1
|
Chen Y, Hu Y, Zhou H, Jiang N, Wang Y, Zhang J, Shen Y, Yu G, Cao J. Induction of hepatic fibrosis in mice with schistosomiasis by extracellular microRNA-30 derived from Schistosoma japonicum eggs. Front Immunol 2024; 15:1425384. [PMID: 39139565 PMCID: PMC11319242 DOI: 10.3389/fimmu.2024.1425384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/24/2024] [Indexed: 08/15/2024] Open
Abstract
Background Schistosomiasis is a zoonotic parasitic disorder induced by the infestation of schistosomes, a genus of trematodes. MicroRNAs (miRNAs) in egg-derived exosomes are crucial for modulating the host's immune responses and orchestrating the pathophysiological mechanisms. Although the exosomes secreted by S. japonicum contain abundant miRNAs, the specific roles of these miRNAs in the pathogenesis of schistosomiasis-induced hepatic fibrosis are yet to be comprehensively elucidated. The egg exosomes of S. japonicum secrete miRNA-30, a novel miRNA. Methods In vitro, the effect of miRNA-30 was evaluated by transfecting HSCs with miRNA mimics. The target gene biosignature for miRNA-30 was predicted using the miRDB software. The effect of miRNA-30 in hepatic fibrosis was evaluated by either elevating its expression in healthy mice or by inhibiting its activity in infected mice by administration of recombinant adeno-associated virus serotype eight vectors expressing miRNA-30 or miRNA sponges. Results This novel miRNA can activate hepatic stellate cells (HSCs), the prinary effector cells of hepatic fibrosis, in vitro, i.e., it significantly increases the fibrogenic factors Col1(α1), Col3(α1), and α-SMA at both mRNA and protein levels. In addition, miRNA-30 may activate HSCs by targeting the host RORA gene. In addition, in vivo experiments were conducted by administering a recombinant adeno-associated viral vector to modulate the expression levels of miRNA-30. The overexpression of miRNA-30 in healthy mice significantly elevated the expression of Col1(α1), Col3(α1), and α-SMA at both the transcriptomic and proteomic scales. This overexpression was coupled with a pronounced augmentation in the hepatic hydroxyproline content. Conversely, the in vivo silencing of miRNA-30 in infected mice induced a considerable reduction in the size of hepatic granulomas and areas of collagen deposition. Hence, in vivo, modulation of miRNA-30 expression may play a pivotal role in ameliorating the severity of hepatic fibrosis in mice afflicted with S. japonica. Conclusions The study results suggest that miRNA-30 may augment schistosomiasis-induced hepatic fibrosis through a probable interaction with the host RORA. Our study may improve the current theoretical framework regarding cross-species regulation by miRNAs of hepatic fibrosis in schistosomiasis.
Collapse
Affiliation(s)
- Yang Chen
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Pingyuan Laboratory, Henan Normal University, Xinxiang, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, Shanghai, China
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Yuan Hu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, Shanghai, China
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Hao Zhou
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Pingyuan Laboratory, Henan Normal University, Xinxiang, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, Shanghai, China
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Nan Jiang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, Shanghai, China
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Yiluo Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, Shanghai, China
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Jing Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, Shanghai, China
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Yujuan Shen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, Shanghai, China
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Pingyuan Laboratory, Henan Normal University, Xinxiang, China
| | - Jianping Cao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, Shanghai, China
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China
- The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Ishida Y, Kuninaka Y, Mukaida N, Kondo T. Immune Mechanisms of Pulmonary Fibrosis with Bleomycin. Int J Mol Sci 2023; 24:3149. [PMID: 36834561 PMCID: PMC9958859 DOI: 10.3390/ijms24043149] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Fibrosis and structural remodeling of the lung tissue can significantly impair lung function, often with fatal consequences. The etiology of pulmonary fibrosis (PF) is diverse and includes different triggers such as allergens, chemicals, radiation, and environmental particles. However, the cause of idiopathic PF (IPF), one of the most common forms of PF, remains unknown. Experimental models have been developed to study the mechanisms of PF, and the murine bleomycin (BLM) model has received the most attention. Epithelial injury, inflammation, epithelial-mesenchymal transition (EMT), myofibroblast activation, and repeated tissue injury are important initiators of fibrosis. In this review, we examined the common mechanisms of lung wound-healing responses after BLM-induced lung injury as well as the pathogenesis of the most common PF. A three-stage model of wound repair involving injury, inflammation, and repair is outlined. Dysregulation of one or more of these three phases has been reported in many cases of PF. We reviewed the literature investigating PF pathogenesis, and the role of cytokines, chemokines, growth factors, and matrix feeding in an animal model of BLM-induced PF.
Collapse
Affiliation(s)
| | | | | | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| |
Collapse
|
3
|
The Tumor Microenvironment in Tumorigenesis and Therapy Resistance Revisited. Cancers (Basel) 2023; 15:cancers15020376. [PMID: 36672326 PMCID: PMC9856874 DOI: 10.3390/cancers15020376] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Tumorigenesis is a complex and dynamic process involving cell-cell and cell-extracellular matrix (ECM) interactions that allow tumor cell growth, drug resistance and metastasis. This review provides an updated summary of the role played by the tumor microenvironment (TME) components and hypoxia in tumorigenesis, and highlight various ways through which tumor cells reprogram normal cells into phenotypes that are pro-tumorigenic, including cancer associated- fibroblasts, -macrophages and -endothelial cells. Tumor cells secrete numerous factors leading to the transformation of a previously anti-tumorigenic environment into a pro-tumorigenic environment. Once formed, solid tumors continue to interact with various stromal cells, including local and infiltrating fibroblasts, macrophages, mesenchymal stem cells, endothelial cells, pericytes, and secreted factors and the ECM within the tumor microenvironment (TME). The TME is key to tumorigenesis, drug response and treatment outcome. Importantly, stromal cells and secreted factors can initially be anti-tumorigenic, but over time promote tumorigenesis and induce therapy resistance. To counter hypoxia, increased angiogenesis leads to the formation of new vascular networks in order to actively promote and sustain tumor growth via the supply of oxygen and nutrients, whilst removing metabolic waste. Angiogenic vascular network formation aid in tumor cell metastatic dissemination. Successful tumor treatment and novel drug development require the identification and therapeutic targeting of pro-tumorigenic components of the TME including cancer-associated- fibroblasts (CAFs) and -macrophages (CAMs), hypoxia, blocking ECM-receptor interactions, in addition to the targeting of tumor cells. The reprogramming of stromal cells and the immune response to be anti-tumorigenic is key to therapeutic success. Lastly, this review highlights potential TME- and hypoxia-centered therapies under investigation.
Collapse
|
4
|
Hung CT, Tsai YW, Wu YS, Yeh CF, Yang KC. The novel role of ER protein TXNDC5 in the pathogenesis of organ fibrosis: mechanistic insights and therapeutic implications. J Biomed Sci 2022; 29:63. [PMID: 36050716 PMCID: PMC9438287 DOI: 10.1186/s12929-022-00850-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Fibrosis-related disorders account for an enormous burden of disease-associated morbidity and mortality worldwide. Fibrosis is defined by excessive extracellular matrix deposition at fibrotic foci in the organ tissue following injury, resulting in abnormal architecture, impaired function and ultimately, organ failure. To date, there lacks effective pharmacological therapy to target fibrosis per se, highlighting the urgent need to identify novel drug targets against organ fibrosis. Recently, we have discovered the critical role of a fibroblasts-enriched endoplasmic reticulum protein disulfide isomerase (PDI), thioredoxin domain containing 5 (TXNDC5), in cardiac, pulmonary, renal and liver fibrosis, showing TXNDC5 is required for the activation of fibrogenic transforming growth factor-β signaling cascades depending on its catalytic activity as a PDI. Moreover, deletion of TXNDC5 in fibroblasts ameliorates organ fibrosis and preserves organ function by inhibiting myofibroblasts activation, proliferation and extracellular matrix production. In this review, we detailed the molecular and cellular mechanisms by which TXNDC5 promotes fibrogenesis in various tissue types and summarized potential therapeutic strategies targeting TXNDC5 to treat organ fibrosis.
Collapse
Affiliation(s)
- Chen-Ting Hung
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, No. 1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, 100, Taiwan
| | - Yi-Wei Tsai
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, No. 1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, 100, Taiwan
| | - Yu-Shuo Wu
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, No. 1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, 100, Taiwan
| | - Chih-Fan Yeh
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Kai-Chien Yang
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, No. 1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, 100, Taiwan. .,Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan. .,Research Center for Developmental Biology & Regenerative Medicine, National Taiwan University, Taipei, Taiwan. .,Center for Frontier Medicine, National Taiwan University Hospital, Taipei, Taiwan. .,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
5
|
El-Bassiouni N, Amin N, Rizk SH, El Azayem MKA, Madkour M, Garem H, Ibrahim R, El Nil OA. Role of Circulating Hematopoietic Fibrocytes in Chronic Hepatitis C Patients Induced Liver Fibrosis. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: Bone marrow derived fibrocytes may play an important role in pathogenesis and resolution of liver fibrosis. These cells may offer new approaches for better understanding the pathogenesis of liver fibrosis.
Aim of the work: To define the proportion of circulating fibrocytes with hematopoietic progenitor origin as defined by CD45 and CD34 positivity and to assess whether they are increased in patients with chronic C hepatitis in correlation to the degree of liver fibrosis.
Subjects and Methods: Sixty HCV patients were classified according to METAVIR score into 4 stages of liver fibrosis, 15 age and sex-matched controls were included. Flowcytometric analysis for circulating levels of fibrocytes CD34+ve cells, CD45+ve cells, collagen type I+ve cells and CXCR4+ve cells was carried out using monoclonal antibodies (anti-CD34, CD45, collagen type I and CD184). GM-CSF, TGF-β and α-SMA were assessed using ELISA.
Results and Conclusions: A significant increase in the circulating levels of GM-CSF, TGF- β and α-SMA, with a significant increase in the percentage of cells express CXCR4and in the co expression of CD34, CD45 and collagen type I positive cells in different groups of patients compared to control group, denoting the presence of an increased proportion of circulating fibrocytes in peripheral blood of these patients. The percentage of fibrocytes that positively expression CD34, CD45, collagen type I and CXCR4, were increased in step wise fashion in conjunction with worsening severity of liver disease.
Liver fibrosis is associated with increased levels of circulating TGF-β1 and lipopolysaccharide, activation of myofibroblasts, and extensive deposition of extracellular matrix, mostly collagen Type I. TGF-β and LPS play a critical role in fibrogenesis and trigger fibrocyte recruitment to the injured liver promoting their differentiation into collagen type I producing myofibroblast, supporting that fibrocytes may become a novel target for anti fibrotic therapy.
Collapse
|
6
|
Ishikawa G, Liu A, Herzog EL. Evolving Perspectives on Innate Immune Mechanisms of IPF. Front Mol Biosci 2021; 8:676569. [PMID: 34434962 PMCID: PMC8381017 DOI: 10.3389/fmolb.2021.676569] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/29/2021] [Indexed: 12/29/2022] Open
Abstract
While epithelial-fibroblast interactions are viewed as the primary drivers of Idiopathic Pulmonary Fibrosis (IPF), evidence gleaned from animal modeling and human studies implicates innate immunity as well. To provide perspective on this topic, this review synthesizes the available data regarding the complex role of innate immunity in IPF. The role of substances present in the fibrotic microenvironment including pathogen associated molecular patterns (PAMPs) derived from invading or commensal microbes, and danger associated molecular patterns (DAMPs) derived from injured cells and tissues will be discussed along with the proposed contribution of innate immune populations such as macrophages, neutrophils, fibrocytes, myeloid suppressor cells, and innate lymphoid cells. Each component will be considered in the context of its relationship to environmental and genetic factors, disease outcomes, and potential therapies. We conclude with discussion of unanswered questions and opportunities for future study in this area.
