1
|
Alonso‐Eiras J, Anton IM. Multifaceted role of the actin-binding protein WIP: Promotor and inhibitor of tumor progression and dissemination. Cytoskeleton (Hoboken) 2025; 82:186-196. [PMID: 39329352 PMCID: PMC11904860 DOI: 10.1002/cm.21935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Cancer cells depend on actin cytoskeleton reorganization to achieve hallmark malignant functions including abnormal activation, proliferation, migration and invasiveness. (Neural)-Wiskott-Aldrich Syndrome protein ((N-)WASP) binds actin and forms a complex with the WASP-interacting protein (WIP), which plays a critical role in regulating the actin cytoskeleton, through (N)-WASP-dependent and independent functions. Mutations in the WIP gene (WIPF1) lead to severe early onset immunodeficiency in humans and severe autoimmunity and shortened lifespan in mice. This review covers the available evidence about the physiological role of WIP in different tissues and its contribution to human disease, focusing on cancer. In solid tumors overexpression of WIP has mostly been associated with tumor initiation, progression and dissemination through matrix degradation by invadopodia, while a suppressive function has been shown for WIP in certain hematological cancers. Interestingly, a minority of studies suggest a protective role for WIP in specific tumor contexts. These data support the need for further research to fully understand the mechanisms underlying WIP's diverse functions in health and disease and raise important questions for future work.
Collapse
Affiliation(s)
- Jorge Alonso‐Eiras
- Ciencias de la Salud, Escuela de Másteres OficialesUniversidad Rey Juan CarlosMadridSpain
| | - Ines M. Anton
- Departamento de Biología Molecular y CelularCentro Nacional de Biotecnología (CNB‐CSIC)MadridSpain
| |
Collapse
|
2
|
Mandal S, Melo M, Gordiichuk P, Acharya S, Poh YC, Li N, Aung A, Dane EL, Irvine DJ, Kumari S. WASP facilitates tumor mechanosensitivity in T lymphocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560434. [PMID: 37873483 PMCID: PMC10592916 DOI: 10.1101/2023.10.02.560434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Cytotoxic T lymphocytes (CTLs) carry out immunosurveillance by scanning target cells of diverse physical properties for the presence of antigens. While the recognition of cognate antigen by the T cell receptor is the primary signal for CTL activation, it has become increasingly clear that the mechanical stiffness of target cells plays an important role in antigen-triggered T cell responses. However, the molecular machinery within CTLs that transduces the mechanical information of tumor cells remains unclear. We find that CTL's mechanosensitive ability requires the activity of the actin-organizing protein Wiskott-Aldrich Syndrome Protein (WASP). WASP activation is modulated by the mechanical properties of antigen-presenting contexts across a wide range of target cell stiffnesses and activated WASP then mediates mechanosensitive activation of early TCR signaling markers in the CTL. Our results provide a molecular link between antigen mechanosensing and CTL immune response and suggest that CTL-intrinsic cytoskeletal organizing principles enable the processing of mechanical information from diverse target cells.
Collapse
Affiliation(s)
| | - Mariane Melo
- Koch Institute of Integrative Cancer Research, MIT, Cambridge, USA
| | | | | | - Yeh-Chuin Poh
- Koch Institute of Integrative Cancer Research, MIT, Cambridge, USA
| | - Na Li
- Koch Institute of Integrative Cancer Research, MIT, Cambridge, USA
| | - Aereas Aung
- Koch Institute of Integrative Cancer Research, MIT, Cambridge, USA
| | - Eric L. Dane
- Koch Institute of Integrative Cancer Research, MIT, Cambridge, USA
| | - Darrell J. Irvine
- Koch Institute of Integrative Cancer Research, MIT, Cambridge, USA
- Department of Biological Engineering, MIT, Cambridge, USA
- Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Sudha Kumari
- Indian Institute of Science, Bengaluru, India
- Koch Institute of Integrative Cancer Research, MIT, Cambridge, USA
| |
Collapse
|
3
|
Vieira RC, Pinho LG, Westerberg LS. Understanding immunoactinopathies: A decade of research on WAS gene defects. Pediatr Allergy Immunol 2023; 34:e13951. [PMID: 37102395 DOI: 10.1111/pai.13951] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/28/2023]
Abstract
Immunoactinopathies caused by mutations in actin-related proteins are a growing group of inborn errors of immunity (IEI). Immunoactinopathies are caused by a dysregulated actin cytoskeleton and affect hematopoietic cells especially because of their unique capacity to survey the body for invading pathogens and altered self, such as cancer cells. These cell motility and cell-to-cell interaction properties depend on the dynamic nature of the actin cytoskeleton. Wiskott-Aldrich syndrome (WAS) is the archetypical immunoactinopathy and the first described. WAS is caused by loss-of-function and gain-of-function mutations in the actin regulator WASp, uniquely expressed in hematopoietic cells. Mutations in WAS cause a profound disturbance of actin cytoskeleton regulation of hematopoietic cells. Studies during the last 10 years have shed light on the specific effects on different hematopoietic cells, revealing that they are not affected equally by mutations in the WAS gene. Moreover, the mechanistic understanding of how WASp controls nuclear and cytoplasmatic activities may help to find therapeutic alternatives according to the site of the mutation and clinical phenotypes. In this review, we summarize recent findings that have added to the complexity and increased our understanding of WAS-related diseases and immunoactinopathies.
Collapse
Affiliation(s)
- Rhaissa Calixto Vieira
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Lia Goncalves Pinho
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Pineau J, Moreau H, Duménil AML, Pierobon P. Polarity in immune cells. Curr Top Dev Biol 2023; 154:197-222. [PMID: 37100518 DOI: 10.1016/bs.ctdb.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Immune cells are responsible for pathogen detection and elimination, as well as for signaling to other cells the presence of potential danger. In order to mount an efficient immune response, they need to move and search for a pathogen, interact with other cells, and diversify the population by asymmetric cell division. All these actions are regulated by cell polarity: cell polarity controls cell motility, which is crucial for scanning peripheral tissues to detect pathogens, and recruiting immune cells to sites of infection; immune cells, in particular lymphocytes, communicate with each other by a direct contact called immunological synapse, which entails a global polarization of the cell and plays a role in activating lymphocyte response; finally, immune cells divide asymmetrically from a precursor, generating a diversity of phenotypes and cell types among daughter cells, such as memory and effector cells. This review aims at providing an overview from both biology and physics perspectives of how cell polarity shapes the main immune cell functions.
Collapse
Affiliation(s)
- Judith Pineau
- Institut Curie, PSL Research University, INSERM U932, Paris, Cedex, France; Université Paris Cité, Paris, France
| | - Hélène Moreau
- Institut Curie, PSL Research University, INSERM U932, Paris, Cedex, France
| | | | - Paolo Pierobon
- Institut Curie, PSL Research University, INSERM U932, Paris, Cedex, France.
| |
Collapse
|
5
|
Velnati S, Centonze S, Rossino G, Purghè B, Antona A, Racca L, Mula S, Ruffo E, Malacarne V, Malerba M, Manfredi M, Graziani A, Baldanzi G. Wiskott-Aldrich syndrome protein interacts and inhibits diacylglycerol kinase alpha promoting IL-2 induction. Front Immunol 2023; 14:1043603. [PMID: 37138877 PMCID: PMC10149931 DOI: 10.3389/fimmu.2023.1043603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Background Phosphorylation of diacylglycerol by diacylglycerol-kinases represents a major inhibitory event constraining T cell activation upon antigen engagement. Efficient TCR signalling requires the inhibition of the alpha isoform of diacylglycerol kinase, DGKα, by an unidentified signalling pathway triggered by the protein adaptor SAP. We previously demonstrated that, in SAP absence, excessive DGKα activity makes the T cells resistant to restimulation-induced cell death (RICD), an apoptotic program counteracting excessive T cell clonal expansion. Results Herein, we report that the Wiskott-Aldrich syndrome protein (WASp) inhibits DGKα through a specific interaction of the DGKα recoverin homology domain with the WH1 domain of WASp. Indeed, WASp is necessary and sufficient for DGKα inhibition, and this WASp function is independent of ARP2/3 activity. The adaptor protein NCK-1 and the small G protein CDC42 connect WASp-mediated DGKα inhibition to SAP and the TCR signalosome. In primary human T cells, this new signalling pathway is necessary for a full response in terms of IL-2 production, while minimally affecting TCR signalling and restimulation-induced cell death. Conversely, in T cells made resistant to RICD by SAP silencing, the enhanced DAG signalling due to DGKα inhibition is sufficient to restore apoptosis sensitivity. Conclusion We discover a novel signalling pathway where, upon strong TCR activation, the complex between WASp and DGKα blocks DGKα activity, allowing a full cytokine response.
