1
|
Sun F, Yang CL, Wang FX, Rong SJ, Luo JH, Lu WY, Yue TT, Wang CY, Liu SW. Pancreatic draining lymph nodes (PLNs) serve as a pathogenic hub contributing to the development of type 1 diabetes. Cell Biosci 2023; 13:156. [PMID: 37641145 PMCID: PMC10464122 DOI: 10.1186/s13578-023-01110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic, progressive autoinflammatory disorder resulting from the breakdown of self-tolerance and unrestrained β cell-reactive immune response. Activation of immune cells is initiated in islet and amplified in lymphoid tissues, especially those pancreatic draining lymph nodes (PLNs). The knowledge of PLNs as the hub of aberrant immune response is continuously being replenished and renewed. Here we provide a PLN-centered view of T1D pathogenesis and emphasize that PLNs integrate signal inputs from the pancreas, gut, viral infection or peripheral circulation, undergo immune remodeling within the local microenvironment and export effector cell components into pancreas to affect T1D progression. In accordance, we suggest that T1D intervention can be implemented by three major ways: cutting off the signal inputs into PLNs (reduce inflammatory β cell damage, enhance gut integrity and control pathogenic viral infections), modulating the immune activation status of PLNs and blocking the outputs of PLNs towards pancreatic islets. Given the dynamic and complex nature of T1D etiology, the corresponding intervention strategy is thus required to be comprehensive to ensure optimal therapeutic efficacy.
Collapse
Affiliation(s)
- Fei Sun
- Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Liang Yang
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fa-Xi Wang
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan-Jie Rong
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Hui Luo
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wan-Ying Lu
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian-Tian Yue
- Devision of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong-Yi Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China.
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shi-Wei Liu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
2
|
Giannoukakis N. Tolerogenic dendritic cells in type 1 diabetes: no longer a concept. Front Immunol 2023; 14:1212641. [PMID: 37388741 PMCID: PMC10303908 DOI: 10.3389/fimmu.2023.1212641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Tolerogenic dendritic cells (tDC) arrest the progression of autoimmune-driven dysglycemia into clinical, insulin-requiring type 1 diabetes (T1D) and preserve a critical mass of β cells able to restore some degree of normoglycemia in new-onset clinical disease. The safety of tDC, generated ex vivo from peripheral blood leukocytes, has been demonstrated in phase I clinical studies. Accumulating evidence shows that tDC act via multiple layers of immune regulation arresting the action of pancreatic β cell-targeting effector lymphocytes. tDC share a number of phenotypes and mechanisms of action, independent of the method by which they are generated ex vivo. In the context of safety, this yields confidence that the time has come to test the best characterized tDC in phase II clinical trials in T1D, especially given that tDC are already being tested for other autoimmune conditions. The time is also now to refine purity markers and to "universalize" the methods by which tDC are generated. This review summarizes the current state of tDC therapy for T1D, presents points of intersection of the mechanisms of action that the different embodiments use to induce tolerance, and offers insights into outstanding matters to address as phase II studies are imminent. Finally, we present a proposal for co-administration and serially-alternating administration of tDC and T-regulatory cells (Tregs) as a synergistic and complementary approach to prevent and treat T1D.
Collapse
Affiliation(s)
- Nick Giannoukakis
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Matsumoto M, Tsuneyama K, Morimoto J, Hosomichi K, Matsumoto M, Nishijima H. Tissue-specific autoimmunity controlled by Aire in thymic and peripheral tolerance mechanisms. Int Immunol 2020; 32:117-131. [PMID: 31586207 PMCID: PMC7005526 DOI: 10.1093/intimm/dxz066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 10/02/2019] [Indexed: 01/14/2023] Open
Abstract
Tissue-specific autoimmune diseases are assumed to arise through malfunction of two checkpoints for immune tolerance: defective elimination of autoreactive T cells in the thymus and activation of these T cells by corresponding autoantigens in the periphery. However, evidence for this model and the outcome of such alterations in each or both of the tolerance mechanisms have not been sufficiently investigated. We studied these issues by expressing human AIRE (huAIRE) as a modifier of tolerance function in NOD mice wherein the defects of thymic and peripheral tolerance together cause type I diabetes (T1D). Additive huAIRE expression in the thymic stroma had no major impact on the production of diabetogenic T cells in the thymus. In contrast, huAIRE expression in peripheral antigen-presenting cells (APCs) rendered the mice resistant to T1D, while maintaining other tissue-specific autoimmune responses and antibody production against an exogenous protein antigen, because of the loss of Xcr1+ dendritic cells, an essential component for activating diabetogenic T cells in the periphery. These results contrast with our recent demonstration that huAIRE expression in both the thymic stroma and peripheral APCs resulted in the paradoxical development of muscle-specific autoimmunity. Our results reveal that tissue-specific autoimmunity is differentially controlled by a combination of thymic function and peripheral tolerance, which can be manipulated by expression of huAIRE/Aire in each or both of the tolerance mechanisms.
