1
|
Zhang F, Xia Y, Su J, Quan F, Zhou H, Li Q, Feng Q, Lin C, Wang D, Jiang Z. Neutrophil diversity and function in health and disease. Signal Transduct Target Ther 2024; 9:343. [PMID: 39638788 PMCID: PMC11627463 DOI: 10.1038/s41392-024-02049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/21/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Neutrophils, the most abundant type of granulocyte, are widely recognized as one of the pivotal contributors to the acute inflammatory response. Initially, neutrophils were considered the mobile infantry of the innate immune system, tasked with the immediate response to invading pathogens. However, recent studies have demonstrated that neutrophils are versatile cells, capable of regulating various biological processes and impacting both human health and disease. Cytokines and other active mediators regulate the functional activity of neutrophils by activating multiple receptors on these cells, thereby initiating downstream signal transduction pathways. Dysfunctions in neutrophils and disruptions in neutrophil homeostasis have been implicated in the pathogenesis of numerous diseases, including cancer and inflammatory disorders, often due to aberrant intracellular signaling. This review provides a comprehensive synthesis of neutrophil biological functions, integrating recent advancements in this field. Moreover, it examines the biological roles of receptors on neutrophils and downstream signaling pathways involved in the regulation of neutrophil activity. The pathophysiology of neutrophils in numerous human diseases and emerging therapeutic approaches targeting them are also elaborated. This review also addresses the current limitations within the field of neutrophil research, highlighting critical gaps in knowledge that warrant further investigation. In summary, this review seeks to establish a comprehensive and multidimensional model of neutrophil regulation, providing new perspectives for potential clinical applications and further research.
Collapse
Affiliation(s)
- Fengyuan Zhang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yidan Xia
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jiayang Su
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fushi Quan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China.
| | - Ziping Jiang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China.
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Maddipati KR. Distinct etiology of chronic inflammation - implications on degenerative diseases and cancer therapy. Front Immunol 2024; 15:1460302. [PMID: 39555057 PMCID: PMC11563979 DOI: 10.3389/fimmu.2024.1460302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
Acute inflammation is elicited by lipid and protein mediators in defense of the host following sterile or pathogen-driven injury. A common refrain is that chronic inflammation is a result of incomplete resolution of acute inflammation and behind the etiology of all chronic diseases, including cancer. However, mediators that participate in inflammation are also essential in homeostasis and developmental biology but without eliciting the clinical symptoms of inflammation. This non-inflammatory physiological activity of the so called 'inflammatory' mediators, apparently under the functional balance with anti-inflammatory mediators, is defined as unalamation (un-ala-mation). Inflammation in the absence of injury is a result of perturbance in unalamation due to a decrease in the anti-inflammatory mediators rather than an increase in the inflammatory mediators and leads to chronic inflammation. This concept on the etiology of chronic inflammation suggests that treatment of chronic diseases is better achieved by stimulating the endogenous anti-inflammatory mediators instead of inhibiting the 'inflammatory' mediator biosynthesis with Non-Steroidal Anti-Inflammatory Drugs (NSAIDs). Furthermore, both 'inflammatory' and anti-inflammatory mediators are present at higher concentrations in the tumor microenvironment compared to normal tissue environments. Since cancer is a proliferative disorder rather than a degenerative disease, it is proposed that heightened unalamation, rather than chronic inflammation, drives tumor growth. This understanding helps explain the inefficacy of NSAIDs as anticancer agents. Finally, inhibition of anti-inflammatory mediator biosynthesis in tumor tissues could imbalance unalamation toward local acute inflammation triggering an immune response to restore homeostasis and away from tumor growth.
Collapse
|
3
|
Brady A, Mora Martinez LC, Hammond B, Whitefoot-Keliin KM, Haribabu B, Uriarte SM, Lawrenz MB. Distinct mechanisms of type 3 secretion system recognition control LTB4 synthesis in neutrophils and macrophages. PLoS Pathog 2024; 20:e1012651. [PMID: 39423229 PMCID: PMC11524448 DOI: 10.1371/journal.ppat.1012651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/30/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Leukotriene B4 (LTB4) is an inflammatory lipid produced in response to pathogens that is critical for initiating the inflammatory cascade needed to control infection. However, during plague, Yersinia pestis inhibits the timely synthesis of LTB4 and subsequent inflammation. Using bacterial mutants, we previously determined that Y. pestis inhibits LTB4 synthesis via the action of the Yop effector proteins that are directly secreted into host cells through a type 3 secretion system (T3SS). Here, we show that the T3SS is the primary pathogen associated molecular pattern (PAMP) required for production of LTB4 in response to both Yersinia and Salmonella. However, we also unexpectantly discovered that T3SS-mediated LTB4 synthesis by neutrophils and macrophages require the activation of two distinctly different host signaling pathways. We identified that phagocytosis and the NLRP3/CASP1 inflammasome significantly impact LTB4 synthesis by macrophages but not neutrophils. Instead, the SKAP2/PLC signaling pathway is required for T3SS-mediated LTB4 production by neutrophils. Finally, while recognition of the T3SS is required for LTB4 production, we also discovered that a second unrelated PAMP-mediated signal activates the MAP kinase pathway needed for synthesis. Together, these data demonstrate significant differences in the host factors and signaling pathways required by macrophages and neutrophils to quickly produce LTB4 in response to bacteria. Moreover, while macrophages and neutrophils might rely on different signaling pathways for T3SS-dependent LTB4 synthesis, Y. pestis has evolved virulence mechanisms to counteract this response by either leukocyte to inhibit LTB4 synthesis and colonize the host.
Collapse
Affiliation(s)
- Amanda Brady
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Leonardo C. Mora Martinez
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Benjamin Hammond
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Kaitlyn M. Whitefoot-Keliin
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Center for Microbiomics, Inflammation and Pathogenicity, Louisville, Kentucky, United States of America
| | - Silvia M. Uriarte
- Deptartment of Oral Immunology & Infectious Diseases, University of Louisville, Louisville, Kentucky, United States of America
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, Louisville, Kentucky, United States of America
| | - Matthew B. Lawrenz
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, Louisville, Kentucky, United States of America
| |
Collapse
|
4
|
Brady A, Mora-Martinez LC, Hammond B, Haribabu B, Uriarte SM, Lawrenz MB. Distinct Mechanisms of Type 3 Secretion System Recognition Control LTB 4 Synthesis in Neutrophils versus Macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601466. [PMID: 39005373 PMCID: PMC11244889 DOI: 10.1101/2024.07.01.601466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Leukotriene B4 (LTB4) is critical for initiating the inflammatory cascade in response to infection. However, Yersinia pestis colonizes the host by inhibiting the timely synthesis of LTB4 and inflammation. Here, we show that the bacterial type 3 secretion system (T3SS) is the primary pathogen associated molecular pattern (PAMP) responsible for LTB4 production by leukocytes in response to Yersinia and Salmonella, but synthesis is inhibited by the Yop effectors during Yersinia interactions. Moreover, we unexpectedly discovered that T3SS-mediated LTB4 synthesis by neutrophils and macrophages require two distinct host signaling pathways. We show that the SKAP2/PLC signaling pathway is essential for LTB4 production by neutrophils but not macrophages. Instead, phagocytosis and the NLRP3/CASP1 inflammasome are needed for LTB4 synthesis by macrophages. Finally, while recognition of the T3SS is required for LTB4 production, we also discovered a second unrelated PAMP-mediated signal independently activates the MAP kinase pathway needed for LTB4 synthesis. Together, these data demonstrate significant differences in the signaling pathways required by macrophages and neutrophils to quickly respond to bacterial infections.
Collapse
Affiliation(s)
- Amanda Brady
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Leonardo C. Mora-Martinez
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Benjamin Hammond
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Center for Microbiomics, Inflammation and Pathogenicity, Louisville, Kentucky, United States of America
| | - Silvia M. Uriarte
- Deptartment of Oral Immunology & Infectious Diseases, University of Louisville, Louisville, Kentucky, United States of America
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, Louisville, Kentucky, United States of America
| | - Matthew B. Lawrenz
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, Louisville, Kentucky, United States of America
| |
Collapse
|
5
|
Melkikh AV. Unsolved morphogenesis problems and the hidden order. Biosystems 2024; 239:105218. [PMID: 38653448 DOI: 10.1016/j.biosystems.2024.105218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
In this work, the morphogenesis mechanisms are considered from the complexity perspective. It is shown that both morphogenesis and the functioning of organs should be unstable in the case of short-range interaction potentials. The repeatability of forms during evolution is a strong argument for its directionality. The formation of organs during evolution can occur only in the presence of a priori information about the structure of such an organ. The focus of the discussion is not merely on constraining potential possibilities but on the concept of directed evolution itself. A morphogenesis model was constructed based on nontrivial quantum effects. These interaction effects between biologically important molecules ensure the accurate synthesis of cells, tissues, and organs.
Collapse
Affiliation(s)
- A V Melkikh
- Ural Federal University, Yekaterinburg, Russia.
| |
Collapse
|
6
|
Molitoris KH, Balu AR, Huang M, Baht GS. The impact of age and sex on the inflammatory response during bone fracture healing. JBMR Plus 2024; 8:ziae023. [PMID: 38560342 PMCID: PMC10978063 DOI: 10.1093/jbmrpl/ziae023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/29/2023] [Accepted: 02/12/2024] [Indexed: 04/04/2024] Open
Abstract
Inflammation is thought to be dysregulated with age leading to impaired bone fracture healing. However, broad analyses of inflammatory processes during homeostatic bone aging and during repair are lacking. Here, we assessed changes in inflammatory cell and cytokine profiles in circulation and in bone tissue to identify age- and sex-dependent differences during homeostasis and repair. During homeostatic aging, male mice demonstrated accumulation of CD4+ helper T cells and CD8+ cytotoxic T cells within bone while both pro-inflammatory "M1" and anti-inflammatory "M2" macrophage numbers decreased. Female mice saw no age-associated changes in immune-cell population in homeostatic bone. Concentrations of IL-1β, IL-9, IFNγ, and CCL3/MIP-1α increased with age in both male and female mice, whereas concentrations of IL-2, TNFα, TNFR1, IL-4, and IL-10 increased only in female mice - thus we termed these "age-accumulated" cytokines. There were no notable changes in immune cell populations nor cytokines within circulation during aging. Sex-dependent analysis demonstrated slight changes in immune cell and cytokine levels within bone and circulation, which were lost upon fracture injury. Fracture in young male mice caused a sharp decrease in number of M1 macrophages; however, this was not seen in aged male mice nor in female mice of any age. Injury itself induced a decrease in the number of CD8+ T cells within the local tissue of aged male and of female mice but not of young mice. Cytokine analysis of fractured mice revealed that age-accumulated cytokines quickly dissipated after fracture injury, and did not re-accumulate in newly regenerated tissue. Conversely, CXCL1/KC-GRO, CXCL2/MIP-2, IL-6, and CCL2/MCP-1 acted as "fracture response" cytokines: increasing sharply after fracture, eventually returning to baseline. Collectively, we classify measured cytokines into three groups: (1) age-accumulated cytokines, (2) female-specific age-accumulated cytokines, and (3) fracture response cytokines. These inflammatory molecules represent potential points of intervention to improve fracture healing outcome.
