: PMC7280488 DOI: 10.3389/fimmu.2020.01066] [Citation(s) in RCA: 354] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022] Open
Abstract
Phagocytosis is a cellular process for ingesting and eliminating particles larger than 0.5 μm in diameter, including microorganisms, foreign substances, and apoptotic cells. Phagocytosis is found in many types of cells and it is, in consequence an essential process for tissue homeostasis. However, only specialized cells termed professional phagocytes accomplish phagocytosis with high efficiency. Macrophages, neutrophils, monocytes, dendritic cells, and osteoclasts are among these dedicated cells. These professional phagocytes express several phagocytic receptors that activate signaling pathways resulting in phagocytosis. The process of phagocytosis involves several phases: i) detection of the particle to be ingested, ii) activation of the internalization process, iii) formation of a specialized vacuole called phagosome, and iv) maturation of the phagosome to transform it into a phagolysosome. In this review, we present a general view of our current understanding on cells, phagocytic receptors and phases involved in phagocytosis.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
7
|
Effendi WI, Nagano T, Hasan H, Yudhawati R. Immunoregulatory Property of C-Type Lectin-Like Receptors in Fibrosing Interstitial Lung Diseases. Int J Mol Sci 2020; 21:E3665. [PMID: 32455964 PMCID: PMC7279300 DOI: 10.3390/ijms21103665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 11/16/2022] Open
Abstract
The innate immune system identifies exogenous threats or endogenous stress through germline-encoded receptors called pattern recognition receptors (PRRs) that initiate consecutive downstream signaling pathways to control immune responses. However, the contribution of the immune system and inflammation to fibrosing interstitial lung diseases (ILD) remains poorly understood. Immunoreceptor tyrosine-based motif-bearing C-type lectin-like receptors (CTLRs) may interact with various immune cells during tissue injury and wound repair processes. Dectin-1 is a CTLR with dominant mechanisms manifested through its intracellular signaling cascades, which regulate fibrosis-promoting properties through gene transcription and cytokine activation. Additionally, immune impairment in ILD facilitates microbiome colonization; hence, Dectin-1 is the master protector in host pulmonary defense against fungal invasion. Recent progress in determining the signaling pathways that control the balance of fibrosis has implicated immunoreceptor tyrosine-based motif-bearing CTLRs as being involved, either directly or indirectly, in the pathogenesis of fibrosing ILD.
Collapse
Affiliation(s)
- Wiwin Is Effendi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan;
- Department of Pulmonology and Respiratory Medicine, Medical Faculty of Airlangga University, Surabaya 60131, Indonesia; (H.H.); (R.Y.)
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan;
| | - Helmia Hasan
- Department of Pulmonology and Respiratory Medicine, Medical Faculty of Airlangga University, Surabaya 60131, Indonesia; (H.H.); (R.Y.)
| | - Resti Yudhawati
- Department of Pulmonology and Respiratory Medicine, Medical Faculty of Airlangga University, Surabaya 60131, Indonesia; (H.H.); (R.Y.)
| |
Collapse
|
8
|
Abstract
C-type lectin receptors (CLRs) are a family of transmembrane proteins having at least one C-type lectin-like domain (CTLD) on the cell surface and either a short intracellular signaling tail or a transmembrane domain that facilitates interaction with a second protein, often the Fc receptor common gamma chain (FcRγ), that mediates signaling. Many CLRs directly recognize microbial cell walls and influence innate immunity by activating inflammatory and antimicrobial responses in phagocytes. In this review, we examine the contributions of certain CLRs to activation and regulation of phagocytosis in cells such as macrophages, dendritic cells and neutrophils.