Collapse
Affiliation(s)
- Genta Ishikawa
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Angela Liu
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Erica L. Herzog
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States,Department of Pathology, Yale School of Medicine, New Haven, CT, United States,*Correspondence: Erica L. Herzog,
| |
Collapse
|
7
|
Virk HS, Biddle MS, Smallwood DT, Weston CA, Castells E, Bowman VW, McCarthy J, Amrani Y, Duffy SM, Bradding P, Roach KM. TGFβ1 induces resistance of human lung myofibroblasts to cell death via down-regulation of TRPA1 channels. Br J Pharmacol 2021; 178:2948-2962. [PMID: 33786825 DOI: 10.1111/bph.15467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/06/2021] [Accepted: 03/17/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND PURPOSE TGFβ1-mediated myofibroblast activation contributes to pathological fibrosis in many diseases including idiopathic pulmonary fibrosis (IPF), where myofibroblast resistance to oxidant-mediated apoptosis is also evident. We therefore investigated the involvement of redox-sensitive TRPA1 ion channels on human lung myofibroblasts (HLMFs) cell death and TGFβ1-mediated pro-fibrotic responses. EXPERIMENTAL APPROACH The effects of TGFβ1 stimulation on TRPA1 expression and cell viability was studied in HLMFs derived from IPF patients and non-fibrotic patients. We also examined a model of TGFβ1-dependent fibrogenesis in human lung. We used qRT-PCR, immunofluorescent assays, overexpression with lentiviral vectors and electrophysiological methods. KEY RESULTS TRPA1 mRNA, protein and ion currents were expressed in HLMFs derived from both non-fibrotic patient controls and IPF patients, and expression was reduced by TGFβ1. TRPA1 mRNA was also down-regulated by TGFβ1 in a model of lung fibrogenesis in human lung. TRPA1 over-expression or activation induced HLMF apoptosis, and activation of TRPA1 channel activation by H2 O2 induced necrosis. TRPA1 inhibition following TGFβ1 down-regulation or pharmacological inhibition, protected HLMFs from both apoptosis and necrosis. Lentiviral vector mediated TRPA1 expression was also found to induce sensitivity to H2 O2 induced cell death in a TRPA1-negative HEK293T cell line. CONCLUSION AND IMPLICATIONS TGFβ1 induces resistance of HLMFs to TRPA1 agonist- and H2 O2 -mediated cell death via down-regulation of TRPA1 channels. Our data suggest that therapeutic strategies which prevent TGFβ1-dependent down-regulation of TRPA1 may reduce myofibroblast survival in IPF and therefore improve clinical outcomes.
Collapse
Affiliation(s)
- Harvinder S Virk
- NIHR Respiratory BRC, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Michael S Biddle
- NIHR Respiratory BRC, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Dawn T Smallwood
- School of Allied Health Sciences, De Montfort University, Leicester, UK
| | - Cathryn A Weston
- NIHR Respiratory BRC, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Emily Castells
- NIHR Respiratory BRC, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Viona W Bowman
- School of Allied Health Sciences, De Montfort University, Leicester, UK
| | - Jamie McCarthy
- NIHR Respiratory BRC, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Yassine Amrani
- NIHR Respiratory BRC, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - S Mark Duffy
- NIHR Respiratory BRC, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Peter Bradding
- NIHR Respiratory BRC, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Katy M Roach
- NIHR Respiratory BRC, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
8
|
Bedos L, Grahn BH, Philibert H, Campbell J, Sandmeyer L. Histologic, immunohistochemical, and scanning electron microscopic comparison of pre-iridal monocellular and fibrovascular membranes in normal and glaucomatous canine globes. Vet Ophthalmol 2021; 24:361-373. [PMID: 33904639 DOI: 10.1111/vop.12894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES (i) To evaluate immunohistochemical labeling of pre-iridal monocellular and fibrovascular membranes and (ii) describe the light and scanning electron microscopic (SEM) characteristics of these membranes in glaucomatous and normal/control canine globes. MATERIALS AND METHODS All globes were evaluated with light microscopy. Immunohistochemical labeling for CD18, Smooth muscle actin (SMA), and CD117 was completed on 40 canine globes with congenital/anterior segment dysgenesis-associated glaucoma (n = 10), primary/goniodysgenesis-associated glaucoma (n = 10), secondary glaucoma (n = 10), and normal/control globes (n = 10). SEM was completed on 10 globes: 5 with monocellular membranes, 3 with fibrovascular membranes, and 2 without a histologically detectable membrane. RESULTS Monocellular membranes were detected in all normal/control globes with light microscopy and appeared to be morphologically very similar to those in diseased globes. CD18 labeling was detected in 9/10 monocellular membranes in normal/control globes, 15/23 monocellular, and 7/8 fibrovascular membranes in globes with glaucoma. SMA and CD117 labeling was not detected in monocellular membranes of normal/control globes. SMA was expressed in 10/23 monocellular and 7/8 fibrovascular membranes of glaucomatous globes. CD117 was expressed in 7/23 monocellular and 5/8 fibrovascular membranes of glaucomatous globes. SEM of monocellular membranes revealed a continuous sheet of mostly spindle cells and few individual round cells that extended over the anterior iris face in normal/control and all glaucomatous globes. CONCLUSION Pre-iridal monocellular membranes are a normal component of the anterior iris surface, and CD18 immunoreactivity suggests some cells within these are of leukocytic origin. SMA and CD117 labeling of monocellular membranes in glaucomatous, but not normal/control globes, suggest metaplastic cellular change secondary to intraocular pathology related to glaucoma.
Collapse
Affiliation(s)
- Leila Bedos
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Lloyd Veterinary Medical Center, Iowa State University, Ames, IA, USA
| | - Bruce H Grahn
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,3WCVM Veterinary Medical Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Helene Philibert
- Department of Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - John Campbell
- 3WCVM Veterinary Medical Centre, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lynne Sandmeyer
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,3WCVM Veterinary Medical Centre, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
9
|
Afroj T, Mitsuhashi A, Ogino H, Saijo A, Otsuka K, Yoneda H, Tobiume M, Nguyen NT, Goto H, Koyama K, Sugimoto M, Kondoh O, Nokihara H, Nishioka Y. Blockade of PD-1/PD-L1 Pathway Enhances the Antigen-Presenting Capacity of Fibrocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:1204-1214. [PMID: 33504617 PMCID: PMC7939041 DOI: 10.4049/jimmunol.2000909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023]
Abstract
Fibrocytes, a distinct population of collagen-producing, monocyte-derived cells, are involved in wound healing as well as fibrotic diseases. Recently, fibrocytes have been revealed to play a role in the tumor microenvironment, particularly under antiangiogenic therapy. In addition, combination cancer immunotherapy with immune checkpoint inhibitor and antiangiogenic agents have been developed for various cancers in the clinical setting, although the immunological background is not clear. In the current study, we aimed to determine the function of fibrocytes in tumor immunity induced by immune checkpoint inhibitor therapy. Human and murine fibrocytes were generated from PBMCs and lungs, respectively. The expression of costimulatory and inhibitory molecules on fibrocytes was examined by flow cytometry. The stimulation of CD8+ T cells by fibrocytes was examined in MLRs with a 3H-thymidine incorporation assay. Fibrocytes expressed CD80low and CD86high as a costimulatory molecule, and expressed PD-L1high, but not PD-L2, as a coinhibitory molecule. Without any stimulation, fibrocytes strongly enhanced the proliferation of CD8+ T cells in mice and humans. Treatment with anti-CD86 and -CD54 Abs inhibited the growth of CD8+ T cells induced by fibrocytes. Anti-PD-L1 Ab further enhanced the proliferation of CD8+ T cells, even in the OVA-specific MLR with OT-1Rag-/- mice. Importantly, fibrocytes derived from PBMCs of patients with lung adenocarcinoma or murine MC38 tumors augmented the proliferation of CD8+ T cells with PD-L1 blockade. These results suggest that fibrocytes infiltrating tumor sites may play a role in the antitumor immunity mediated by CD8+ T cells when the activity is further enhanced by PD-L1/PD-1 blockade.
Collapse
Affiliation(s)
- Tania Afroj
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; and
| | - Atsushi Mitsuhashi
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; and
| | - Hirokazu Ogino
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; and
| | - Atsuro Saijo
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; and
| | - Kenji Otsuka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; and
| | - Hiroto Yoneda
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; and
| | - Makoto Tobiume
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; and
| | - Na Thi Nguyen
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; and
| | - Hisatsugu Goto
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; and
| | - Kazuya Koyama
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; and
| | - Masamichi Sugimoto
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical, Co., Ltd., Kanagawa 247-8530, Japan
| | - Osamu Kondoh
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical, Co., Ltd., Kanagawa 247-8530, Japan
| | - Hiroshi Nokihara
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; and
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; and
| |
Collapse
|
10
|
Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol 2021; 18:151-166. [PMID: 33128017 DOI: 10.1038/s41575-020-00372-7] [Citation(s) in RCA: 1059] [Impact Index Per Article: 264.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2020] [Indexed: 01/18/2023]
Abstract
Chronic liver injury leads to liver inflammation and fibrosis, through which activated myofibroblasts in the liver secrete extracellular matrix proteins that generate the fibrous scar. The primary source of these myofibroblasts are the resident hepatic stellate cells. Clinical and experimental liver fibrosis regresses when the causative agent is removed, which is associated with the elimination of these activated myofibroblasts and resorption of the fibrous scar. Understanding the mechanisms of liver fibrosis regression could identify new therapeutic targets to treat liver fibrosis. This Review summarizes studies of the molecular mechanisms underlying the reversibility of liver fibrosis, including apoptosis and the inactivation of hepatic stellate cells, the crosstalk between the liver and the systems that orchestrate the recruitment of bone marrow-derived macrophages (and other inflammatory cells) driving fibrosis resolution, and the interactions between various cell types that lead to the intracellular signalling that induces fibrosis or its regression. We also discuss strategies to target hepatic myofibroblasts (for example, via apoptosis or inactivation) and the myeloid cells that degrade the matrix (for example, via their recruitment to fibrotic liver) to facilitate fibrosis resolution and liver regeneration.
Collapse
Affiliation(s)
- Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla, CA, USA.
| | - David Brenner
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
11
|
Jutzi JS, Mullally A. Remodeling the Bone Marrow Microenvironment - A Proposal for Targeting Pro-inflammatory Contributors in MPN. Front Immunol 2020; 11:2093. [PMID: 32983162 PMCID: PMC7489333 DOI: 10.3389/fimmu.2020.02093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022] Open
Abstract
Philadelphia-negative myeloproliferative neoplasms (MPN) are malignant bone marrow (BM) disorders, typically arising from a single somatically mutated hematopoietic stem cell. The most commonly mutated genes, JAK2, CALR, and MPL lead to constitutively active JAK-STAT signaling. Common clinical features include myeloproliferation, splenomegaly and constitutional symptoms. This review covers the contributions of cellular components of MPN pathology (e.g., monocytes, megakaryocytes, and mesenchymal stromal cells) as well as cytokines and soluble mediators to the development of myelofibrosis (MF) and highlights recent therapeutic advances. These findings outline the importance of malignant and non-malignant BM constituents to the pathogenesis and treatment of MF.
Collapse
Affiliation(s)
- Jonas Samuel Jutzi
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States.,Cancer Program, Broad Institute, Cambridge, MA, United States
| |
Collapse
|
12
|
CXCR4 + cells are increased in lung tissue of patients with idiopathic pulmonary fibrosis. Respir Res 2020; 21:221. [PMID: 32843095 PMCID: PMC7449054 DOI: 10.1186/s12931-020-01467-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/23/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND CXCR4, a transmembrane-receptor located on epithelial cells that is activated by CXCL12, may have a role in IPF via migration of CXCR4+ fibrocytes to the lung. However, its expression has not been fully characterised in idiopathic pulmonary fibrosis (IPF) or other fibrotic interstitial lung diseases (ILDs). CXCL12 is constitutively expressed in the bone marrow, and levels of CXCR4 regulate control of this signalling pathway. The aim of this study was to profile the expression of CXCR4 in lung tissue and peripheral circulation of patients with IPF and other fibrotic ILDs. METHODS Expression of CXCR4 on peripheral blood mononuclear cells (PBMCs) was examined by flow cytometry in 20 patients with IPF and 10 age-matched non-disease control (NDC) donors. Levels of CXCL12 in human plasma were measured by ELISA. Expression of CXCR4, CXCL12, CD45, and e-cadherin was assessed in IPF (n = 10), other fibrotic ILD (n = 8) and NDC (n = 10) lung tissue by multiplex immunohistochemistry (OPAL) and slides were scanned using a Vectra 3 scanner. Cells were quantified with computer automated histological analysis software (HALO). RESULTS In blood, the number of CXCR4+ cells was lower but the level of CXCL12 was higher in patients with IPF compared to NDC donors. Elevated CXCR4 expression was detected in lung tissue from patients with IPF and other fibrotic ILDs compared to NDC. There were higher levels of CXCR4+/e-cadherin+/CXCL12+ (epithelial) cells in IPF lung tissue compared to NDC, but there was no difference in the numbers of CXCR4+/CD45+/CXCL12+ (myeloid) cells between the two groups. CONCLUSIONS This report demonstrates that CXCR4 is overexpressed not only in IPF but also in other ILDs and expression is particularly prominent within both honeycomb cysts and distal airway epithelium. This observation supports the hypothesis that CXCR4 may drive tissue fibrosis through binding its specific ligand CXCL12. Although CXCR4 expressing cells could be either of epithelial or myeloid origin it appears that the former is more prominent in IPF lung tissue. Further characterization of the cells of the honeycomb cyst may lead to a better understanding of the fibrogenic processes in IPF and other end-stage fibrotic ILDs.