Collapse
Affiliation(s)
- Kristin Happ Molitoris
- Department of Orthopaedic Surgery, Duke Molecular Physiology Institute, Department of Pathology, Duke University, Durham, NC 27701, United States
| | - Abhinav Reddy Balu
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Mingjian Huang
- Department of Orthopaedic Surgery, Duke Molecular Physiology Institute, Department of Pathology, Duke University, Durham, NC 27701, United States
| | - Gurpreet Singh Baht
- Department of Orthopaedic Surgery, Duke Molecular Physiology Institute, Department of Pathology, Duke University, Durham, NC 27701, United States
| |
Collapse
|
7
|
Zhou Y, McClain C, Feng W. Porphyromonas gingivalis Strain W83 Infection Induces Liver Injury in Experimental Alcohol-Associated Liver Disease (ALD) in Mice. Appl Microbiol 2024; 4:620-634. [DOI: 10.3390/applmicrobiol4020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The liver plays a vital role in the defense against infections. Porphyromonas gingivalis (P. gingivalis), a dominant etiologic oral bacterium implicated in periodontal disease (PD), has been associated with various systemic diseases. This study aimed to investigate the influence of P. gingivalis on alcohol-associated liver diseases (ALD). Mice were fed a Lieber–DeCarli liquid diet containing 5% ethanol for 10 days after an initial adaptation period on a diet with lower ethanol content for 7 days. Two days before tissue sample collection, the mice were administered P. gingivalis strain W83 (Pg) through intraperitoneal injection (IP). Pair-fed mice with Pg infection (PF+Pg) exhibited an activated immune response to combat infections. However, alcohol-fed mice with Pg infection (AF+Pg) showed liver injury with noticeable abscess lesions and elevated serum alanine aminotransferase (ALT) levels. Additionally, these mice displayed liver infiltration of inflammatory monocytes and significant downregulation of proinflammatory cytokine gene expression levels; and AF+Pg mice also demonstrated increased intrahepatic neutrophil infiltration, as confirmed by chloroacetate esterase (CAE) staining, along with elevated gene expression levels of neutrophil cytosol factor 1 (Ncf1), neutrophilic inflammation driver lipocalin 2 (Lcn2), and complement component C5a receptor 1 (C5ar1), which are associated with neutrophilic inflammation. Interestingly, compared to PF+Pg mice, the livers of AF+Pg mice exhibited downregulation of gene expression levels of NADPH oxidase 2 (Cybb), the leukocyte adhesion molecule Cd18, and the Toll-like receptor adaptor Myd88. Consequently, impaired clearance of P. gingivalis and other bacteria in the liver, increased susceptibility to infections, and inflammation-associated hepatic necrotic cell death were observed in AF+Pg mice, which is likely to have facilitated immune cell infiltration and contributed to liver injury. Furthermore, in addition to the Srebf1/Fasn pathway induced by alcohol feeding, Pg infection also activated carbohydrate response element-binding protein (ChREBP) in AF+Pg mice. In summary, this study demonstrates that P. gingivalis infection, acting as a “second hit”, induces dysfunction of immune response and impairs the clearance of bacteria and infections in alcohol-sensitized livers. This process drives the development of liver injury.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Craig McClain
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY 40202, USA
- Robley Rex VA Medical Center, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Wenke Feng
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
- Department of Structural and Cellular Biology, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
8
|
Wei S, Shen Z, Yin Y, Cong Z, Zeng Z, Zhu X. Advances of presepsin in sepsis-associated ARDS. Postgrad Med J 2024; 100:209-218. [PMID: 38147883 DOI: 10.1093/postmj/qgad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/30/2023] [Accepted: 12/02/2023] [Indexed: 12/28/2023]
Abstract
This article reviews the correlation between presepsin and sepsis and the resulting acute respiratory distress syndrome (ARDS). ARDS is a severe complication of sepsis. Despite the successful application of protective mechanical ventilation, restrictive fluid therapy, and neuromuscular blockade, which have effectively reduced the morbidity and mortality associated with ARDS, the mortality rate among patients with sepsis-associated ARDS remains notably high. The challenge lies in the prediction of ARDS onset and the timely implementation of intervention strategies. Recent studies have demonstrated significant variations in presepsin (PSEP) levels between patients with sepsis and those without, particularly in the context of ARDS. Moreover, these studies have revealed substantially elevated PSEP levels in patients with sepsis-associated ARDS compared to those with nonsepsis-associated ARDS. Consequently, PSEP emerges as a valuable biomarker for identifying patients with an increased risk of sepsis-associated ARDS and to predict in-hospital mortality.
Collapse
Affiliation(s)
- Senhao Wei
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Graduate School of Peking University Health Science Center, Peking University Health Science Center, Beijing 100191, China
| | - Ziyuan Shen
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Graduate School of Peking University Health Science Center, Peking University Health Science Center, Beijing 100191, China
| | - Yiyuan Yin
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Zhukai Cong
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Zhaojin Zeng
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Graduate School of Peking University Health Science Center, Peking University Health Science Center, Beijing 100191, China
| | - Xi Zhu
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
9
|
Loesche C, Picard D, Van Hoorick B, Schuhmann I, Jäger P, Klein K, Schuhler C, Thoma G, Markert C, Poller B, Zamurovic N, Weiss HM, Otto H, Fink M, Röhn TA. LTA4H inhibitor LYS006: Clinical PK/PD and safety in a randomized phase I clinical trial. Clin Transl Sci 2024; 17:e13724. [PMID: 38407540 PMCID: PMC10837484 DOI: 10.1111/cts.13724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 02/27/2024] Open
Abstract
LYS006 is a novel, highly potent and selective, new-generation leukotriene A4 hydrolase (LTA4H) inhibitor in clinical development for the treatment of neutrophil-driven inflammatory diseases. We describe the complex pharmacokinetic to pharmacodynamic (PD) relationship in blood, plasma, and skin of LYS006-treated nonclinical species and healthy human participants. In a randomized first in human study, participants were exposed to single ascending doses up to 100 mg and multiple ascending doses up to 80 mg b.i.d.. LYS006 showed rapid absorption, overall dose proportional plasma exposure and nonlinear blood to plasma distribution caused by saturable target binding. The compound efficiently inhibited LTB4 production in human blood and skin blister cells, leading to greater than 90% predose target inhibition from day 1 after treatment initiation at doses of 20 mg b.i.d. and above. Slow re-distribution from target expressing cells resulted in a long terminal half-life and a long-lasting PD effect in ex vivo stimulated blood and skin cells despite low plasma exposures. LYS006 was well-tolerated and demonstrated a favorable safety profile up to highest doses tested, without any dose-limiting toxicity. This supported further clinical development in phase II studies in predominantly neutrophil-driven inflammatory conditions, such as hidradenitis suppurativa, inflammatory acne, and ulcerative colitis.
Collapse
Affiliation(s)
- Christian Loesche
- Translational MedicineNovartis BioMedical Research, Novartis Pharma AGBaselSwitzerland
| | - Damien Picard
- Translational MedicineNovartis BioMedical Research, Novartis Pharma AGBaselSwitzerland
- Present address:
Vaderis Therapeutics AGBaselSwitzerland
| | | | - Imelda Schuhmann
- Biomarker DevelopmentNovartis BioMedical Research, Novartis Pharma AGBaselSwitzerland
| | - Petra Jäger
- Immunology Disease AreaNovartis BioMedical Research, Novartis Pharma AGBaselSwitzerland
| | - Kai Klein
- PK SciencesNovartis BioMedical Research, Novartis Pharma AGBaselSwitzerland
| | - Carole Schuhler
- Early Development Analytics, Novartis Pharma AGBaselSwitzerland
| | - Gebhard Thoma
- Global Discovery ChemistryNovartis Biomedical Research, Novartis Pharma AGBaselSwitzerland
| | - Christian Markert
- Global Discovery ChemistryNovartis Biomedical Research, Novartis Pharma AGBaselSwitzerland
| | - Birk Poller
- PK SciencesNovartis BioMedical Research, Novartis Pharma AGBaselSwitzerland
| | | | - H. Markus Weiss
- PK SciencesNovartis BioMedical Research, Novartis Pharma AGBaselSwitzerland
| | - Heike Otto
- Immunology Disease AreaNovartis BioMedical Research, Novartis Pharma AGBaselSwitzerland
| | - Martin Fink
- Early Development Analytics, Novartis Pharma AGBaselSwitzerland
| | - Till A. Röhn
- Immunology Disease AreaNovartis BioMedical Research, Novartis Pharma AGBaselSwitzerland
| |
Collapse
|
10
|
Brady A, Sheneman KR, Pulsifer AR, Price SL, Garrison TM, Maddipati KR, Bodduluri SR, Pan J, Boyd NL, Zheng JJ, Rai SN, Hellmann J, Haribabu B, Uriarte SM, Lawrenz MB. Type 3 secretion system induced leukotriene B4 synthesis by leukocytes is actively inhibited by Yersinia pestis to evade early immune recognition. PLoS Pathog 2024; 20:e1011280. [PMID: 38271464 PMCID: PMC10846697 DOI: 10.1371/journal.ppat.1011280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 02/06/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Subverting the host immune response to inhibit inflammation is a key virulence strategy of Yersinia pestis. The inflammatory cascade is tightly controlled via the sequential action of lipid and protein mediators of inflammation. Because delayed inflammation is essential for Y. pestis to cause lethal infection, defining the Y. pestis mechanisms to manipulate the inflammatory cascade is necessary to understand this pathogen's virulence. While previous studies have established that Y. pestis actively inhibits the expression of host proteins that mediate inflammation, there is currently a gap in our understanding of the inflammatory lipid mediator response during plague. Here we used the murine model to define the kinetics of the synthesis of leukotriene B4 (LTB4), a pro-inflammatory lipid chemoattractant and immune cell activator, within the lungs during pneumonic plague. Furthermore, we demonstrated that exogenous administration of LTB4 prior to infection limited bacterial proliferation, suggesting that the absence of LTB4 synthesis during plague contributes to Y. pestis immune evasion. Using primary leukocytes from mice and humans further revealed that Y. pestis actively inhibits the synthesis of LTB4. Finally, using Y. pestis mutants in the Ysc type 3 secretion system (T3SS) and Yersinia outer protein (Yop) effectors, we demonstrate that leukocytes recognize the T3SS to initiate the rapid synthesis of LTB4. However, several Yop effectors secreted through the T3SS effectively inhibit this host response. Together, these data demonstrate that Y. pestis actively inhibits the synthesis of the inflammatory lipid LTB4 contributing to the delay in the inflammatory cascade required for rapid recruitment of leukocytes to sites of infection.
Collapse
Affiliation(s)
- Amanda Brady
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Katelyn R. Sheneman
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Amanda R. Pulsifer
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Sarah L. Price
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Taylor M. Garrison
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Krishna Rao Maddipati
- Department of Pathology, Lipidomics Core Facility, Wayne State University, Detroit, Michigan, United States of America
| | - Sobha R. Bodduluri
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Jianmin Pan
- Biostatistics and Bioinformatics Facility, Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Nolan L. Boyd
- Center for Cardiometabolic Science, Christina Lee Brown Environment Institute, Division of Environmental Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Jing-Juan Zheng
- Center for Cardiometabolic Science, Christina Lee Brown Environment Institute, Division of Environmental Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Shesh N. Rai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Jason Hellmann
- Center for Cardiometabolic Science, Christina Lee Brown Environment Institute, Division of Environmental Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Silvia M. Uriarte
- Deptartment of Oral Immunology & Infectious Diseases, University of Louisville, Louisville, Kentucky, United States of America
| | - Matthew B. Lawrenz
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, Louisville, Kentucky, United States of America
| |
Collapse
|
11
|
Snider AP, Gomes RS, Summers AF, Tenley SC, Abedal-Majed MA, McFee RM, Wood JR, Davis JS, Cupp AS. Identification of Lipids and Cytokines in Plasma and Follicular Fluid before and after Follicle-Stimulating Hormone Stimulation as Potential Markers for Follicular Maturation in Cattle. Animals (Basel) 2023; 13:3289. [PMID: 37894013 PMCID: PMC10603728 DOI: 10.3390/ani13203289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
The process of follicle maturation leading to ovulation is a key milestone in female fertility. It is known that circulating lipids and cytokines play a role in the follicle's ability to go through follicular maturation and the ovulatory processes. However, the specific mechanisms are not well understood. We posit that dysregulation of granulosa cells influences the ovarian environment, which tries to adapt by changing released lipids and cytokines to achieve follicular maturation. Eleven non-lactating adult females underwent estrus synchronization with two injections of PGF2α 14 days apart. Daily blood samples were collected for 28 days to monitor steroid hormone production after the second injection. To understand the potential impacts of lipids and cytokines during ovulation, a low-dose FSH stimulation (FSHLow) was performed after resynchronization of cows, and daily blood samples were collected for 14 days to monitor steroid hormone production until ovariectomies. The lipidomic analysis demonstrated increased circulating diacylglycerides and triacylglycerides during the mid-luteal phase and after FSHLow treatment. Cholesteryl esters decreased in circulation but increased in follicular fluid (FF) after FSHLow. Increased circulating concentrations of TNFα and reduced CXCL9 were observed in response to FSHLow. Therefore, specific circulating lipids and cytokines may serve as markers of normal follicle maturation.
Collapse
Affiliation(s)
- Alexandria P. Snider
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA;
| | - Renata S. Gomes
- Department of Animal Science, University of Nebraska–Lincoln, 3940 Fair Street, Lincoln, NE 68583, USA; (R.S.G.); (J.R.W.)
| | | | - Sarah C. Tenley
- Department of Animal Science, University of Nebraska–Lincoln, 3940 Fair Street, Lincoln, NE 68583, USA; (R.S.G.); (J.R.W.)
| | - Mohamed A. Abedal-Majed
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman 11942, Jordan;
| | - Renee M. McFee
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Jennifer R. Wood
- Department of Animal Science, University of Nebraska–Lincoln, 3940 Fair Street, Lincoln, NE 68583, USA; (R.S.G.); (J.R.W.)
| | - John S. Davis
- Olson Center for Women’s Health, University of Nebraska Medical Center, 983255 Nebraska Medical Center, Omaha, NE 68198, USA;
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Andrea S. Cupp
- Department of Animal Science, University of Nebraska–Lincoln, 3940 Fair Street, Lincoln, NE 68583, USA; (R.S.G.); (J.R.W.)
| |
Collapse
|
12
|
Song Z, Bhattacharya S, Clemens RA, Dinauer MC. Molecular regulation of neutrophil swarming in health and disease: Lessons from the phagocyte oxidase. iScience 2023; 26:108034. [PMID: 37854699 PMCID: PMC10579437 DOI: 10.1016/j.isci.2023.108034] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Neutrophil swarming is a complex coordinated process in which neutrophils sensing pathogen or damage signals are rapidly recruited to sites of infections or injuries. This process involves cooperation between neutrophils where autocrine and paracrine positive-feedback loops, mediated by receptor/ligand pairs including lipid chemoattractants and chemokines, amplify localized recruitment of neutrophils. This review will provide an overview of key pathways involved in neutrophil swarming and then discuss the cell intrinsic and systemic mechanisms by which NADPH oxidase 2 (NOX2) regulates swarming, including modulation of calcium signaling, inflammatory mediators, and the mobilization and production of neutrophils. We will also discuss mechanisms by which altered neutrophil swarming in disease may contribute to deficient control of infections and/or exuberant inflammation. Deeper understanding of underlying mechanisms controlling neutrophil swarming and how neutrophil cooperative behavior can be perturbed in the setting of disease may help to guide development of tools for diagnosis and precision medicine.