Collapse
Affiliation(s)
- Minoru Matsumoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, Tokushima, Japan
| | - Junko Morimoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Mitsuru Matsumoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Hitoshi Nishijima
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| |
Collapse
|
4
|
Pogu J, Tzima S, Kollias G, Anegon I, Blancou P, Simon T. Genetic Restoration of Heme Oxygenase-1 Expression Protects from Type 1 Diabetes in NOD Mice. Int J Mol Sci 2019; 20:ijms20071676. [PMID: 30987262 PMCID: PMC6480274 DOI: 10.3390/ijms20071676] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 11/16/2022] Open
Abstract
Antigen-presenting cells (APCs) including dendritic cells (DCs) play a critical role in the development of autoimmune diseases by presenting self-antigen to T-cells. Different signals modulate the ability of APCs to activate or tolerize autoreactive T-cells. Since the expression of heme oxygenase-1 (HO-1) by APCs has been associated with the tolerization of autoreactive T-cells, we hypothesized that HO-1 expression might be altered in APCs from autoimmune-prone non-obese diabetic (NOD) mice. We found that, compared to control mice, NOD mice exhibited a lower percentage of HO-1-expressing cells among the splenic DCs, suggesting an impairment of their tolerogenic functions. To investigate whether restored expression of HO-1 in APCs could alter the development of diabetes in NOD mice, we generated a transgenic mouse strain in which HO-1 expression can be specifically induced in DCs using a tetracycline-controlled transcriptional activation system. Mice in which HO-1 expression was induced in DCs exhibited a lower Type 1 Diabetes (T1D) incidence and a reduced insulitis compared to non-induced mice. Upregulation of HO-1 in DCs also prevented further increase of glycemia in recently diabetic NOD mice. Altogether, our data demonstrated the potential of induction of HO-1 expression in DCs as a preventative treatment, and potential as a curative approach for T1D.
Collapse
Affiliation(s)
- Julien Pogu
- Centre de Recherche en Transplantation et Immunologie, Institut National de la Santé Et de la Recherche Médicale (INSERM), Université de Nantes, 44000 Nantes, France.
| | - Sotiria Tzima
- Institute of Immunology, Biomedical Sciences Research Centre "Alexander Fleming", Vari, 210 Attica, Greece.
| | - Georges Kollias
- Institute of Immunology, Biomedical Sciences Research Centre "Alexander Fleming", Vari, 210 Attica, Greece.
| | - Ignacio Anegon
- Centre de Recherche en Transplantation et Immunologie, Institut National de la Santé Et de la Recherche Médicale (INSERM), Université de Nantes, 44000 Nantes, France.
| | - Philippe Blancou
- Centre de Recherche en Transplantation et Immunologie, Institut National de la Santé Et de la Recherche Médicale (INSERM), Université de Nantes, 44000 Nantes, France.
- Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France.
| | - Thomas Simon
- Centre de Recherche en Transplantation et Immunologie, Institut National de la Santé Et de la Recherche Médicale (INSERM), Université de Nantes, 44000 Nantes, France.
- Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France.
| |
Collapse
|
5
|
Creusot RJ, Postigo-Fernandez J, Teteloshvili N. Altered Function of Antigen-Presenting Cells in Type 1 Diabetes: A Challenge for Antigen-Specific Immunotherapy? Diabetes 2018; 67:1481-1494. [PMID: 30030289 PMCID: PMC6054431 DOI: 10.2337/db17-1564] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes (T1D) arises from a failure to maintain tolerance to specific β-cell antigens. Antigen-specific immunotherapy (ASIT) aims to reestablish immune tolerance through the supply of pertinent antigens to specific cell types or environments that are suitable for eliciting tolerogenic responses. However, antigen-presenting cells (APCs) in T1D patients and in animal models of T1D are affected by a number of alterations, some due to genetic polymorphism. Combination of these alterations, impacting the number, phenotype, and function of APC subsets, may account for both the underlying tolerance deficiency and for the limited efficacy of ASITs so far. In this comprehensive review, we examine different aspects of APC function that are pertinent to tolerance induction and summarize how they are altered in the context of T1D. We attempt to reconcile 25 years of studies on this topic, highlighting genetic, phenotypic, and functional features that are common or distinct between humans and animal models. Finally, we discuss the implications of these defects and the challenges they might pose for the use of ASITs to treat T1D. Better understanding of these APC alterations will help us design more efficient ways to induce tolerance.
Collapse
Affiliation(s)
- Rémi J Creusot
- Columbia Center for Translational Immunology, Naomi Berrie Diabetes Center and Department of Medicine, Columbia University Medical Center, New York, NY
| | - Jorge Postigo-Fernandez
- Columbia Center for Translational Immunology, Naomi Berrie Diabetes Center and Department of Medicine, Columbia University Medical Center, New York, NY
| | - Nato Teteloshvili
- Columbia Center for Translational Immunology, Naomi Berrie Diabetes Center and Department of Medicine, Columbia University Medical Center, New York, NY
| |
Collapse
|
6
|
Fang C, Huang Y, Pei Y, Zhang HH, Chen X, Guo H, Li S, Ji X, Hu J. Genome-wide gene expression profiling reveals that CD274 is up-regulated new-onset type 1 diabetes mellitus. Acta Diabetol 2017; 54:757-767. [PMID: 28577136 DOI: 10.1007/s00592-017-1005-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/19/2017] [Indexed: 11/25/2022]
Abstract
AIMS Early studies have identified type 1 diabetes mellitus (T1DM) as a disease that is caused by the autoimmune destruction of the insulin-producing pancreatic β-cells. Genetics, environment and the immune pathogenesis of T1DM are three major pillars of T1DM research. We try to understand the changes in the gene expression profile during the pathogenesis of T1DM. METHODS We performed a systematic search in the Gene Expression Omnibus (GEO) database for microarray studies of T1DM with samples taken at or before the T1DM onset. RESULTS The results of an integrated analysis of different GEO datasets and a comparison of the gene expression level in T1DM samples taken at the time of appearance of the islet autoantibodies, 1 year before T1DM onset, and at the time of T1DM onset showed that CD274, which encodes PD-L1, was up-regulated in the newly onset T1DM samples. CD274 had a stable expression level in the control samples but showed a gradual up-regulation from the appearance of autoantibodies to the onset of T1DM. CONCLUSIONS These results indicate that CD274 up-regulation in T1DM is correlated with disease pathogenesis. PD-L1 might play a protective role in preventing the pancreatic islets from autoimmune destruction, which may help researchers find strategies for preventing the destruction process of pancreas β-cells in T1DM.
Collapse
Affiliation(s)
- Chen Fang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Yun Huang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Yufang Pei
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, Soochow University, Suzhou, 215003, Jiangsu, China
| | - Hong-Hong Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Xiaohong Chen
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Heming Guo
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Sicheng Li
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Xiaoyan Ji
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China.
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215123, Jiangsu, China.
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China.