Collapse
Affiliation(s)
- Suresh Velnati
- Department of Translational Medicine, Universitàdel Piemonte Orientale, Novara, Italy
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Sara Centonze
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Università del Piemonte Orientale, Novara, Italy
- Department of Heath Sciences, Università del Piemonte Orientale, Novara, Italy
- *Correspondence: Sara Centonze,
| | - Giulia Rossino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC), University of Turin, Turin, Italy
| | - Beatrice Purghè
- Department of Translational Medicine, Universitàdel Piemonte Orientale, Novara, Italy
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Annamaria Antona
- Department of Translational Medicine, Universitàdel Piemonte Orientale, Novara, Italy
| | - Luisa Racca
- Department of Translational Medicine, Universitàdel Piemonte Orientale, Novara, Italy
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Sabrina Mula
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC), University of Turin, Turin, Italy
| | - Elisa Ruffo
- Department of Surgery and Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Valeria Malacarne
- Department of Translational Medicine, Universitàdel Piemonte Orientale, Novara, Italy
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC), University of Turin, Turin, Italy
| | - Mario Malerba
- Department of Translational Medicine, Universitàdel Piemonte Orientale, Novara, Italy
- Respiratory Unit, Sant’Andrea Hospital, Vercelli, Italy
| | - Marcello Manfredi
- Department of Translational Medicine, Universitàdel Piemonte Orientale, Novara, Italy
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Andrea Graziani
- Department of Translational Medicine, Universitàdel Piemonte Orientale, Novara, Italy
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC), University of Turin, Turin, Italy
| | - Gianluca Baldanzi
- Department of Translational Medicine, Universitàdel Piemonte Orientale, Novara, Italy
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
6
|
Kramer DA, Piper HK, Chen B. WASP family proteins: Molecular mechanisms and implications in human disease. Eur J Cell Biol 2022; 101:151244. [PMID: 35667337 PMCID: PMC9357188 DOI: 10.1016/j.ejcb.2022.151244] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023] Open
Abstract
Proteins of the Wiskott-Aldrich syndrome protein (WASP) family play a central role in regulating actin cytoskeletal dynamics in a wide range of cellular processes. Genetic mutations or misregulation of these proteins are tightly associated with many diseases. The WASP-family proteins act by transmitting various upstream signals to their conserved WH2-Central-Acidic (WCA) peptide sequence at the C-terminus, which in turn binds to the Arp2/3 complex to stimulate the formation of branched actin networks at membranes. Despite this common feature, the regulatory mechanisms and cellular functions of distinct WASP-family proteins are very different. Here, we summarize and clarify our current understanding of WASP-family proteins and how disruption of their functions is related to human disease.
Collapse
Affiliation(s)
- Daniel A Kramer
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Hannah K Piper
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA.
| |
Collapse
|
7
|
Li W, Jia Y, Wang Y, Zhao Q, Yang L, Zeng T, Niu L, Dai R, Li Y, Zhao X, Wu J. WASp Deficiency Selectively Affects the TCR Diversity of Different Memory T Cell Subsets in WAS Chimeric Mice. Front Immunol 2022; 12:794795. [PMID: 35116029 PMCID: PMC8803657 DOI: 10.3389/fimmu.2021.794795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Background The T cell receptor (TCR) diversity is essential for effective T cell immunity. Previous studies showed that TCR diversity in Wiskott–Aldrich Syndrome (WAS) patients was severely impaired, especially in the memory T cell populations. Whether this defect was caused by intrinsic WASp deficiency or extrinsic reasons is still unclear. Methods We sorted different T cell subsets from the bone marrow chimeric mice model using both magnetic beads and flow cytometry. TCR repertoires of memory T cells, especially CD4+ effector memory T (TEM) cells and CD8+ central memory T (TCM) cells, were analyzed using the UMI quantitative high-throughput sequencing (HTS). Results An average of 5.51 million sequencing reads of 32 samples was obtained from the Illumina sequencing platform. Bioinformatic analyses showed that compared with wild type (WT), WAS knock out (KO)-CD4+ TEM cells exhibited increased Simpson index and decreased D50 index (P <0.05); The rank abundance curve of KO-CD4+ TEM cells was shorter and steeper than that of WT, and the angle of qD and q in KO-CD4+ TEM cells was lower than that of WT, while these indexes showed few changes between WT and KO chimeric mice in the CD8+TCM population. Therefore, it indicated that the restriction on the TCRVβ repertoires is majorly in KO-CD4+ TEM cells but not KO- CD8+ TCM cells. Principal Component Analysis (PCA), a comprehensive parameter for TCRVβ diversity, successfully segregated CD4+ TEM cells from WT and KO, but failed in CD8+ TCM cells. Among the total sequences of TRB, the usage of TRBV12.2, TRBV30, TRBV31, TRBV4, TRBD1, TRBD2, TRBJ1.1, and TRBJ1.4 showed a significant difference between WT-CD4+ TEM cells and KO-CD4+ TEM cells (P <0.05), while in CD8+ TCM cells, only the usage of TRBV12.2 and TRBV20 showed a substantial difference between WT and KO (P <0.05). No significant differences in the hydrophobicity and sequence length of TCRVβ were found between the WT and KO groups. Conclusion WASp deficiency selectively affected the TCR diversity of different memory T cell subsets, and it had more impact on the TCRVβ diversity of CD4+ TEM cells than CD8+ TCM cells. Moreover, the limitation of TCRVβ diversity of CD4+ TEM cells and CD8+ TCM cells in WAS was not severe but intrinsic.
Collapse
Affiliation(s)
- Wenyan Li
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yanjun Jia
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yanping Wang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Zhao
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Lu Yang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Zeng
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Linlin Niu
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Rongxin Dai
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Rheumatology and Immunology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yanan Li
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Rheumatology and Immunology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Zhao
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Junfeng Wu, ; Xiaodong Zhao,
| | - Junfeng Wu
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Rheumatology and Immunology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Junfeng Wu, ; Xiaodong Zhao,
| |
Collapse
|
8
|
German Y, Vulliard L, Kamnev A, Pfajfer L, Huemer J, Mautner AK, Rubio A, Kalinichenko A, Boztug K, Ferrand A, Menche J, Dupré L. Morphological profiling of human T and NK lymphocytes by high-content cell imaging. Cell Rep 2021; 36:109318. [PMID: 34233185 DOI: 10.1016/j.celrep.2021.109318] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 02/25/2021] [Accepted: 06/07/2021] [Indexed: 01/21/2023] Open
Abstract
The immunological synapse is a complex structure that decodes stimulatory signals into adapted lymphocyte responses. It is a unique window to monitor lymphocyte activity because of development of systematic quantitative approaches. Here we demonstrate the applicability of high-content imaging to human T and natural killer (NK) cells and develop a pipeline for unbiased analysis of high-definition morphological profiles. Our approach reveals how distinct facets of actin cytoskeleton remodeling shape immunological synapse architecture and affect lytic granule positioning. Morphological profiling of CD8+ T cells from immunodeficient individuals allows discrimination of the roles of the ARP2/3 subunit ARPC1B and the ARP2/3 activator Wiskott-Aldrich syndrome protein (WASP) in immunological synapse assembly. Single-cell analysis further identifies uncoupling of lytic granules and F-actin radial distribution in ARPC1B-deficient lymphocytes. Our study provides a foundation for development of morphological profiling as a scalable approach to monitor primary lymphocyte responsiveness and to identify complex aspects of lymphocyte micro-architecture.
Collapse
Affiliation(s)
- Yolla German
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR1291, CNRS UMR5051, Toulouse III Paul Sabatier University, Toulouse, France; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria
| | - Loan Vulliard
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Anton Kamnev
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria; Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Laurène Pfajfer
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR1291, CNRS UMR5051, Toulouse III Paul Sabatier University, Toulouse, France; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria
| | - Jakob Huemer
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria; St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Anna-Katharina Mautner
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria; Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Aude Rubio
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, 31024 Toulouse, France
| | - Artem Kalinichenko
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria; St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria; Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria; St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Audrey Ferrand
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, 31024 Toulouse, France
| | - Jörg Menche
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria; Faculty of Mathematics, University of Vienna, Vienna, Austria
| | - Loïc Dupré
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR1291, CNRS UMR5051, Toulouse III Paul Sabatier University, Toulouse, France; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria; Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
9
|
Dupré L, Boztug K, Pfajfer L. Actin Dynamics at the T Cell Synapse as Revealed by Immune-Related Actinopathies. Front Cell Dev Biol 2021; 9:665519. [PMID: 34249918 PMCID: PMC8266300 DOI: 10.3389/fcell.2021.665519] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
The actin cytoskeleton is composed of dynamic filament networks that build adaptable local architectures to sustain nearly all cellular activities in response to a myriad of stimuli. Although the function of numerous players that tune actin remodeling is known, the coordinated molecular orchestration of the actin cytoskeleton to guide cellular decisions is still ill defined. T lymphocytes provide a prototypical example of how a complex program of actin cytoskeleton remodeling sustains the spatio-temporal control of key cellular activities, namely antigen scanning and sensing, as well as polarized delivery of effector molecules, via the immunological synapse. We here review the unique knowledge on actin dynamics at the T lymphocyte synapse gained through the study of primary immunodeficiences caused by mutations in genes encoding actin regulatory proteins. Beyond the specific roles of individual actin remodelers, we further develop the view that these operate in a coordinated manner and are an integral part of multiple signaling pathways in T lymphocytes.
Collapse
Affiliation(s)
- Loïc Dupré
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Laurène Pfajfer
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| |
Collapse
|
10
|
WASP and Mst1 coregulate B-cell development and B-cell receptor signaling. Blood Adv 2021; 4:573-585. [PMID: 32045478 DOI: 10.1182/bloodadvances.2018027870] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/11/2019] [Indexed: 12/25/2022] Open
Abstract
Mst1 is a serine/threonine kinase involved in cell survival, proliferation, apoptosis, and tumorigenesis. In mice, Mst1 regulates actin dynamics required for T-cell adhesion and migration, which correlate with thymic egress and entry into lymphatic tissue. The role of Mst1 in B cells and how it may control actin-dependent processes has not been well characterized. Wiskott-Aldrich syndrome protein (WASP) deficiency only moderately affects development and B-cell receptor (BCR) signaling, suggesting WASP likely associates with other molecules. We investigated whether Mst1 associates with WASP to regulate B-cell development and activation. Experimenting on Mst1/WASP double knockout (DKO) mice, we found a severe defect in the bone marrow B-cell development, and BCR signaling in the DKO mice was severely reduced. Even though WASP or Mst1 could influence the early B-cell activation, we found that the early activation events such as B-cell spreading, BCR clustering, and BCR signaling were much more impaired in the B cells from DKO mice. Furthermore, reciprocal regulation between Mst1 and WASP was observed in WASP and Mst1 KO mice, whereby the localization and function of phosphorylated WASP were affected in Mst1 KO mice. Most importantly, Mst1 inhibits the expression of WASP by decreasing the expression of WASP-interacting protein. Interestingly, we also found that WASP deficiency in patients and mice interferes with phosphorylated Mst1 localization and therefore function in B cells. Overall, our study provides a partner for WASP to regulate B-cell development and BCR signaling, as well as the reciprocal regulating molecular mechanism of one another.
