1
|
Rabbani P, Ramkhelawon B, Cronstein BN. Adenosine metabolism and receptors in aging of the skin, musculoskeletal, immune and cardiovascular systems. Ageing Res Rev 2025; 106:102695. [PMID: 39971100 PMCID: PMC11960428 DOI: 10.1016/j.arr.2025.102695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/26/2024] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Aging populations worldwide face an increasing burden of age-related chronic conditions, necessitating a deeper understanding of the underlying mechanisms. Purine metabolism has emerged as a crucial player in the pathophysiology of aging, affecting various tissues and organs. Dysregulation of purine metabolism, particularly alterations in extracellular adenosine levels and adenosine receptor signaling, contributes to age-related musculoskeletal problems, cardiovascular diseases, inflammation, and impaired immune responses. Changes in purine metabolism are associated with diminished tissue repair and regeneration, altered bone density, and impaired muscle regeneration. Mechanistically, age-related alterations in purine metabolism involve reductions in extracellular adenosine production, impaired autocrine signaling, and dysregulated expression of CD73 and CD39. Targeting adenosine receptors, such as A2A and A2B receptors, emerges as a promising therapeutic approach to mitigate age-related conditions, including sarcopenia, obesity, osteoarthritis, and impaired wound healing. Since we cannot reverse time, understanding the intricate molecular interplay between purine metabolism and aging-related pathologies holds significant potential for developing novel therapeutic strategies to improve the health and quality of life of aging populations. In this review, we compile the findings related to purine metabolism during aging in several tissues and organs and provide insights into how these signals can be manipulated to circumvent the deleterious effects of the passage of time on our body.
Collapse
Affiliation(s)
- Piul Rabbani
- Hansjorg Wyss Department of Plastic Surgery, New York University Langone Health, New York, NY, USA
| | - Bhama Ramkhelawon
- Division of Vascular Surgery, Department of Surgery, New York University Langone Health, New York, NY, USA; Department of Cell Biology, New York University Langone Health, New York, NY, USA
| | - Bruce N Cronstein
- Department of Medicine, Divisions of Rheumatology and Precision Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
2
|
Yang X, Zhou Y, Zhou F, Bao L, Wang Z, Li Z, Ding F, Kuang H, Liu H, Tan S, Qiu X, Jing H, Liu S, Ma D. T Cell-Derived Apoptotic Extracellular Vesicles Ameliorate Bone Loss via CD39 and CD73-Mediated ATP Hydrolysis. Int J Nanomedicine 2025; 20:1083-1100. [PMID: 39895982 PMCID: PMC11784384 DOI: 10.2147/ijn.s491222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025] Open
Abstract
Background Osteoporosis is a major public health concern characterized by decreased bone density. Among various therapeutic strategies, apoptotic extracellular vesicles (ApoEVs) have emerged as promising agents in tissue regeneration. Specifically, T cell-derived ApoEVs have shown substantial potential in facilitating bone regeneration. However, it remains unclear whether ApoEVs can promote bone mass recovery through enzymatic activity mediated by membrane surface molecules. Therefore, this study aimed to investigate whether T cell-derived ApoEVs could promote bone mass recovery in osteoporosis mice and reveal the underlying mechanisms. Methods ApoEVs were isolated through sequential centrifugation, and their proteomic profiles were identified via mass spectrometry. Western blot and immunogold staining confirmed the enrichment of CD39 and CD73 on ApoEVs. The role of CD39 and CD73 in hydrolyzing adenosine triphosphate (ATP) to adenosine was evaluated by quantifying the levels of ATP and adenosine. Inhibitors of CD39 and CD73, and an A2BR antagonist were used to explore the molecular mechanism of ApoEVs in promoting bone regeneration. Results ApoEVs significantly reduced bone loss and promote the osteogenic differentiation of BMMSCs in ovariectomy (OVX) mice. We observed increased levels of extracellular ATP and a decrease in CD39 and CD73, key enzymes in ATP-to-adenosine conversion in bone marrow of OVX mice. We found that ApoEVs are enriched with CD39 and CD73 on their membranes, which enable the hydrolysis of extracellular ATP to adenosine both in vitro and in vivo. The adenosine generated by ApoEVs inhibits the inflammatory response and promotes osteogenesis through A2BR and downstream PKA signaling. Conclusion T cell-derived ApoEVs are enriched with CD39 and CD73, enabling them to hydrolyze extracellular ATP to adenosine, thereby promoting bone regeneration via A2BR and PKA signaling pathway. Our data underscore the substantive role of T cell-derived ApoEVs to treat osteoporosis, thus providing new ideas for the development of ApoEVs-based therapies in tissue regeneration.