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
7
|
Drexhage HA, Dik WA, Leenen PJM, Versnel MA. The Immune Pathogenesis of Type 1 Diabetes: Not Only Thinking Outside the Cell but Also Outside the Islet and Out of the Box. Diabetes 2016; 65:2130-3. [PMID: 27456621 DOI: 10.2337/dbi16-0030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Hemmo A Drexhage
- Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Wim A Dik
- Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Pieter J M Leenen
- Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marjan A Versnel
- Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
8
|
Hao S, Han X, Wang D, Yang Y, Li Q, Li X, Qiu C. Critical role of CCL22/CCR4 axis in the maintenance of immune homeostasis during apoptotic cell clearance by splenic CD8α(+) CD103(+) dendritic cells. Immunology 2016; 148:174-86. [PMID: 26868141 PMCID: PMC4863574 DOI: 10.1111/imm.12596] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 02/07/2016] [Accepted: 02/08/2016] [Indexed: 12/19/2022] Open
Abstract
Macrophages and dendritic cells (DCs) in murine spleen are essential for the maintenance of immune homeostasis by elimination of blood-borne foreign particles and organisms. It has been reported that splenic DCs, especially CD8α(+) CD103(+) DCs, are responsible for tolerance to apoptosis-associated antigens. However, the molecular mechanism by which these DCs maintain immune homeostasis by blood-borne apoptotic cell clearance remains elusive. Here, we found that the CCL22/CCR4 axis played a critical role in the maintenance of immune homeostasis during apoptotic cell clearance by splenic CD8α(+) CD103(+) DCs. The present results revealed that systemic administration of apoptotic cells rapidly induced a large number of CCL22 and CCR4(+) regulatory T (Treg) cells in the spleen of C57BL/6J mice. Further study demonstrated that CD8α(+) CD103(+) DCs dominantly produce much higher CCL22 than CD8α(+) CD103(-) DCs. Moreover, the transient deletion of CD8α(+) CD103(+) DCs caused a decrease in CCL22 levels together with CCR4(+) Treg cell percentage. Subsequently, the levels of some pro-inflammatory cytokines, such as interleukin-17 and interferon-γ in the spleen with the absence of CD8α(+) CD103(+) DCs increased in response to the administration of apoptotic cells. Hence, intravenous injection of apoptotic cells induced a subsequent increase in CCL22 expression and CCR4(+) Treg cells, which contribute to the maintenance of immune homeostasis at least partially by splenic CD8α(+) CD103(+) DCs.
Collapse
Affiliation(s)
- Shengyu Hao
- Department of Cell BiologyShandong University School of MedicineJinanShandongChina
| | - Xiaolei Han
- Department of Cell BiologyShandong University School of MedicineJinanShandongChina
| | - Dan Wang
- Department of Cell BiologyShandong University School of MedicineJinanShandongChina
| | - Yang Yang
- Department of Cell BiologyShandong University School of MedicineJinanShandongChina
| | - Qiuting Li
- Department of Cell BiologyShandong University School of MedicineJinanShandongChina
| | - Xiangzhi Li
- Department of Cell BiologyShandong University School of MedicineJinanShandongChina
| | - Chun‐Hong Qiu
- Department of Cell BiologyShandong University School of MedicineJinanShandongChina
| |
Collapse
|
9
|
Rahman MJ, Rahir G, Dong MB, Zhao Y, Rodrigues KB, Hotta-Iwamura C, Chen Y, Guerrero A, Tarbell KV. Despite Increased Type 1 IFN, Autoimmune Nonobese Diabetic Mice Display Impaired Dendritic Cell Response to CpG and Decreased Nuclear Localization of IFN-Activated STAT1. THE JOURNAL OF IMMUNOLOGY 2016; 196:2031-40. [PMID: 26826238 DOI: 10.4049/jimmunol.1501239] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 12/23/2015] [Indexed: 12/12/2022]
Abstract
Innate immune signals help break self-tolerance to initiate autoimmune diseases such as type 1 diabetes, but innate contributions to subsequent regulation of disease progression are less clear. Most studies have measured in vitro innate responses of GM-CSF dendritic cells (DCs) that are functionally distinct from conventional DCs (cDCs) and do not reflect in vivo DC subsets. To determine whether autoimmune NOD mice have alterations in type 1 IFN innate responsiveness, we compared cDCs from prediabetic NOD and control C57BL/6 (B6) mice stimulated in vivo with the TLR9 ligand CpG, a strong type 1 IFN inducer. In response to CpG, NOD mice produce more type 1 IFN and express higher levels of CD40, and NOD monocyte DCs make more TNF. However, the overall CpG-induced transcriptional response is muted in NOD cDCs. Of relevance the costimulatory proteins CD80/CD86, signals needed for regulatory T cell homeostasis, are upregulated less on NOD cDCs. Interestingly, NOD Rag1(-/-) mice also display a defect in CpG-induced CD86 upregulation compared with B6 Rag1(-/-), indicating this particular innate alteration precedes adaptive autoimmunity. The impaired response in NOD DCs is likely downstream of the IFN-α/β receptor because DCs from NOD and B6 mice show similar CpG-induced CD86 levels when anti-IFN-α/β receptor Ab is added. IFN-α-induced nuclear localization of activated STAT1 is markedly reduced in NOD CD11c(+) cells, consistent with lower type 1 IFN responsiveness. In conclusion, NOD DCs display altered innate responses characterized by enhanced type 1 IFN and activation of monocyte-derived DCs but diminished cDC type 1 IFN response.