Collapse
|
9
|
Larsen FT, Bed'Hom B, Guldbrandtsen B, Dalgaard TS. Identification and tissue-expression profiling of novel chicken c-type lectin-like domain containing proteins as potential targets for carbohydrate-based vaccine strategies. Mol Immunol 2019; 114:216-225. [PMID: 31386978 DOI: 10.1016/j.molimm.2019.07.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022]
Abstract
C-type lectin-like domain containing proteins (CTLDcps) mainly bind carbohydrate-based ligands, but also other ligands. CTLDcps are involved in several biological processes including cell adhesion, cell-cell interactions, and pathogen recognition. Pathogen recognition by myeloid cells, e.g. dendritic cells (DCs), can be facilitated through cell surface expressed CTLDcps. Cell surface expressed CTLDcps have been exploited in vaccine designs for specific targeting of human and mouse DCs using antibodies. In recent years, however, DC targeting using carbohydrate-based vaccines has gained interest due to low production cost, limited immunogenicity, and possibility of multivalent adjustment. In chicken, however, only a few CTLDcps have been identified. Identifying and annotating additional chicken CTLDcps (chCTLDcps) is needed to exploit carbohydrate-mediated DC targeting in chicken. Therefore, we searched the chicken GRCg6a assembly for novel chCTLDcps. We identified 28 chCTLDcps of which 10 had previously been described and also experimentally validated. RNA-seq and RT-qPCR confirmed mRNA expression of the remaining 18 identified chCTLDcps. A group of highly related chCTLDcps, moreover, was shown to be avian-specific and comprise novel members mapped to the proposed chicken natural killer gene complex. Two chCTLDcps, chCLEC17AL-A and chCLEC17AL-B, were found to share a recent common ancestor with CLEC17A. Putative mannose or fucose-binding sequence motifs, EPN and WND, were found in the CTLD of chCLEC17AL-A. Both contained intracellular internalisation and signalling sequence motifs. In conclusion, several chCTLDcps were identified and their expression confirmed. Both chCLEC17AL-A and -B showed promise as potential targets in carbohydrate-based chicken vaccine strategies. Determination of DC-specific expression of chCLEC17AL-A and -B, thus, might prove useful in chicken vaccinology.
Collapse
Affiliation(s)
- Frederik T Larsen
- Department of Animal Science, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| | - Bertrand Bed'Hom
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Bernt Guldbrandtsen
- Department of Molecular Biology and Genetics, Blichers Allé 20, 8830, Tjele, Denmark
| | - Tina S Dalgaard
- Department of Animal Science, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark.
| |
Collapse
|
10
|
Liu P, Ridilla M, Patel P, Betts L, Gallichotte E, Shahidi L, Thompson NL, Jacobson K. Beyond attachment: Roles of DC-SIGN in dengue virus infection. Traffic 2017; 18:218-231. [PMID: 28128492 DOI: 10.1111/tra.12469] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 12/16/2022]
Abstract
Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), a C-type lectin expressed on the plasma membrane by human immature dendritic cells, is a receptor for numerous viruses including Ebola, SARS and dengue. A controversial question has been whether DC-SIGN functions as a complete receptor for both binding and internalization of dengue virus (DENV) or whether it is solely a cell surface attachment factor, requiring either hand-off to another receptor or a co-receptor for internalization. To examine this question, we used 4 cell types: human immature dendritic cells and NIH3T3 cells expressing either wild-type DC-SIGN or 2 internalization-deficient DC-SIGN mutants, in which either the 3 cytoplasmic internalization motifs are silenced by alanine substitutions or the cytoplasmic region is truncated. Using confocal and super-resolution imaging and high content single particle tracking, we investigated DENV binding, DC-SIGN surface transport, endocytosis, as well as cell infectivity. DC-SIGN was found colocalized with DENV inside cells suggesting hand-off at the plasma membrane to another receptor did not occur. Moreover, all 3 DC-SIGN molecules on NIH3T3 cells supported cell infection. These results imply the involvement of a co-receptor because cells expressing the internalization-deficient mutants could still be infected.