Collapse
|
13
|
Jørgensen ML, Müller C, Sikkersoq M, Nadzieja M, Zhang Z, Su Y, Just J, Garm Spindler KL, Chen M. A melt-electrowritten filter for capture and culture of circulating colon cancer cells. Mater Today Bio 2020; 6:100052. [PMID: 32490373 PMCID: PMC7256632 DOI: 10.1016/j.mtbio.2020.100052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 12/26/2022] Open
Abstract
Metastasis is the major cause of death in cancer patients accounting for about 90% of the mortality. The detection and analysis of the hallmark of metastasis, circulating tumor cells (CTCs), have significant impact in cancer biology and clinical practice. However, the scarcity of CTCs in blood, particularly in that of colorectal cancer patients, is a serious bottleneck in the development of CTC-based precision medicine. Herein, the melt electrowriting (MEW) technology was used for reproductive fabrication of a biocompatible antibody-presenting polycaprolactone filter with tailored porous structure. It is demonstrated, for the first time, that such filter can be used not only to catch cancer cells spiked in whole blood but also to culture the cancer cells directly on site. Specifically, HT29 colon cancer cells can be captured with an efficiency of 85%, and when spiked into 4 mL of whole blood, 47% were captured on one Ø12mm filter. Furthermore, repeated capture and culture experiments have shown that as few as 20 HT29 colon cancer cells spiked into 4 mL of whole blood can be captured on the filter and within 2 weeks be expanded on site to become tumor bodies that are visible to the untrained eye. This filter allows for downstream analysis, such as flow cytometry, immunocytochemistry, Western blotting, and rt-qPCR. This technology represents a simple and cost-effective platform that potentially enables fast and efficient culture of rare CTCs from patients' blood. This provides non-invasive alternatives for solid biopsy tumor materials for treatment screening, with great potential to realize precision medicine for cancer treatment.
Collapse
Affiliation(s)
- M L Jørgensen
- Department of Engineering, Aarhus University, Aarhus, Denmark
| | - C Müller
- Department of Engineering, Aarhus University, Aarhus, Denmark
| | - M Sikkersoq
- Department of Engineering, Aarhus University, Aarhus, Denmark
| | - M Nadzieja
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Z Zhang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Y Su
- Department of Engineering, Aarhus University, Aarhus, Denmark
| | - J Just
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark
| | - K-L Garm Spindler
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - M Chen
- Department of Engineering, Aarhus University, Aarhus, Denmark.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Origin and role of hepatic myofibroblasts in hepatocellular carcinoma. Oncotarget 2020; 11:1186-1201. [PMID: 32284794 PMCID: PMC7138168 DOI: 10.18632/oncotarget.27532] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/03/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and is the second leading cause of cancer-related death worldwide. Fibrosis and cirrhosis are important risk factors for the development of HCC. Hepatic myofibroblasts are the cells responsible for extracellular matrix deposition, which is the hallmark of liver fibrosis. It is believed that myofibroblasts are predominantly derived from hepatic stellate cells (HSCs), also known as Ito cells. Nevertheless, depending on the nature of insult to the liver, it is thought that myofibroblasts may also originate from a variety of other cell types such as the portal fibroblasts (PFs), fibrocytes, hepatocytes, hepatic progenitor cells (HPCs), and mesothelial cells. Liver myofibroblasts are believed to transform into cancer-associated fibroblasts (CAFs) while HCC is developing. There is substantial evidence suggesting that activated HSCs (aHSCs)/cancer-associated fibroblasts (CAFs) may play an important role in HCC initiation and progression. In this paper, we aim to review current literature on cellular origins of myofibroblasts with a focus on hepatitis B virus (HBV)- and hepatitis C virus (HCV)-induced hepatic fibrosis. We also address the role of aHSCs/CAFs in HCC progression through the regulation of immune cells as well as mechanisms of evolvement of drug resistance.
Collapse
|
15
|
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and is the second leading cause of cancer-related death worldwide. Fibrosis and cirrhosis are important risk factors for the development of HCC. Hepatic myofibroblasts are the cells responsible for extracellular matrix deposition, which is the hallmark of liver fibrosis. It is believed that myofibroblasts are predominantly derived from hepatic stellate cells (HSCs), also known as Ito cells. Nevertheless, depending on the nature of insult to the liver, it is thought that myofibroblasts may also originate from a variety of other cell types such as the portal fibroblasts (PFs), fibrocytes, hepatocytes, hepatic progenitor cells (HPCs), and mesothelial cells. Liver myofibroblasts are believed to transform into cancer-associated fibroblasts (CAFs) while HCC is developing. There is substantial evidence suggesting that activated HSCs (aHSCs)/cancer-associated fibroblasts (CAFs) may play an important role in HCC initiation and progression. In this paper, we aim to review current literature on cellular origins of myofibroblasts with a focus on hepatitis B virus (HBV)- and hepatitis C virus (HCV)-induced hepatic fibrosis. We also address the role of aHSCs/CAFs in HCC progression through the regulation of immune cells as well as mechanisms of evolvement of drug resistance.
Collapse
|
16
|
Chong SG, Sato S, Kolb M, Gauldie J. Fibrocytes and fibroblasts-Where are we now. Int J Biochem Cell Biol 2019; 116:105595. [PMID: 31473260 DOI: 10.1016/j.biocel.2019.105595] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022]
Abstract
Fibroblasts are considered major contributors to the process of fibrogenesis and the progression of matrix deposition and tissue distortion in fibrotic diseases such as Pulmonary Fibrosis. Recent discovery of the fibrocyte, a circulating possible precursor cell to the tissue fibroblast in fibrosis, has raised issues regarding the characterization of fibrocytes with respect to their morphology, growth characteristics in vitro, their biological role in vivo and their potential utility as a biomarker and/ or treatment target in various human diseases. Characterization studies of the fibrocyte continue as does emerging conflicting data concerning the relationship to or with the lung fibroblast. The source of signals that direct the traffic of these cells, as well as their response to therapeutic intervention with newly available drugs, bring new insights to the understanding of this cell type. The identification of exosomes from fibrocytes that can affect resident fibroblast activities suggest mechanisms of their influence on pathogenesis. Moreover, interesting comparisons with other pathologies are emerging involving the influence of circulating mesenchymal precursor cells on tissue responses.
Collapse
Affiliation(s)
- Sy Giin Chong
- Departments of Medicine and Pathology and Molecular Medicine, Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton, McMaster University, Hamilton, ON, Canada; School of Medicine and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Seidai Sato
- Departments of Medicine and Pathology and Molecular Medicine, Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton, McMaster University, Hamilton, ON, Canada; Division of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Martin Kolb
- Departments of Medicine and Pathology and Molecular Medicine, Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton, McMaster University, Hamilton, ON, Canada
| | - Jack Gauldie
- Departments of Medicine and Pathology and Molecular Medicine, Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
17
|
Steer A, Cordes N, Jendrossek V, Klein D. Impact of Cancer-Associated Fibroblast on the Radiation-Response of Solid Xenograft Tumors. Front Mol Biosci 2019; 6:70. [PMID: 31475157 PMCID: PMC6705217 DOI: 10.3389/fmolb.2019.00070] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/29/2019] [Indexed: 01/18/2023] Open
Abstract
Increasing evidence indicates that the heterogeneous tumor stroma supports therapy resistance at multiple levels. Fibroblasts, particularly cancer-associated fibroblasts (CAFs) are critical components of the tumor stroma. However, the impact of CAFs on the outcome of radiotherapy (RT) is poorly understood. Here, we investigated if and how fibroblasts/CAFs modulate the radiation response of malignant tumors by altering cancer cell radiosensitivity or radioresistance in vitro and in vivo. The influence of fibroblasts on cancer cell proliferation, cell death induction and long-term survival after RT was studied using different sets of fibroblasts and cancer cells in an indirect co-culture (2D) system to analyse potential paracrine interactions or a 3D model to study direct interactions. Paracrine signals from embryonic NIH-3T3 fibroblasts promoted MPR31.4 prostate and Py8119 breast cancer cell proliferation. Indirect co-culture with L929 skin fibroblasts induced higher levels of apoptosis in irradiated MPR31.4 cells, while they promoted proliferation of irradiated Py8119 cells. In addition, NIH-3T3 fibroblasts promoted long-term clonogenic survival of both tumor cell types upon irradiation in the 3D co-culture system when compared to non-irradiated controls. Also in vivo, co-implantation of cancer cells and fibroblasts resulted in different effects depending on the respective cell combinations used: co-implantation of MPR31.4 cells with NIH-3T3 fibroblasts or of Py8119 cells with L929 fibroblasts led to increased tumor growth and reduced radiation-induced tumor growth delay when compared to the respective tumors without co-implanted fibroblasts. Taken together, the impact of fibroblasts on cancer cell behavior and radiation sensitivity largely depended on the respective cell types used as they either exerted a pro-tumorigenic and radioresistance-promoting effect, an anti-tumorigenic effect, or no effect. We conclude that the plasticity of fibroblasts allows for such a broad spectrum of activities by the same fibroblast and that this plasticity is at least in part mediated by cancer cell-induced fibroblast activation toward CAFs.
Collapse
Affiliation(s)
- Alizée Steer
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Nils Cordes
- Faculty of Medicine, OncoRay-National Center for Radiation Research in Oncology, Technische Universität Dresden, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Institute of Radiooncology-OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Heidelberg, Germany.,German Cancer Research Center (DKFZ)-Partner Site Dresden, Heidelberg, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Diana Klein
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| |
Collapse
|
18
|
Zhang ZQ, Shao B, Han GZ, Liu GY, Zhang CZ, Lin L. Location and dynamic changes of inflammation, fibrosis, and expression levels of related genes in SiO 2-induced pulmonary fibrosis in rats in vivo. J Toxicol Pathol 2019; 32:253-260. [PMID: 31719752 PMCID: PMC6831492 DOI: 10.1293/tox.2019-0024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/18/2019] [Indexed: 02/05/2023] Open
Abstract
Silicosis is a serious occupational disease characterized by pulmonary fibrosis, and its mechanism and progression have not been fully elucidated yet. In this study, silicosis models of rat were established by a one-time dusting method, and the rats were sacrificed after 30, 60, and 120 days (herein referred to as the 30, 60, and 120 days groups, respectively). The rats without dust exposure were used as the control. The lungs were removed to observe pathological changes using hematoxylin and eosin and Masson’s trichrome staining and transmission electron microscopy, and the degree of collagen type I and III deposition in the lung was evaluated by enzyme‐linked immunosorbent assay. The levels of malondialdehyde and superoxide dismutase were measured by spectrophotometry, and the expression levels of fibrosis-related genes (transforming growth factor beta 1, type I collagen, type III collagen) were assessed by real-time quantitative polymerase chain reaction. The results suggested that the rats in the model groups exhibited obvious collagen fibrosis and that the severity of the lung injury increased as the time after exposure to SiO2 increased. There was a significant response to lung inflammation in the model rats, especially in the 30 days group. The degree of lipid peroxidation in bronchoalveolar lavage fluid cells and lung tissues in experiment group rats significantly increased. Among the three fibrosis-related genes, transforming growth factor beta 1was elevated in both bronchoalveolar lavage fluid cells and lung tissues of the experiment group rats, while collagen type I and III were only elevated in lung tissues. Hence, we concluded that as silicosis progressed, inflammation, fibrosis, and the expression of fibrosis-related genes showed different time-dependent changes and that a number of causal relationships existed among them.