Collapse
|
11
|
Tiri A, Masetti R, Conti F, Tignanelli A, Turrini E, Bertolini P, Esposito S, Pession A. Inborn Errors of Immunity and Cancer. BIOLOGY 2021; 10:biology10040313. [PMID: 33918597 PMCID: PMC8069273 DOI: 10.3390/biology10040313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022]
Abstract
Simple Summary Inborn Errors of Immunity (IEI) are a heterogeneous group of disorders characterized by a defect in the function of at least one, and often more, components of the immune system. The overall risk for cancer in children with IEI ranges from 4 to 25%. Several factors, namely, age of the patient, viral infection status and IEI type can influence the development of different cancer types. Immunologists and oncologists should interact to monitor and promptly diagnose the potential development of cancer in known IEI patients, as well as an underlying IEI in newly diagnosed cancers with suggestive medical history or high rate of therapy-related toxicity. The creation of an international registry of IEI cases with detailed information on the occurrence of cancer is fundamental to optimizing the diagnostic process and to evaluating the outcomes of new therapeutic options, with the aim of improving prognosis and reducing comorbidities. Abstract Inborn Errors of Immunity (IEI) are a heterogeneous group of disorders characterized by a defect in the function of at least one, and often more, components of the immune system. The aim of this narrative review is to discuss the epidemiology, the pathogenesis and the correct management of tumours in patients with IEI. PubMed was used to search for all of the studies published over the last 20 years using the keywords: “inborn errors of immunity” or “primary immunodeficiency” and “cancer” or “tumour” or “malignancy”. Literature analysis showed that the overall risk for cancer in children with IEI ranges from 4 to 25%. Several factors, namely, age of the patient, viral infection status and IEI type can influence the development of different cancer types. The knowledge of a specific tumour risk in the presence of IEI highlights the importance of a synergistic effort by immunologists and oncologists in tracking down the potential development of cancer in known IEI patients, as well as an underlying IEI in patients with newly diagnosed cancers. In the current genomic era, the creation of an international registry of IEI cases integrated with malignancies occurrence information is fundamental to optimizing the diagnostic process and to evaluating the outcomes of new therapeutic options, with the hope to obtain a better prognosis for these patients.
Collapse
Affiliation(s)
- Alessandra Tiri
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (A.T.); (A.T.); (E.T.)
| | - Riccardo Masetti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, 40138 Bologna, Italy; (R.M.); (F.C.); (A.P.)
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, 40138 Bologna, Italy; (R.M.); (F.C.); (A.P.)
| | - Anna Tignanelli
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (A.T.); (A.T.); (E.T.)
| | - Elena Turrini
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (A.T.); (A.T.); (E.T.)
| | - Patrizia Bertolini
- Pediatric Oncohematology Unit, Pietro Barilla Children’s Hospital, 43126 Parma, Italy;
| | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (A.T.); (A.T.); (E.T.)
- Correspondence: ; Tel.: +39-0521-903-524
| | - Andrea Pession
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, 40138 Bologna, Italy; (R.M.); (F.C.); (A.P.)
| |
Collapse
|
12
|
Kritikou JS, Oliveira MM, Record J, Saeed MB, Nigam SM, He M, Keszei M, Wagner AK, Brauner H, Sendel A, Sedimbi SK, Rentouli S, Lane DP, Snapper SB, Kärre K, Vandenberghe P, Orange JS, Westerberg LS. Constitutive activation of WASp leads to abnormal cytotoxic cells with increased granzyme B and degranulation response to target cells. JCI Insight 2021; 6:140273. [PMID: 33621210 PMCID: PMC8026198 DOI: 10.1172/jci.insight.140273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 02/17/2021] [Indexed: 11/23/2022] Open
Abstract
X-linked neutropenia (XLN) is caused by gain-of-function mutations in the actin regulator Wiskott-Aldrich Syndrome protein (WASp). XLN patients have reduced numbers of cytotoxic cells in peripheral blood; however, their capacity to kill tumor cells remains to be determined. Here, we examined NK and T cells from 2 patients with XLN harboring the activating WASpL270P mutation. XLN patient NK and T cells had increased granzyme B content and elevated degranulation and IFN-γ production when compared with healthy control cells. Murine WASpL272P NK and T cells formed stable synapses with YAC-1 tumor cells and anti-CD3/CD28-coated beads, respectively. WASpL272P mouse T cells had normal degranulation and cytokine response whereas WASpL272P NK cells showed an enhanced response. Imaging experiments revealed that while WASpL272P CD8+ T cells had increased accumulation of actin upon TCR activation, WASpL272P NK cells had normal actin accumulation at lytic synapses triggered through NKp46 signaling but had impaired response to lymphocyte function associated antigen-1 engagement. When compared with WT mice, WASpL272P mice showed reduced growth of B16 melanoma and increased capacity to reject MHC class I-deficient cells. Together, our data suggest that cytotoxic cells with constitutively active WASp have an increased capacity to respond to and kill tumor cells.
Collapse
Affiliation(s)
| | | | - Julien Record
- Department of Microbiology Tumor and Cell Biology, Biomedicum C7, and
| | - Mezida B. Saeed
- Department of Microbiology Tumor and Cell Biology, Biomedicum C7, and
| | - Saket M. Nigam
- Department of Microbiology Tumor and Cell Biology, Biomedicum C7, and
| | - Minghui He
- Department of Microbiology Tumor and Cell Biology, Biomedicum C7, and
| | - Marton Keszei
- Department of Microbiology Tumor and Cell Biology, Biomedicum C7, and
| | - Arnika K. Wagner
- Department of Microbiology Tumor and Cell Biology, Biomedicum C7, and
| | - Hanna Brauner
- Department of Microbiology Tumor and Cell Biology, Biomedicum C7, and
- Department of Medicine, Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anton Sendel
- Department of Microbiology Tumor and Cell Biology, Biomedicum C7, and
| | | | | | - David P. Lane
- Department of Microbiology Tumor and Cell Biology, Biomedicum C7, and
| | - Scott B. Snapper
- Gastroenterology Division, Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Klas Kärre
- Department of Microbiology Tumor and Cell Biology, Biomedicum C7, and
| | | | - Jordan S. Orange
- Department of Pediatrics, NewYork-Presbyterian Morgan Stanley Children’s Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | | |
Collapse
|
13
|
Castro CN, Rosenzwajg M, Carapito R, Shahrooei M, Konantz M, Khan A, Miao Z, Groß M, Tranchant T, Radosavljevic M, Paul N, Stemmelen T, Pitoiset F, Hirschler A, Nespola B, Molitor A, Rolli V, Pichot A, Faletti LE, Rinaldi B, Friant S, Mednikov M, Karauzum H, Aman MJ, Carapito C, Lengerke C, Ziaee V, Eyaid W, Ehl S, Alroqi F, Parvaneh N, Bahram S. NCKAP1L defects lead to a novel syndrome combining immunodeficiency, lymphoproliferation, and hyperinflammation. J Exp Med 2021; 217:152004. [PMID: 32766723 PMCID: PMC7526481 DOI: 10.1084/jem.20192275] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/22/2020] [Accepted: 07/21/2020] [Indexed: 12/29/2022] Open
Abstract
The Nck-associated protein 1–like (NCKAP1L) gene, alternatively called hematopoietic protein 1 (HEM-1), encodes a hematopoietic lineage–specific regulator of the actin cytoskeleton. Nckap1l-deficient mice have anomalies in lymphocyte development, phagocytosis, and neutrophil migration. Here we report, for the first time, NCKAP1L deficiency cases in humans. In two unrelated patients of Middle Eastern origin, recessive mutations in NCKAP1L abolishing protein expression led to immunodeficiency, lymphoproliferation, and hyperinflammation with features of hemophagocytic lymphohistiocytosis. Immunophenotyping showed an inverted CD4/CD8 ratio with a major shift of both CD4+ and CD8+ cells toward memory compartments, in line with combined RNA-seq/proteomics analyses revealing a T cell exhaustion signature. Consistent with the core function of NCKAP1L in the reorganization of the actin cytoskeleton, patients’ T cells displayed impaired early activation, immune synapse morphology, and leading edge formation. Moreover, knockdown of nckap1l in zebrafish led to defects in neutrophil migration. Hence, NCKAP1L mutations lead to broad immune dysregulation in humans, which could be classified within actinopathies.