Collapse
Affiliation(s)
- Ping Liu
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Marc Ridilla
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Pratik Patel
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Laurie Betts
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Emily Gallichotte
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lidea Shahidi
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nancy L Thompson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ken Jacobson
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
11
|
Albornoz A, Hoffmann AB, Lozach PY, Tischler ND. Early Bunyavirus-Host Cell Interactions. Viruses 2016; 8:v8050143. [PMID: 27213430 PMCID: PMC4885098 DOI: 10.3390/v8050143] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/15/2016] [Indexed: 12/12/2022] Open
Abstract
The Bunyaviridae is the largest family of RNA viruses, with over 350 members worldwide. Several of these viruses cause severe diseases in livestock and humans. With an increasing number and frequency of outbreaks, bunyaviruses represent a growing threat to public health and agricultural productivity globally. Yet, the receptors, cellular factors and endocytic pathways used by these emerging pathogens to infect cells remain largely uncharacterized. The focus of this review is on the early steps of bunyavirus infection, from virus binding to penetration from endosomes. We address current knowledge and advances for members from each genus in the Bunyaviridae family regarding virus receptors, uptake, intracellular trafficking and fusion.
Collapse
Affiliation(s)
- Amelina Albornoz
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Av. Zañartu 1482, 7780272 Santiago, Chile.
| | - Anja B Hoffmann
- CellNetworks-Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| | - Pierre-Yves Lozach
- CellNetworks-Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| | - Nicole D Tischler
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Av. Zañartu 1482, 7780272 Santiago, Chile.
| |
Collapse
|
12
|
Narasimhan B, Goodman JT, Vela Ramirez JE. Rational Design of Targeted Next-Generation Carriers for Drug and Vaccine Delivery. Annu Rev Biomed Eng 2016; 18:25-49. [PMID: 26789697 DOI: 10.1146/annurev-bioeng-082615-030519] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pattern recognition receptors on innate immune cells play an important role in guiding how cells interact with the rest of the organism and in determining the direction of the downstream immune response. Recent advances have elucidated the structure and function of these receptors, providing new opportunities for developing targeted drugs and vaccines to treat infections, cancers, and neurological disorders. C-type lectin receptors, Toll-like receptors, and folate receptors have attracted interest for their ability to endocytose their ligands or initiate signaling pathways that influence the immune response. Several novel technologies are being developed to engage these receptors, including recombinant antibodies, adoptive immunotherapy, and chemically modified antigens and drug delivery vehicles. These active targeting technologies will help address current challenges facing drug and vaccine delivery and lead to new tools to treat human diseases.
Collapse
Affiliation(s)
- Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011;
| | - Jonathan T Goodman
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011;
| | - Julia E Vela Ramirez
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011;
| |
Collapse
|
13
|
Léger P, Lozach PY. Bunyaviruses: from transmission by arthropods to virus entry into the mammalian host first-target cells. Future Virol 2015. [DOI: 10.2217/fvl.15.52] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Bunyaviridae constitute a large family of animal RNA viruses distributed worldwide, most members of which are transmitted to vertebrate hosts by arthropods and can cause severe pathologies in humans and livestock. With an increasing number of outbreaks, arthropod-borne bunyaviruses (arbo-bunyaviruses) present a global threat to public health and agricultural productivity. Yet transmission, tropism, receptors and cell entry remain poorly characterized. The focus of this review is on the initial infection of mammalian hosts by arbo-bunyaviruses from cellular and molecular perspectives, with particular attention to the human host. We address current knowledge and advances regarding the identity of the first-target cells and the subsequent processes of entry and penetration into the cytosol. Aspects of the vector-to-host switch that influence the early steps of cell infection in mammalian skin, where incoming particles are introduced by infected arthropods, are also highlighted and discussed.
Collapse
Affiliation(s)
- Psylvia Léger
- CellNetworks – Cluster of Excellence & Department of Infectious Diseases, Virology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Pierre-Yves Lozach
- CellNetworks – Cluster of Excellence & Department of Infectious Diseases, Virology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
14
|
Boulant S, Stanifer M, Lozach PY. Dynamics of virus-receptor interactions in virus binding, signaling, and endocytosis. Viruses 2015; 7:2794-815. [PMID: 26043381 PMCID: PMC4488714 DOI: 10.3390/v7062747] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/21/2015] [Accepted: 05/27/2015] [Indexed: 02/06/2023] Open
Abstract
During viral infection the first challenge that viruses have to overcome is gaining access to the intracellular compartment. The infection process starts when the virus contacts the surface of the host cell. A complex series of events ensues, including diffusion at the host cell membrane surface, binding to receptors, signaling, internalization, and delivery of the genetic information. The focus of this review is on the very initial steps of virus entry, from receptor binding to particle uptake into the host cell. We will discuss how viruses find their receptor, move to sub-membranous regions permissive for entry, and how they hijack the receptor-mediated signaling pathway to promote their internalization.