Collapse
Affiliation(s)
- Zhao-Qiang Zhang
- Department of Public Health, Jining Medical University, 45 Jianshe South Road, Jining city, Shandong Province 272113, China
| | - Bo Shao
- Department of Public Health, Jining Medical University, 45 Jianshe South Road, Jining city, Shandong Province 272113, China
| | - Gui-Zhi Han
- Department of Public Health, Jining Medical University, 45 Jianshe South Road, Jining city, Shandong Province 272113, China
| | - Gen-Yi Liu
- Department of Public Health, Jining Medical University, 45 Jianshe South Road, Jining city, Shandong Province 272113, China
| | - Chun-Zhi Zhang
- Department of Public Health, Jining Medical University, 45 Jianshe South Road, Jining city, Shandong Province 272113, China
| | - Li Lin
- Department of Public Health, Jining Medical University, 45 Jianshe South Road, Jining city, Shandong Province 272113, China
| |
Collapse
|
19
|
Gene Expression Changes Associated with Nintedanib Treatment in Idiopathic Pulmonary Fibrosis Fibroblasts: A Next-Generation Sequencing and Bioinformatics Study. J Clin Med 2019; 8:jcm8030308. [PMID: 30841487 PMCID: PMC6462954 DOI: 10.3390/jcm8030308] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 02/18/2019] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and fatal interstitial lung disease. Therapeutic options for IPF remain limited. Nintedanib, a tyrosine kinase inhibitor approved for IPF treatment, is known to inhibit fibroblasts proliferation, migration and transformation to myofibroblasts. However, how nintedanib changes gene regulations in IPF has never been systematically investigated. We conducted a next-generation sequencing and bioinformatics study to evaluate the changes of mRNA and miRNA profiles in IPF fibroblasts treated with 2 µM and 4 µM nintedanib, compared to those without treatment. We identified 157 upregulated and 151 downregulated genes and used STRING and DAVID databases for analysis of protein⁻protein interactions, biological pathways, and molecular functions. We found strong protein⁻protein interactions within these dysregulated genes, mostly involved in the pathways of cell cycle and mitotic cell cycle. We also discovered 13 potential miRNA⁻mRNA interactions associated with nintedanib treatment. After validation using miRDB, TargetScan, and RT-qPCR, we identified 4 downregulated genes (DDX11, E2F1, NPTX1, and PLXNA4) which might be repressed by the upregulated hsa-miR-486-3p. According to the proposed functions of DDX11, E2F1, and PLXNA4 reported in previous studies, these gene expression changes together might contribute to decreased proliferation of fibroblasts and decreased angiogenesis in the microenvironment of IPF. Our findings need further studies to confirm.
Collapse
|
20
|
Botelho FM, Rodrigues R, Guerette J, Wong S, Fritz DK, Richards CD. Extracellular Matrix and Fibrocyte Accumulation in BALB/c Mouse Lung upon Transient Overexpression of Oncostatin M. Cells 2019; 8:cells8020126. [PMID: 30764496 PMCID: PMC6406700 DOI: 10.3390/cells8020126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 02/06/2023] Open
Abstract
The accumulation of extracellular matrix in lung diseases involves numerous factors, including cytokines and chemokines that participate in cell activation in lung tissues and the circulation of fibrocytes that contribute to local fibrotic responses. The transient overexpression of the gp130 cytokine Oncostatin M can induce extracellular matrix (ECM) accumulation in mouse lungs, and here, we assess a role for IL-13 in this activity using gene deficient mice. The endotracheal administration of an adenovirus vector encoding Oncostatin M (AdOSM) caused increases in parenchymal lung collagen accumulation, neutrophil numbers, and CXCL1/KC chemokine elevation in bronchioalveolar lavage fluids. These effects were similar in IL-13-/- mice at day 7; however, the ECM matrix induced by Oncostatin M (OSM) was reduced at day 14 in the IL-13-/- mice. CD45+col1+ fibrocyte numbers were elevated at day 7 due to AdOSM whereas macrophages were not. Day 14 levels of CD45+col1+ fibrocytes were maintained in the wildtype mice treated with AdOSM but were reduced in IL-13-/- mice. The expression of the fibrocyte chemotactic factor CXCL12/SDF-1 was suppressed marginally by AdOSM in vivo and significantly in vitro in mouse lung fibroblast cell cultures. Thus, Oncostatin M can stimulate inflammation in an IL-13-independent manner in BALB/c lungs; however, the ECM remodeling and fibrocyte accumulation is reduced in IL-13 deficiency.
Collapse
Affiliation(s)
- Fernando M Botelho
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, L8S 4L8, Canada.
| | | | | | | | | | | |
Collapse
|
21
|
Sheu CC, Chang WA, Tsai MJ, Liao SH, Chong IW, Kuo PL. Bioinformatic analysis of next‑generation sequencing data to identify dysregulated genes in fibroblasts of idiopathic pulmonary fibrosis. Int J Mol Med 2019; 43:1643-1656. [PMID: 30720061 PMCID: PMC6414167 DOI: 10.3892/ijmm.2019.4086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/29/2019] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal fibrotic lung disease with an increasing global burden. It is hypothesized that fibroblasts have a number of functions that may affect the development and progression of IPF. However, the present understanding of cellular and molecular mechanisms associated with fibroblasts in IPF remains limited. The present study aimed to identify the dysregulated genes in IPF fibroblasts, elucidate their functions and explore potential microRNA (miRNA)-mRNA interactions. mRNA and miRNA expression profiles were obtained from IPF fibroblasts and normal lung fibroblasts using a next-generation sequencing platform, and bioinformatic analyses were performed in a step-wise manner. A total of 42 dysregulated genes (>2 fold-change of expression) were identified, of which 5 were verified in the Gene Expression Omnibus (GEO) database analysis, including the upregulation of neurotrimin (NTM), paired box 8 (PAX8) and mesoderm development LRP chaperone, and the downregulation of ITPR interacting domain containing 2 and Inka box actin regulator 2 (INKA2). Previous data indicated that PAX8 and INKA2 serve roles in cell growth, proliferation and survival. Gene Ontology analysis indicated that the most significant function of these 42 dysregulated genes was associated with the composition and function of the extracellular matrix (ECM). A total of 60 dysregulated miRNAs were also identified, and 1,908 targets were predicted by the miRmap database. The integrated analysis of mRNA and miRNA expression data, combined with GEO verification, finally identified Homo sapiens (hsa)-miR-1254-INKA2 and hsa-miR-766-3p-INKA2 as the potential miRNA-mRNA interactions in IPF fibroblasts. In summary, the results of the present study suggest that dysregulation of PAX8, hsa-miR-1254-INKA2 and hsa-miR-766-3p-INKA2 may promote the proliferation and survival of IPF fibroblasts. In the functional analysis of the dysregulated genes, a marked association between fibroblasts and the ECM was identified. These data improve the current understanding of fibroblasts as key cells in the pathogenesis of IPF. As a screening study using bioinformatics approaches, the results of the present study require additional validation.
Collapse
Affiliation(s)
- Chau-Chyun Sheu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Ming-Ju Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Ssu-Hui Liao
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Inn-Wen Chong
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| |
Collapse
|
22
|
Desai O, Winkler J, Minasyan M, Herzog EL. The Role of Immune and Inflammatory Cells in Idiopathic Pulmonary Fibrosis. Front Med (Lausanne) 2018; 5:43. [PMID: 29616220 PMCID: PMC5869935 DOI: 10.3389/fmed.2018.00043] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 02/06/2018] [Indexed: 12/15/2022] Open
Abstract
The contribution of the immune system to idiopathic pulmonary fibrosis (IPF) remains poorly understood. While most sources agree that IPF does not result from a primary immunopathogenic mechanism, evidence gleaned from animal modeling and human studies suggests that innate and adaptive immune processes can orchestrate existing fibrotic responses. This review will synthesize the available data regarding the complex role of professional immune cells in IPF. The role of innate immune populations such as monocytes, macrophages, myeloid suppressor cells, and innate lymphoid cells will be discussed, as will the activation of these cells via pathogen-associated molecular patterns derived from invading or commensural microbes, and danger-associated molecular patterns derived from injured cells and tissues. The contribution of adaptive immune responses driven by T-helper cells and B cells will be reviewed as well. Each form of immune activation will be discussed in the context of its relationship to environmental and genetic factors, disease outcomes, and potential therapies. We conclude with discussion of unanswered questions and opportunities for future study in this area.
Collapse
Affiliation(s)
- Omkar Desai
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Julia Winkler
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Maksym Minasyan
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Erica L Herzog
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
23
|
Ptaschinski C, Lukacs NW. Acute and Chronic Inflammation Induces Disease Pathogenesis. MOLECULAR PATHOLOGY 2018:25-43. [DOI: 10.1016/b978-0-12-802761-5.00002-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
24
|
Goto H, Nishioka Y. Fibrocytes: A Novel Stromal Cells to Regulate Resistance to Anti-Angiogenic Therapy and Cancer Progression. Int J Mol Sci 2017; 19:E98. [PMID: 29286323 PMCID: PMC5796048 DOI: 10.3390/ijms19010098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/25/2017] [Accepted: 12/27/2017] [Indexed: 12/23/2022] Open
Abstract
An adequate blood supply is essential for cancer cells to survive and grow; thus, the concept of inhibiting tumor angiogenesis has been applied to cancer therapy, and several drugs are already in clinical use. It has been shown that treatment with those anti-angiogenic drugs improved the response rate and prolonged the survival of patients with various types of cancer; however, it is also true that the effect was mostly limited. Currently, the disappointing clinical results are explained by the existence of intrinsic or acquired resistance to the therapy mediated by both tumor cells and stromal cells. This article reviews the mechanisms of resistance mediated by stromal cells such as endothelial cells, pericytes, fibroblasts and myeloid cells, with an emphasis on fibrocytes, which were recently identified as the cell type responsible for regulating acquired resistance to anti-angiogenic therapy. In addition, the other emerging role of fibrocytes as mediator-producing cells in tumor progression is discussed.
Collapse
Affiliation(s)
- Hisatsugu Goto
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| |
Collapse
|
25
|
Ishida Y, Kimura A, Nosaka M, Kuninaka Y, Hemmi H, Sasaki I, Kaisho T, Mukaida N, Kondo T. Essential involvement of the CX3CL1-CX3CR1 axis in bleomycin-induced pulmonary fibrosis via regulation of fibrocyte and M2 macrophage migration. Sci Rep 2017; 7:16833. [PMID: 29203799 PMCID: PMC5714949 DOI: 10.1038/s41598-017-17007-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/20/2017] [Indexed: 02/06/2023] Open
Abstract
The potential role of macrophages in pulmonary fibrosis (PF) prompted us to evaluate the roles of CX3CR1, a chemokine receptor abundantly expressed in macrophages during bleomycin (BLM)-induced PF. Intratracheal BLM injection induced infiltration of leukocytes such as macrophages into the lungs, which eventually resulted in fibrosis. CX3CR1 expression was mainly detected in the majority of macrophages and in a small portion of α-smooth muscle actin-positive cells in the lungs, while CX3CL1 was expressed in macrophages. BLM-induced fibrotic changes in the lungs were reduced without any changes in the number of leukocytes in Cx3cr1 -/- mice, as compared with those in the wild-type (WT) mice. However, intrapulmonary CX3CR1+ macrophages displayed pro-fibrotic M2 phenotypes; lack of CX3CR1 skewed their phenotypes toward M1 in BLM-challenged lungs. Moreover, fibrocytes expressed CX3CR1, and were increased in BLM-challenged WT lungs. The number of intrapulmonary fibrocytes was decreased in Cx3cr1 -/- mice. Thus, locally-produced CX3CL1 can promote PF development primarily by attracting CX3CR1-expressing M2 macrophages and fibrocytes into the lungs.
Collapse
Affiliation(s)
- Yuko Ishida
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Akihiko Kimura
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Mizuho Nosaka
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yumi Kuninaka
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hiroaki Hemmi
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Izumi Sasaki
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
26
|
Circulating fibrocytes as biomarkers of impaired lung function in adults with sickle cell disease. Blood Adv 2017; 1:2217-2224. [PMID: 29296869 DOI: 10.1182/bloodadvances.2017010777] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/19/2017] [Indexed: 01/01/2023] Open
Abstract
Lung injury and fibrosis are common in patients with sickle cell disease (SCD). Fibrocytes, a population of circulating, bone marrow-derived cells, have been linked to development and progression of tissue fibrogenesis and have been implicated in the development of lung fibrosis in preclinical models of SCD. We tested the hypothesis that the levels and activation state of circulating fibrocytes during steady state are associated with abnormal pulmonary function in adults with SCD. In a prospective cohort of steady-state adults with SCD and healthy age- and race-matched control participants, we measured the concentration and activation state of circulating fibrocytes and assessed pulmonary phenotype with pulmonary function tests (PFTs), a respiratory questionnaire, 6-minute walk test, high-resolution chest computed tomography scan, and echocardiogram. Seventy-one adults with SCD and 26 healthy African American control participants were examined. Compared with control participants, patients with SCD demonstrated higher levels of circulating fibrocytes, a significant proportion of which expressed the activation marker α-smooth muscle actin. Within patients with SCD, elevated absolute concentrations of circulating fibrocytes were strongly and independently associated with impaired lung physiology, as measured by PFTs. We conclude that elevated circulating fibrocytes are associated with lung disease in adults with SCD during steady state, consistent with a role for these cells in pathogenesis of lung fibrosis in this disease. Circulating fibrocytes may represent a novel biomarker for progressive pulmonary fibrosis in patients with SCD.