Collapse
Affiliation(s)
- M Jubayer Rahman
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Gwendoline Rahir
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Matthew B Dong
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Yongge Zhao
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Kameron B Rodrigues
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Chie Hotta-Iwamura
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Ye Chen
- Bioinformatics and Systems Biology Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Alan Guerrero
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Kristin V Tarbell
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
10
|
Hotta-Iwamura C, Tarbell KV. Type 1 diabetes genetic susceptibility and dendritic cell function: potential targets for treatment. J Leukoc Biol 2016; 100:65-80. [PMID: 26792821 DOI: 10.1189/jlb.3mr1115-500r] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/21/2015] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes is an autoimmune disease that results from the defective induction or maintenance of T cell tolerance against islet β cell self-antigens. Under steady-state conditions, dendritic cells with tolerogenic properties are critical for peripheral immune tolerance. Tolerogenic dendritic cells can induce T cell anergy and deletion and, in some contexts, induce or expand regulatory T cells. Dendritic cells contribute to both immunomodulatory effects and triggering of pathogenesis in type 1 diabetes. This immune equilibrium is affected by both genetic and environmental factors that contribute to the development of type 1 diabetes. Genome-wide association studies and disease association studies have identified >50 polymorphic loci that lend susceptibility or resistance to insulin-dependent diabetes mellitus. In parallel, diabetes susceptibility regions known as insulin-dependent diabetes loci have been identified in the nonobese diabetic mouse, a model for human type 1 diabetes, providing a better understanding of potential immunomodulatory factors in type 1 diabetes risk. Most genetic candidates have annotated immune cell functions, but the focus has been on changes to T and B cells. However, it is likely that some of the genomic susceptibility in type 1 diabetes directly interrupts the tolerogenic potential of dendritic cells in the pathogenic context of ongoing autoimmunity. Here, we will review how gene polymorphisms associated with autoimmune diabetes may influence dendritic cell development and maturation processes that could lead to alterations in the tolerogenic function of dendritic cells. These insights into potential tolerogenic and pathogenic roles for dendritic cells have practical implications for the clinical manipulation of dendritic cells toward tolerance to prevent and treat type 1 diabetes.
Collapse
Affiliation(s)
- Chie Hotta-Iwamura
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kristin V Tarbell
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Price JD, Hotta-Iwamura C, Zhao Y, Beauchamp NM, Tarbell KV. DCIR2+ cDC2 DCs and Zbtb32 Restore CD4+ T-Cell Tolerance and Inhibit Diabetes. Diabetes 2015; 64:3521-31. [PMID: 26070317 PMCID: PMC4587633 DOI: 10.2337/db14-1880] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 06/05/2015] [Indexed: 12/15/2022]
Abstract
During autoimmunity, the normal ability of dendritic cells (DCs) to induce T-cell tolerance is disrupted; therefore, autoimmune disease therapies based on cell types and molecular pathways that elicit tolerance in the steady state may not be effective. To determine which DC subsets induce tolerance in the context of chronic autoimmunity, we used chimeric antibodies specific for DC inhibitory receptor 2 (DCIR2) or DEC-205 to target self-antigen to CD11b(+) (cDC2) DCs and CD8(+) (cDC1) DCs, respectively, in autoimmune-prone nonobese diabetic (NOD) mice. Antigen presentation by DCIR2(+) DCs but not DEC-205(+) DCs elicited tolerogenic CD4(+) T-cell responses in NOD mice. β-Cell antigen delivered to DCIR2(+) DCs delayed diabetes induction and induced increased T-cell apoptosis without interferon-γ (IFN-γ) or sustained expansion of autoreactive CD4(+) T cells. These divergent responses were preceded by differential gene expression in T cells early after in vivo stimulation. Zbtb32 was higher in T cells stimulated with DCIR2(+) DCs, and overexpression of Zbtb32 in T cells inhibited diabetes development, T-cell expansion, and IFN-γ production. Therefore, we have identified DCIR2(+) DCs as capable of inducing antigen-specific tolerance in the face of ongoing autoimmunity and have also identified Zbtb32 as a suppressive transcription factor that controls T cell-mediated autoimmunity.