Collapse
Affiliation(s)
- Zhimin Song
- Guangzhou National Laboratory, Guangzhou 510320, Guangdong Province, China
| | - Sourav Bhattacharya
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Regina A. Clemens
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Mary C. Dinauer
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
13
|
Zuo C, Liu Y, Wang J, Yu W, Liu Y, Zhang Y, Xu J, Peng D, Peng C. CDCT-induced nephrotoxicity in rat by apoptosis via metabolic disturbance. J Appl Toxicol 2023; 43:1499-1510. [PMID: 37127545 DOI: 10.1002/jat.4480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Compound diclofenac sodium chlorphenamine maleate tablets (CDCT) are widely used for the cold in Asia. However, CDCT can cause hematuria symptoms in clinical, and the underlying mechanism is unknown. This study aims to investigate the CDCT-induced changes of morphology in kidney and metabolites and further explore the possible mechanisms of CDCT-induced nephrotoxicity. Sprague-Dawley rats were exposed to the CDCT at a clinical equivalent dose for 6 days. CDCT exposure can induce kidney injury and death. Pathological changes, including creatinine, urea nitrogen, and histopathology, were observed in rats. Furthermore, metabolomic-driven energy and glycerophospholipid metabolism pathway disorders, accompanied by remarkably changed key metabolites, such as succinate, leukotriene B4 (LTB4 ), and cardiolipin (CL), are observed in the CDCT-induced nephrotoxicity. Functionally, succinate accumulation leads to mitochondrial damage, as evidence by the imbalance of complex I and complex II and an increase in mitochondrial reactive oxygen species (mito SOX). Meanwhile, LTB4 activated the NF-κB signaling, as shown by increased protein of p65, phosphor-p65, and decreased protein of IκBα and phosphor-IκBα. Eventually, the apoptosis pathway was triggered in response to reduced CL, inflammation, and mito SOX, as demonstrated by the expression of cyt c, Bax, Bcl-2, caspase-3, and caspase-9. This study indicated that CDCT-induced metabolic disorders triggered nephrotoxicity and provided a comprehensive information to elucidate the mechanism of CDCT induced nephrotoxicity.
Collapse
Affiliation(s)
- Chijing Zuo
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Yan Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jie Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Weidong Yu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yujie Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yanyan Zhang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Jingjing Xu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Can Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Institute of TCM Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| |
Collapse
|
14
|
Rokkam SK, Mas-Rosario JA, Joshi BP, Joshi M, Choudhury AR, Kar S, Golakoti NR, Farkas ME. Diarylidene-N-Methyl-4-Piperidones and Spirobibenzopyrans as Antioxidant and Anti-Inflammatory Agents. Chem Biodivers 2023; 20:e202300822. [PMID: 37537138 PMCID: PMC10634312 DOI: 10.1002/cbdv.202300822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
Curcumin has antioxidant properties resulting from its radical scavenging ability and inhibition of inflammation-associated factors. However, its lack of solubility, instability, and poor bioavailability are impediments to its therapeutic use. As potential alternatives, we synthesized and performed chemical analysis of thirty diarylidene-N-methyl-4-piperidone (DANMP), diheteroarylidene-N-methyl-4-piperidone (DHANMP), and spirobibenzopyran (SBP) derivatives, one of which was also characterized by single crystal X-ray diffraction. All compounds were evaluated for antioxidant activity via 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and for drug-like properties in silico. A subset of five compounds was investigated in terms of aqueous solubilities, which were significantly improved compared to that of curcumin. In vitro assessments of cellular and anti-inflammatory effects were conducted via real time polymerase chain reaction (RT-PCR) and Griess assays to evaluate the presence of inflammatory/activated (M1) markers and production of nitric oxide (NO) species, which are associated with inflammation. The five compounds reduced levels of markers and NO to extents similar to or better than curcumin in inflamed cells, and showed no adverse effects on cell viability. We show that these compounds possess anti-inflammatory properties and may be used as curcumin-substitutes with improved characteristics.
Collapse
Affiliation(s)
- Siva Kumar Rokkam
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam 515134(AP), India
| | - Javier A. Mas-Rosario
- Molecular & Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Rd, Amherst, MA 01003, USA
| | - Bishnu P. Joshi
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003 USA
| | - Mayank Joshi
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Sector 81, S. A. S. Nagar, Knowledge City, Manauli P. O. Mohali, Punjab, 140306, India
- College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Angshuman Roy Choudhury
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Sector 81, S. A. S. Nagar, Knowledge City, Manauli P. O. Mohali, Punjab, 140306, India
| | - Swayamsiddha Kar
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam 515134(AP), India
| | - Nageswara Rao Golakoti
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam 515134(AP), India
| | - Michelle E. Farkas
- Molecular & Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Rd, Amherst, MA 01003, USA
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003 USA
| |
Collapse
|
15
|
Tamás SX, Roux BT, Vámosi B, Dehne FG, Török A, Fazekas L, Enyedi B. A genetically encoded sensor for visualizing leukotriene B4 gradients in vivo. Nat Commun 2023; 14:4610. [PMID: 37528073 PMCID: PMC10393954 DOI: 10.1038/s41467-023-40326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023] Open
Abstract
Leukotriene B4 (LTB4) is a potent lipid chemoattractant driving inflammatory responses during host defense, allergy, autoimmune and metabolic diseases. Gradients of LTB4 orchestrate leukocyte recruitment and swarming to sites of tissue damage and infection. How LTB4 gradients form and spread in live tissues to regulate these processes remains largely elusive due to the lack of suitable tools for monitoring LTB4 levels in vivo. Here, we develop GEM-LTB4, a genetically encoded green fluorescent LTB4 biosensor based on the human G-protein-coupled receptor BLT1. GEM-LTB4 shows high sensitivity, specificity and a robust fluorescence increase in response to LTB4 without affecting downstream signaling pathways. We use GEM-LTB4 to measure ex vivo LTB4 production of murine neutrophils. Transgenic expression of GEM-LTB4 in zebrafish allows the real-time visualization of both exogenously applied and endogenously produced LTB4 gradients. GEM-LTB4 thus serves as a broadly applicable tool for analyzing LTB4 dynamics in various experimental systems and model organisms.
Collapse
Affiliation(s)
- Szimonetta Xénia Tamás
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
- MTA-SE Lendület Tissue Damage Research Group, Hungarian Academy of Sciences and Semmelweis University, H-1094, Budapest, Hungary
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary
| | - Benoit Thomas Roux
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary
| | - Boldizsár Vámosi
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
| | - Fabian Gregor Dehne
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary
| | - Anna Török
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary
| | - László Fazekas
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
- MTA-SE Lendület Tissue Damage Research Group, Hungarian Academy of Sciences and Semmelweis University, H-1094, Budapest, Hungary
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary
| | - Balázs Enyedi
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary.
- MTA-SE Lendület Tissue Damage Research Group, Hungarian Academy of Sciences and Semmelweis University, H-1094, Budapest, Hungary.
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary.
| |
Collapse
|
16
|
Baptista BG, Fanton S, Ribeiro M, Cardozo LF, Regis B, Alvarenga L, Ribeiro-Alves M, Berretta AA, Shiels PG, Mafra D. The effect of Brazilian Green Propolis extract on inflammation in patients with chronic kidney disease on peritoneal dialysis: A randomised double-blind controlled clinical trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154731. [PMID: 36934668 DOI: 10.1016/j.phymed.2023.154731] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/02/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) patients on dialysis display a low-grade systemic inflammatory burden. Nutritional interventions designed to activate the cytoprotective nuclear factor erythroid-2-related factor 2 (Nrf2) and inhibit nuclear factor-kB (NF-κB) have been proposed to mitigate this burden. Several bioactive compounds have been investigated to achieve this, including propolis, a resin produced by Apis mellifera bees. Considering the safety and efficacy of propolis, it could be a strategy to benefit these patients. Still, there are no studies using propolis in patients with CKD on peritoneal dialysis (DP), and clinical studies to support this application are lacking. HYPOTHESIS/PURPOSE The objective and novelty of the present study are to evaluate the effects of propolis supplementation on inflammatory markers in patients with CKD on PD. STUDY DESIGN A longitudinal, double-blind, placebo-controlled trial with CKD patients on PD. METHODS The patients were randomised into two groups: propolis that received four capsules of 100 mg (400 mg/day), containing concentrated and standardised dry EPP-AF® Brazilian green propolis extract) or placebo, four capsules of 100 mg (400 mg/day), of magnesium stearate, silicon dioxide, and microcrystalline cellulose, for two months. Plasma levels of inflammatory cytokines, including tumour necrosis factor (TNF-α) and interleukin-6 (IL-6), were evaluated by ELISA. Quantitative real-time PCR analyses were performed to evaluate the transcriptional expression levels of Nrf2 and NF-κB in peripheral blood mononuclear cells (PBMCs). Plasma malondialdehyde (MDA) levels, a lipid peroxidation marker, was measured as thiobarbituric acid reactive substances (TBARS). Routine biochemical markers, including C-reactive protein (CRP), were analysed using commercial kits. Carotid Intima-Media Thickness (CIMT) was measured with a doppler ultrasonography device. The study was registered on ClinicalTrials.gov under the number NCT04411758. RESULTS A total of 19 patients completed the study, ten patients in the propolis group (54 ± 1.0 years, five men, 7.2 (5.1) months on PD) and 9 in the placebo group (47.5 ± 15.2 years, three men, 10.8 (24.3) months on PD). The plasma levels of TNF-α reduced significantly (p = 0.02), and expression of Nrf2 showed a trend to increase (p = 0.07) after propolis supplementation. CONCLUSION EPP-AF® Green Propolis extract (400 mg/day) supplementation for two months appears as a potential strategy to mitigate inflammation, reducing TNF-α plasma levels in CKD patients on PD.
Collapse
Affiliation(s)
- Beatriz Germer Baptista
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Susane Fanton
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Márcia Ribeiro
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Ludmila Fmf Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Bruna Regis
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Livia Alvarenga
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Marcelo Ribeiro-Alves
- HIV/AIDS Clinical Research Center, National Institute of Infectology (INI/Fiocruz), Rio de Janeiro-Rio de Janeiro, Brazil
| | - Andresa A Berretta
- Research, Development, and Innovation Department, Apis Flora Indl. Coml. Ltda., Ribeirão Preto, SP, Brazil
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK
| | - Denise Mafra
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
17
|
Singh R, Srivastava P, Manna PP. Chemokine-targeted nanoparticles: stimulation of the immune system in cancer immunotherapy. EXPLORATION OF IMMUNOLOGY 2023:123-147. [DOI: 10.37349/ei.2023.00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/24/2023] [Indexed: 01/06/2025]
Abstract
Surgery, chemotherapy, radiation therapy, and immunotherapy are potential therapeutic choices for many malignant and metastatic cancers. Despite adverse side effects and pain, surgery and chemotherapy continue to be the most common cancer treatments. However, patients treated with immunotherapy had better cancer control than those who got other treatments. There are two methods to activate immunological pathways: systemically and locally. To modify the tumor microenvironment (TME), the former uses systemic cytokine/chemokine (CK) delivery, whilst the latter uses immunological checkpoints or small molecule inhibitors. Organic and inorganic nanomaterials (NMs) enhanced the efficacy of cancer immunotherapy. NMs can transmit drugs, peptides, antigens, antibodies, whole cell membranes, etc. Surface-modified NMs precisely target and enter the tissues. The inner core of surface-modified NMs is composed of chemicals with limited bioavailability and biocompatibility, resulting in prolonged blood retention and decreased renal clearance. These platforms hinder or prevent many immune cell activities and modify the TME, enhancing the efficiency of cancer immunotherapy. By inhibiting CK/CK receptor signaling, cell migration and other immune responses could be controlled. Developing CK-targeted nanoparticles (NPs) that inhibit CK signaling or take advantage of the ligand-receptor connection is possible. Surface chemical modification of NMs with CKs or specific peptides has several medicinal applications, including tissue-specific drug delivery and limited cell migration in cancer-afflicted conditions. This review covers current developments in the role of different groups of CK-loaded NP in tumor therapy targeting immune cells and cancer. It also covers the role of NP targeting CK signaling which aids in immunogenic cell death (ICD) and induction of antitumor immunity. In addition, CK gene silencing and its capacity to prevent cancer metastasis as well as inhibition of immune cell migration to modulate the TME are discussed.