Collapse
|
27
|
Leuschner G, Behr J. Acute Exacerbation in Interstitial Lung Disease. Front Med (Lausanne) 2017; 4:176. [PMID: 29109947 PMCID: PMC5660065 DOI: 10.3389/fmed.2017.00176] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022] Open
Abstract
Acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) has been defined as an acute, clinically significant deterioration that develops within less than 1 month without obvious clinical cause like fluid overload, left heart failure, or pulmonary embolism. Pathophysiologically, damage of the alveoli is the predominant feature of AE-IPF which manifests histopathologically as diffuse alveolar damage and radiologically as diffuse, bilateral ground-glass opacification on high-resolution computed tomography. A growing body of literature now focuses on acute exacerbations of interstitial lung disease (AE-ILD) other than idiopathic pulmonary fibrosis. Based on a shared pathophysiology it is generally accepted that AE-ILD can affect all patients with interstitial lung disease (ILD) but apparently occurs more frequently in patients with an underlying usual interstitial pneumonia pattern. The etiology of AE-ILD is not fully understood, but there are distinct risk factors and triggers like infection, mechanical stress, and microaspiration. In general, AE-ILD has a poor prognosis and is associated with a high mortality within 6–12 months. Although there is a lack of evidence based data, in clinical practice, AE-ILD is often treated with a high dose corticosteroid therapy and antibiotics. This article aims to provide a summary of the clinical features, diagnosis, management, and prognosis of AE-ILD as well as an update on the current developments in the field.
Collapse
Affiliation(s)
- Gabriela Leuschner
- Department of Internal Medicine V, Ludwig Maximilians University, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), Munich, Germany
| | - Jürgen Behr
- Department of Internal Medicine V, Ludwig Maximilians University, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), Munich, Germany.,Asklepios Fachkliniken München-Gauting, Gauting, Germany
| |
Collapse
|
28
|
Habiel DM, Hogaboam CM. Heterogeneity of Fibroblasts and Myofibroblasts in Pulmonary Fibrosis. CURRENT PATHOBIOLOGY REPORTS 2017; 5:101-110. [PMID: 29082111 PMCID: PMC5654579 DOI: 10.1007/s40139-017-0134-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Idiopathic Pulmonary Fibrosis (IPF) is the most common form of interstitial lung diseases of unknown eathiopathogenesis, mean survival of 3-5 years and limited therapeutics. Characterized by a loss of alveolar type II epithelial cells and aberrant activation of stromal cells, considerable effort was undertaken to characterize the origin and activation mechanisms of fibroblasts and myofibroblasts in IPF lungs. In this review, the origin and contribution of fibroblast and myofibroblasts in lung fibrosis will be summarized. RECENT FINDINGS Lineage tracing experiments suggested that interstitial lung fibroblasts and lipofibroblasts, pericytes and mesothelial cells differentiate into myofibroblasts. However, epithelial and bone marrow derived cells may give rise to collagen expressing fibroblasts but do not differentiate into myofibroblasts. SUMMARY There is great heterogeneity in fibroblasts and myofibroblasts in fibrotic lungs. Further, there is evidence for the expansion of pericyte derived myofibroblasts and loss of lipofibroblasts and lipofibroblast derived myofibroblasts in IPF.
Collapse
Affiliation(s)
- David M. Habiel
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Cory M. Hogaboam
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| |
Collapse
|
29
|
Liu Y, Qingjuan S, Gao Z, Deng C, Wang Y, Guo C. Circulating fibrocytes are involved in inflammation and leukocyte trafficking in neonates with necrotizing enterocolitis. Medicine (Baltimore) 2017; 96:e7400. [PMID: 28658176 PMCID: PMC5500098 DOI: 10.1097/md.0000000000007400] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fibrocytes, ahematopoietic stem cell source of fibroblasts/myofibroblasts, were previously implicated to infiltrate into the intestinal and enhance inflammation.The aims of the present study were to elucidate the role of fibrocytes in necrotizing enterocolitis (NEC) pathogenesis and to explore the mechanisms by which fibrocytes contributed to the inflammatory responses.We investigated circulating and intestinal local fibrocytes from 32 patients with NEC, 8 patients with noninflammatory conditions of the gastrointestinal tract and 12 normal subjects.Significantly higher numbers of circulating fibrocytes were found in the peripheral blood from NEC patients than the controls (P < .01). Numerous fibrocytes were found infiltrating the NEC intestinal mucous membranes. The percentage of fibrocytes to total leukocytes in the NEC inflammatory lesions was significantly increased compared with the percentage in the noninflammatory gastrointestinal tract. The fibrocyte attractant chemokine C-X-C motif chemokine ligand 12 (CXCL12) was significantly increased in the plasma and was detectable in 80% of the peritoneal lavage fluid from NEC patients but not the controls. Furthermore, chemokine expression was increased in fibrocytes infiltrating and trafficking to leukocyte sites. In culture, lipopolysaccharide (LPS) induced a significant increase in the expression of the Toll-like receptor (TLR4) signal, with the upregulation of p38 in both the isolated fibrocytes and macrophages. Similarly, interleukin (IL)-1β induced increased the upregulation of the IL-6, tumor necrosis factor (TNF)-α, and intercellular cell adhesion molecule-1 mRNAs but downregulated ColI in fibrocytes isolated from NEC patients compared with the controls.These findings indicate that circulating fibrocytes are increased in NEC patients and may be recruited to the inflammatory intestinal track, most likely through the CXCR4/CXCL12 axis. These cells may contribute to intestinal inflammation through TLR4 signaling by producing the TNF-α and IL-6 cytokines.
Collapse
Affiliation(s)
- Ye Liu
- Department of Neonatal, Children's Hospital, Chongqing Medical University, Chongqing
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University
| | - Shang Qingjuan
- Department of Pathology, Linyi People's Hospital, Linyi, Shandong Province
| | - Zongwei Gao
- Department of Pathology, Linyi People's Hospital, Linyi, Shandong Province
| | - Chun Deng
- Department of Neonatal, Children's Hospital, Chongqing Medical University, Chongqing
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University
| | - Yan Wang
- Department of Neonatology, Yongchuan Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Chunbao Guo
- Department of Pediatric General Surgery
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University
| |
Collapse
|
30
|
Wang X, Zhao W, Ransohoff RM, Zhou L. Identification and Function of Fibrocytes in Skeletal Muscle Injury Repair and Muscular Dystrophy. THE JOURNAL OF IMMUNOLOGY 2016; 197:4750-4761. [PMID: 27913649 DOI: 10.4049/jimmunol.1601308] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/07/2016] [Indexed: 01/18/2023]
Abstract
We identified and characterized the function of CD45+/collagen I+ fibrocytes in acutely injured skeletal muscle of wild-type (WT) and Ccr2-/- mice, and in quadriceps and diaphragm muscles of mdx5cv mice, a mouse model for Duchenne muscular dystrophy. Fibrocytes were not detected in peripheral blood of WT mice after acute muscle injury or mdx5cv mice. Fibrocytes were detected in acutely injured muscles and in mdx5cv quadriceps and diaphragm muscles. These cells expressed F4/80 and CCR2, and they were mostly Ly6Clo They expressed a low level of collagens but a high level of profibrotic growth factors as compared with i.m. fibroblasts. Fibrocyte expression of collagens and profibrotic growth factors was not increased in Ccr2-/- mice as compared with WT controls. Fibrocyte expression of both proinflammatory and profibrotic cytokines was significantly higher in mdx5cv diaphragm than in mdx5cv quadriceps. In cocultures, fibrocytes from the mdx5cv diaphragm stimulated a higher level of fibroblast expression of extracellular matrix genes than did those from the mdx5cv quadriceps. Our findings suggest that i.m. fibrocytes most likely originate from infiltrating monocytes/macrophages and differentiate within injured muscles. They likely contribute to the normal muscle injury repair by producing growth factors. They do not appear to contribute to the persistent muscle fibrosis associated with poor injury repair in Ccr2-/- mice. However, they likely contribute to the persistent inflammation and progressive fibrosis in the mdx5cv diaphragm.
Collapse
Affiliation(s)
- Xingyu Wang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and
| | - Wanming Zhao
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and
| | | | - Lan Zhou
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and
| |
Collapse
|
31
|
Nosaka M, Ishida Y, Kimura A, Kawaguchi T, Yamamoto H, Kuninaka Y, Kondo T. Immunohistochemical detection of intrathrombotic fibrocytes and its application to thrombus age estimation in murine deep vein thrombosis model. Int J Legal Med 2016; 131:179-183. [PMID: 27757576 DOI: 10.1007/s00414-016-1465-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 10/05/2016] [Indexed: 01/12/2023]
Abstract
Deep vein thrombi are dissolved after fibrosis process along with an increase of thrombus age. Fibrocytes are circulating bone marrow-derived cells with mesenchymal features that potentially have a unique and critical function in fibrosis. In this study, a double-color immunofluorescence analysis was carried out by using anti-CD45 and anti-collagen type I antibodies to examine the time-dependent appearance of fibrocytes in the murine model of stasis-induced deep vein thrombosis. The thrombus ages were 1, 3, 5, 7, 10, 14, and 21 days. In a thrombus age of less than 5 days, CD45+ and collagen type I+ fibrocytes were never detected. The intrathrombotic fibrocytes were initially observed in thrombi aged 7 days, and their number increased with advances in thrombus age. In a quantitative morphometrical analysis, the average number of intrathrombotic fibrocytes was highest in 14-day-old thrombi, and all of the five samples aged 14 days had the fibrocyte number of more than 25, and in three out of them, the number of intrathrombotic fibrocytes was over 30. On the contrary, in all of thrombus samples with the postligation intervals of 10 and 21 days, the number of intrathrombotic fibrocytes was less than 25. These observations imply that thrombi containing fibrocytes are at least 7 days old and that a fibrocyte number exceeding 30 would indicate the thrombus age of approximately 14 days. Our observations indicate that the detection of fibrocytes could be useful for thrombus age determination.
Collapse
Affiliation(s)
- Mizuho Nosaka
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Yuko Ishida
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Akihiko Kimura
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Takashi Kawaguchi
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Hiroki Yamamoto
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Yumi Kuninaka
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan.
| |
Collapse
|
32
|
Motokawa I, Endo M, Terada K, Horiguchi H, Miyata K, Kadomatsu T, Morinaga J, Sugizaki T, Ito T, Araki K, Morioka MS, Manabe I, Samukawa T, Watanabe M, Inoue H, Oike Y. Interstitial pneumonia induced by bleomycin treatment is exacerbated in Angptl2-deficient mice. Am J Physiol Lung Cell Mol Physiol 2016; 311:L704-L713. [PMID: 27542805 DOI: 10.1152/ajplung.00005.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 08/12/2016] [Indexed: 11/22/2022] Open
Abstract
Angiopoietin-like protein 2 (ANGPTL2) is a chronic inflammatory mediator that, when deregulated, is associated with various pathologies. However, little is known about its activity in lung. To assess a possible lung function, we generated a rabbit monoclonal antibody that specifically recognizes mouse ANGPTL2 and then evaluated protein expression in mouse lung tissue. We observed abundant ANGPTL2 expression in both alveolar epithelial type I and type II cells and in resident alveolar macrophages under normal conditions. To assess ANGPTL2 function, we compared lung phenotypes in Angptl2 knockout (KO) and wild-type mice but observed no overt changes. We then generated a bleomycin-induced interstitial pneumonia model using wild-type and Angptl2 KO mice. Bleomycin-treated wild-type mice showed specifically upregulated ANGPTL2 expression in areas of severe fibrosing interstitial pneumonia, while Angptl2 KO mice developed more severe lung fibrosis than did comparably treated wild-type mice. Lung fibrosis seen following bone marrow transplant was comparable in wild-type or Angptl2 KO mice treated with bleomycin, suggesting that Angptl2 loss in myeloid cells does not underlie fibrotic phenotypes. We conclude that Angptl2 deficiency in lung epithelial cells and resident alveolar macrophages causes severe lung fibrosis seen following bleomycin treatment, suggesting that ANGPTL2 derived from these cell types plays a protective role against fibrosis in lung.