Collapse
Affiliation(s)
- Jeffrey D Price
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Chie Hotta-Iwamura
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Yongge Zhao
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Nicole M Beauchamp
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Kristin V Tarbell
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
12
|
Pearson JA, Wong FS, Wen L. The importance of the Non Obese Diabetic (NOD) mouse model in autoimmune diabetes. J Autoimmun 2015; 66:76-88. [PMID: 26403950 DOI: 10.1016/j.jaut.2015.08.019] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 08/26/2015] [Indexed: 02/06/2023]
Abstract
Type 1 Diabetes (T1D) is an autoimmune disease characterized by the pancreatic infiltration of immune cells resulting in T cell-mediated destruction of the insulin-producing beta cells. The successes of the Non-Obese Diabetic (NOD) mouse model have come in multiple forms including identifying key genetic and environmental risk factors e.g. Idd loci and effects of microorganisms including the gut microbiota, respectively, and how they may contribute to disease susceptibility and pathogenesis. Furthermore, the NOD model also provides insights into the roles of the innate immune cells as well as the B cells in contributing to the T cell-mediated disease. Unlike many autoimmune disease models, the NOD mouse develops spontaneous disease and has many similarities to human T1D. Through exploiting these similarities many targets have been identified for immune-intervention strategies. Although many of these immunotherapies did not have a significant impact on human T1D, they have been shown to be effective in the NOD mouse in early stage disease, which is not equivalent to trials in newly-diagnosed patients with diabetes. However, the continued development of humanized NOD mice would enable further clinical developments, bringing T1D research to a new translational level. Therefore, it is the aim of this review to discuss the importance of the NOD model in identifying the roles of the innate immune system and the interaction with the gut microbiota in modifying diabetes susceptibility. In addition, the role of the B cells will also be discussed with new insights gained through B cell depletion experiments and the impact on translational developments. Finally, this review will also discuss the future of the NOD mouse and the development of humanized NOD mice, providing novel insights into human T1D.
Collapse
Affiliation(s)
- James A Pearson
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT, USA
| | - F Susan Wong
- Diabetes Research Group, Institute of Molecular & Experimental Medicine, School of Medicine, Cardiff University, Wales, UK
| | - Li Wen
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
13
|
Price JD, Tarbell KV. The Role of Dendritic Cell Subsets and Innate Immunity in the Pathogenesis of Type 1 Diabetes and Other Autoimmune Diseases. Front Immunol 2015; 6:288. [PMID: 26124756 PMCID: PMC4466467 DOI: 10.3389/fimmu.2015.00288] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/18/2015] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are key antigen-presenting cells that have an important role in autoimmune pathogenesis. DCs control both steady-state T cell tolerance and activation of pathogenic responses. The balance between these two outcomes depends on several factors, including genetic susceptibility, environmental signals that stimulate varied innate responses, and which DC subset is presenting antigen. Although the specific DC phenotype can diverge depending on the tissue location and context, there are four main subsets identified in both mouse and human: conventional cDC1 and cDC2, plasmacytoid DCs, and monocyte-derived DCs. In this review, we will discuss the role of these subsets in autoimmune pathogenesis and regulation, as well as the genetic and environmental signals that influence their function. Specific topics to be addressed include impact of susceptibility loci on DC subsets, alterations in DC subset development, the role of infection- and host-derived innate inflammatory signals, and the role of the intestinal microbiota on DC phenotype. The effects of these various signals on disease progression and the relative effects of DC subset composition and maturation level of DCs will be examined. These areas will be explored using examples from several autoimmune diseases but will focus mainly on type 1 diabetes.