Collapse
Affiliation(s)
- Steeve Boulant
- CellNetworks-Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
- Schaller research group at CellNetworks and DKFZ (German cancer research center), 69120 Heidelberg, Germany.
| | - Megan Stanifer
- CellNetworks-Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
- Schaller research group at CellNetworks and DKFZ (German cancer research center), 69120 Heidelberg, Germany.
| | - Pierre-Yves Lozach
- CellNetworks-Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
15
|
Lyrio EC, Campos-Souza IC, Corrêa LC, Lechuga GC, Verícimo M, Castro HC, Bourguignon SC, Côrte-Real S, Ratcliffe N, Declercq W, Santos DO. Interaction ofMycobacterium lepraewith the HaCaT human keratinocyte cell line: new frontiers in the cellular immunology of leprosy. Exp Dermatol 2015; 24:536-42. [DOI: 10.1111/exd.12714] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Eloah C.D. Lyrio
- Laboratório de Biopatógenos e Ativação Celular (LaBiopAc); Departamento de Biologia Celular e Molecular; Universidade Federal Fluminense (UFF); Niterói RJ Brazil
- Programa de Pós-graduação em Ciências e Biotecnologia; UFF; Niterói RJ Brazil
| | - Ivy C. Campos-Souza
- Laboratório de Biopatógenos e Ativação Celular (LaBiopAc); Departamento de Biologia Celular e Molecular; Universidade Federal Fluminense (UFF); Niterói RJ Brazil
| | - Luiz C.D. Corrêa
- Laboratório de Biopatógenos e Ativação Celular (LaBiopAc); Departamento de Biologia Celular e Molecular; Universidade Federal Fluminense (UFF); Niterói RJ Brazil
- Programa de Pós-graduação em Ciências e Biotecnologia; UFF; Niterói RJ Brazil
| | | | - Maurício Verícimo
- Programa de Pós-graduação em Patologia; Hospital Universitário; Niterói RJ Brazil
| | - Helena C. Castro
- Programa de Pós-graduação em Ciências e Biotecnologia; UFF; Niterói RJ Brazil
- Programa de Pós-graduação em Patologia; Hospital Universitário; Niterói RJ Brazil
| | | | | | - Norman Ratcliffe
- Programa de Pós-graduação em Ciências e Biotecnologia; UFF; Niterói RJ Brazil
- College of Science; Swansea University; Wales UK
| | - Wim Declercq
- Inflammation Research Center; University of Ghent-VIB; Ghent Belgium
| | - Dilvani O. Santos
- Laboratório de Biopatógenos e Ativação Celular (LaBiopAc); Departamento de Biologia Celular e Molecular; Universidade Federal Fluminense (UFF); Niterói RJ Brazil
- Programa de Pós-graduação em Ciências e Biotecnologia; UFF; Niterói RJ Brazil
| |
Collapse
|
16
|
García-Vallejo JJ, Bloem K, Knippels LMJ, Garssen J, van Vliet SJ, van Kooyk Y. The Consequences of Multiple Simultaneous C-Type Lectin-Ligand Interactions: DCIR Alters the Endo-Lysosomal Routing of DC-SIGN. Front Immunol 2015; 6:87. [PMID: 25806031 PMCID: PMC4354414 DOI: 10.3389/fimmu.2015.00087] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/16/2015] [Indexed: 11/13/2022] Open
Abstract
Antigen-presenting cells (APCs) are equipped with multiple receptors to allow proper pathogen recognition and capture. C-type lectin receptors (CLRs) recognize glycan structures on pathogens and endogenous glycoproteins for internalization and antigen processing and presentation. Often, the glycan specificity of these receptors is overlapping and/or pathogens are decorated with ligands for multiple CLRs, posing the question whether interference or cooperativity within the CLR family exists. Here, we used imaging flow cytometry to investigate the internalization properties of four different CLRs [mannose receptor, DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), macrophage galactose-type lectin, and dendritic cell immunoreceptor (DCIR)] on different APCs, as well as their intracellular routing. Although the internalization score of the investigated CLRs was similar on monocytes, macrophages, and dendritic cells (DCs), DCIR internalization rates were lower compared to the other CLRs. Upon triggering, DCIR routed to intracellular compartments outside of the classical endo-lysosomal pathway, resulting in poor CD4(+) T-cell stimulation. Although DC maturation reduced CLR expression levels, it did not affect their internalization rates. Although CLR internalization appeared to be independently regulated, DC-SIGN routing was affected when DCIR was triggered simultaneously. In conclusion, our results provide new insights for the design of DC-based immunotherapeutic strategies and suggest that DCIR is an inferior target in this respect.