Collapse
Affiliation(s)
- Carla Noemi Castro
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michelle Rosenzwajg
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Biotherapy (Centre d'Investigation Clinique intégré en Biothérapies & immunologie; CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France.,Sorbonne Université, Institut National de la Santé et de la Recherche Médicale UMR_S 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Raphael Carapito
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France.,Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Mohammad Shahrooei
- Specialized Immunology Laboratory of Dr. Shahrooei, Sina Medical Complex, Ahvaz, Iran.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Martina Konantz
- University of Basel and University Hospital Basel, Department of Biomedicine, Basel, Switzerland
| | - Amjad Khan
- Department of Pediatrics, King Abdulaziz Medical City, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Zhichao Miao
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, Hongkou, China
| | - Miriam Groß
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thibaud Tranchant
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France
| | - Mirjana Radosavljevic
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France.,Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Nicodème Paul
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France
| | - Tristan Stemmelen
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France
| | - Fabien Pitoiset
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Biotherapy (Centre d'Investigation Clinique intégré en Biothérapies & immunologie; CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France.,Sorbonne Université, Institut National de la Santé et de la Recherche Médicale UMR_S 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Aurélie Hirschler
- Laboratoire de Spectrométrie de Masse Bio-Organique, Institut Pluridisciplinaire Hubert Curien, UMR 7178, Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Benoit Nespola
- Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Anne Molitor
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France
| | - Véronique Rolli
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France.,Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Angélique Pichot
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France
| | - Laura Eva Faletti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bruno Rinaldi
- Laboratoire de Génétique Moléculaire, Génomique, Microbiologie, UMR7156/Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Sylvie Friant
- Laboratoire de Génétique Moléculaire, Génomique, Microbiologie, UMR7156/Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio-Organique, Institut Pluridisciplinaire Hubert Curien, UMR 7178, Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Claudia Lengerke
- University of Basel and University Hospital Basel, Department of Biomedicine, Basel, Switzerland
| | - Vahid Ziaee
- Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - Wafaa Eyaid
- Department of Pediatrics, King Abdulaziz Medical City, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fayhan Alroqi
- Department of Pediatrics, King Abdulaziz Medical City, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Nima Parvaneh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - Seiamak Bahram
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France.,Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
14
|
Mastrogiovanni M, Juzans M, Alcover A, Di Bartolo V. Coordinating Cytoskeleton and Molecular Traffic in T Cell Migration, Activation, and Effector Functions. Front Cell Dev Biol 2020; 8:591348. [PMID: 33195256 PMCID: PMC7609836 DOI: 10.3389/fcell.2020.591348] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/24/2020] [Indexed: 12/28/2022] Open
Abstract
Dynamic localization of receptors and signaling molecules at the plasma membrane and within intracellular vesicular compartments is crucial for T lymphocyte sensing environmental cues, triggering membrane receptors, recruiting signaling molecules, and fine-tuning of intracellular signals. The orchestrated action of actin and microtubule cytoskeleton and intracellular vesicle traffic plays a key role in all these events that together ensure important steps in T cell physiology. These include extravasation and migration through lymphoid and peripheral tissues, T cell interactions with antigen-presenting cells, T cell receptor (TCR) triggering by cognate antigen-major histocompatibility complex (MHC) complexes, immunological synapse formation, cell activation, and effector functions. Cytoskeletal and vesicle traffic dynamics and their interplay are coordinated by a variety of regulatory molecules. Among them, polarity regulators and membrane-cytoskeleton linkers are master controllers of this interplay. Here, we review the various ways the T cell plasma membrane, receptors, and their signaling machinery interplay with the actin and microtubule cytoskeleton and with intracellular vesicular compartments. We highlight the importance of this fine-tuned crosstalk in three key stages of T cell biology involving cell polarization: T cell migration in response to chemokines, immunological synapse formation in response to antigen cues, and effector functions. Finally, we discuss two examples of perturbation of this interplay in pathological settings, such as HIV-1 infection and mutation of the polarity regulator and tumor suppressor adenomatous polyposis coli (Apc) that leads to familial polyposis and colorectal cancer.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Marie Juzans
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| | - Andrés Alcover
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| | - Vincenzo Di Bartolo
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| |
Collapse
|
15
|
Tamzalit F, Wang MS, Jin W, Tello-Lafoz M, Boyko V, Heddleston JM, Black CT, Kam LC, Huse M. Interfacial actin protrusions mechanically enhance killing by cytotoxic T cells. Sci Immunol 2020; 4:4/33/eaav5445. [PMID: 30902904 DOI: 10.1126/sciimmunol.aav5445] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/05/2019] [Indexed: 12/30/2022]
Abstract
Cytotoxic T lymphocytes (CTLs) kill by forming immunological synapses with target cells and secreting toxic proteases and the pore-forming protein perforin into the intercellular space. Immunological synapses are highly dynamic structures that boost perforin activity by applying mechanical force against the target cell. Here, we used high-resolution imaging and microfabrication to investigate how CTLs exert synaptic forces and coordinate their mechanical output with perforin secretion. Using micropatterned stimulatory substrates that enable synapse growth in three dimensions, we found that perforin release occurs at the base of actin-rich protrusions that extend from central and intermediate locations within the synapse. These protrusions, which depended on the cytoskeletal regulator WASP and the Arp2/3 actin nucleation complex, were required for synaptic force exertion and efficient killing. They also mediated physical deformation of the target cell surface during CTL-target cell interactions. Our results reveal the mechanical basis of cellular cytotoxicity and highlight the functional importance of dynamic, three-dimensional architecture in immune cell-cell interfaces.
Collapse
Affiliation(s)
- Fella Tamzalit
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mitchell S Wang
- Pharmacology Graduate Program, Weill Cornell Medical College, New York, NY, USA
| | - Weiyang Jin
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Maria Tello-Lafoz
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vitaly Boyko
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John M Heddleston
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Charles T Black
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA
| | - Lance C Kam
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Morgan Huse
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
16
|
Saeed MB, Record J, Westerberg LS. Two sides of the coin: Cytoskeletal regulation of immune synapses in cancer and primary immune deficiencies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:1-97. [DOI: 10.1016/bs.ircmb.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Liu Q, Zhang L, Shu Z, Yu T, Zhou L, Song W, Zhao X. WASp Is Essential for Effector-to-Memory conversion and for Maintenance of CD8 +T Cell Memory. Front Immunol 2019; 10:2262. [PMID: 31608063 PMCID: PMC6769127 DOI: 10.3389/fimmu.2019.02262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/09/2019] [Indexed: 12/24/2022] Open
Abstract
Wiskott-Aldrich syndrome (WAS) is a rare X-linked primary immunodeficiency characterized by recurrent infections, micro thrombocytopenia, eczema, and a high incidence of autoimmunity and malignancy. A defect in the T cell compartment is thought to be a major cause of immunodeficiency in patients with WAS; However, whether the antigen specific T memory cell is altered has not been extensively studied. Here, we examined the expansion/contraction kinetics of CD8+ memory T cells and their maintenance in WASp−/− mice. The results showed that WAS protein (WASp) is not required for differentiation of CD8+ effector T cells; however, CD8+ T cells from WASp−/− mice were hyperactive, resulting in increased cytokine production. The number of CD8+ T memory cells decreased as mice aged, and CD8+ T cell recall responses and protective immunity were impaired. WASp-deficient CD8+ T cells in bone marrow chimeric mice underwent clonal expansion, but the resulting effector cells failed to survive and differentiate into CD8+ memory T cells. Taken together, these findings indicate that WASp plays an intrinsic role in differentiation of CD8+ memory T cells.
Collapse
Affiliation(s)
- Qiao Liu
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Zhang
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhou Shu
- Division of Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Tingting Yu
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lina Zhou
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Xiaodong Zhao
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| |
Collapse
|
18
|
Herranz G, Aguilera P, Dávila S, Sánchez A, Stancu B, Gómez J, Fernández-Moreno D, de Martín R, Quintanilla M, Fernández T, Rodríguez-Silvestre P, Márquez-Expósito L, Bello-Gamboa A, Fraile-Ramos A, Calvo V, Izquierdo M. Protein Kinase C δ Regulates the Depletion of Actin at the Immunological Synapse Required for Polarized Exosome Secretion by T Cells. Front Immunol 2019; 10:851. [PMID: 31105694 PMCID: PMC6499072 DOI: 10.3389/fimmu.2019.00851] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/02/2019] [Indexed: 12/02/2022] Open
Abstract
Multivesicular bodies (MVB) are endocytic compartments that enclose intraluminal vesicles (ILVs) formed by inward budding from the limiting membrane of endosomes. In T lymphocytes, ILVs are secreted as Fas ligand-bearing, pro-apoptotic exosomes following T cell receptor (TCR)-induced fusion of MVB with the plasma membrane at the immune synapse (IS). In this study we show that protein kinase C δ (PKCδ), a novel PKC isotype activated by diacylglycerol (DAG), regulates TCR-controlled MVB polarization toward the IS and exosome secretion. Concomitantly, we demonstrate that PKCδ-interfered T lymphocytes are defective in activation-induced cell death. Using a DAG sensor based on the C1 DAG-binding domain of PKCδ and a GFP-PKCδ chimera, we reveal that T lymphocyte activation enhances DAG levels at the MVB endomembranes which mediates the association of PKCδ to MVB. Spatiotemporal reorganization of F-actin at the IS is inhibited in PKCδ-interfered T lymphocytes. Therefore, we propose PKCδ as a DAG effector that regulates the actin reorganization necessary for MVB traffic and exosome secretion.
Collapse
Affiliation(s)
- Gonzalo Herranz
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Pablo Aguilera
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Sergio Dávila
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Alicia Sánchez
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Bianca Stancu
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Jesús Gómez
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - David Fernández-Moreno
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Raúl de Martín
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Mario Quintanilla
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Teresa Fernández
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Pablo Rodríguez-Silvestre
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Laura Márquez-Expósito
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Ana Bello-Gamboa
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Alberto Fraile-Ramos
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Víctor Calvo
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Manuel Izquierdo
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| |
Collapse
|
19
|
Wiskott-Aldrich syndrome protein may be critical for CD8 + T cell function following MCMV infection. Cell Immunol 2019; 338:43-50. [PMID: 30981413 DOI: 10.1016/j.cellimm.2019.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/12/2019] [Accepted: 03/21/2019] [Indexed: 11/20/2022]
Abstract
Wiskott-Aldrich syndrome (WAS) patients are characterized by immunodeficiency and viral infections. T cells derived from WAS patients and WAS protein (WASP)-deficient mice have various defects. However, whether WASP plays a role in immune control of cytomegalovirus (CMV) infection remains unclear. We analyzed the distribution of CD8+ T subsets and the pathological damage to various organs and tissues in MCMV infected Was knockout (KO) mice. A relatively high number of MCMV-specific cytotoxic T cells (CTLs) were observed in the spleen of Was KO mice. In MCMV infected Was KO mice, the late differentiated CD8+ T subset (CD27-CD28-) decreased in lungs, compared with those in the spleen and peripheral blood. Additionally, we found that the most severe pathological lesions occurred in the lungs, the main target organ of MCMV infection. By stimulating the spleen-derived CD8+ T lymphocytes of Was KO mice, we found that IL-2 and granzyme B production declined compared with that in wild- type mice. Moreover, the number of apoptotic CD8+ T cells increased in Was KO mice compared with the number in wild-type mice. Therefore, our results demonstrate that WASP may be involved in regulating cytotoxic function and apoptosis in CD8+ T cells following MCMV infection, which is supported by the distribution and memory compartment of MCMV-specific T cells in MCMV infected WAS mice.