Collapse
Affiliation(s)
- Ikuyo Motokawa
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Motoyoshi Endo
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan;
| | - Kazutoyo Terada
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun Morinaga
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Taichi Sugizaki
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takaaki Ito
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kimi Araki
- Division of Developmental Genetics, Institute of Resource Developmental and Analysis, Kumamoto University, Kumamoto, Japan
| | - Masaki Suimye Morioka
- Department of Bioinformatics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ichiro Manabe
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and
| | - Takuya Samukawa
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masaki Watanabe
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
33
|
Karafin MS, Dogra S, Rodeghier M, Burdick M, Mehrad B, Rose CE, Strieter RM, DeBaun MR, Strunk RC, Field JJ. Increased circulating fibrocytes are associated with higher reticulocyte percent in children with sickle cell anemia. Pediatr Pulmonol 2016; 51:295-9. [PMID: 26130026 PMCID: PMC5559871 DOI: 10.1002/ppul.23248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/15/2015] [Accepted: 06/09/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND Interstitial lung disease is common in patients with sickle cell anemia (SCA). Fibrocytes are circulating cells implicated in the pathogenesis of pulmonary fibrosis and airway remodeling in asthma. In this study, we tested the hypotheses that fibrocyte levels are: (1) increased in children with SCA compared to healthy controls, and (2) associated with pulmonary disease. PROCEDURE Cross-sectional cohort study of children with SCA who participated in the Sleep Asthma Cohort Study. RESULTS Fibrocyte levels were obtained from 45 children with SCA and 24 controls. Mean age of SCA cases was 14 years and 53% were female. In children with SCA, levels of circulating fibrocytes were greater than controls (P < 0.01). The fibrocytes expressed a hierarchy of chemokine receptors, with CXCR4 expressed on the majority of cells and CCR2 and CCR7 expressed on a smaller subset. Almost half of fibrocytes demonstrated α-smooth muscle actin activation. Increased fibrocyte levels were associated with a higher reticulocyte count (P = 0.03) and older age (P = 0.048) in children with SCA. However, children with increased levels of fibrocytes were not more likely to have asthma or lower percent predicted forced expiratory volume in 1 sec/forced vital capacity (FEV1 /FVC) or FEV1 than those with lower fibrocyte levels. CONCLUSIONS Higher levels of fibrocytes in children with SCA compared to controls may be due to hemolysis. Longitudinal studies may be able to better assess the relationship between fibrocyte level and pulmonary dysfunction.
Collapse
Affiliation(s)
- Matthew S Karafin
- Medical Sciences Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin.,Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shibani Dogra
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Marie Burdick
- Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Borna Mehrad
- Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - C Edward Rose
- Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Robert M Strieter
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Michael R DeBaun
- University School of Medicine and Monroe Carell Jr Children's Hospital, Nashville, Tennessee
| | - Robert C Strunk
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Joshua J Field
- Medical Sciences Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin.,Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
34
|
Ma HY, Xu J, Liu X, Zhu Y, Gao B, Karin M, Tsukamoto H, Jeste DV, Grant I, Roberts AJ, Contet C, Geoffroy C, Zheng B, Brenner D, Kisseleva T. The role of IL-17 signaling in regulation of the liver-brain axis and intestinal permeability in Alcoholic Liver Disease. CURRENT PATHOBIOLOGY REPORTS 2016; 4:27-35. [PMID: 27239399 PMCID: PMC4878828 DOI: 10.1007/s40139-016-0097-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alcoholic liver disease (ALD) progresses from a normal liver, to steatosis, steatohepatitis, fibrosis and hepatocellular carcinoma (HCC). Despite intensive studies, the pathogenesis of ALD is poorly understood, in part due to a lack of suitable animal models which mimic the stages of ALD progression. Furthermore, the role of IL-17 in ALD has not been evaluated. We and others have recently demonstrated that IL-17 signaling plays a critical role in development of liver fibrosis and cancer. Here we summarize the most recent evidence supporting the role of IL-17 in ALD. As a result of a collaborative effort of Drs. Karin, Gao, Tsukamoto and Kisseleva, we developed several improved models of ALD in mice: 1) chronic-plus-binge model that mimics early stages of steatohepatitis, 2) intragastric ethanol feeding model that mimics alcoholic steatohepatitis and fibrosis, and 3) diethylnitrosamine (DEN)+alcohol model that mimics alcoholic liver cancer. These models might provide new insights into the mechanism of IL-17 signaling in ALD and help identify novel therapeutic targets.
Collapse
Affiliation(s)
- Hsiao-Yen Ma
- Department of Medicine, UC San Diego, La Jolla, CA; Department of Surgery, UC San Diego, La Jolla, CA
| | - Jun Xu
- Department of Medicine, UC San Diego, La Jolla, CA; Department of Surgery, UC San Diego, La Jolla, CA
| | - Xiao Liu
- Department of Medicine, UC San Diego, La Jolla, CA; Department of Surgery, UC San Diego, La Jolla, CA
| | - Yunheng Zhu
- Department of Medicine, UC San Diego, La Jolla, CA; Department of Surgery, UC San Diego, La Jolla, CA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National, Institutes of Health, Bethesda, Maryland
| | - Michael Karin
- Department of Pharmacology, UC San Diego, La Jolla, CA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD & Cirrhosis Department of Pathology Keck School of Medicine of USC, University of Southern California, and Department of Veterans Affairs Great Los Angeles Healthcare System, Los Angeles, CA
| | - Dilip V Jeste
- Department of Psychiatry, UC San Diego, La Jolla, CA; Stein Institute for Research on Aging, UC San Diego, La Jolla, CA
| | - Igor Grant
- Department of Psychiatry, UC San Diego, La Jolla, CA
| | - Amanda J Roberts
- Department of Molecular & Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA
| | - Candice Contet
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA
| | | | - Binhai Zheng
- Department of Neurosciences, UC San Diego, La Jolla, CA
| | | | | |
Collapse
|
35
|
Fibrocyte-like cells mediate acquired resistance to anti-angiogenic therapy with bevacizumab. Nat Commun 2015; 6:8792. [PMID: 26635184 PMCID: PMC4686833 DOI: 10.1038/ncomms9792] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/02/2015] [Indexed: 12/19/2022] Open
Abstract
Bevacizumab exerts anti-angiogenic effects in cancer patients by inhibiting vascular endothelial growth factor (VEGF). However, its use is still limited due to the development of resistance to the treatment. Such resistance can be regulated by various factors, although the underlying mechanisms remain incompletely understood. Here we show that bone marrow-derived fibrocyte-like cells, defined as alpha-1 type I collagen-positive and CXCR4-positive cells, contribute to the acquired resistance to bevacizumab. In mouse models of malignant pleural mesothelioma and lung cancer, fibrocyte-like cells mediate the resistance to bevacizumab as the main producer of fibroblast growth factor 2. In clinical specimens of lung cancer, the number of fibrocyte-like cells is significantly increased in bevacizumab-treated tumours, and correlates with the number of treatment cycles, as well as CD31-positive vessels. Our results identify fibrocyte-like cells as a promising cell biomarker and a potential therapeutic target to overcome resistance to anti-VEGF therapy.
Collapse
|
36
|
De Biasi S, Cerri S, Bianchini E, Gibellini L, Persiani E, Montanari G, Luppi F, Carbonelli CM, Zucchi L, Bocchino M, Zamparelli AS, Vancheri C, Sgalla G, Richeldi L, Cossarizza A. Levels of circulating endothelial cells are low in idiopathic pulmonary fibrosis and are further reduced by anti-fibrotic treatments. BMC Med 2015; 13:277. [PMID: 26552487 PMCID: PMC4640202 DOI: 10.1186/s12916-015-0515-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/16/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND It has been suggested that circulating fibrocytes and endothelial cells actively participate in the intense remodelling of the pulmonary vasculature in patients with idiopathic pulmonary fibrosis (IPF). Indeed, fibrotic areas exist that have fewer blood vessels, whereas adjacent non-fibrotic tissue is highly vascularized. The number of circulating endothelial cells (CEC) and endothelial progenitor cells (EPC) might reflect the balance between vascular injury and repair. Thus, fibrocytes as well as endothelial cells could potentially be used as biomarkers of disease progression and treatment outcome. METHODS Peripheral blood samples were collected from 67 patients with a multidisciplinary diagnosis of IPF and from 45 age-matched and sex-matched healthy volunteers. Buffy coat was isolated according to standard procedures and at least 20 million cells were stained with different monoclonal antibodies for the detection of CEC, EPC and circulating fibrocytes. For the detection of CEC and EPC, cells were stained with anti-CD45, anti-CD34, anti-CD133, anti-CD14, anti-CD309 and with the viability probe Far-Red LIVE/DEAD. For the detection of circulating fibrocytes, cells were first stained with LIVE/DEAD and the following monoclonal antibodies: anti-CD3, anti-CD19, anti-CD45, anti-CD34 and anti-CD14, then cells were fixed, permeabilized and stained with fluorochrome-conjugated anti-collagen I monoclonal antibodies. RESULTS Patients with IPF displayed almost undetectable levels of circulating fibrocytes, low levels of CEC, and normal levels of EPC. Patients treated with nintedanib displayed higher levels of CEC, but lower levels of endothelial cells expressing CD309 (the type II receptor for vascular endothelial growth factor). Treatment with both nintedanib and pirfenidone reduced the percentage of CEC and circulating fibrocytes. CONCLUSIONS Levels of CEC were reduced in patients with IPF as compared to healthy individuals. The anti-fibrotic treatments nintedanib and pirfenidone further reduced CEC levels. These findings might help explain the mechanism of action of these drugs and should be explored as predictive biomarkers in IPF.
Collapse
Affiliation(s)
- Sara De Biasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia School of Medicine, via Campi, 287-41125, Modena, Italy.
| | - Stefania Cerri
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy.
| | - Elena Bianchini
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Lara Gibellini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia School of Medicine, via Campi, 287-41125, Modena, Italy.
| | - Elisa Persiani
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy.
| | - Gloria Montanari
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy.
| | - Fabrizio Luppi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy.
| | - Cristiano Matteo Carbonelli
- Pulmonology Unit, Department of Cardiology, Thoracic and Vascular Surgery and Critical Care Medicine, IRCCS - Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | - Luigi Zucchi
- Pulmonology Unit, Department of Cardiology, Thoracic and Vascular Surgery and Critical Care Medicine, IRCCS - Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | - Marialuisa Bocchino
- Respiratory Medicine Section, Department of Clinical Medicine and Surgery, "Federico II" University of Naples, Naples, Italy.
| | - Alessandro Sanduzzi Zamparelli
- Respiratory Medicine Section, Department of Clinical Medicine and Surgery, "Federico II" University of Naples, Naples, Italy.
| | - Carlo Vancheri
- Regional Centre for Rare Lung Diseases, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
| | - Giacomo Sgalla
- Department of Respiratory Medicine, University of Southampton, Southampton, UK.
| | - Luca Richeldi
- Department of Respiratory Medicine, University of Southampton, Southampton, UK.
| | - Andrea Cossarizza
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia School of Medicine, via Campi, 287-41125, Modena, Italy. .,Dipartimento Sperimentale Interaziendale, Campus San Lazzaro, University of Modena and Reggio Emilia, 42122, Reggio Emilia, Italy.
| |
Collapse
|
37
|
Abstract
The understanding of bone marrow stem cell plasticity and contribution of bone marrow stem cells to pathophysiology is evolving with the advent of innovative technologies. Recent data has led to new mechanistic insights in the field of mesenchymal stem cell (MSC) research, and an increased appreciation for the plasticity of the hematopoietic stem cell (HSC). In this review, we discuss current research examining the origin of pulmonary cell types from endogenous lung stem and progenitor cells as well as bone marrow-derived stem cells (MSCs and HSCs) and their contributions to lung homeostasis and pathology. We specifically highlight recent findings from our laboratory that demonstrate an HSC origin for pulmonary fibroblasts based on transplantation of a clonal population of cells derived from a single HSC. These findings demonstrate the importance of developing an understanding of the sources of effector cells in disease state. Finally, a perspective is given on the potential clinical implications of these studies and others addressing stem cell contributions to lung tissue homeostasis and pathology.