Collapse
Affiliation(s)
- Juan J García-Vallejo
- Department of Molecular Cell Biology and Immunology, VU University Medical Center , Amsterdam , Netherlands
| | - Karien Bloem
- Department of Molecular Cell Biology and Immunology, VU University Medical Center , Amsterdam , Netherlands ; Danone Research, Centre for Specialized Nutrition , Wageningen , Netherlands
| | - Léon M J Knippels
- Danone Research, Centre for Specialized Nutrition , Wageningen , Netherlands ; Department of Pharmacology and Pathophysiology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University , Utrecht , Netherlands
| | - Johan Garssen
- Danone Research, Centre for Specialized Nutrition , Wageningen , Netherlands ; Department of Pharmacology and Pathophysiology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University , Utrecht , Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, VU University Medical Center , Amsterdam , Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center , Amsterdam , Netherlands
| |
Collapse
|
17
|
Abstract
The C-type lectins DC-SIGN, DC-SIGNR and LSECtin are encoded by the lectin gene cluster on chromosome 19p13.3 and perform cell-adhesion and pathogen recognition functions on dendritic cells, liver cells and lymph node sinusoidal endothelial cells. DC-SIGN and DC-SIGNR share similar overall gene and protein molecule structures, and they exhibit high affinity for high-mannose carbohydrates. LSECtin, a Ca2+-dependent C-type lectin, interacts with mannose, NAcGlc and fucose. These lectins allow pathogen recognition (e.g., viruses, bacteria and allergens) and cell adhesion for dendritic and endothelial cells in different tissues, which may enhance the infection and facilitate the spread of those pathogens. A better understanding of these lectins may yield information about how pathogens are captured by particular cells and how they spread in different tissues. These studies would provide more detail about the physiopathological mechanisms of viral and bacterial infections and may also lead to new strategies to treat or prevent infections.
Collapse
Affiliation(s)
- Feng Zhang
- 1Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, China
| | | | | |
Collapse
|
18
|
Abstract
Tuberculosis (TB) is a leading cause worldwide of human mortality attributable to a single infectious agent. Recent studies targeting candidate genes and "case-control" association have revealed numerous polymorphisms implicated in host susceptibility to TB. Here, we review current progress in the understanding of causative polymorphisms in host innate immune genes associated with TB pathogenesis. We discuss genes encoding several types of proteins: macrophage receptors, such as the mannose receptor (MR, CD206), dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN, CD209), Dectin-1, Toll-like receptors (TLRs), complement receptor 3 (CR3, CD11b/CD18), nucleotide oligomerization domain 1 (NOD1) and NOD2, CD14, P2X7, and the vitamin D nuclear receptor (VDR); soluble C-type lectins, such as surfactant protein-A (SP-A), SP-D, and mannose-binding lectin (MBL); phagocyte cytokines, such as tumor necrosis factor (TNF), interleukin-1β (IL-1β), IL-6, IL-10, IL-12, and IL-18; chemokines, such as IL-8, monocyte chemoattractant protein 1 (MCP-1), RANTES, and CXCL10; and other important innate immune molecules, such as inducible nitric oxide synthase (iNOS) and solute carrier protein 11A1 (SLC11A1). Polymorphisms in these genes have been variably associated with susceptibility to TB among different populations. This apparent variability is probably accounted for by evolutionary selection pressure as a result of long-term host-pathogen interactions in certain regions or populations and, in part, by lack of proper study design and limited knowledge of molecular and functional effects of the implicated genetic variants. Finally, we discuss genomic technologies that hold promise for resolving questions regarding the evolutionary paths of the human genome, functional effects of polymorphisms, and corollary impacts of adaptation on human health, ultimately leading to novel approaches to controlling TB.