Collapse
|
20
|
Keszei M, Kritikou JS, Sandfort D, He M, Oliveira MMS, Wurzer H, Kuiper RV, Westerberg LS. Wiskott-Aldrich syndrome gene mutations modulate cancer susceptibility in the p53 ± murine model. Oncoimmunology 2018; 7:e1468954. [PMID: 30393584 PMCID: PMC6209425 DOI: 10.1080/2162402x.2018.1468954] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/16/2018] [Accepted: 04/19/2018] [Indexed: 12/23/2022] Open
Abstract
The Wiskott-Aldrich syndrome protein (WASp) is a key regulator of the actin cytoskeleton in hematopoietic cells and mutated in two severe immunodeficiency diseases with high incidence of cancer. Wiskott-Aldrich syndrome (WAS) is caused by loss-of-function mutations in WASp and most frequently associated with lymphoreticular tumors of poor prognosis. X-linked neuropenia (XLN) is caused by gain-of-function mutations in WASp and associated with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). To understand the role of WASp in tumorigenesis, we bred WASp+, WASp−, and WASp-XLN mice onto tumor susceptible p53+/- background and sub-lethally irradiated them to enhance tumor development. We followed the cohorts for 24 weeks and tumors were characterized by histology and flow cytometry to define the tumor incidence, onset, and cell origin. We found that p53+/-WASp+ mice developed malignancies, including solid tumors and T cell lymphomas with 71.4% of survival 24 weeks after irradiation. p53+/-WASp− mice showed lower survival rate and developed various early onset malignancies. Surprisingly, the p53+/-WASp-XLN mice developed malignancy mostly with late onset, which caused delayed mortality in this colony. This study provides evidence for that loss-of-function and gain-of-function mutations in WASp influence tumor incidence and onset.
Collapse
Affiliation(s)
- Marton Keszei
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Joanna S Kritikou
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Deborah Sandfort
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Minghui He
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Mariana M S Oliveira
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Hannah Wurzer
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Raoul V Kuiper
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Mace EM, Orange JS. Discovering the Cause of Wiskott-Aldrich Syndrome and Laying the Foundation for Understanding Immune Cell Structuring. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:3667-3670. [PMID: 29784762 PMCID: PMC8934138 DOI: 10.4049/jimmunol.1800518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Emily M Mace
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; and Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030
| | - Jordan S Orange
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; and Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030
| |
Collapse
|
22
|
Kabanova A, Zurli V, Baldari CT. Signals Controlling Lytic Granule Polarization at the Cytotoxic Immune Synapse. Front Immunol 2018. [PMID: 29515593 PMCID: PMC5826174 DOI: 10.3389/fimmu.2018.00307] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cytotoxic immunity relies on specialized effector T cells, the cytotoxic T cells, which are endowed with specialized cytolytic machinery that permits them to induce death of their targets. Upon recognition of a target cell, cytotoxic T cells form a lytic immune synapse and by docking the microtubule-organizing center at the synaptic membrane get prepared to deliver a lethal hit of enzymes contained in lytic granules. New insights suggest that the directionality of lytic granule trafficking along the microtubules represents a fine means to tune the functional outcome of the encounter between a T cell and its target. Thus, mechanisms regulating the directionality of granule transport may have a major impact in settings characterized by evasion from the cytotoxic response, such as chronic infection and cancer. Here, we review our current knowledge on the signaling pathways implicated in the polarized trafficking at the immune synapse of cytotoxic T cells, complementing it with information on the regulation of this process in natural killer cells. Furthermore, we highlight some of the parameters which we consider critical in studying the polarized trafficking of lytic granules, including the use of freshly isolated cytotoxic T cells, and discuss some of the major open questions.
Collapse
Affiliation(s)
- Anna Kabanova
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Vanessa Zurli
- Department of Life Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
23
|
The Wiskott-Aldrich Syndrome Protein Contributes to the Assembly of the LFA-1 Nanocluster Belt at the Lytic Synapse. Cell Rep 2018; 22:979-991. [DOI: 10.1016/j.celrep.2017.12.088] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 11/01/2017] [Accepted: 12/22/2017] [Indexed: 01/23/2023] Open
|
24
|
Sarkar K, Han SS, Wen KK, Ochs HD, Dupré L, Seidman MM, Vyas YM. R-loops cause genomic instability in T helper lymphocytes from patients with Wiskott-Aldrich syndrome. J Allergy Clin Immunol 2017; 142:219-234. [PMID: 29248492 DOI: 10.1016/j.jaci.2017.11.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Wiskott-Aldrich syndrome (WAS), X-linked thrombocytopenia (XLT), and X-linked neutropenia, which are caused by WAS mutations affecting Wiskott-Aldrich syndrome protein (WASp) expression or activity, manifest in immunodeficiency, autoimmunity, genomic instability, and lymphoid and other cancers. WASp supports filamentous actin formation in the cytoplasm and gene transcription in the nucleus. Although the genetic basis for XLT/WAS has been clarified, the relationships between mutant forms of WASp and the diverse features of these disorders remain ill-defined. OBJECTIVE We sought to define how dysfunctional gene transcription is causally linked to the degree of TH cell deficiency and genomic instability in the XLT/WAS clinical spectrum. METHODS In human TH1- or TH2-skewing cell culture systems, cotranscriptional R-loops (RNA/DNA duplex and displaced single-stranded DNA) and DNA double-strand breaks (DSBs) were monitored in multiple samples from patients with XLT and WAS and in normal T cells depleted of WASp. RESULTS WASp deficiency provokes increased R-loops and R-loop-mediated DSBs in TH1 cells relative to TH2 cells. Mechanistically, chromatin occupancy of serine 2-unphosphorylated RNA polymerase II is increased, and that of topoisomerase 1, an R-loop preventing factor, is decreased at R-loop-enriched regions of IFNG and TBX21 (TH1 genes) in TH1 cells. These aberrations accompany increased unspliced (intron-retained) and decreased spliced mRNA of IFNG and TBX21 but not IL13 (TH2 gene). Significantly, increased cellular load of R-loops and DSBs, which are normalized on RNaseH1-mediated suppression of ectopic R-loops, inversely correlates with disease severity scores. CONCLUSION Transcriptional R-loop imbalance is a novel molecular defect causative in TH1 immunodeficiency and genomic instability in patients with WAS. The study proposes that cellular R-loop load could be used as a potential biomarker for monitoring symptom severity and prognostic outcome in the XLT-WAS clinical spectrum and could be targeted therapeutically.
Collapse
Affiliation(s)
- Koustav Sarkar
- Division of Pediatric Hematology-Oncology, Carver College of Medicine and the University of Iowa Stead Family Children's Hospital, Iowa City, Md
| | - Seong-Su Han
- Division of Pediatric Hematology-Oncology, Carver College of Medicine and the University of Iowa Stead Family Children's Hospital, Iowa City, Md
| | - Kuo-Kuang Wen
- Division of Pediatric Hematology-Oncology, Carver College of Medicine and the University of Iowa Stead Family Children's Hospital, Iowa City, Md
| | - Hans D Ochs
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, University of Washington, Seattle, Md
| | - Loïc Dupré
- INSERM, UMR1043, Centre de Physiopathologie de Toulouse Purpan, Toulouse, Md; Université Toulouse III Paul-Sabatier, Toulouse, Md; CNRS, UMR5282, Toulouse, Md; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Md; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Md
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health (NIH), NIH Biomedical Research Center, Baltimore, Md
| | - Yatin M Vyas
- Division of Pediatric Hematology-Oncology, Carver College of Medicine and the University of Iowa Stead Family Children's Hospital, Iowa City, Md.
| |
Collapse
|
25
|
Clinical Manifestations and Pathophysiological Mechanisms of the Wiskott-Aldrich Syndrome. J Clin Immunol 2017; 38:13-27. [PMID: 29086100 DOI: 10.1007/s10875-017-0453-z] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023]
Abstract
The Wiskott-Aldrich syndrome (WAS) is a rare X-linked disorder originally described by Dr. Alfred Wiskott in 1937 and Dr. Robert Aldrich in 1954 as a familial disease characterized by infections, bleeding tendency, and eczema. Today, it is well recognized that the syndrome has a wide clinical spectrum ranging from mild, isolated thrombocytopenia to full-blown presentation that can be complicated by life-threatening hemorrhages, immunodeficiency, atopy, autoimmunity, and cancer. The pathophysiology of classic and emerging features is being elucidated by clinical studies, but remains incompletely defined, which hinders the application of targeted therapies. At the same time, progress of hematopoietic stem cell transplantation and gene therapy offer optimistic prospects for treatment options aimed at the replacement of the defective lymphohematopoietic system that have the potential to provide a cure for this rare and polymorphic disease.
Collapse
|
26
|
Vignesh P, Suri D, Rawat A, Lau YL, Bhatia A, Das A, Srinivasan A, Dhandapani S. Sclerosing cholangitis and intracranial lymphoma in a child with classical Wiskott-Aldrich syndrome. Pediatr Blood Cancer 2017; 64:106-109. [PMID: 27566838 DOI: 10.1002/pbc.26196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/19/2016] [Accepted: 07/19/2016] [Indexed: 12/15/2022]
Abstract
Patients with Wiskott-Aldrich syndrome (WAS) are predisposed to malignancy and autoimmunity in addition to infections. We report a male child with WAS, who had presented with recurrent pneumonia, eczema, thrombocytopenia, autoimmune hemolytic anemia, and vasculitic skin lesions. Genetic analysis revealed a classical genotype WAS 155C>T; R41X. At 2 years of follow-up, he developed persistent headache and progressive hepatomegaly. Brain imaging showed a mass in the right frontal region, which on histopathology was shown to be high-grade non-Hodgkin lymphoma. Magnetic resonance cholangiopancreatography showed features of sclerosing cholangitis. This report extends the clinical spectrum and highlights unusual manifestations of sclerosing cholangitis and intracranial lymphoma in a patient with WAS.