Collapse
Affiliation(s)
- Ranjeet Singh
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Prateek Srivastava
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India;Current address: Postdoctoral Fellow, Ben-Gurion University of the Negev, Beersheba 8410501, Israel
| | - Partha Pratim Manna
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
18
|
Song Z, Bhattacharya S, Huang G, Greenberg ZJ, Yang W, Bagaitkar J, Schuettpelz LG, Dinauer MC. NADPH oxidase 2 limits amplification of IL-1β-G-CSF axis and an immature neutrophil subset in murine lung inflammation. Blood Adv 2023; 7:1225-1240. [PMID: 36103336 PMCID: PMC10111367 DOI: 10.1182/bloodadvances.2022007652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/19/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022] Open
Abstract
The leukocyte NADPH oxidase 2 (NOX2) regulates inflammation independent of its antimicrobial activity. Inherited defects in NOX2 lead to chronic granulomatous disease (CGD), associated with recurrent bacterial and fungal infections, often with excessive neutrophilic inflammation that results in significant inflammatory burden and tissue damage. We previously showed that excessive leukotriene B4 (LTB4) production by NOX2-deficient mouse neutrophils was a key driver of elevated lung neutrophil infiltration in the initial response to pulmonary challenge with the model fungal particle zymosan. We now identify interleukin-1β (IL-1β) and downstream granulocyte colony-stimulating factor (G-CSF) as critical amplifying signals that augment and sustain neutrophil accrual in CGD mice. Neutrophils, delivered into the lung via LTB4, were the primary source of IL-1β within the airways, and their increased numbers in CGD lungs led to significantly elevated local and plasma G-CSF. Elevated G-CSF simultaneously promoted increased granulopoiesis and mobilized the release of higher numbers of an immature CD101- neutrophil subset from the marrow, which trafficked to the lung and acquired a significantly more proinflammatory transcriptome in CGD mice compared with wild-type mice. Thus, neutrophil-produced IL-1β and downstream G-CSF act sequentially but nonredundantly with LTB4 to deploy neutrophils and amplify inflammation in CGD mice after inhalation of zymosan. NOX2 plays a critical role in dampening multiple components of a feed-forward pipeline for neutrophil recruitment, and these findings highlight NOX2 as a key regulator of neutrophil number, subsets, and function at inflamed sites.
Collapse
Affiliation(s)
- Zhimin Song
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Sourav Bhattacharya
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Guangming Huang
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Zev J. Greenberg
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Juhi Bagaitkar
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH
| | - Laura G. Schuettpelz
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Mary C. Dinauer
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO
| |
Collapse
|
19
|
Bruserud Ø, Mosevoll KA, Bruserud Ø, Reikvam H, Wendelbo Ø. The Regulation of Neutrophil Migration in Patients with Sepsis: The Complexity of the Molecular Mechanisms and Their Modulation in Sepsis and the Heterogeneity of Sepsis Patients. Cells 2023; 12:cells12071003. [PMID: 37048076 PMCID: PMC10093057 DOI: 10.3390/cells12071003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Common causes include gram-negative and gram-positive bacteria as well as fungi. Neutrophils are among the first cells to arrive at an infection site where they function as important effector cells of the innate immune system and as regulators of the host immune response. The regulation of neutrophil migration is therefore important both for the infection-directed host response and for the development of organ dysfunctions in sepsis. Downregulation of CXCR4/CXCL12 stimulates neutrophil migration from the bone marrow. This is followed by transmigration/extravasation across the endothelial cell barrier at the infection site; this process is directed by adhesion molecules and various chemotactic gradients created by chemotactic cytokines, lipid mediators, bacterial peptides, and peptides from damaged cells. These mechanisms of neutrophil migration are modulated by sepsis, leading to reduced neutrophil migration and even reversed migration that contributes to distant organ failure. The sepsis-induced modulation seems to differ between neutrophil subsets. Furthermore, sepsis patients should be regarded as heterogeneous because neutrophil migration will possibly be further modulated by the infecting microorganisms, antimicrobial treatment, patient age/frailty/sex, other diseases (e.g., hematological malignancies and stem cell transplantation), and the metabolic status. The present review describes molecular mechanisms involved in the regulation of neutrophil migration; how these mechanisms are altered during sepsis; and how bacteria/fungi, antimicrobial treatment, and aging/frailty/comorbidity influence the regulation of neutrophil migration.
Collapse
Affiliation(s)
- Øystein Bruserud
- Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Correspondence:
| | - Knut Anders Mosevoll
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Section for Infectious Diseases, Department of Clinical Research, University of Bergen, 5021 Bergen, Norway
| | - Øyvind Bruserud
- Department for Anesthesiology and Intensive Care, Haukeland University Hospital, 5021 Bergen, Norway
| | - Håkon Reikvam
- Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Øystein Wendelbo
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Faculty of Health, VID Specialized University, Ulriksdal 10, 5009 Bergen, Norway
| |
Collapse
|
20
|
Yang K, Wang X, Song C, He Z, Wang R, Xu Y, Jiang G, Wan Y, Mei J, Mao W. The role of lipid metabolic reprogramming in tumor microenvironment. Theranostics 2023; 13:1774-1808. [PMID: 37064872 PMCID: PMC10091885 DOI: 10.7150/thno.82920] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/07/2023] [Indexed: 04/18/2023] Open
Abstract
Metabolic reprogramming is one of the most important hallmarks of malignant tumors. Specifically, lipid metabolic reprogramming has marked impacts on cancer progression and therapeutic response by remodeling the tumor microenvironment (TME). In the past few decades, immunotherapy has revolutionized the treatment landscape for advanced cancers. Lipid metabolic reprogramming plays pivotal role in regulating the immune microenvironment and response to cancer immunotherapy. Here, we systematically reviewed the characteristics, mechanism, and role of lipid metabolic reprogramming in tumor and immune cells in the TME, appraised the effects of various cell death modes (specifically ferroptosis) on lipid metabolism, and summarized the antitumor therapies targeting lipid metabolism. Overall, lipid metabolic reprogramming has profound effects on cancer immunotherapy by regulating the immune microenvironment; therefore, targeting lipid metabolic reprogramming may lead to the development of innovative clinical applications including sensitizing immunotherapy.
Collapse
Affiliation(s)
- Kai Yang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaokun Wang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Chenghu Song
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Zhao He
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Ruixin Wang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Yongrui Xu
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Guanyu Jiang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton 13850, USA
| | - Jie Mei
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wenjun Mao
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| |
Collapse
|
21
|
Shioda R, Jo-Watanabe A, Okuno T, Saeki K, Nakayama M, Suzuki Y, Yokomizo T. The leukotriene B 4 /BLT1-dependent neutrophil accumulation exacerbates immune complex-mediated glomerulonephritis. FASEB J 2023; 37:e22789. [PMID: 36692419 DOI: 10.1096/fj.202201936r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/25/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023]
Abstract
Crescent formation is the most important pathological finding that defines the prognosis of nephritis. Although neutrophils are known to play an important role in the progression of crescentic glomerulonephritis, such as anti-neutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis, the key chemoattractant for neutrophils in ANCA-associated glomerulonephritis has not been identified. Here, we demonstrate that a lipid chemoattractant, leukotriene B4 (LTB4 ), and its receptor BLT1 are primarily involved in disease pathogenesis in a mouse model of immune complex-mediated crescentic glomerulonephritis. Circulating neutrophils accumulated into glomeruli within 1 h after disease onset, which was accompanied by LTB4 accumulation in the kidney cortex, leading to kidney injury. LTB4 was produced by cross-linking of Fc gamma receptors on neutrophils. Mice deficient in BLT1 or LTB4 biosynthesis exhibited suppressed initial neutrophil infiltration and subsequent thrombotic glomerulonephritis and renal fibrosis. Depletion of neutrophils before, but not after, disease onset prevented proteinuria and kidney injury, indicating the essential role of neutrophils in the early phase of glomerulonephritis. Administration of a BLT1 antagonist before and after disease onset almost completely suppressed induction of glomerulonephritis. Finally, we found that the glomeruli from patients with ANCA-associated glomerulonephritis contained more BLT1-positive cells than glomeruli from patients with other etiologies. Taken together, the LTB4 -BLT1 axis is the key driver of neutrophilic glomerular inflammation, and will be a novel therapeutic target for the crescentic glomerulonephritis.
Collapse
Affiliation(s)
- Ryotaro Shioda
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Airi Jo-Watanabe
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan.,AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Toshiaki Okuno
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuko Saeki
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Maiko Nakayama
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
22
|
Chermut TR, Fonseca L, Figueiredo N, de Oliveira Leal V, Borges NA, Cardozo LF, Correa Leite PE, Alvarenga L, Regis B, Delgado A, Berretta AA, Ribeiro-Alves M, Mafra D. Effects of propolis on inflammation markers in patients undergoing hemodialysis: A randomized, double-blind controlled clinical trial. Complement Ther Clin Pract 2023; 51:101732. [PMID: 36708650 DOI: 10.1016/j.ctcp.2023.101732] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND AND AIMS Several studies have been performed in vitro and in animals showing that propolis (a resin made by bees) has excellent anti-inflammatory properties, but no study has been performed in patients with chronic kidney disease (CKD) on hemodialysis (HD). The present study aimed to evaluate the effects of propolis supplementation on inflammatory markers in patients with CKD on HD. METHODS This is a longitudinal, double-blind, placebo-controlled trial with patients randomized into two groups: propolis (4 capsules of 100 mg/day containing concentrated and standardized dry EPP-AF® green propolis extract) or placebo (4 capsules of 100 mg/day containing microcrystalline cellulose, magnesium stearate and colloidal silicon dioxide) for two months. Routine parameters were analyzed using commercial kits. The plasma levels of inflammatory cytokines were evaluated by flow luminometry. RESULTS Forty-one patients completed the follow-up, 21 patients in the propolis group (45 ± 12 years, 13 women, BMI, 22.8 ± 3.7 kg/m2) and 20 in the placebo group (45.5 ± 14 years, 13 women, BMI, 24.8 ± 6.8 kg/m2). The obtained data revealed that the intervention with propolis significantly reduced the serum levels of tumour necrosis factor α (TNFα) (p = 0.009) as well as had the tendency to reduce the levels of macrophage inflammatory protein-1β (MIP-1β) (p = 0.07). There were no significant differences in the placebo group. CONCLUSION Short-term EPP-AF® propolis dry extract 400 mg/day supplementation seems to mitigate inflammation, reducing the plasma levels of TNFα and MIP-1β in patients with CKD on HD. This study was registered at clinicaltrials.gov (NCT04411758).
Collapse
Affiliation(s)
- Tuany Ramos Chermut
- Post-Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Larissa Fonseca
- Post-Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Nathalia Figueiredo
- Post-Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Viviane de Oliveira Leal
- Nutrition Division, Pedro Ernesto University Hospital, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | | | - Ludmila Fmf Cardozo
- Post-Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Paulo Emilio Correa Leite
- Post-Graduate Program in Science and Biotechnology, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Livia Alvarenga
- Post-Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Bruna Regis
- Post-Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Alvimar Delgado
- Nephology Division, Department of Internal Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Andresa A Berretta
- Research, Development & Innovation Department, Apis Flora Indl. Coml. Ltda, Ribeirão Preto, Brazil
| | - Marcelo Ribeiro-Alves
- HIV/AIDS Clinical Research Center, National Institute of Infectology Evandro Chagas (INI/Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Denise Mafra
- Post-Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Post-Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
23
|
Dendritic Cells: The Long and Evolving Road towards Successful Targetability in Cancer. Cells 2022; 11:cells11193028. [PMID: 36230990 PMCID: PMC9563837 DOI: 10.3390/cells11193028] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Dendritic cells (DCs) are a unique myeloid cell lineage that play a central role in the priming of the adaptive immune response. As such, they are an attractive target for immune oncology based therapeutic approaches. However, targeting these cells has proven challenging with many studies proving inconclusive or of no benefit in a clinical trial setting. In this review, we highlight the known and unknown about this rare but powerful immune cell. As technologies have expanded our understanding of the complexity of DC development, subsets and response features, we are now left to apply this knowledge to the design of new therapeutic strategies in cancer. We propose that utilization of these technologies through a multiomics approach will allow for an improved directed targeting of DCs in a clinical trial setting. In addition, the DC research community should consider a consensus on subset nomenclature to distinguish new subsets from functional or phenotypic changes in response to their environment.
Collapse
|
24
|
Leibrand CR, Paris JJ, Jones AM, Ohene-Nyako M, Rademeyer KM, Nass SR, Kim WK, Knapp PE, Hauser KF, McRae M. Independent actions by HIV-1 Tat and morphine to increase recruitment of monocyte-derived macrophages into the brain in a region-specific manner. Neurosci Lett 2022; 788:136852. [PMID: 36028004 PMCID: PMC9845733 DOI: 10.1016/j.neulet.2022.136852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/07/2022] [Accepted: 08/18/2022] [Indexed: 01/21/2023]
Abstract
Despite advances in the treatment of human immunodeficiency virus (HIV), approximately one-half of people infected with HIV (PWH) experience neurocognitive impairment. Opioid use disorder (OUD) can exacerbate the cognitive and pathological changes seen in PWH. HIV increases inflammation and immune cell trafficking into the brain; however, less is known about how opioid use disorder affects the recruitment of immune cells. Accordingly, we examined the temporal consequences of HIV-1 Tat and/or morphine on the recruitment of endocytic cells (predominantly perivascular macrophages and microglia) in the dorsal striatum and hippocampus by infusing multi-colored, fluorescently labeled dextrans before and after exposure. To address this question, transgenic mice that conditionally expressed HIV-1 Tat (Tat+), or their control counterparts (Tat-), received three sequential intracerebroventricular (i.c.v.) infusions of Cascade Blue-, Alexa Fluor 488-, and Alexa Fluor 594-labeled dextrans, respectively infused 1 day before, 1-day after, or 13-days after morphine and/or Tat exposure. At the end of the study, the number of cells labeled with each fluorescent dextran were counted. The data demonstrated a significantly higher influx of newly-labeled cells into the perivascular space than into the parenchyma. In the striatum, Tat or morphine exposure increased the number of endocytic cells in the perivascular space, while only morphine increased the recruitment of endocytic cells into the parenchyma. In the hippocampus, morphine (but not Tat) increased the influx of dextran-labeled cells into the perivascular space, but there were too few labeled cells within the hippocampal parenchyma to analyze. Collectively, these data suggest that HIV-1 Tat and morphine act independently to increase the recruitment of endocytic cells into the brain in a region-specific manner.