Collapse
Affiliation(s)
- Abul K. Azad
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology
| | - Wolfgang Sadee
- Department of Pharmacology, Program in Pharmacogenomics, The Ohio State University, Columbus, Ohio, USA
| | - Larry S. Schlesinger
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology
| |
Collapse
|
19
|
Abstract
In the immune system, C-type lectins and CTLDs have been shown to act both as adhesion and as pathogen recognition receptors. The Dendritic cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) and its homologs in human and mouse represent an important C-type lectin family. DC-SIGN contains a lectin domain that recognizes in a Ca2+-dependent manner carbohydrates such as mannose-containing structures present on glycoproteins such as ICAM-2 and ICAM-3. DC-SIGN is a prototype C-type lectin organized in microdomains, which have their role as pathogen recognition receptors in sensing microbes. Although the integrin LFA-1 is a counter-receptor for both ICAM-2 and ICAM-3 on DC, DC-SIGN is the high affinity adhesion receptor for ICAM-2/-3. While cell–cell contact is a primary function of selectins, collectins are specialized in recognition of pathogens. Interestingly, DC-SIGN is a cell adhesion receptor as well as a pathogen recognition receptor. As adhesion receptor, DC-SIGN mediates the contact between dendritic cells (DCs) and T lymphocytes, by binding to ICAM-3, and mediates rolling of DCs on endothelium, by interacting with ICAM-2. As pathogen receptor, DC-SIGN recognizes a variety of microorganisms, including viruses, bacteria, fungi and several parasites (Cambi et al. 2005). The natural ligands of DC-SIGN consist of mannose oligosaccharides or fucose-containing Lewis-type determinants. In this chapter, we shall focus on the structure and functions of DC-SIGN and related CTLDs in the recognition of pathogens, the molecular and structural determinants that regulate the interaction with pathogen-associated molecular patterns. The heterogeneity of carbohydrate residues exposed on cellular proteins and pathogens regulates specific binding of DC-expressed C-type lectins that contribute to the diversity of immune responses created by DCs (van Kooyk et al. 2003a; Cambi et al. 2005).
Collapse
|
20
|
Figueiredo RT, Carneiro LAM, Bozza MT. Fungal surface and innate immune recognition of filamentous fungi. Front Microbiol 2011; 2:248. [PMID: 22194732 PMCID: PMC3242297 DOI: 10.3389/fmicb.2011.00248] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/23/2011] [Indexed: 01/13/2023] Open
Abstract
The innate immune system performs specific detection of molecules from infectious agents through pattern recognition receptors. This recognition triggers inflammatory responses and activation of microbicidal mechanisms by leukocytes. Infections caused by filamentous fungi have increased in incidence and represent an important cause of mortality and morbidity especially in individuals with immunosuppression. This review will discuss the innate immune recognition of filamentous fungi molecules and its importance to infection control and disease.
Collapse
Affiliation(s)
- Rodrigo T Figueiredo
- Instituto de Ciências Biomédicas/Pólo de Xerém, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | | | | |
Collapse
|
21
|
Feline lectin activity is critical for the cellular entry of feline infectious peritonitis virus. J Virol 2010; 84:7917-21. [PMID: 20484511 DOI: 10.1128/jvi.00964-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Feline infectious peritonitis is a lethal disease of felids caused by systemic infection with a feline coronavirus. Here, we report identification and analysis of the feline homologue to the human lectin DC-SIGN and show that it is a coreceptor for virulent strains of serotype 1 and serotype 2 feline coronaviruses.