Collapse
Affiliation(s)
- Pandiarajan Vignesh
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepti Suri
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Yu Lung Lau
- Department of Pediatrics and Adolescent Medicine, Queen Mary Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, China
| | - Anmol Bhatia
- Department of Radiodiagnosis, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashim Das
- Department of Histopathology, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anirudh Srinivasan
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sivashanmugam Dhandapani
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
27
|
Shabani M, Nichols KE, Rezaei N. Primary immunodeficiencies associated with EBV-Induced lymphoproliferative disorders. Crit Rev Oncol Hematol 2016; 108:109-127. [PMID: 27931829 DOI: 10.1016/j.critrevonc.2016.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/10/2016] [Accepted: 10/27/2016] [Indexed: 12/27/2022] Open
Abstract
Primary immunodeficiency diseases (PIDs) are a subgroup of inherited immunological disorders that increase susceptibility to viral infections. Among the range of viral pathogens involved, EBV remains a major threat because of its high prevalence of infection among the adult population and its tendency to progress to life-threatening lymphoproliferative disorders (LPDs) and/or malignancy. The high mortality in immunodeficient patients with EBV-driven LPDs, despite institution of diverse and often intensive treatments, prompts the need to better study these PIDs to identify and understand the affected molecular pathways that increase susceptibility to EBV infection and progression. In this article, we have provided a detailed literature review of the reported cases of EBV-driven LPDs in patients with PID. We discuss the PIDs associated with development of EBV-LPDs. Then, we review the nature and the therapeutic outcome of common EBV- driven LPDs in the PID patients and review the mechanisms common to the major PIDs. Deep study of these common pathways and gaining a better insight into the disease nature and outcomes, may lead to earlier diagnosis of the disease, choosing the best treatment modalities available and development of novel therapeutic strategies to decrease morbidity and mortality brought about by EBV infection.
Collapse
Affiliation(s)
- Mahsima Shabani
- Research Center for Immunodeficiencies, Children's Medical School, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; International Hematology/Oncology Of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical School, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Boston, MA, USA.
| |
Collapse
|
28
|
Tuosto L, Capuano C, Muscolini M, Santoni A, Galandrini R. The multifaceted role of PIP2 in leukocyte biology. Cell Mol Life Sci 2015; 72:4461-74. [PMID: 26265181 PMCID: PMC11113228 DOI: 10.1007/s00018-015-2013-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/31/2015] [Accepted: 08/06/2015] [Indexed: 10/23/2022]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2) represents about 1 % of plasma membrane phospholipids and behaves as a pleiotropic regulator of a striking number of fundamental cellular processes. In recent years, an increasing body of literature has highlighted an essential role of PIP2 in multiple aspects of leukocyte biology. In this emerging picture, PIP2 is envisaged as a signalling intermediate itself and as a membrane-bound regulator and a scaffold of proteins with specific PIP2 binding domains. Indeed PIP2 plays a key role in several functions. These include directional migration in neutrophils, integrin-dependent adhesion in T lymphocytes, phagocytosis in macrophages, lysosomes secretion and trafficking at immune synapse in cytolytic effectors and secretory cells, calcium signals and gene transcription in B lymphocytes, natural killer cells and mast cells. The coordination of these different aspects relies on the spatio-temporal organisation of distinct PIP2 pools, generated by the main PIP2 generating enzyme, phosphatidylinositol 4-phosphate 5-kinase (PIP5K). Three different isoforms of PIP5K, named α, β and γ, and different splice variants have been described in leukocyte populations. The isoform-specific coupling of specific isoforms of PIP5K to different families of activating receptors, including integrins, Fc receptors, toll-like receptors and chemokine receptors, is starting to be reported. Furthermore, PIP2 is turned over by multiple metabolising enzymes including phospholipase C (PLC) γ and phosphatidylinositol 3-kinase (PI3K) which, along with Rho family small G proteins, is widely involved in strategic functions within the immune system. The interplay between PIP2, lipid-modifying enzymes and small G protein-regulated signals is also discussed.
Collapse
Affiliation(s)
- Loretta Tuosto
- Department of Biology and Biotechnology "Charles Darwin", Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Via dei Sardi 70, 00185, Rome, Italy.
| | - Cristina Capuano
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00185, Rome, Italy
| | - Michela Muscolini
- Department of Biology and Biotechnology "Charles Darwin", Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Via dei Sardi 70, 00185, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Viale Regina Elena 291, 00185, Rome, Italy
| | - Ricciarda Galandrini
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00185, Rome, Italy.
| |
Collapse
|
29
|
Mace EM, Orange JS. Insights into primary immune deficiency from quantitative microscopy. J Allergy Clin Immunol 2015; 136:1150-62. [PMID: 26078103 PMCID: PMC4641025 DOI: 10.1016/j.jaci.2015.03.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 03/30/2015] [Indexed: 12/22/2022]
Abstract
Recent advances in genomics-based technology have resulted in an increase in our understanding of the molecular basis of many primary immune deficiencies. Along with this increased knowledge comes an increased responsibility to understand the underlying mechanism of disease, and thus increasingly sophisticated technologies are being used to investigate the cell biology of human immune deficiencies. One such technology, which has itself undergone a recent explosion in innovation, is that of high-resolution microscopy and image analysis. These advances complement innovative studies that have previously shed light on critical cell biological processes that are perturbed by single-gene mutations in primary immune deficiency. Here we highlight advances made specifically in the following cell biological processes: (1) cytoskeletal-related processes; (2) cell signaling; (3) intercellular trafficking; and (4) cellular host defense.
Collapse
Affiliation(s)
- Emily M Mace
- Center for Human Immunobiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Tex
| | - Jordan S Orange
- Center for Human Immunobiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Tex.
| |
Collapse
|
30
|
Silva O, Crocetti J, Humphries LA, Burkhardt JK, Miceli MC. Discs Large Homolog 1 Splice Variants Regulate p38-Dependent and -Independent Effector Functions in CD8+ T Cells. PLoS One 2015; 10:e0133353. [PMID: 26186728 PMCID: PMC4505885 DOI: 10.1371/journal.pone.0133353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/02/2015] [Indexed: 11/22/2022] Open
Abstract
Functionally diverse CD8+ T cells develop in response to antigenic stimulation with differing capacities to couple TCR engagement to downstream signals and functions. However, mechanisms of diversifying TCR signaling are largely uncharacterized. Here we identified two alternative splice variants of scaffold protein Dlg1, Dlg1AB and Dlg1B, that diversify signaling to regulate p38 –dependent and –independent effector functions in CD8+ T cells. Dlg1AB, but not Dlg1B associated with Lck, coupling TCR stimulation to p38 activation and proinflammatory cytokine production. Conversely, both Dlg1AB and Dlg1B mediated p38-independent degranulation. Degranulation depended on a Dlg1 fragment containing an intact Dlg1SH3-domain and required the SH3-ligand WASp. Further, Dlg1 controlled WASp activation by promoting TCR-triggered conformational opening of WASp. Collectively, our data support a model where Dlg1 regulates p38-dependent proinflammatory cytokine production and p38-independent cytotoxic granule release through the utilization of alternative splice variants, providing a mechanism whereby TCR engagement couples downstream signals to unique effector functions in CD8+ T cells.
Collapse
Affiliation(s)
- Oscar Silva
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jillian Crocetti
- Molecular Biology Interdepartmental Program, University of California Los Angeles, Los Angeles, California, United States of America
| | - Lisa A. Humphries
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Janis K. Burkhardt
- Department of Laboratory Medicine, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - M. Carrie Miceli
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Cotta-de-Almeida V, Dupré L, Guipouy D, Vasconcelos Z. Signal Integration during T Lymphocyte Activation and Function: Lessons from the Wiskott-Aldrich Syndrome. Front Immunol 2015; 6:47. [PMID: 25709608 PMCID: PMC4321635 DOI: 10.3389/fimmu.2015.00047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/26/2015] [Indexed: 11/18/2022] Open
Abstract
Over the last decades, research dedicated to the molecular and cellular mechanisms underlying primary immunodeficiencies (PID) has helped to understand the etiology of many of these diseases and to develop novel therapeutic approaches. Beyond these aspects, PID are also studied because they offer invaluable natural genetic tools to dissect the human immune system. In this review, we highlight the research that has focused over the last 20 years on T lymphocytes from Wiskott–Aldrich syndrome (WAS) patients. WAS T lymphocytes are defective for the WAS protein (WASP), a regulator of actin cytoskeleton remodeling. Therefore, study of WAS T lymphocytes has helped to grasp that many steps of T lymphocyte activation and function depend on the crosstalk between membrane receptors and the actin cytoskeleton. These steps include motility, immunological synapse assembly, and signaling, as well as the implementation of helper, regulatory, or cytotoxic effector functions. The recent concept that WASP also works as a regulator of transcription within the nucleus is an illustration of the complexity of signal integration in T lymphocytes. Finally, this review will discuss how further study of WAS may contribute to solve novel challenges of T lymphocyte biology.