Collapse
Affiliation(s)
- Jeffrey D Price
- Diabetes, Endocrinology, and Obesity Branch, Immune Tolerance Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, MD , USA
| | - Kristin V Tarbell
- Diabetes, Endocrinology, and Obesity Branch, Immune Tolerance Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, MD , USA
| |
Collapse
|
14
|
Grosse L, Carvalho LA, Wijkhuijs AJM, Bellingrath S, Ruland T, Ambrée O, Alferink J, Ehring T, Drexhage HA, Arolt V. Clinical characteristics of inflammation-associated depression: Monocyte gene expression is age-related in major depressive disorder. Brain Behav Immun 2015; 44:48-56. [PMID: 25150007 DOI: 10.1016/j.bbi.2014.08.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/10/2014] [Accepted: 08/12/2014] [Indexed: 11/25/2022] Open
Abstract
Increased inflammatory activation might only be present in a subgroup of depressed individuals in which immune processes are especially relevant to disease development. We aimed to analyze demographic, depression, and trauma characteristics of major depressive disorder (MDD) patients with regard to inflammatory monocyte gene expression. Fifty-six naturalistically treated MDD patients (32 ± 12 years) and 57 healthy controls (HC; 31 ± 11 years) were analyzed by the Inventory of Depressive Symptomatology (IDS) and by the Childhood Trauma Questionnaire (CTQ). We determined the expression of 38 inflammatory and immune activation genes including the glucocorticoid receptor (GR)α and GRβ genes in purified CD14(+) monocytes using quantitative-polymerase chain reaction (RT-qPCR). Monocyte gene expression was age-dependent, particularly in MDD patients. Increased monocyte gene expression and decreased GRα/β ratio were only present in MDD patients aged ⩾ 28 years. Post hoc analyses of monocyte immune activation in patients <28 years showed two subgroups: a subgroup with a severe course of depression (recurrent type, onset <15 years) - additionally characterized by panic/arousal symptoms and childhood trauma - that had a monocyte gene expression similar to HC, and a second subgroup with a milder course of the disorder (73% first episode depression, onset ⩾15 years) - additionally characterized by the absence of panic symptoms - that exhibited a strongly reduced inflammatory monocyte activation compared to HC. In conclusion, monocyte immune activation was not uniformly raised in MDD patients but was increased only in patients of 28 years and older.
Collapse
Affiliation(s)
- Laura Grosse
- Department of Psychiatry and Psychotherapy, University of Münster, Germany.
| | - Livia A Carvalho
- Department of Epidemiology and Public Health, University College London, United Kingdom
| | | | | | - Tillmann Ruland
- Department of Psychiatry and Psychotherapy, University of Münster, Germany
| | - Oliver Ambrée
- Department of Psychiatry and Psychotherapy, University of Münster, Germany
| | - Judith Alferink
- Department of Psychiatry and Psychotherapy, University of Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Germany
| | - Thomas Ehring
- Department of Psychology, University of Münster, Germany
| | - Hemmo A Drexhage
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| | - Volker Arolt
- Department of Psychiatry and Psychotherapy, University of Münster, Germany
| |
Collapse
|
15
|
Beumer W, Welzen-Coppens JMC, van Helden-Meeuwsen CG, Gibney SM, Drexhage HA, Versnel MA. The gene expression profile of CD11c+ CD8α- dendritic cells in the pre-diabetic pancreas of the NOD mouse. PLoS One 2014; 9:e103404. [PMID: 25166904 PMCID: PMC4148310 DOI: 10.1371/journal.pone.0103404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 07/01/2014] [Indexed: 11/19/2022] Open
Abstract
Two major dendritic cell (DC) subsets have been described in the pancreas of mice: The CD11c+ CD8α- DCs (strong CD4+ T cell proliferation inducers) and the CD8α+ CD103+ DCs (T cell apoptosis inducers). Here we analyzed the larger subset of CD11c+ CD8α- DCs isolated from the pancreas of pre-diabetic NOD mice for genome-wide gene expression (validated by Q-PCR) to elucidate abnormalities in underlying gene expression networks. CD11c+ CD8α- DCs were isolated from 5 week old NOD and control C57BL/6 pancreas. The steady state pancreatic NOD CD11c+ CD8α- DCs showed a reduced expression of several gene networks important for the prime functions of these cells, i.e. for cell renewal, immune tolerance induction, migration and for the provision of growth factors including those for beta cell regeneration. A functional in vivo BrdU incorporation test showed the reduced proliferation of steady state pancreatic DC. The reduced expression of tolerance induction genes (CD200R, CCR5 and CD24) was supported on the protein level by flow cytometry. Also previously published functional tests on maturation, immune stimulation and migration confirm the molecular deficits of NOD steady state DC. Despite these deficiencies NOD pancreas CD11c+ CD8α- DCs showed a hyperreactivity to LPS, which resulted in an enhanced pro-inflammatory state characterized by a gene profile of an enhanced expression of a number of classical inflammatory cytokines. The enhanced up-regulation of inflammatory genes was supported by the in vitro cytokine production profile of the DCs. In conclusion, our data show that NOD pancreatic CD11c+ CD8α- DCs show various deficiencies in steady state, while hyperreactive when encountering a danger signal such as LPS.