Collapse
Affiliation(s)
- Lindsay T McDonald
- Research Services, Ralph H Johnson VAMC, Charleston, SC, USA; Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Amanda C LaRue
- Research Services, Ralph H Johnson VAMC, Charleston, SC, USA; Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
38
|
Wang YY, Zhang CY, Ma YQ, He ZX, Zhe H, Zhou SF. Therapeutic effects of C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO-Me; bardoxolone methyl) on radiation-induced lung inflammation and fibrosis in mice. Drug Des Devel Ther 2015; 9:3163-78. [PMID: 26124639 PMCID: PMC4482372 DOI: 10.2147/dddt.s80958] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO-Me), one of the synthetic triterpenoids, has been found to have potent anti-inflammatory and anticancer properties in vitro and in vivo. However, its usefulness in mitigating radiation-induced lung injury (RILI), including radiation-induced lung inflammation and fibrosis, has not been tested. The aim of this study was to explore the therapeutic effect of CDDO-Me on RILI in mice and the underlying mechanisms. Herein, we found that administration of CDDO-Me improved the histopathological score, reduced the number of inflammatory cells and concentrations of total protein in bronchoalveolar lavage fluid, suppressed secretion and expression of proinflammatory cytokines, including transforming growth factor-β and interleukin-6, elevated expression of the anti-inflammatory cytokine interleukin-10, and downregulated the mRNA level of profibrotic genes, including for fibronectin, α-smooth muscle actin, and collagen I. CDDO-Me attenuated radiation-induced lung inflammation. CDDO-Me also decreased the Masson's trichrome stain score, hydroxyproline content, and mRNA level of profibrotic genes, and blocked radiation-induced collagen accumulation and fibrosis. Collectively, these findings suggest that CDDO-Me ameliorates radiation-induced lung inflammation and fibrosis, and this synthetic triterpenoid is a promising novel therapeutic agent for RILI. Further mechanistic, efficacy, and safety studies are warranted to elucidate the role of CDDO-Me in the management of RILI.
Collapse
Affiliation(s)
- Yan-Yang Wang
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Guiyang, People’s Republic of China
| | - Cui-Ying Zhang
- Graduate School, Ningxia Medical University, Guiyang, People’s Republic of China
| | - Ya-Qiong Ma
- Department of Pathology, General Hospital of Ningxia Medical University, Guiyang, People’s Republic of China
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Hong Zhe
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Guiyang, People’s Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, FL, USA
| |
Collapse
|
39
|
Xu J, Kisseleva T. Bone marrow-derived fibrocytes contribute to liver fibrosis. Exp Biol Med (Maywood) 2015; 240:691-700. [PMID: 25966982 DOI: 10.1177/1535370215584933] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/09/2015] [Indexed: 12/30/2022] Open
Abstract
Chronic liver injury often leads to hepatic fibrosis, a condition associated with increased levels of circulating TGF-β1 and lipopolysaccharide, activation of myofibroblasts, and extensive deposition of extracellular matrix, mostly collagen Type I. Hepatic stellate cells are considered to be the major(1) but not the only source of myofibroblasts in the injured liver.(2) Hepatic myofibroblasts may also originate from portal fibroblasts, mesenchymal cells, and fibrocytes.(3) Since the discovery of fibrocytes in 1994 by Dr. Bucala and colleagues, this bone marrow (BM)-derived collagen Type I-producing CD45(+) cells remain the most fascinating cells of the hematopoietic system. Due to the ability to differentiate into collagen Type I producing cells/myofibroblasts, fibrocytes were implicated in the pathogenesis of liver, skin, lung, and kidney fibrosis. However, studies of different organs often contain controversial results on the number of fibrocytes recruited to the site of injury and their biological function. Furthermore, fibrocytes were implicated in the pathogenesis of sepsis and were shown to possess antimicrobial activity. Finally, in response to specific stimuli, fibrocytes can give rise to fully differentiated macrophages, suggesting that in concurrence with the high plasticity of hematopoietic cells, fibrocytes exhibit progenitor properties. Here, we summarize our current understanding of the role of CD45(+)Collagen Type I(+) BM-derived cells in response to fibrogenic liver injury and septicemia and discuss the most recent evidence supporting the critical role of fibrocytes in the mediation of pro-fibrogenic and/or pro-inflammatory responses.
Collapse
Affiliation(s)
- Jun Xu
- Department of Medicine, University of California, San Diego, CA 92093, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, CA 92093, USA
| |
Collapse
|
40
|
Ishida Y, Kimura A, Nosaka M, Kuninaka Y, Shimada E, Yamamoto H, Nishiyama K, Inaka S, Takayasu T, Eisenmenger W, Kondo T. Detection of endothelial progenitor cells in human skin wounds and its application for wound age determination. Int J Legal Med 2015; 129:1049-54. [PMID: 25845667 DOI: 10.1007/s00414-015-1181-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 03/18/2015] [Indexed: 12/01/2022]
Abstract
Endothelial progenitor cells (EPCs), a newly identified cell type, are bone marrow-derived progenitor cells that co-express stem cell markers and vascular endothelial growth factor (VEGF) receptor (Flk-1). In this study, a double-color immunofluorescence analysis was carried out using anti-CD34 and anti-Flk-1 antibodies to examine the time-dependent appearance of EPCs, using 52 human skin wounds with different wound ages (Group I, 0-1 days; Group II, 2-6 days; Group III, 7-14 days; and Group IV, 17-21 days). In wound specimens with an age of less than one day, CD34(+)/Flk-1(+) EPCs were not detected. EPCs were initially observed in wounds aged two days, and their number was increased in lesions with advances in wound age. In morphometrical analysis, the average number of EPCs was the highest in the wounds of Group III. Especially, 20 out of 21 wounds aged 7-12 days had >20 EPCs, and all wound samples with postinfliction intervals of 14-21 days had <15 EPCs. These observations at least showed that >20 EPCs would indicate a wound age of 7-12 days. Taken together, our observations indicate the detection of EPCs would be useful for wound age determination.
Collapse
Affiliation(s)
- Yuko Ishida
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, 641-8509, Wakayama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Xu J, Cong M, Park TJ, Scholten D, Brenner DA, Kisseleva T. Contribution of bone marrow-derived fibrocytes to liver fibrosis. Hepatobiliary Surg Nutr 2015; 4:34-47. [PMID: 25713803 DOI: 10.3978/j.issn.2304-3881.2015.01.01] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/26/2014] [Indexed: 12/17/2022]
Abstract
Since the discovery of fibrocytes in 1994 by Dr. Bucala and colleagues, these bone marrow (BM)-derived collagen Type I producing CD45(+) cells remain the most fascinating cells of the hematopoietic system. Despite recent reports on the emerging contribution of fibrocytes to fibrosis of parenchymal and non-parenchymal organs and tissues, fibrocytes remain the most understudied pro-fibrogenic cellular population. In the past years fibrocytes were implicated in the pathogenesis of liver, skin, lung, and kidney fibrosis by giving rise to collagen type I producing cells/myofibroblasts. Hence, the role of fibrocytes in fibrosis is not well defined since different studies often contain controversial results on the number of fibrocytes recruited to the site of injury versus the number of fibrocyte-derived myofibroblasts in the same fibrotic organ. Furthermore, many studies were based on the in vitro characterization of fibrocytes formed after outgrowth of BM and/or peripheral blood cultures. Therefore, the fibrocyte function(s) still remain(s) lack of understanding, mostly due to (I) the lack of mouse models that can provide complimentary in vivo real-time and cell fate mapping studies of the dynamic differentiation of fibrocytes and their progeny into collagen type I producing cells (and/or possibly, other cell types of the hematopoietic system); (II) the complexity of hematopoietic cell differentiation pathways in response to various stimuli; (III) the high plasticity of hematopoietic cells. Here we summarize the current understanding of the role of CD45(+) collagen type I(+) BM-derived cells in the pathogenesis of liver injury. Based on data obtained from various organs undergoing fibrogenesis or other type of chronic injury, here we also discuss the most recent evidence supporting the critical role of fibrocytes in the mediation of pro-fibrogenic and/or pro-inflammatory responses.
Collapse
Affiliation(s)
- Jun Xu
- 1 Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA ; 2 Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China ; 3 Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120752, Korea ; 4 Department of Medicine III, University Hospital Aachen, Aachen 52074, Germany ; 5 Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Min Cong
- 1 Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA ; 2 Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China ; 3 Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120752, Korea ; 4 Department of Medicine III, University Hospital Aachen, Aachen 52074, Germany ; 5 Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tae Jun Park
- 1 Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA ; 2 Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China ; 3 Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120752, Korea ; 4 Department of Medicine III, University Hospital Aachen, Aachen 52074, Germany ; 5 Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - David Scholten
- 1 Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA ; 2 Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China ; 3 Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120752, Korea ; 4 Department of Medicine III, University Hospital Aachen, Aachen 52074, Germany ; 5 Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - David A Brenner
- 1 Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA ; 2 Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China ; 3 Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120752, Korea ; 4 Department of Medicine III, University Hospital Aachen, Aachen 52074, Germany ; 5 Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tatiana Kisseleva
- 1 Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA ; 2 Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China ; 3 Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120752, Korea ; 4 Department of Medicine III, University Hospital Aachen, Aachen 52074, Germany ; 5 Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
42
|
Kwofie K, Scott M, Rodrigues R, Guerette J, Radford K, Nair P, Richards CD. Regulation of IL-17A responses in human airway smooth muscle cells by Oncostatin M. Respir Res 2015; 16:14. [PMID: 25849622 PMCID: PMC4332894 DOI: 10.1186/s12931-014-0164-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 12/30/2014] [Indexed: 11/25/2022] Open
Abstract
Background Regulation of human airway smooth muscle cells (HASMC) by cytokines contributes to chemotactic factor levels and thus to inflammatory cell accumulation in lung diseases. Cytokines such as the gp130 family member Oncostatin M (OSM) can act synergistically with Th2 cytokines (IL-4 and IL-13) to modulate lung cells, however whether IL-17A responses by HASMC can be altered is not known. Objective To determine the effects of recombinant OSM, or other gp130 cytokines (LIF, IL-31, and IL-6) in regulating HASMC responses to IL-17A, assessing MCP-1/CCL2 and IL-6 expression and cell signaling pathways. Methods Cell responses of primary HASMC cultures were measured by the assessment of protein levels in supernatants (ELISA) and mRNA levels (qRT-PCR) in cell extracts. Activation of STAT, MAPK (p38) and Akt pathways were measured by immunoblot. Pharmacological agents were used to assess the effects of inhibition of these pathways. Results OSM but not LIF, IL-31 or IL-6 could induce detectable responses in HASMC, elevating MCP-1/CCL2, IL-6 levels and activation of STAT-1, 3, 5, p38 and Akt cell signaling pathways. OSM induced synergistic action with IL-17A enhancing MCP-1/CCL-2 and IL-6 mRNA and protein expression, but not eotaxin-1 expression, while OSM in combination with IL-4 or IL-13 synergistically induced eotaxin-1 and MCP-1/CCL2. OSM elevated steady state mRNA levels of IL-4Rα, OSMRβ and gp130, but not IL-17RA or IL-17RC. Pharmacologic inhibition of STAT3 activation using Stattic down-regulated OSM, OSM/IL-4 or OSM/IL-13, and OSM/IL-17A synergistic responses of MCP-1/CCL-2 induction, whereas, inhibitors of Akt and p38 MAPK resulted in less reduction in MCP-1/CCL2 levels. IL-6 expression was more sensitive to inhibition of p38 (using SB203580) and was affected by Stattic in response to IL-17A/OSM stimulation. Conclusions Oncostatin M can regulate HASMC responses alone or in synergy with IL-17A. OSM/IL-17A combinations enhance MCP-1/CCL2 and IL-6 but not eotaxin-1. Thus, OSM through STAT3 activation of HASMC may participate in inflammatory cell recruitment in inflammatory airway disease. Electronic supplementary material The online version of this article (doi:10.1186/s12931-014-0164-4) contains supplementary material, which is available to authorized users.