Collapse
Affiliation(s)
| | - Loïc Dupré
- UMR 1043, Centre de Physiopathologie de Toulouse Purpan, INSERM , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; UMR 5282, CNRS , Toulouse , France
| | - Delphine Guipouy
- UMR 1043, Centre de Physiopathologie de Toulouse Purpan, INSERM , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; UMR 5282, CNRS , Toulouse , France
| | | |
Collapse
|
32
|
Zhang Q, Dove CG, Hor JL, Murdock HM, Strauss-Albee DM, Garcia JA, Mandl JN, Grodick RA, Jing H, Chandler-Brown DB, Lenardo TE, Crawford G, Matthews HF, Freeman AF, Cornall RJ, Germain RN, Mueller SN, Su HC. DOCK8 regulates lymphocyte shape integrity for skin antiviral immunity. ACTA ACUST UNITED AC 2014; 211:2549-66. [PMID: 25422492 PMCID: PMC4267229 DOI: 10.1084/jem.20141307] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Zhang et al. show that DOCK8-deficient T and NK cells develop cell and nuclear shape abnormalities that do not impair chemotaxis but contribute to a form of cell death they term cytothripsis. Cytothripsis of DOCK8-deficient cells prevents the generation of long-lived skin-resident memory CD8 T cells resulting in impaired immune response to skin infection. DOCK8 mutations result in an inherited combined immunodeficiency characterized by increased susceptibility to skin and other infections. We show that when DOCK8-deficient T and NK cells migrate through confined spaces, they develop cell shape and nuclear deformation abnormalities that do not impair chemotaxis but contribute to a distinct form of catastrophic cell death we term cytothripsis. Such defects arise during lymphocyte migration in collagen-dense tissues when DOCK8, through CDC42 and p21-activated kinase (PAK), is unavailable to coordinate cytoskeletal structures. Cytothripsis of DOCK8-deficient cells prevents the generation of long-lived skin-resident memory CD8 T cells, which in turn impairs control of herpesvirus skin infections. Our results establish that DOCK8-regulated shape integrity of lymphocytes prevents cytothripsis and promotes antiviral immunity in the skin.
Collapse
Affiliation(s)
- Qian Zhang
- Laboratory of Host Defenses, Laboratory of Systems Biology, Laboratory of Immunology, and Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Christopher G Dove
- Laboratory of Host Defenses, Laboratory of Systems Biology, Laboratory of Immunology, and Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jyh Liang Hor
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, and The ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, and The ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Heardley M Murdock
- Laboratory of Host Defenses, Laboratory of Systems Biology, Laboratory of Immunology, and Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Dara M Strauss-Albee
- Laboratory of Host Defenses, Laboratory of Systems Biology, Laboratory of Immunology, and Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jordan A Garcia
- Laboratory of Host Defenses, Laboratory of Systems Biology, Laboratory of Immunology, and Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Judith N Mandl
- Laboratory of Host Defenses, Laboratory of Systems Biology, Laboratory of Immunology, and Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Rachael A Grodick
- Laboratory of Host Defenses, Laboratory of Systems Biology, Laboratory of Immunology, and Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Huie Jing
- Laboratory of Host Defenses, Laboratory of Systems Biology, Laboratory of Immunology, and Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Devon B Chandler-Brown
- Laboratory of Host Defenses, Laboratory of Systems Biology, Laboratory of Immunology, and Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Timothy E Lenardo
- Laboratory of Host Defenses, Laboratory of Systems Biology, Laboratory of Immunology, and Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Greg Crawford
- MRC Human Immunology Unit, Nuffield Department of Medicine, Oxford University, Oxford OX3 7BN, England, UK
| | - Helen F Matthews
- Laboratory of Host Defenses, Laboratory of Systems Biology, Laboratory of Immunology, and Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Alexandra F Freeman
- Laboratory of Host Defenses, Laboratory of Systems Biology, Laboratory of Immunology, and Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Richard J Cornall
- MRC Human Immunology Unit, Nuffield Department of Medicine, Oxford University, Oxford OX3 7BN, England, UK
| | - Ronald N Germain
- Laboratory of Host Defenses, Laboratory of Systems Biology, Laboratory of Immunology, and Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Scott N Mueller
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, and The ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, and The ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Helen C Su
- Laboratory of Host Defenses, Laboratory of Systems Biology, Laboratory of Immunology, and Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
33
|
Abstract
The importance of the cytoskeleton in mounting a successful immune response is evident from the wide range of defects that occur in actin-related primary immunodeficiencies (PIDs). Studies of these PIDs have revealed a pivotal role for the actin cytoskeleton in almost all stages of immune system function, from hematopoiesis and immune cell development, through to recruitment, migration, intercellular and intracellular signaling, and activation of both innate and adaptive immune responses. The major focus of this review is the immune defects that result from mutations in the Wiskott-Aldrich syndrome gene (WAS), which have a broad impact on many different processes and give rise to clinically heterogeneous immunodeficiencies. We also discuss other related genetic defects and the possibility of identifying new genetic causes of cytoskeletal immunodeficiency.
Collapse
Affiliation(s)
- Dale A Moulding
- Molecular Immunology Unit, Center for Immunodeficiency, Institute of Child Health, University College London, London, UK
| | | | | | | |
Collapse
|
34
|
Galandrini R, Capuano C, Santoni A. Activation of Lymphocyte Cytolytic Machinery: Where are We? Front Immunol 2013; 4:390. [PMID: 24312097 PMCID: PMC3832890 DOI: 10.3389/fimmu.2013.00390] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/06/2013] [Indexed: 11/13/2022] Open
Abstract
Target cell recognition by cytotoxic lymphocytes implies the simultaneous engagement and clustering of adhesion and activating receptors followed by the activation of an array of signal transduction pathways. The cytotoxic immune synapse represents the highly specialized dynamic interface formed between the cytolytic effector and its target that allows temporal and spatial integration of signals responsible for a defined sequence of processes culminating with the polarized secretion of lytic granules. Over the last decades, much attention has been given to the molecular signals coupling receptor ligation to the activation of cytolytic machinery. Moreover, in the last 10 years the discovery of genetic defects affecting cytotoxic responses greatly boosted our knowledge on the molecular effectors involved in the regulation of discrete phases of cytotoxic process at post-receptor levels. More recently, the use of super resolution and total internal reflection fluorescence imaging technologies added new insights on the dynamic reorganization of receptor and signaling molecules at lytic synapse as well as on the relationship between granule dynamics and cytoskeleton remodeling. To date we have a solid knowledge of the molecular mechanisms governing granule movement and secretion, being not yet fully unraveled the machinery that couples early receptor signaling to the late stage of synapse remodeling and granule dynamics. Here we highlight recent advances in our understanding of the molecular mechanisms acting in the activation of cytolytic machinery, also discussing similarities and differences between Natural killer cells and cytotoxic CD8+ T cells.
Collapse
Affiliation(s)
- Ricciarda Galandrini
- Department of Experimental Medicine, Istituto Pasteur-Fondazione Cenci-Bolognetti, Fondazione Eleonora Lorillard Spencer Cenci, Sapienza University , Rome , Italy
| | | | | |
Collapse
|
35
|
Matalon O, Reicher B, Barda-Saad M. Wiskott-Aldrich syndrome protein - dynamic regulation of actin homeostasis: from activation through function and signal termination in T lymphocytes. Immunol Rev 2013; 256:10-29. [DOI: 10.1111/imr.12112] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan Israel
| | - Barak Reicher
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan Israel
| |
Collapse
|
36
|
Parvaneh N, Filipovich AH, Borkhardt A. Primary immunodeficiencies predisposed to Epstein-Barr virus-driven haematological diseases. Br J Haematol 2013; 162:573-86. [PMID: 23758097 DOI: 10.1111/bjh.12422] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epstein-Barr virus (EBV), a ubiquitous human herpesvirus, maintains lifelong subclinical persistent infections in humans. In the circulation, EBV primarily infects the B cells, and protective immunity is mediated by EBV-specific cytotoxic T cells (CTLs) and natural killer (NK) cells. However, EBV has been linked to several devastating diseases, such as haemophagocytic lymphohistiocytosis (HLH) and lymphoproliferative diseases in the immunocompromised host. Some types of primary immunodeficiencies (PIDs) are characterized by the development of EBV-associated complications as their predominant clinical feature. The study of such genetic diseases presents an ideal opportunity for a better understanding of the biology of the immune responses against EBV. Here, we summarize the range of PIDs that are predisposed to EBV-associated haematological diseases, describing their clinical picture and pathogenetic mechanisms.
Collapse
Affiliation(s)
- Nima Parvaneh
- Paediatric Infectious Diseases Research Centre, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | |
Collapse
|
37
|
Massaad MJ, Ramesh N, Geha RS. Wiskott-Aldrich syndrome: a comprehensive review. Ann N Y Acad Sci 2013; 1285:26-43. [DOI: 10.1111/nyas.12049] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Michel J. Massaad
- Division of Immunology, Boston Children's Hospital, and Department of Pediatrics; Harvard Medical School; Boston; Massachusetts
| | - Narayanaswamy Ramesh
- Division of Immunology, Boston Children's Hospital, and Department of Pediatrics; Harvard Medical School; Boston; Massachusetts
| | - Raif S. Geha
- Division of Immunology, Boston Children's Hospital, and Department of Pediatrics; Harvard Medical School; Boston; Massachusetts
| |
Collapse
|
38
|
Feau S, Schoenberger SP, Altman A, Bécart S. SLAT regulates CD8+ T cell clonal expansion in a Cdc42- and NFAT1-dependent manner. THE JOURNAL OF IMMUNOLOGY 2012. [PMID: 23197258 DOI: 10.4049/jimmunol.1201685] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
After antigenic stimulation, CD8(+) T cells undergo clonal expansion and differentiation into CTLs that can mount a strong defense against intracellular pathogens and tumors. SWAP-70-like adapter of T cells (SLAT), also known as Def6, is a novel guanine nucleotide exchange factor for the Cdc42 GTPase and plays a role in CD4(+) T cell activation and Th cell differentiation by controlling Ca(2+)/NFAT signaling, but its requirement in CD8(+) T cell response has not been explored. Using a range of transgenic and knockout in vivo systems, we show that SLAT is required for efficient expansion of CD8(+) T cells during the primary response but is not necessary for CTL differentiation. The reduced clonal expansion observed in the absence of SLAT resulted from a CD8(+) T cell-intrinsic proliferation defect and a reduced IL-2-dependent cell survival. On a molecular level, we show that Def6 deficiency resulted in defective TCR/CD28-induced NFAT translocation to the nucleus in CD8(+) T cells. Constitutively active Cdc42 or NFAT1 mutants fully restored the impaired expansion of Def6(-/-) CD8(+) T cells. Taken together, these data describe a new and pivotal role of SLAT-mediated NFAT activation in CD8(+) T cells, providing new insight into the signaling pathways involved in CD8(+) T cell proliferation.