Collapse
|
22
|
C-type lectin DC-SIGN: an adhesion, signalling and antigen-uptake molecule that guides dendritic cells in immunity. Cell Signal 2010; 22:1397-405. [PMID: 20363321 PMCID: PMC7127357 DOI: 10.1016/j.cellsig.2010.03.018] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 03/25/2010] [Indexed: 11/30/2022]
Abstract
The dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) is a type II C-type lectin whose expression is restricted to the most potent antigen-presenting cells (APCs), the dendritic cells (DCs). In recent years, DC-SIGN has gained an exponential increase in attention because of its involvement in multiple aspects of immune function. Besides being an adhesion molecule, particularly in binding ICAM-2 and ICAM-3, it is also crucial in recognizing several endogenous and exogenous antigens. Additionally, the intracellular domain of DC-SIGN includes molecular motifs, which enable the activation of signal transduction pathways involving Raf-1 and subsequent modulation of DC-maturation status, through direct modification of nuclear factor Nf-κB in DCs. Upon DC-SIGN engagement by mannose- or fucose-containing oligosaccharides, the latter leads to a tailored Toll-like receptor signalling, resulting in an altered DC-cytokine profile and skewing of Th1/Th2 responses. In this article, we will discuss recent advances on a broad perspective concerning DC-SIGN structure, signalling and immune function.
Collapse
|
23
|
Torrelles JB, Schlesinger LS. Diversity in Mycobacterium tuberculosis mannosylated cell wall determinants impacts adaptation to the host. Tuberculosis (Edinb) 2010; 90:84-93. [PMID: 20199890 PMCID: PMC2855779 DOI: 10.1016/j.tube.2010.02.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 02/05/2010] [Indexed: 10/19/2022]
Abstract
Mycobacterium tuberculosis (the causal agent of TB) has co-evolved with humans for centuries. It infects via the airborne route and is a prototypic highly adapted intracellular pathogen of macrophages. Extensive sequencing of the M. tuberculosis genome along with recent molecular phylogenetic studies is enabling us to gain insight into the biologic diversity that exists among bacterial strains that impact the pathogenesis of latent infection and disease. The majority of the M. tuberculosis cell envelope is comprised of carbohydrates and lipids, and there is increasing evidence that these microbial determinants that are readily exposed to the host immune system play critical roles in disease pathogenesis. Studies from our laboratory and others have raised the possibility that M. tuberculosis is adapting to the human host by cloaking its cell envelope molecules with terminal mannosylated (i.e. Man-alpha-(1-->2)-Man) oligosaccharides that resemble the glycoforms of mammalian mannoproteins. These mannosylated biomolecules engage the mannose receptor (MR) on macrophages during phagocytosis and dictate the intracellular fate of M. tuberculosis by regulating formation of the unique vesicular compartment in which the bacterium survives. The MR is highly expressed on alveolar macrophages (predominant C-type lectin on human cells) and functions as a scavenger receptor to maintain the healthiness of the lung by clearing foreign particles and at the same time regulating dangerous inflammatory responses. Thus M. tuberculosis exploits MR functions to gain entry into the macrophage and survive. Key biochemical pathways and mycobacterial determinants involved in the development and maintenance of the M. tuberculosis phagosome are being identified. The phylogenetic diversity observed in M. tuberculosis strains that impact its cell wall structure together with the genetic diversity observed in human populations, including those elements that affect macrophage function, may help to explain the extraordinary evolutionary adaptation of this pathogen to the human host. Major developments in these areas are the focus of this review.
Collapse
Affiliation(s)
- Jordi B Torrelles
- Center for Microbial Interface Biology, Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | | |
Collapse
|
24
|
Cambi A, Beeren I, Joosten B, Fransen JA, Figdor CG. The C-type lectin DC-SIGN internalizes soluble antigens and HIV-1 virionsviaa clathrin-dependent mechanism. Eur J Immunol 2009; 39:1923-8. [DOI: 10.1002/eji.200939351] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|