Collapse
Affiliation(s)
- Crystal R Leibrand
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Jason J Paris
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, United States
| | - Austin M Jones
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Michael Ohene-Nyako
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Kara M Rademeyer
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Sara R Nass
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Woong-Ki Kim
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, United States
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - MaryPeace McRae
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States.
| |
Collapse
|
25
|
Emam M, Eslamloo K, Caballero-Solares A, Lorenz EK, Xue X, Umasuthan N, Gnanagobal H, Santander J, Taylor RG, Balder R, Parrish CC, Rise ML. Nutritional immunomodulation of Atlantic salmon response to Renibacterium salmoninarum bacterin. Front Mol Biosci 2022; 9:931548. [PMID: 36213116 PMCID: PMC9532746 DOI: 10.3389/fmolb.2022.931548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
We investigated the immunomodulatory effect of varying levels of dietary ω6/ω3 fatty acids (FA) on Atlantic salmon (Salmo salar) antibacterial response. Two groups were fed either high-18:3ω3 or high-18:2ω6 FA diets for 8 weeks, and a third group was fed for 4 weeks on the high-18:2ω6 diet followed by 4 weeks on the high-18:3ω3 diet and termed "switched-diet". Following the second 4 weeks of feeding (i.e., at 8 weeks), head kidney tissues from all groups were sampled for FA analysis. Fish were then intraperitoneally injected with either a formalin-killed Renibacterium salmoninarum bacterin (5 × 107 cells mL-1) or phosphate-buffered saline (PBS control), and head kidney tissues for gene expression analysis were sampled at 24 h post-injection. FA analysis showed that the head kidney profile reflected the dietary FA, especially for C18 FAs. The qPCR analyses of twenty-three genes showed that both the high-ω6 and high-ω3 groups had significant bacterin-dependent induction of some transcripts involved in lipid metabolism (ch25ha and lipe), pathogen recognition (clec12b and tlr5), and immune effectors (znrf1 and cish). In contrast, these transcripts did not significantly respond to the bacterin in the "switched-diet" group. Concurrently, biomarkers encoding proteins with putative roles in biotic inflammatory response (tnfrsf6b) and dendritic cell maturation (ccl13) were upregulated, and a chemokine receptor (cxcr1) was downregulated with the bacterin injection regardless of the experimental diets. On the other hand, an inflammatory regulator biomarker, bcl3, was only significantly upregulated in the high-ω3 fed group, and a C-type lectin family member (clec3a) was only significantly downregulated in the switched-diet group with the bacterin injection (compared with diet-matched PBS-injected controls). Transcript fold-change (FC: bacterin/PBS) showed that tlr5 was significantly over 2-fold higher in the high-18:2ω6 diet group compared with other diet groups. FC and FA associations highlighted the role of DGLA (20:3ω6; anti-inflammatory) and/or EPA (20:5ω3; anti-inflammatory) vs. ARA (20:4ω6; pro-inflammatory) as representative of the anti-inflammatory/pro-inflammatory balance between eicosanoid precursors. Also, the correlations revealed associations of FA proportions (% total FA) and FA ratios with several eicosanoid and immune receptor biomarkers (e.g., DGLA/ARA significant positive correlation with pgds, 5loxa, 5loxb, tlr5, and cxcr1). In summary, dietary FA profiles and/or regimens modulated the expression of some immune-relevant genes in Atlantic salmon injected with R. salmoninarum bacterin. The modulation of Atlantic salmon responses to bacterial pathogens and their associated antigens using high-ω6/high-ω3 diets warrants further investigation.
Collapse
Affiliation(s)
- Mohamed Emam
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Evandro Kleber Lorenz
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Rachel Balder
- Cargill Animal Nutrition and Health, Minneapolis, MN, United States
| | - Christopher C. Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
26
|
Guo Y, Zhao H, Lu J, Xu H, Hu T, Wu D. Preoperative Lymphocyte to Monocyte Ratio as a Predictive Biomarker for Disease Severity and Spinal Fusion Failure in Lumbar Degenerative Diseases Patients Undergoing Lumbar Fusion. J Pain Res 2022; 15:2879-2891. [PMID: 36124035 PMCID: PMC9482412 DOI: 10.2147/jpr.s379453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Objective This study was designed to determine whether lymphocyte to monocyte ratio (LMR) correlated with the intervertebral disc degeneration (IDD) severity and the postoperative spinal fusion rate in patients with lumbar disc disease. Methods 303 patients undergoing posterior lumbar decompression and fusion were retrospectively analyzed. An examination of the blood count was performed before surgery. The cumulative grade was calculated by summing the pfirrmann grades of all lumbar discs. Grouping was based on the 50th percentile of cumulative grade and spinal fusion. The relationship between LMR and IDD severity and spinal fusion was explored using correlation analyses and logistic regression models. The receiver operating characteristic (ROC) curve was performed to measure model discrimination, and Hosmer-Lemeshow (H-L) test was used to measure calibration. Meanwhile, the ROC curve evaluated the discrimination ability of LMR in predicting severe degeneration and fusion failure. Results LMR was significantly lower in the severe degeneration group (cumulative grade > 18) than in the mild to moderate degeneration group (cumulative grade ≤ 18). Furthermore, the LMR of the fusion group was significantly higher than that of the non-fusion group. The multivariate binary logistic models revealed that LMR was an independently influencing factor of the severe degeneration and fusion failure (OR: 0.793, 95% CI: 0.638–0.987, p = 0.038; OR: 0.371, 95% CI: 0.258–0.532, p < 0.001). The models showed excellent discrimination and calibration. The area under the curve (AUC) of severe degeneration and fusion failure identified by LMR were 0.635 and 0.643, respectively, and the corresponding cut-off values were 3.16 and 3.90. Conclusion LMR is significantly associated with the risk of severe disc degeneration and spinal fusion failure.
Collapse
Affiliation(s)
- Youfeng Guo
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Haihong Zhao
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Jiawei Lu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Haowei Xu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Tao Hu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Desheng Wu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| |
Collapse
|
27
|
Landoni G, Zangrillo A, Piersanti G, Scquizzato T, Piemonti L. The effect of reparixin on survival in patients at high risk for in-hospital mortality: a meta-analysis of randomized trials. Front Immunol 2022; 13:932251. [PMID: 35958623 PMCID: PMC9358031 DOI: 10.3389/fimmu.2022.932251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction A great number of anti-inflammatory drugs have been suggested in the treatment of SARS-CoV-2 infection. Reparixin, a non-competitive allosteric inhibitor of the CXCL8 (IL-8) receptors C-X-C chemokine receptor type 1 (CXCR1) and C-X-C chemokine receptor type 2 (CXCR2), has already been tried out as a treatment in different critical settings. Due to the contrasting existing literature, we decided to perform the present meta-analysis of randomized controlled trials (RCTs) to investigate the effect of the use of reparixin on survival in patients at high risk for in-hospital mortality. Methods We created a search strategy to include any human RCTs performed with reparixin utilization in patients at high risk for in-hospital mortality, excluding oncological patients. Two trained, independent authors searched PubMed, EMBASE, and the Cochrane Central Register of Controlled Trials (CENTRAL) for appropriate studies. Furthermore, references of review articles and included RCTs were screened to identify more studies. No language restrictions were enforced. To assess the risk of bias of included trials, the Revised Cochrane risk-of-bias tool for randomized trials (RoB 2) was used. Results Overall, six studies were included and involved 406 patients (220 received reparixin and 186 received the comparator). The all-cause mortality in the reparixin group was significantly lower than that in the control group [5/220 (2.3%) in the reparixin group vs. 12/186 (6.5%) in the control group, odds ratio = 0.33 (95% confidence interval 0.12 to 0.96), p-value for effect 0.04, p for heterogeneity 0.20, I2 = 36%]. In addition, no difference in the rate of pneumonia, sepsis, or non-serious infections was shown between the two groups. Conclusion Our meta-analysis of randomized trials suggests that short-term inhibition of CXCL8 activity improved survival in patients at high risk for in-hospital mortality without increasing the risk of infection. Meta-analysis registration PROSPERO, identifier CRD42021254467.
Collapse
Affiliation(s)
- Giovanni Landoni
- Department of Anesthesia and Intensive Care, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Alberto Zangrillo
- Department of Anesthesia and Intensive Care, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Gioia Piersanti
- Department of Anesthesia and Intensive Care, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Tommaso Scquizzato
- Department of Anesthesia and Intensive Care, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Piemonti
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Diabetes Research Institute, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
28
|
Garcia-Moreno M, Jordan PM, Günther K, Dau T, Fritzsch C, Vermes M, Schoppa A, Ignatius A, Wildemann B, Werz O, Löffler B, Tuchscherr L. Osteocytes Serve as a Reservoir for Intracellular Persisting Staphylococcus aureus Due to the Lack of Defense Mechanisms. Front Microbiol 2022; 13:937466. [PMID: 35935196 PMCID: PMC9355688 DOI: 10.3389/fmicb.2022.937466] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Chronic staphylococcal osteomyelitis can persist for long time periods causing bone destruction. The ability of Staphylococcus aureus to develop chronic infections is linked to its capacity to invade and replicate within osteoblasts and osteocytes and to switch to a dormant phenotype called small colony variants. Recently, osteocytes were described as a main reservoir for this pathogen in bone tissue. However, the mechanisms involved in the persistence of S. aureus within these cells are still unknown. Here, we investigated the interaction between S. aureus and osteoblasts or osteocytes during infection. While osteoblasts are able to induce a strong antimicrobial response and eliminate intracellular S. aureus, osteocytes trigger signals to recruit immune cells and enhance inflammation but fail an efficient antimicrobial activity to clear the bacterial infection. Moreover, we found that extracellular signals from osteocytes enhance intracellular bacterial clearance by osteoblasts. Even though both cell types express Toll-like receptor (TLR) 2, the main TLR responsible for S. aureus detection, only osteoblasts were able to increase TLR2 expression after infection. Additionally, proteomic analysis indicates that reduced intracellular bacterial killing activity in osteocytes is related to low antimicrobial peptide expression. Nevertheless, high levels of lipid mediators and cytokines were secreted by osteocytes, suggesting that they can contribute to inflammation. Taken together, our results demonstrate that osteocytes contribute to severe inflammation observed in osteomyelitis and represent the main niche for S. aureus persistence due to their poor capacity for intracellular antimicrobial response.
Collapse
Affiliation(s)
| | - Paul M. Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Kerstin Günther
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Therese Dau
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Christian Fritzsch
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Monika Vermes
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Astrid Schoppa
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Britt Wildemann
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Lorena Tuchscherr
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
- *Correspondence: Lorena Tuchscherr,
| |
Collapse
|
29
|
Arya SB, Chen S, Jordan-Javed F, Parent CA. Ceramide-rich microdomains facilitate nuclear envelope budding for non-conventional exosome formation. Nat Cell Biol 2022; 24:1019-1028. [PMID: 35739317 DOI: 10.1038/s41556-022-00934-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 05/05/2022] [Indexed: 02/06/2023]
Abstract
Neutrophils migrating towards chemoattractant gradients amplify their recruitment range by releasing the secondary chemoattractant leukotriene B4 (LTB4) refs. 1,2. We previously demonstrated that LTB4 and its synthesizing enzymes, 5-lipoxygenase (5-LO), 5-LO activating protein (FLAP) and leukotriene A4 hydrolase, are packaged and released in exosomes3. Here we report that the biogenesis of the LTB4-containing exosomes originates at the nuclear envelope (NE) of activated neutrophils. We show that the neutral sphingomyelinase 1 (nSMase1)-mediated generation of ceramide-enriched lipid-ordered microdomains initiates the clustering of the LTB4-synthesizing enzymes on the NE. We isolated and analysed exosomes from activated neutrophils and established that the FLAP/5-LO-positive exosome population is distinct from that of the CD63-positive exosome population. Furthermore, we observed a strong co-localization between ALIX and FLAP at the periphery of nuclei and within cytosolic vesicles. We propose that the initiation of NE curvature and bud formation is mediated by nSMase1-dependent ceramide generation, which leads to FLAP and ALIX recruitment. Together, these observations elucidate the mechanism for LTB4 secretion and identify a non-conventional pathway for exosome generation.