Collapse
Affiliation(s)
- Wouter Beumer
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | | | - Sinead M. Gibney
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Hemmo A. Drexhage
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- * E-mail:
| | - Marjan A. Versnel
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
16
|
Expression of IL-2 in β cells by AAV8 gene transfer in pre-diabetic NOD mice prevents diabetes through activation of FoxP3-positive regulatory T cells. Gene Ther 2014; 21:715-22. [PMID: 24849041 DOI: 10.1038/gt.2014.45] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/21/2014] [Accepted: 03/26/2014] [Indexed: 01/05/2023]
Abstract
We previously demonstrated that intraperitoneal delivery of adeno-associated virus serotype 8 (AAV8) stably transduces the pancreas, including the β cells in the pancreatic islets. We further demonstrated the ability to deliver and express target genes specifically in β cells for at least 6 months using a murine insulin promoter in a double-stranded, self-complementary AAV vector. Recombinant interleukin (IL)-2 has been shown to induce CD4(+)CD25(+) regulatory T cells (Tregs) in several mouse models of autoimmune disease. Here we evaluated the effects of double-stranded adeno-associated virus serotype 8-mouse insulin promoter (dsAAV8-mIP)-mediated delivery of 2 to pancreatic β cells in non-obese diabetic (NOD) mice. AAV8-mIP-mediated gene expression of IL-2 to pancreatic β cells of 10-week-old NOD mice prevented the onset of hyperglycemia in NOD mice more in a dose-dependent manner with the lower dose of virus being more effective than a higher dose of AAV-mIP-IL-2 and IL-4. Moreover, the local β-cell expression of IL-2 increased the number of CD4(+)CD25(+)FoxP3(+) cells in the pancreatic lymph node (PLN) and SPL in both NOD and C57BL/6 mice. Taken together, these results demonstrate that local, low expression of mIL-2 in islets prevents progress of diabetes through the regulation of Tregs.
Collapse
|
17
|
Morel PA. Dendritic cell subsets in type 1 diabetes: friend or foe? Front Immunol 2013; 4:415. [PMID: 24367363 PMCID: PMC3853773 DOI: 10.3389/fimmu.2013.00415] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes (T1D) is a T cell mediated autoimmune disease characterized by immune mediated destruction of the insulin-producing β cells in the islets of Langerhans. Dendritic cells (DC) have been implicated in the pathogenesis of T1D and are also used as immunotherapeutic agents. Plasmacytoid (p)DC have been shown to have both protective and pathogenic effects and a newly described merocytic DC population has been shown to break tolerance in the mouse model of T1D, the non-obese diabetic (NOD) mouse. We have used DC populations to prevent the onset of T1D in NOD mice and clinical trials of DC therapy in T1D diabetes have been initiated. In this review we will critically examine the recent published literature on the role of DC subsets in the induction and regulation of the autoimmune response in T1D.
Collapse
Affiliation(s)
- Penelope A Morel
- Department of Immunology, University of Pittsburgh , Pittsburgh, PA , USA
| |
Collapse
|