Collapse
Affiliation(s)
- Sonia Feau
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
39
|
Lang PA, Shaabani N, Borkens S, Honke N, Scheu S, Booth S, Brenner D, Meryk A, Barthuber C, Recher M, Mak TW, Ohashi PS, Häussinger D, Griffiths GM, Thrasher AJ, Bouma G, Lang KS. Reduced type I interferon production by dendritic cells and weakened antiviral immunity in patients with Wiskott-Aldrich syndrome protein deficiency. J Allergy Clin Immunol 2012; 131:815-24. [PMID: 23141740 PMCID: PMC3757164 DOI: 10.1016/j.jaci.2012.08.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 08/03/2012] [Accepted: 08/10/2012] [Indexed: 01/09/2023]
Abstract
BACKGROUND Wiskott-Aldrich syndrome (WAS) is a rare X-linked primary immunodeficiency caused by absence of Wiskott-Aldrich syndrome protein (WASP) expression, resulting in defective function of many immune cell lineages and susceptibility to severe bacterial, viral, and fungal infections. Despite a significant proportion of patients with WAS having recurrent viral infections, surprisingly little is known about the effects of WASP deficiency on antiviral immunity. OBJECTIVE We sought to evaluate the antiviral immune response in patients with WASP deficiency in vivo. METHODS Viral clearance and associated immunopathology were measured after infection of WASP-deficient (WAS KO) mice with lymphocytic choriomeningitis virus (LCMV). Induction of antiviral CD8(+) T-cell immunity and cytotoxicity was documented in WAS KO mice by means of temporal enumeration of total and antigen-specific T-cell numbers. Type I interferon (IFN-I) production was measured in serum in response to LCMV challenge and characterized in vivo by using IFN-I reporter mice crossed with WAS KO mice. RESULTS WAS KO mice showed reduced viral clearance and enhanced immunopathology during LCMV infection. This was attributed to both an intrinsic CD8(+) T-cell defect and defective priming of CD8(+) T cells by dendritic cells (DCs). IFN-I production by WAS KO DCs was reduced both in vivo and in vitro. CONCLUSIONS These studies use a well-characterized model of persistence-prone viral infection to reveal a critical deficiency of CD8(+) T-cell responses in murine WASP deficiency, in which abrogated production of IFN-I by DCs might play an important contributory role. These findings might help us to understand the immunodeficiency of WAS.
Collapse
Affiliation(s)
- Philipp A Lang
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Catucci M, Castiello MC, Pala F, Bosticardo M, Villa A. Autoimmunity in wiskott-Aldrich syndrome: an unsolved enigma. Front Immunol 2012; 3:209. [PMID: 22826711 PMCID: PMC3399097 DOI: 10.3389/fimmu.2012.00209] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/01/2012] [Indexed: 12/17/2022] Open
Abstract
Wiskott-Aldrich Syndrome (WAS) is a severe X-linked Primary Immunodeficiency that affects 1-10 out of 1 million male individuals. WAS is caused by mutations in the WAS Protein (WASP) expressing gene that leads to the absent or reduced expression of the protein. WASP is a cytoplasmic protein that regulates the formation of actin filaments in hematopoietic cells. WASP deficiency causes many immune cell defects both in humans and in the WAS murine model, the Was(-/-) mouse. Both cellular and humoral immune defects in WAS patients contribute to the onset of severe clinical manifestations, in particular microthrombocytopenia, eczema, recurrent infections, and a high susceptibility to develop autoimmunity and malignancies. Autoimmune diseases affect from 22 to 72% of WAS patients and the most common manifestation is autoimmune hemolytic anemia, followed by vasculitis, arthritis, neutropenia, inflammatory bowel disease, and IgA nephropathy. Many groups have widely explored immune cell functionality in WAS partially explaining how cellular defects may lead to pathology. However, the mechanisms underlying the occurrence of autoimmune manifestations have not been clearly described yet. In the present review, we report the most recent progresses in the study of immune cell function in WAS that have started to unveil the mechanisms contributing to autoimmune complications in WAS patients.
Collapse
Affiliation(s)
- Marco Catucci
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET) Milan, Italy
| | | | | | | | | |
Collapse
|
41
|
Leechawengwongs E, Shearer WT. Lymphoma complicating primary immunodeficiency syndromes. Curr Opin Hematol 2012; 19:305-12. [DOI: 10.1097/moh.0b013e328353fa13] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
42
|
Dendritic cell functional improvement in a preclinical model of lentiviral-mediated gene therapy for Wiskott-Aldrich syndrome. Gene Ther 2011; 19:1150-8. [PMID: 22189416 PMCID: PMC3378501 DOI: 10.1038/gt.2011.202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wiskott-Aldrich syndrome (WAS) is a rare X-linked primary immunodeficiency caused by the defective expression of the WAS protein (WASP) in hematopoietic cells. It has been shown that dendritic cells (DCs) are functionally impaired in WAS patients and was−/− mice. We have previously demonstrated the efficacy and safety of a murine model of WAS gene therapy (GT), using stem cells transduced with a lentiviral vector. The aim of this study was to investigate whether GT can correct DC defects in was−/− mice. As DCs expressing WASP were detected in the secondary lymphoid organs of the treated mice, we tested the in vitro and in vivo function of bone marrow-derived DCs (BMDCs). The BMDCs showed efficient in vitro uptake of latex beads and Salmonella typhimurium. When BMDCs from the treated mice (GT BMDCs) and the was−/− mice were injected into wild type hosts, we found a higher number of cells that had migrated to the draining lymph nodes compared to mice injected with was−/− BMDCs. Finally, we found that OVA-pulsed GT BMDCs or vaccination with anti-DEC205 OVA fusion protein can efficiently induce antigen-specific T cell activation in vivo. These findings show that WAS GT significantly improves DC function, thus adding new evidence of the preclinical efficacy of lentiviral vector-mediated WAS GT.
Collapse
|
43
|
Current world literature. Curr Opin Allergy Clin Immunol 2011; 11:594-8. [PMID: 22027954 DOI: 10.1097/aci.0b013e32834d9a9f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Calvez R, Lafouresse F, De Meester J, Galy A, Valitutti S, Dupré L. The Wiskott-Aldrich syndrome protein permits assembly of a focused immunological synapse enabling sustained T-cell receptor signaling. Haematologica 2011; 96:1415-23. [PMID: 21659358 DOI: 10.3324/haematol.2011.040204] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND T-cell activation relies on the assembly of the immunological synapse, a structure tightly regulated by the actin cytoskeleton. The precise role of the Wiskott-Aldrich syndrome protein, an actin cytoskeleton regulator, in linking immunological synapse structure to downstream signaling remains to be clarified. DESIGN AND METHODS To address this point, CD4(+) T cells from patients with Wiskott-Aldrich syndrome were stimulated with antigen-presenting cells. The structure and dynamics of the immunological synapse were studied by confocal and video-microscopy. RESULTS Upon stimulation by antigen-presenting cells, Wiskott-Aldrich syndrome protein-deficient T cells displayed reduced cytokine production and proliferation. Although Wiskott-Aldrich syndrome T cells formed conjugates with antigen-presenting cells at normal frequency and exhibited normal T-cell receptor down-regulation, they emitted actin-rich protrusions away from the immunological synapse area and their microtubule organizing center failed to polarize fully towards the center of the immunological synapse. In parallel, abnormally dispersed phosphotyrosine staining revealed unfocused synaptic signaling in Wiskott-Aldrich syndrome T cells. Time-lapse microscopy confirmed the anomalous morphology of Wiskott-Aldrich syndrome T-cell immunological synapses and showed erratic calcium mobilization at the single-cell level. CONCLUSIONS Taken together, our data show that the Wiskott-Aldrich syndrome protein is required for the assembly of focused immunological synapse structures allowing optimal signal integration and sustained calcium signaling.
Collapse
|
45
|
Orange JS, Roy-Ghanta S, Mace EM, Maru S, Rak GD, Sanborn KB, Fasth A, Saltzman R, Paisley A, Monaco-Shawver L, Banerjee PP, Pandey R. IL-2 induces a WAVE2-dependent pathway for actin reorganization that enables WASp-independent human NK cell function. J Clin Invest 2011; 121:1535-48. [PMID: 21383498 PMCID: PMC3069781 DOI: 10.1172/jci44862] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Accepted: 01/12/2011] [Indexed: 01/17/2023] Open
Abstract
Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency associated with an increased susceptibility to herpesvirus infection and hematologic malignancy as well as a deficiency of NK cell function. It is caused by defective WAS protein (WASp). WASp facilitates filamentous actin (F-actin) branching and is required for F-actin accumulation at the NK cell immunological synapse and NK cell cytotoxicity ex vivo. Importantly, the function of WASp-deficient NK cells can be restored in vitro after exposure to IL-2, but the mechanisms underlying this remain unknown. Using a WASp inhibitor as well as cells from patients with WAS, we have defined a direct effect of IL-2 signaling upon F-actin that is independent of WASp function. We found that IL-2 treatment of a patient with WAS enhanced the cytotoxicity of their NK cells and the F-actin content at the immunological synapses formed by their NK cells. IL-2 stimulation of NK cells in vitro activated the WASp homolog WAVE2, which was required for inducing WASp-independent NK cell function, but not for baseline activity. Thus, WAVE2 and WASp define parallel pathways to F-actin reorganization and function in human NK cells; although WAVE2 was not required for NK cell innate function, it was accessible through adaptive immunity via IL-2. These results demonstrate how overlapping cytoskeletal activities can utilize immunologically distinct pathways to achieve synonymous immune function.
Collapse
Affiliation(s)
- Jordan S Orange
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|