Collapse
Affiliation(s)
- Subhash B Arya
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Song Chen
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Fatima Jordan-Javed
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carole A Parent
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA. .,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA. .,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA. .,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
30
|
Meghnem D, Leong E, Pinelli M, Marshall JS, Di Cara F. Peroxisomes Regulate Cellular Free Fatty Acids to Modulate Mast Cell TLR2, TLR4, and IgE-Mediated Activation. Front Cell Dev Biol 2022; 10:856243. [PMID: 35756999 PMCID: PMC9215104 DOI: 10.3389/fcell.2022.856243] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Mast cells are specialized, tissue resident, immune effector cells able to respond to a wide range of stimuli. MCs are involved in the regulation of a variety of physiological functions, including vasodilation, angiogenesis and pathogen elimination. In addition, MCs recruit and regulate the functions of many immune cells such as dendritic cells, macrophages, T cells, B cells and eosinophils through their selective production of multiple cytokines and chemokines. MCs generate and release multi-potent molecules, such as histamine, proteases, prostanoids, leukotrienes, heparin, and many cytokines, chemokines, and growth factors through both degranulation dependent and independent pathways. Recent studies suggested that metabolic shifts dictate the activation and granule content secretion by MCs, however the metabolic signaling promoting these events is at its infancy. Lipid metabolism is recognized as a pivotal immunometabolic regulator during immune cell activation. Peroxisomes are organelles found across all eukaryotes, with a pivotal role in lipid metabolism and the detoxification of reactive oxygen species. Peroxisomes are one of the emerging axes in immunometabolism. Here we identified the peroxisome as an essential player in MCs activation. We determined that lack of functional peroxisomes in murine MCs causes a significant reduction of interleukin-6, Tumor necrosis factor and InterleukinL-13 following immunoglobulin IgE-mediated and Toll like receptor 2 and 4 activation compared to the Wild type (WT) BMMCs. We linked these defects in cytokine release to defects in free fatty acids homeostasis. In conclusion, our study identified the importance of peroxisomal fatty acids homeostasis in regulating mast cell-mediated immune functions.
Collapse
Affiliation(s)
- Dihia Meghnem
- Dalhousie Human Immunology and Inflammation Group, Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Nova Scotia Health Authority IWK, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Edwin Leong
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Marinella Pinelli
- Department of Pediatrics, Nova Scotia Health Authority IWK, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Jean S. Marshall
- Dalhousie Human Immunology and Inflammation Group, Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- *Correspondence: Jean S. Marshall, ; Francesca Di Cara,
| | - Francesca Di Cara
- Department of Pediatrics, Nova Scotia Health Authority IWK, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- *Correspondence: Jean S. Marshall, ; Francesca Di Cara,
| |
Collapse
|
31
|
Nath AS, Parsons BD, Makdissi S, Chilvers RL, Mu Y, Weaver CM, Euodia I, Fitze KA, Long J, Scur M, Mackenzie DP, Makrigiannis AP, Pichaud N, Boudreau LH, Simmonds AJ, Webber CA, Derfalvi B, Hammon Y, Rachubinski RA, Di Cara F. Modulation of the cell membrane lipid milieu by peroxisomal β-oxidation induces Rho1 signaling to trigger inflammatory responses. Cell Rep 2022; 38:110433. [PMID: 35235794 DOI: 10.1016/j.celrep.2022.110433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 12/21/2021] [Accepted: 02/01/2022] [Indexed: 12/11/2022] Open
Abstract
Phagocytosis, signal transduction, and inflammatory responses require changes in lipid metabolism. Peroxisomes have key roles in fatty acid homeostasis and in regulating immune function. We find that Drosophila macrophages lacking peroxisomes have perturbed lipid profiles, which reduce host survival after infection. Using lipidomic, transcriptomic, and genetic screens, we determine that peroxisomes contribute to the cell membrane glycerophospholipid composition necessary to induce Rho1-dependent signals, which drive cytoskeletal remodeling during macrophage activation. Loss of peroxisome function increases membrane phosphatidic acid (PA) and recruits RhoGAPp190 during infection, inhibiting Rho1-mediated responses. Peroxisome-glycerophospholipid-Rho1 signaling also controls cytoskeleton remodeling in mouse immune cells. While high levels of PA in cells without peroxisomes inhibit inflammatory phenotypes, large numbers of peroxisomes and low amounts of cell membrane PA are features of immune cells from patients with inflammatory Kawasaki disease and juvenile idiopathic arthritis. Our findings reveal potential metabolic markers and therapeutic targets for immune diseases and metabolic disorders.
Collapse
Affiliation(s)
- Anu S Nath
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Brendon D Parsons
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Stephanie Makdissi
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Rebecca L Chilvers
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Yizhu Mu
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Ceileigh M Weaver
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Irene Euodia
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Katherine A Fitze
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Juyang Long
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Michal Scur
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Duncan P Mackenzie
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Andrew P Makrigiannis
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada
| | - Nicolas Pichaud
- Université de Moncton, Department of Chemistry and Biochemistry, Moncton, NB E1A 3E9, Canada; New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB E1A 3E9, Canada
| | - Luc H Boudreau
- Université de Moncton, Department of Chemistry and Biochemistry, Moncton, NB E1A 3E9, Canada; New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB E1A 3E9, Canada
| | - Andrew J Simmonds
- University of Alberta, Department of Cell Biology, Edmonton, AB T6G 2H7, Canada
| | - Christine A Webber
- University of Alberta, Department of Cell Biology, Edmonton, AB T6G 2H7, Canada
| | - Beata Derfalvi
- Dalhousie University, Department of Pediatrics, Halifax, NS B3K 6R8, Canada
| | - Yannick Hammon
- INSERM au Centre d'Immunologie de Marseille Luminy, Marseille 13288, France
| | | | - Francesca Di Cara
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada; Dalhousie University, Department of Pediatrics, Halifax, NS B3K 6R8, Canada.
| |
Collapse
|
32
|
Lentini G, De Gaetano GV, Famà A, Galbo R, Coppolino F, Mancuso G, Teti G, Beninati C. Neutrophils discriminate live from dead bacteria by integrating signals initiated by Fprs and TLRs. EMBO J 2022; 41:e109386. [PMID: 35112724 PMCID: PMC8886525 DOI: 10.15252/embj.2021109386] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/15/2021] [Accepted: 01/12/2022] [Indexed: 11/09/2022] Open
Abstract
The mechanisms whereby neutrophils respond differentially to live and dead organisms are unknown. We show here that neutrophils produce 5- to 30-fold higher levels of the Cxcl2 chemokine in response to live bacteria, compared with killed bacteria or isolated bacterial components, despite producing similar levels of Cxcl1 or pro-inflammatory cytokines. Secretion of high levels of Cxcl2, which potently activates neutrophils by an autocrine mechanism, requires three signals. The first two signals are provided by two different sets of signal peptides released by live bacteria, which selectively activate formylated peptide receptor 1 (Fpr1) and Fpr2, respectively. Signal 3 originates from Toll-like receptor activation by microbial components present in both live and killed bacteria. Mechanistically, these signaling pathways converge at the level of the p38 MAP kinase, leading to activation of the AP-1 transcription factor and to Cxcl2 induction. Collectively, our data demonstrate that the simultaneous presence of agonists for Fpr1, Fpr2, and Toll-like receptors represents a unique signature associated with viable bacteria, which is sensed by neutrophils and induces Cxcl2-dependent autocrine cell activation.
Collapse
Affiliation(s)
- Germana Lentini
- Department of Human PathologyUniversity of MessinaMessinaItaly
| | | | - Agata Famà
- Department of Human PathologyUniversity of MessinaMessinaItaly
| | - Roberta Galbo
- Department of Chemical, Biological and Pharmaceutical SciencesUniversity of MessinaMessinaItaly
| | - Francesco Coppolino
- Department of BiomedicalDental, Morphological and Functional Imaging SciencesUniversity of MessinaMessinaItaly
| | | | | | - Concetta Beninati
- Department of Human PathologyUniversity of MessinaMessinaItaly,Scylla Biotech SrlMessinaItaly
| |
Collapse
|
33
|
de Macedo LH, Souza COS, Gardinassi LG, Faccioli LH. CD14 regulates the metabolomic profiles of distinct macrophage subsets under steady and activated states. Immunobiology 2022; 227:152191. [DOI: 10.1016/j.imbio.2022.152191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 11/05/2022]
|
34
|
LTB4 Promotes Acute Lung Injury via Upregulating the PLCε-1/TLR4/NF-κB Pathway in One-Lung Ventilation. DISEASE MARKERS 2022; 2022:1839341. [PMID: 35059042 PMCID: PMC8766192 DOI: 10.1155/2022/1839341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/23/2021] [Indexed: 11/21/2022]
Abstract
Background Mechanical ventilation (MV) can provoke acute lung injury (ALI) by increasing inflammation activation and disrupting the barrier in lung tissues even causing death. However, the inflammation-related molecules and pathways in MV-induced ALI remain largely unknown. Hence, the purposes of this study are to examine the role and mechanism of a novel inflammation-related molecule, leukotriene B4 (LTB4), in ALI. Methods The functions of LTB4 in one-lung ventilation (OLV) model were detected by the loss-of-function experiments. H&E staining was used to examine the pathologic changes of lung tissues. Functionally, PLCε-1 knockdown and Toll-like receptor 4 (TLR4)/NF-κB pathway inhibitor were used to detect the regulatory effects of LTB4 on the phospholipase Cε (PLCε-1)/TLR4/nuclear factor-kappa B (NF-κB) pathway. The levels of genes and proteins were determined by RT-qPCR and western blotting assay. The levels of inflammation cytokines and chemokines were measured by ELISA. Results Here, we found LTA4H, leukotriene B (4) receptor 1 (BLT1), LTB4, and PLCε-1 upregulated in OLV rats and associated with inflammatory activation and lung permeability changes of lung tissues. Inhibition of LTB4 alleviated the OLV-induced ALI by inhibiting inflammatory activation and lung permeability changes of lung tissues. For mechanism analyses, LTB4 promoted OLV-induced ALI by activating the PLCε-1/TLR4/NF-κB pathway. Conclusion LTB4 induced ALI in OLV rats by activating the PLCε-1/TLR4/NF-κB pathway. Our findings might supply a new potential therapeutic for OLV-induced ALI.
Collapse
|
35
|
Nguyen TH, Cheung GYC, Rigby KM, Kamenyeva O, Kabat J, Sturdevant DE, Villaruz AE, Liu R, Piewngam P, Porter AR, Firdous S, Chiou J, Park MD, Hunt RL, Almufarriji FMF, Tan VY, Asiamah TK, McCausland JW, Fisher EL, Yeh AJ, Bae JS, Kobayashi SD, Wang JM, Barber DL, DeLeo FR, Otto M. Rapid pathogen-specific recruitment of immune effector cells in the skin by secreted toxins. Nat Microbiol 2022; 7:62-72. [PMID: 34873293 PMCID: PMC8732318 DOI: 10.1038/s41564-021-01012-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/29/2021] [Indexed: 12/31/2022]
Abstract
Swift recruitment of phagocytic leucocytes is critical in preventing infection when bacteria breach through the protective layers of the skin. According to canonical models, this occurs via an indirect process that is initiated by contact of bacteria with resident skin cells and which is independent of the pathogenic potential of the invader. Here we describe a more rapid mechanism of leucocyte recruitment to the site of intrusion of the important skin pathogen Staphylococcus aureus that is based on direct recognition of specific bacterial toxins, the phenol-soluble modulins (PSMs), by circulating leucocytes. We used a combination of intravital imaging, ear infection and skin abscess models, and in vitro gene expression studies to demonstrate that this early recruitment was dependent on the transcription factor EGR1 and contributed to the prevention of infection. Our findings refine the classical notion of the non-specific and resident cell-dependent character of the innate immune response to bacterial infection by demonstrating a pathogen-specific high-alert mechanism involving direct recruitment of immune effector cells by secreted bacterial products.
Collapse
Affiliation(s)
- Thuan H Nguyen
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gordon Y C Cheung
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kevin M Rigby
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Pathogen-Host Cell Biology Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
- miRagen Therapeutics, Inc., Boulder, CO, USA
| | - Olena Kamenyeva
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Juraj Kabat
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel E Sturdevant
- Genomics Unit, Research Technology Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Amer E Villaruz
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ryan Liu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pipat Piewngam
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adeline R Porter
- Pathogen-Host Cell Biology Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Saba Firdous
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Chlamydia Pathogenesis Section, NIAID, Bethesda, MD, USA
| | - Janice Chiou
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Graduate School in Biomedical Science, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Matthew D Park
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachelle L Hunt
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Microbial Pathogenesis Department, Yale University, New Haven, CT, USA
| | - Fawaz M F Almufarriji
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- School of Molecular and Cell Biology, University of Leeds, Leeds, UK
| | - Vee Y Tan
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Tuberculosis Research Section, NIAID, Bethesda, MD, USA
| | - Titus K Asiamah
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joshua W McCausland
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Johns Hopkins University, Baltimore, MD, USA
| | - Emilie L Fisher
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Vanderbilt University, Nashville, TN, USA
| | - Anthony J Yeh
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- William Carey University College of Osteopathic Medicine, Hattiesburg, MS, USA
| | - Justin S Bae
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Harvard University, Cambridge, MA, USA
| | - Scott D Kobayashi
- Pathogen-Host Cell Biology Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Ji Ming Wang
- Laboratory of Cancer and Immunometabolism, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Daniel L Barber
- T-Lymphocyte Biology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Frank R DeLeo
- Pathogen-Host Cell Biology Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
36
|
Nellaiappan K, Preeti K, Khatri DK, Singh SB. Diabetic Complications: An Update on Pathobiology and Therapeutic Strategies. Curr Diabetes Rev 2022; 18:e030821192146. [PMID: 33745424 DOI: 10.2174/1573399817666210309104203] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/28/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022]
Abstract
Despite the advent of novel therapies which manage and control diabetes well, the increased risk of morbidity and mortality in diabetic subjects is associated with the devastating secondary complications it produces. Long-standing diabetes majorly drives cellular and molecular alterations, which eventually damage both small and large blood vessels. The complications are prevalent both in type I and type II diabetic subjects. The microvascular complications include diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, while the macrovascular complications include diabetic heart disease and stroke. The current therapeutic strategy alleviates the complications to some extent but does not cure or prevent them. Also, the recent clinical trial outcomes in this field are disappointing. Success in the drug discovery of diabetic complications may be achieved by a better understanding of the underlying pathophysiology and by recognising the crucial factors contributing to the development and progression of the disease. In this review, we discuss the well-studied cellular mechanisms leading to the development and progression of diabetic complications. In addition, we also highlight the various therapeutic paradigms currently in clinical practice.