Collapse
|
43
|
Koyama Y, Wang P, Brenner DA, Kisseleva T. Stellate Cells, Portal Myofibroblasts, and Epithelial-to-Mesenchymal Transition. STELLATE CELLS IN HEALTH AND DISEASE 2015:87-106. [DOI: 10.1016/b978-0-12-800134-9.00006-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
44
|
Lo CY, Michaeloudes C, Bhavsar PK, Huang CD, Wang CH, Kuo HP, Chung KF. Increased phenotypic differentiation and reduced corticosteroid sensitivity of fibrocytes in severe asthma. J Allergy Clin Immunol 2014; 135:1186-95.e1-6. [PMID: 25488691 DOI: 10.1016/j.jaci.2014.10.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/21/2014] [Accepted: 10/23/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND Patients with severe asthma are less responsive to corticosteroid therapy and show increased airway remodeling. The mesenchymal progenitors, fibrocytes, may be involved in the remodeling of asthmatic airways. We propose that fibrocytes in severe asthma are different from those in nonsevere asthma. OBJECTIVES To examine the survival, myofibroblastic differentiation, and C-C chemokine receptor 7 (CCR7) expression in blood fibrocytes from patients with severe and nonsevere asthma and study the effect of corticosteroids on fibrocyte function. METHODS The nonadherent non-T-cell fraction of blood mononuclear cells was isolated from healthy subjects and patients with nonsevere and severe asthma. Total and differentiating fibrocytes were identified by their expression of CD45, collagen I, and α-smooth muscle actin using flow cytometry. The expression of CCR7 and of the glucocorticoid receptor was measured by using flow cytometry. RESULTS Increased numbers of circulating fibrocytes, with greater myofibroblastic differentiation potential, were observed in patients with severe asthma. Dexamethasone induced apoptosis, leading to reduction in the number of cultured fibrocytes and total nonadherent non-T cells from healthy subjects and patients with nonsevere asthma but not from patients with severe asthma. Dexamethasone reduced CCR7 expression in fibrocytes from patients with nonsevere asthma but not from patients with severe asthma. Glucocorticoid receptor expression was attenuated in fibrocytes from patients with severe asthma. CONCLUSIONS Patients with severe asthma have elevated numbers of circulating fibrocytes that show enhanced myofibroblastic differentiation and that are less responsive to the effects of corticosteroids.
Collapse
Affiliation(s)
- Chun-Yu Lo
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Respiratory Biomedical Research Unit, Royal Brompton NHS Foundation Trust, London, United Kingdom; Department of Thoracic Medicine, Chang Gung Medical Foundation, Chang Gung University College of Medicine, Taipei, Taiwan
| | - Charalambos Michaeloudes
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Respiratory Biomedical Research Unit, Royal Brompton NHS Foundation Trust, London, United Kingdom
| | - Pankaj K Bhavsar
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Respiratory Biomedical Research Unit, Royal Brompton NHS Foundation Trust, London, United Kingdom
| | - Chien-Da Huang
- Department of Thoracic Medicine, Chang Gung Medical Foundation, Chang Gung University College of Medicine, Taipei, Taiwan
| | - Chun-Hua Wang
- Department of Thoracic Medicine, Chang Gung Medical Foundation, Chang Gung University College of Medicine, Taipei, Taiwan
| | - Han-Pin Kuo
- Department of Thoracic Medicine, Chang Gung Medical Foundation, Chang Gung University College of Medicine, Taipei, Taiwan
| | - Kian Fan Chung
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Respiratory Biomedical Research Unit, Royal Brompton NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
45
|
Weiss DJ. Concise review: current status of stem cells and regenerative medicine in lung biology and diseases. Stem Cells 2014; 32:16-25. [PMID: 23959715 DOI: 10.1002/stem.1506] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/24/2013] [Indexed: 12/29/2022]
Abstract
Lung diseases remain a significant and devastating cause of morbidity and mortality worldwide. In contrast to many other major diseases, lung diseases notably chronic obstructive pulmonary diseases (COPDs), including both asthma and emphysema, are increasing in prevalence and COPD is expected to become the third leading cause of disease mortality worldwide by 2020. New therapeutic options are desperately needed. A rapidly growing number of investigations of stem cells and cell therapies in lung biology and diseases as well as in ex vivo lung bioengineering have offered exciting new avenues for advancing knowledge of lung biology as well as providing novel potential therapeutic approaches for lung diseases. These initial observations have led to a growing exploration of endothelial progenitor cells and mesenchymal stem (stromal) cells in clinical trials of pulmonary hypertension and COPD with other clinical investigations planned. Ex vivo bioengineering of the trachea, larynx, diaphragm, and the lung itself with both biosynthetic constructs as well as decellularized tissues have been used to explore engineering both airway and vascular systems of the lung. Lung is thus a ripe organ for a variety of cell therapy and regenerative medicine approaches. Current state-of-the-art progress for each of the above areas will be presented as will discussion of current considerations for cell therapy-based clinical trials in lung diseases.
Collapse
Affiliation(s)
- Daniel J Weiss
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA
| |
Collapse
|
46
|
Kleaveland KR, Velikoff M, Yang J, Agarwal M, Rippe RA, Moore BB, Kim KK. Fibrocytes are not an essential source of type I collagen during lung fibrosis. THE JOURNAL OF IMMUNOLOGY 2014; 193:5229-39. [PMID: 25281715 DOI: 10.4049/jimmunol.1400753] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Progressive fibrosis involves accumulation of activated collagen-producing mesenchymal cells. Fibrocytes are hematopoietic-derived cells with mesenchymal features that potentially have a unique and critical function during fibrosis. Fibrocytes have been proposed as an important direct contributor of type I collagen deposition during fibrosis based largely on fate-mapping studies. To determine the functional contribution of hematopoietic cell-derived type I collagen to fibrogenesis, we use a double-transgenic system to specifically delete the type I collagen gene across a broad population of hematopoietic cells. These mice develop a robust fibrotic response similar to littermate genotype control mice injured with bleomycin indicating that fibrocytes are not a necessary source of type I collagen. Using collagen-promoter GFP mice, we find that fibrocytes express type I collagen. However, fibrocytes with confirmed deletion of the type I collagen gene have readily detectable intracellular type I collagen indicating that uptake of collagen from neighboring cells account for much of the fibrocyte collagen. Collectively, these results clarify several seemingly conflicting reports regarding the direct contribution of fibrocytes to collagen deposition.
Collapse
Affiliation(s)
- Kathryn R Kleaveland
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109; and
| | - Miranda Velikoff
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109; and
| | - Jibing Yang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109; and
| | - Manisha Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109; and
| | - Richard A Rippe
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892
| | - Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109; and
| | - Kevin K Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109; and
| |
Collapse
|
47
|
Xu J, Liu X, Koyama Y, Wang P, Lan T, Kim IG, Kim IH, Ma HY, Kisseleva T. The types of hepatic myofibroblasts contributing to liver fibrosis of different etiologies. Front Pharmacol 2014; 5:167. [PMID: 25100997 PMCID: PMC4105921 DOI: 10.3389/fphar.2014.00167] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/25/2014] [Indexed: 01/18/2023] Open
Abstract
Liver fibrosis results from dysregulation of normal wound healing, inflammation, activation of myofibroblasts, and deposition of extracellular matrix (ECM). Chronic liver injury causes death of hepatocytes and formation of apoptotic bodies, which in turn, release factors that recruit inflammatory cells (neutrophils, monocytes, macrophages, and lymphocytes) to the injured liver. Hepatic macrophages (Kupffer cells) produce TGFβ1 and other inflammatory cytokines that activate Collagen Type I producing myofibroblasts, which are not present in the normal liver. Secretion of TGFβ1 and activation of myofibroblasts play a critical role in the pathogenesis of liver fibrosis of different etiologies. Although the composition of fibrogenic myofibroblasts varies dependent on etiology of liver injury, liver resident hepatic stellate cells and portal fibroblasts are the major source of myofibroblasts in fibrotic liver in both experimental models of liver fibrosis and in patients with liver disease. Several studies have demonstrated that hepatic fibrosis can reverse upon cessation of liver injury. Regression of liver fibrosis is accompanied by the disappearance of fibrogenic myofibroblasts followed by resorption of the fibrous scar. Myofibroblasts either apoptose or inactivate into a quiescent-like state (e.g., stop collagen production and partially restore expression of lipogenic genes). Resolution of liver fibrosis is associated with recruitment of macrophages that secrete matrix-degrading enzymes (matrix metalloproteinase, collagenases) and are responsible for fibrosis resolution. However, prolonged/repeated liver injury may cause irreversible crosslinking of ECM and formation of uncleavable collagen fibers. Advanced fibrosis progresses to cirrhosis and hepatocellular carcinoma. The current review will summarize the role and contribution of different cell types to populations of fibrogenic myofibroblasts in fibrotic liver.
Collapse
Affiliation(s)
- Jun Xu
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - Xiao Liu
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - Yukinori Koyama
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - Ping Wang
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - Tian Lan
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - In-Gyu Kim
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - In H Kim
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - Hsiao-Yen Ma
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - Tatiana Kisseleva
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| |
Collapse
|
48
|
Madala SK, Edukulla R, Schmidt S, Davidson C, Ikegami M, Hardie WD. Bone marrow-derived stromal cells are invasive and hyperproliferative and alter transforming growth factor-α-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 2014; 50:777-86. [PMID: 24199692 DOI: 10.1165/rcmb.2013-0042oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Pulmonary fibrosis is caused by excessive proliferation and accumulation of stromal cells. Fibrocytes are bone marrow (BM)-derived cells that contribute to pathologic stromal cell accumulation in human lung disease. However, the cellular source for these stromal cells and the degree of fibrocyte contribution to pulmonary fibrosis remain unclear. To determine the etiology of stromal cell excess during pulmonary fibrosis, we measured fibrocytes during the progression of fibrosis in the transforming growth factor (TGF)-α transgenic mouse model. Lung epithelial-specific overexpression of TGF-α led to progressive pulmonary fibrosis associated with increased accumulation of fibrocytes in the fibrotic lesions. Although reconstitution of BM cells into TGF-α mice demonstrated accumulation of these cells in fibrotic lesions, the majority of the cells did not express α-smooth muscle actin, suggesting that fibrocytes did not transform into myofibroblasts. To explore the mechanisms of fibrocytes in pulmonary fibrogenesis, adoptive cell-transfer experiments were performed. Purified fibrocytes were transferred intravenously into TGF-α transgenic mice, and fibrosis endpoints were compared with controls. Analysis of lung histology and hydroxyproline levels demonstrated that fibrocyte transfers augment TGF-α-induced lung fibrosis. A major subset of TGF-α-induced fibrocytes expressed CD44 and displayed excessive invasiveness, which is attenuated in the presence of anti-CD44 antibodies. Coculture experiments of resident fibroblasts with fibrocytes demonstrated that fibrocytes stimulate proliferation of resident fibroblasts. In summary, fibrocytes are increased in the progressive, fibrotic lesions of TGF-α-transgenic mice and activate resident fibroblasts to cause severe lung disease.
Collapse
Affiliation(s)
- Satish K Madala
- 1 Department of Pediatrics, Divisions of Pulmonary Medicine and
| | | | | | | | | | | |
Collapse
|
49
|
Pilling D, Crawford JR, Verbeek JS, Gomer RH. Inhibition of murine fibrocyte differentiation by cross-linked IgG is dependent on FcγRI. J Leukoc Biol 2014; 96:275-82. [PMID: 24752483 DOI: 10.1189/jlb.3ab0913-490rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Monocyte-derived, fibroblast-like cells, called fibrocytes, participate in wound-healing and the formation of fibrotic lesions. Aggregated or cross-linked IgG are key effectors in infections, autoimmune diseases, anaphylaxis, and immunotherapy. Cells, including monocytes and fibrocytes, bind IgG using FcγRs, and aggregated or cross-linked IgG inhibits fibrocyte differentiation. Mice have four different FcγRs, and which of these, if any, mediate the cross-linked IgG effect on fibrocyte differentiation is unknown. We find that in mice, deletion of FcγRI or the common signaling protein FcRγ significantly reduces the ability of cross-linked IgG or IgG2a to inhibit fibrocyte differentiation. Cells from FcγRIIb/III/IV KO mice are still sensitive to cross-linked IgG, whereas cells from FcγRI/IIb/III/IV KO mice are insensitive to cross-linked IgG. These observations suggest that IgG-mediated inhibition of fibrocyte differentiation is mediated by FcγRs, with FcγRI mediating most of the signaling.
Collapse
Affiliation(s)
- Darrell Pilling
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Jeffrey R Crawford
- Department of Biology, Texas A&M University, College Station, Texas, USA; Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, USA; and
| | - J Sjef Verbeek
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, Texas, USA; Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, USA; and
| |
Collapse
|
50
|
Abstract
Fibroblast migration is essential to normal wound healing and pathological matrix deposition in fibrosis. This review summarizes our understanding of how fibroblasts navigate 2D and 3D extracellular matrices, how this behavior is influenced by the architecture and mechanical properties of the matrix, and how migration is integrated with the other principle functions of fibroblasts, including matrix deposition, contraction, and degradation.
Collapse
Affiliation(s)
- Daniel J Tschumperlin
- Department of Environmental Health, Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, Massachusetts
| |
Collapse
|