Collapse
Affiliation(s)
- Karthika Nellaiappan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana-500037,India
| | - Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana-500037,India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana-500037,India
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana-500037,India
| |
Collapse
|
37
|
Malengier-Devlies B, Metzemaekers M, Wouters C, Proost P, Matthys P. Neutrophil Homeostasis and Emergency Granulopoiesis: The Example of Systemic Juvenile Idiopathic Arthritis. Front Immunol 2021; 12:766620. [PMID: 34966386 PMCID: PMC8710701 DOI: 10.3389/fimmu.2021.766620] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
Neutrophils are key pathogen exterminators of the innate immune system endowed with oxidative and non-oxidative defense mechanisms. More recently, a more complex role for neutrophils as decision shaping cells that instruct other leukocytes to fine-tune innate and adaptive immune responses has come into view. Under homeostatic conditions, neutrophils are short-lived cells that are continuously released from the bone marrow. Their development starts with undifferentiated hematopoietic stem cells that pass through different immature subtypes to eventually become fully equipped, mature neutrophils capable of launching fast and robust immune responses. During severe (systemic) inflammation, there is an increased need for neutrophils. The hematopoietic system rapidly adapts to this increased demand by switching from steady-state blood cell production to emergency granulopoiesis. During emergency granulopoiesis, the de novo production of neutrophils by the bone marrow and at extramedullary sites is augmented, while additional mature neutrophils are rapidly released from the marginated pools. Although neutrophils are indispensable for host protection against microorganisms, excessive activation causes tissue damage in neutrophil-rich diseases. Therefore, tight regulation of neutrophil homeostasis is imperative. In this review, we discuss the kinetics of neutrophil ontogenesis in homeostatic conditions and during emergency myelopoiesis and provide an overview of the different molecular players involved in this regulation. We substantiate this review with the example of an autoinflammatory disease, i.e. systemic juvenile idiopathic arthritis.
Collapse
Affiliation(s)
- Bert Malengier-Devlies
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mieke Metzemaekers
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Carine Wouters
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.,Division of Pediatric Rheumatology, University Hospitals Leuven, Leuven, Belgium.,European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) at University Hospital Leuven, Leuven, Belgium
| | - Paul Proost
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Yin D, Hao J, Jin R, Yi Y, Bodduluri SR, Hua Y, Anand A, Deng Y, Haribabu B, Egilmez NK, Sauter ER, Li B. Epidermal Fatty Acid Binding Protein Mediates Depilatory-Induced Acute Skin Inflammation. J Invest Dermatol 2021; 142:1824-1834.e7. [DOI: 10.1016/j.jid.2021.11.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/04/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022]
|
39
|
Liu W, Zhang L, Sun S, Tang LS, He SM, Chen AQ, Yao LN, Ren DL. Cordycepin inhibits inflammatory responses through suppression of ERK activation in zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104178. [PMID: 34157317 DOI: 10.1016/j.dci.2021.104178] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/03/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
As a natural extract, cordycepin has been shown to play important regulatory roles in many life activities. In the study, the effects of cordycepin on inflammatory responses and the underlying mechanisms was explored using a zebrafish model. In the model of LPS-induced inflammation, cordycepin was found to significantly inhibited the expression of pro-inflammatory cytokines such as tnf-α, il-1β, il-6, and il-8. Using in vivo imaging model, cordycepin significantly inhibited fluorescent-labeled neutrophils migrating towards injury sites. Furthermore, results showed that the phosphorylation level of ERK protein dramatically decreased after cordycepin treatment. Meanwhile, the ERK inhibitor, PD0325901, significantly inhibited the expression of pro-inflammatory cytokines in LPS-induced inflammatory model and neutrophils migration in the caudal fin injury model. This study indicated the important roles of cordycepin in inhibiting LPS and injury-induced inflammation and preliminarily explained the role of ERK protein in this process.
Collapse
Affiliation(s)
- Wei Liu
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Ling Zhang
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Shuo Sun
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Long-Sheng Tang
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Shi-Min He
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - An-Qi Chen
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Li-Na Yao
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Da-Long Ren
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
40
|
Zhao B, Li H, Cao S, Zhong W, Li B, Jia W, Ning Z. Negative Regulators of Inflammation Response to the Dynamic Expression of Cytokines in DF-1 and MDCK Cells Infected by Avian Influenza Viruses. Inflammation 2021; 45:573-589. [PMID: 34581936 DOI: 10.1007/s10753-021-01568-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/25/2022]
Abstract
The H5N1 and H9N2 avian influenza viruses (AIVs) seriously endanger the poultry industry and threaten human health. Characteristic inflammatory responses caused by H5N1 and H9N2 AIVs in birds and mammals result in unique clinical manifestations. The role of anti-inflammatory regulators, PTX3, Del-1, and GDF-15, in H5N1 and H9N2-AIV-mediated inflammation in birds and mammals has not yet been verified. Here, the expression of PTX3, Del-1, and GDF-15 in DF-1 and MDCK cells infected with H5N1 and H9N2 AIVs and their effect on inflammatory cytokines were analyzed. Infection with both AIVs increased PTX3, Del-1, and GDF-15 expression in DF-1 and MDCK cells. Infection with H9N2 or H5N1 AIV in DF-1 and MDCK cells with overexpression of all three factors, either alone or in combination, inhibited the expression of tested inflammatory cytokines. Furthermore, co-expression of PTX3, Del-1, and GDF-15 enhanced the inhibition, irrespective of the cell line. The findings from this study offer insight into the pathogenic differences between H5N1 and H9N2 AIVs in varied hosts. Moreover, our findings can be used to help screen for host-specific anti-inflammatory agents.
Collapse
Affiliation(s)
- Bingqian Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Huizi Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Suilan Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Wenxia Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Baojian Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Weixin Jia
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhangyong Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. .,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| |
Collapse
|
41
|
Meyer A, Yan S, Golumba-Nagy V, Esser RL, Barbarino V, Blakemore SJ, Rusyn L, Nikiforov A, Seeger-Nukpezah T, Grüll H, Pallasch CP, Kofler DM. Kinase activity profiling reveals contribution of G-protein signaling modulator 2 deficiency to impaired regulatory T cell migration in rheumatoid arthritis. J Autoimmun 2021; 124:102726. [PMID: 34555678 DOI: 10.1016/j.jaut.2021.102726] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/27/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022]
Abstract
The ability of regulatory T (Treg) cells to migrate into inflammatory sites is reduced in autoimmune diseases, including rheumatoid arthritis (RA). The reasons for impaired Treg cell migration remain largely unknown. We performed multiplex human kinase activity arrays to explore possible differences in the post-translational phosphorylation status of kinase related proteins that could account for altered Treg cell migration in RA. Results were verified by migration assays and Western blot analysis of CD4+ T cells from RA patients and from mice with collagen type II induced arthritis. Kinome profiling of CD4+ T cells from RA patients revealed significantly altered post-translational phosphorylation of kinase related proteins, including G-protein-signaling modulator 2 (GPSM2), protein tyrosine kinase 6 (PTK6) and vitronectin precursor (VTNC). These proteins have not been associated with RA until now. We found that GPSM2 expression is reduced in CD4+ T cells from RA patients and is significantly downregulated in experimental autoimmune arthritis following immunization of mice with collagen type II. Interestingly, GPSM2 acts as a promoter of Treg cell migration in healthy individuals. Treatment of RA patients with interleukin-6 receptor (IL-6R) blocking antibodies restores GPSM2 expression, thereby improving Treg cell migration. Our study highlights the potential of multiplex kinase activity arrays as a tool for the identification of RA-related proteins which could serve as targets for novel treatments.
Collapse
Affiliation(s)
- Anja Meyer
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Shuaifeng Yan
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Viktoria Golumba-Nagy
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ruth L Esser
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Verena Barbarino
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stuart J Blakemore
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lisa Rusyn
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anastasia Nikiforov
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Tamina Seeger-Nukpezah
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Holger Grüll
- Institute of Diagnostic and Interventional Radiology, University Hospital Cologne, Germany
| | - Christian P Pallasch
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David M Kofler
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Germany.
| |
Collapse
|
42
|
Levochkina M, McQuillan L, Awan N, Barton D, Maczuzak J, Bianchine C, Trombley S, Kotes E, Wiener J, Wagner A, Calcagno J, Maza A, Nierstedt R, Ferimer S, Wagner A. Neutrophil-to-Lymphocyte Ratios and Infections after Traumatic Brain Injury: Associations with Hospital Resource Utilization and Long-Term Outcome. J Clin Med 2021; 10:jcm10194365. [PMID: 34640381 PMCID: PMC8509449 DOI: 10.3390/jcm10194365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 12/30/2022] Open
Abstract
Traumatic brain injury (TBI) induces immune dysfunction that can be captured clinically by an increase in the neutrophil-to-lymphocyte ratio (NLR). However, few studies have characterized the temporal dynamics of NLR post-TBI and its relationship with hospital-acquired infections (HAI), resource utilization, or outcome. We assessed NLR and HAI over the first 21 days post-injury in adults with moderate-to-severe TBI (n = 196) using group-based trajectory (TRAJ), changepoint, and mixed-effects multivariable regression analysis to characterize temporal dynamics. We identified two groups with unique NLR profiles: a high (n = 67) versus a low (n = 129) TRAJ group. High NLR TRAJ had higher rates (76.12% vs. 55.04%, p = 0.004) and earlier time to infection (p = 0.003). In changepoint-derived day 0–5 and 6–20 epochs, low lymphocyte TRAJ, early in recovery, resulted in more frequent HAIs (p = 0.042), subsequently increasing later NLR levels (p ≤ 0.0001). Both high NLR TRAJ and HAIs increased hospital length of stay (LOS) and days on ventilation (p ≤ 0.05 all), while only high NLR TRAJ significantly increased odds of unfavorable six-month outcome as measured by the Glasgow Outcome Scale (GOS) (p = 0.046) in multivariable regression. These findings provide insight into the temporal dynamics and interrelatedness of immune factors which collectively impact susceptibility to infection and greater hospital resource utilization, as well as influence recovery.
Collapse
Affiliation(s)
- Marina Levochkina
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
- Department of Infectious Diseases & Microbiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Leah McQuillan
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
| | - Nabil Awan
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David Barton
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - John Maczuzak
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
| | - Claudia Bianchine
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
| | - Shannon Trombley
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
| | - Emma Kotes
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
| | - Joshua Wiener
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
| | - Audrey Wagner
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
| | - Jason Calcagno
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
| | - Andrew Maza
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
| | - Ryan Nierstedt
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
| | - Stephanie Ferimer
- Division of Pediatric Rehabilitation Medicine, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA;
| | - Amy Wagner
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.L.); (L.M.); (N.A.); (J.M.); (C.B.); (S.T.); (E.K.); (J.W.); (A.W.); (J.C.); (A.M.); (R.N.)
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Correspondence:
| |
Collapse
|
43
|
Abrahamsen F, Reddy G, Abebe W, Gurung N. Effect of Varying Levels of Hempseed Meal Supplementation on Humoral and Cell-Mediated Immune Responses of Goats. Animals (Basel) 2021; 11:ani11102764. [PMID: 34679786 PMCID: PMC8532981 DOI: 10.3390/ani11102764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 02/04/2023] Open
Abstract
The objective of this study was to evaluate the effect of varying levels of hempseed meal supplementation on antibody and cell-mediated immune responses, as well as the expression of some of the important immunoregulatory cytokines. Treatments consisted of hempseed meal supplementation at 0 (control), 10, 20, and 30% of the total diet. Goats were randomly assigned to one of the four treatments n = 10. Cell-mediated immune response was evaluated on day 59 of the feeding period by measuring skinfold thickness at 24 h following intradermal injection of phytohemagglutinin. A significant increase in skinfold thickness was observed with increasing levels of supplementation as compared to that of the control group. Serum antibody titers to chicken ovalbumin were not significantly different between treatment groups. Cytokine concentrations of IL-6 increased linearly with increasing level of supplementation (p < 0.05), contrarily to the linear decrease that was observed for TNF-α (p < 0.05). Although IL-2 tended to increase with the 10 and 30% levels of supplementation (p < 0.07), the result was not significant, and no significant differences were obtained with respect to IL-4 concentrations. Cytokine gene expression values measured by RT-PCR, however, demonstrated some significant differences. HSM supplementation had no significant effect on the expression of IL-2 or IL-6. However, significant differences were observed with the 30% supplementation for IL-4 and TNF-α as compared to that of the control group (p < 0.05). IL-4 was down regulated for the 10 and 20% treatment groups but was upregulated for the 30% treatment group. TNF-α was downregulated in the 10% but upregulated for the 20 and 30% treatment groups. No significant differences were observed for the serum cortisol concentration or white blood cell counts. These results suggested that hempseed meal supplementation may improve cell-mediated immune response while having no effect on antibody-mediated immune response. However, more research needs to be conducted to determine the most efficacious inclusion rate.
Collapse
Affiliation(s)
- Frank Abrahamsen
- College of Agriculture, Environment and Nutrition Sciences, Tuskegee University, Tuskegee, AL 36088, USA;
| | - Gopal Reddy
- College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA;
- Correspondence: (G.R.); (N.G.)
| | - Woubit Abebe
- College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA;
| | - Nar Gurung
- College of Agriculture, Environment and Nutrition Sciences, Tuskegee University, Tuskegee, AL 36088, USA;
- Correspondence: (G.R.); (N.G.)
| |
Collapse
|
44
|
Fowell DJ, Kim M. The spatio-temporal control of effector T cell migration. Nat Rev Immunol 2021; 21:582-596. [PMID: 33627851 PMCID: PMC9380693 DOI: 10.1038/s41577-021-00507-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 02/08/2023]
Abstract
Effector T cells leave the lymph nodes armed with specialized functional attributes. Their antigenic targets may be located anywhere in the body, posing the ultimate challenge: how to efficiently identify the target tissue, navigate through a complex tissue matrix and, ultimately, locate the immunological insult. Recent advances in real-time in situ imaging of effector T cell migratory behaviour have revealed a great degree of mechanistic plasticity that enables effector T cells to push and squeeze their way through inflamed tissues. This process is shaped by an array of 'stop' and 'go' guidance signals including target antigens, chemokines, integrin ligands and the mechanical cues of the inflamed microenvironment. Effector T cells must sense and interpret these competing signals to correctly position themselves to mediate their effector functions for complete and durable responses in infectious disease and malignancy. Tuning T cell migration therapeutically will require a new understanding of this complex decision-making process.
Collapse
Affiliation(s)
- Deborah J. Fowell
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute for Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY.,Department of Microbiology and Immunology, Cornell University, Ithaca, NY
| | - Minsoo Kim
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute for Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
45
|
SenGupta S, Parent CA, Bear JE. The principles of directed cell migration. Nat Rev Mol Cell Biol 2021; 22:529-547. [PMID: 33990789 PMCID: PMC8663916 DOI: 10.1038/s41580-021-00366-6] [Citation(s) in RCA: 317] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 02/03/2023]
Abstract
Cells have the ability to respond to various types of environmental cues, and in many cases these cues induce directed cell migration towards or away from these signals. How cells sense these cues and how they transmit that information to the cytoskeletal machinery governing cell translocation is one of the oldest and most challenging problems in biology. Chemotaxis, or migration towards diffusible chemical cues, has been studied for more than a century, but information is just now beginning to emerge about how cells respond to other cues, such as substrate-associated cues during haptotaxis (chemical cues on the surface), durotaxis (mechanical substrate compliance) and topotaxis (geometric features of substrate). Here we propose four common principles, or pillars, that underlie all forms of directed migration. First, a signal must be generated, a process that in physiological environments is much more nuanced than early studies suggested. Second, the signal must be sensed, sometimes by cell surface receptors, but also in ways that are not entirely clear, such as in the case of mechanical cues. Third, the signal has to be transmitted from the sensing modules to the machinery that executes the actual movement, a step that often requires amplification. Fourth, the signal has to be converted into the application of asymmetric force relative to the substrate, which involves mostly the cytoskeleton, but perhaps other players as well. Use of these four pillars has allowed us to compare some of the similarities between different types of directed migration, but also to highlight the remarkable diversity in the mechanisms that cells use to respond to different cues provided by their environment.
Collapse
Affiliation(s)
- Shuvasree SenGupta
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carole A Parent
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - James E Bear
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
46
|
Kirolos SA, Rijal R, Consalvo KM, Gomer RH. Using Dictyostelium to Develop Therapeutics for Acute Respiratory Distress Syndrome. Front Cell Dev Biol 2021; 9:710005. [PMID: 34350188 PMCID: PMC8326840 DOI: 10.3389/fcell.2021.710005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) involves damage to lungs causing an influx of neutrophils from the blood into the lung airspaces, and the neutrophils causing further damage, which attracts more neutrophils in a vicious cycle. There are ∼190,000 cases of ARDS per year in the US, and because of the lack of therapeutics, the mortality rate is ∼40%. Repelling neutrophils out of the lung airspaces, or simply preventing neutrophil entry, is a potential therapeutic. In this minireview, we discuss how our lab noticed that a protein called AprA secreted by growing Dictyostelium cells functions as a repellent for Dictyostelium cells, causing cells to move away from a source of AprA. We then found that AprA has structural similarity to a human secreted protein called dipeptidyl peptidase IV (DPPIV), and that DPPIV is a repellent for human neutrophils. In animal models of ARDS, inhalation of DPPIV or DPPIV mimetics blocks neutrophil influx into the lungs. To move DPPIV or DPPIV mimetics into the clinic, we need to know how this repulsion works to understand possible drug interactions and side effects. Combining biochemistry and genetics in Dictyostelium to elucidate the AprA signal transduction pathway, followed by drug studies in human neutrophils to determine similarities and differences between neutrophil and Dictyostelium chemorepulsion, will hopefully lead to the safe use of DPPIV or DPPIV mimetics in the clinic.
Collapse
Affiliation(s)
| | | | | | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
47
|
Majumdar R, Tavakoli Tameh A, Arya SB, Parent CA. Exosomes mediate LTB4 release during neutrophil chemotaxis. PLoS Biol 2021; 19:e3001271. [PMID: 34232954 PMCID: PMC8262914 DOI: 10.1371/journal.pbio.3001271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/07/2021] [Indexed: 12/22/2022] Open
Abstract
Leukotriene B4 (LTB4) is secreted by chemotactic neutrophils, forming a secondary gradient that amplifies the reach of primary chemoattractants. This strategy increases the recruitment range for neutrophils and is important during inflammation. Here, we show that LTB4 and its synthesizing enzymes localize to intracellular multivesicular bodies, which, upon stimulation, release their content as exosomes. Purified exosomes can activate resting neutrophils and elicit chemotactic activity in an LTB4 receptor-dependent manner. Inhibition of exosome release leads to loss of directional motility with concomitant loss of LTB4 release. Our findings establish that the exosomal pool of LTB4 acts in an autocrine fashion to sensitize neutrophils towards the primary chemoattractant, and in a paracrine fashion to mediate the recruitment of neighboring neutrophils in trans. We envision that this mechanism is used by other signals to foster communication between cells in harsh extracellular environments. Concerns have emerged about the immunoelectron microscopy results originally reported in the article by Majumdar and colleagues [1]. In addition, errors were made in the scale bars reported in Figs 2H and 3D of the same article. Accordingly, this article has been retracted. We are grateful for the opportunity to republish a version of this article in which the electron microscopy data have been removed. None of the major conclusions attained in the original article are affected by the removal of the contentious data. We sincerely apologize to PLOS Biology and the scientific community at large for this occurrence.
Collapse
Affiliation(s)
- Ritankar Majumdar
- Laboratory of Cellular and Molecular Biology Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - Aidin Tavakoli Tameh
- Laboratory of Cellular and Molecular Biology Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - Subhash B. Arya
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, United States of America
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Carole A. Parent
- Laboratory of Cellular and Molecular Biology Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, United States of America
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
48
|
Ripon MAR, Bhowmik DR, Amin MT, Hossain MS. Role of arachidonic cascade in COVID-19 infection: A review. Prostaglandins Other Lipid Mediat 2021; 154:106539. [PMID: 33592322 PMCID: PMC7882227 DOI: 10.1016/j.prostaglandins.2021.106539] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
The World Health Organization has described the 2019 Coronavirus disease caused by an influenza-like virus called SARS-CoV-2 as a pandemic. Millions of people worldwide are already infected by this virus, and severe infection causes hyper inflammation, thus disrupting lung function, exacerbating breath difficulties, and death. Various inflammatory mediators bio-synthesized through the arachidonic acid pathway play roles in developing cytokine storms, injuring virus-infected cells. Since pro-inflammatory eicosanoids, including prostaglandins, and leukotrienes, are key brokers for physiological processes such as inflammation, fever, allergy, and pain but, their function in COVID-19 is not well defined. This study addresses eicosanoid's crucial role through the arachidonic pathway in inflammatory cascading and recommends using bioactive lipids, NSAIDs, steroids, cell phospholipase A2 (cPLA2) inhibitors, and specialized pro-resolving mediators (SPMs) to treat COVID-19 disease. The role of soluble epoxide hydrolase inhibitors (SEHIs) in promoting the activity of epoxyeicosatrienoic acids (EETs) and 17-hydroxide-docosahexaenoic acid (17-HDHA) is also discussed. Additional research that assesses the eicosanoid profile in COVID-19 patients or preclinical models generates novel insights into coronavirus-host interaction and inflammation regulation.
Collapse
Affiliation(s)
- Md Abdur Rahman Ripon
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Dipty Rani Bhowmik
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Mohammad Tohidul Amin
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Mohammad Salim Hossain
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| |
Collapse
|
49
|
Wang D, Xiong T, Yu W, Liu B, Wang J, Xiao K, She Q. Predicting the Key Genes Involved in Aortic Valve Calcification Through Integrated Bioinformatics Analysis. Front Genet 2021; 12:650213. [PMID: 34046056 PMCID: PMC8144713 DOI: 10.3389/fgene.2021.650213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/05/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Valvular heart disease is obtaining growing attention in the cardiovascular field and it is believed that calcific aortic valve disease (CAVD) is the most common valvular heart disease (VHD) in the world. CAVD does not have a fully effective treatment to delay its progression and the specific molecular mechanism of aortic valve calcification remains unclear. Materials and Methods: We obtained the gene expression datasets GSE12644 and GSE51472 from the public comprehensive free database GEO. Then, a series of bioinformatics methods, such as GO and KEGG analysis, STING online tool, Cytoscape software, were used to identify differentially expressed genes in CAVD and healthy controls, construct a PPI network, and then identify key genes. In addition, immune infiltration analysis was used via CIBERSORT to observe the expression of various immune cells in CAVD. Results: A total of 144 differential expression genes were identified in the CAVD samples in comparison with the control samples, including 49 up-regulated genes and 95 down-regulated genes. GO analysis of DEGs were most observably enriched in the immune response, signal transduction, inflammatory response, proteolysis, innate immune response, and apoptotic process. The KEGG analysis revealed that the enrichment of DEGs in CAVD were remarkably observed in the chemokine signaling pathway, cytokine-cytokine receptor interaction, and PI3K-Akt signaling pathway. Chemokines CXCL13, CCL19, CCL8, CXCL8, CXCL16, MMP9, CCL18, CXCL5, VCAM1, and PPBP were identified as the hub genes of CAVD. It was macrophages that accounted for the maximal proportion among these immune cells. The expression of macrophages M0, B cells memory, and Plasma cells were higher in the CAVD valves than in healthy valves, however, the expression of B cells naïve, NK cells activated, and macrophages M2 were lower. Conclusion: We detected that chemokines CXCL13, CXCL8, CXCL16, and CXCL5, and CCL19, CCL8, and CCL18 are the most important markers of aortic valve disease. The regulatory macrophages M0, plasma cells, B cells memory, B cells naïve, NK cells activated, and macrophages M2 are probably related to the occurrence and the advancement of aortic valve stenosis. These identified chemokines and these immune cells may interact with a subtle adjustment relationship in the development of calcification in CAVD.
Collapse
Affiliation(s)
- Dinghui Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianhua Xiong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenlong Yu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kaihu Xiao
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
50
|
Guo K, Ma S. The Immune System in Transfusion-Related Acute Lung Injury Prevention and Therapy: Update and Perspective. Front Mol Biosci 2021; 8:639976. [PMID: 33842545 PMCID: PMC8024523 DOI: 10.3389/fmolb.2021.639976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
As an initiator of respiratory distress, transfusion-related acute lung injury (TRALI) is regarded as one of the rare complications associated with transfusion medicine. However, to date, the pathogenesis of TRALI is still unclear, and specific therapies are unavailable. Understanding the mechanisms of TRALI may promote the design of preventive and therapeutic strategies. The immune system plays vital roles in reproduction, development and homeostasis. Sterile tissue damage, such as physical trauma, ischemia, or reperfusion injury, induces an inflammatory reaction that results in wound healing and regenerative mechanisms. In other words, in addition to protecting against pathogens, the immune response may be strongly associated with TRALI prevention and treatment through a variety of immunomodulatory strategies to inhibit excessive immune system activation. Immunotherapy based on immune cells or immunological targets may eradicate complications. For example, IL-10 therapy is a promising therapeutic strategy to explore further. This review will focus on ultramodern advances in our understanding of the potential role of the immune system in TRALI prevention and treatment.
Collapse
Affiliation(s)
- Kai Guo
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Shuxuan Ma
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|