Collapse
Affiliation(s)
- Xiaoshan Yang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, People’s Republic of China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Yang Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Fuxing Zhou
- Department of Gynecology and Obstetrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Lili Bao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Zhengyan Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, People’s Republic of China
| | - Zihan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Feng Ding
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Huijuan Kuang
- Department of Orthopaedics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, People’s Republic of China
- State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, Xi’an, 710054, People’s Republic of China
| | - Huan Liu
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, 100871, People’s Republic of China
| | - Shenglong Tan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Xinyuan Qiu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Huan Jing
- Department of Endodontics, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| | - Shiyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| |
Collapse
|
3
|
Pietrobono D, Russo L, Bertilacchi MS, Marchetti L, Martini C, Giacomelli C, Trincavelli ML. Extracellular adenosine oppositely regulates the purinome machinery in glioblastoma and mesenchymal stem cells. IUBMB Life 2024; 76:1234-1251. [PMID: 39134088 PMCID: PMC11580377 DOI: 10.1002/iub.2905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/25/2024] [Indexed: 11/22/2024]
Abstract
Glioblastoma (GB) is a lethal brain tumor that rapidly adapts to the dynamic changes of the tumor microenvironment (TME). Mesenchymal stem/stromal cells (MSCs) are one of the stromal components of the TME playing multiple roles in tumor progression. GB progression is prompted by the immunosuppressive microenvironment characterized by high concentrations of the nucleoside adenosine (ADO). ADO acts as a signaling molecule through adenosine receptors (ARs) but also as a genetic and metabolic regulator. Herein, the effects of high extracellular ADO concentrations were investigated in a human glioblastoma cellular model (U343MG) and MSCs. The modulation of the purinome machinery, i.e., the ADO production (CD39, CD73, and adenosine kinase [ADK]), transport (equilibrative nucleoside transporters 1 (ENT1) and 2 (ENT2)), and degradation (adenosine deaminase [ADA]) were investigated in both cell lines to evaluate if ADO could affect its cell management in a positive or negative feed-back loop. Results evidenced a different behavior of GB and MSC cells upon exposure to high extracellular ADO levels: U343MG were less sensitive to the ADO concentration and only a slight increase in ADK and ENT1 was evidenced. Conversely, in MSCs, the high extracellular ADO levels reduced the ADK, ENT1, and ENT2 expression, which further sustained the increase of extracellular ADO. Of note, MSCs primed with the GB-conditioned medium or co-cultured with U343MG cells were not affected by the increase of extracellular ADO. These results evidenced how long exposure to ADO could produce different effects on cancer cells with respect to MSCs, revealing a negative feedback loop that can support the GB immunosuppressive microenvironment. These results improve the knowledge of the ADO role in the maintenance of TME, which should be considered in the development of therapeutic strategies targeting adenosine pathways as well as cell-based strategies using MSCs.
Collapse
Affiliation(s)
| | - Lara Russo
- Department of PharmacyUniversity of PisaPisaItaly
| | | | | | | | | | | |
Collapse
|
4
|
Zhang X, Tian L, Majumdar A, Scheller EL. Function and Regulation of Bone Marrow Adipose Tissue in Health and Disease: State of the Field and Clinical Considerations. Compr Physiol 2024; 14:5521-5579. [PMID: 39109972 PMCID: PMC11725182 DOI: 10.1002/cphy.c230016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Bone marrow adipose tissue (BMAT) is a metabolically and clinically relevant fat depot that exists within bone. Two subtypes of BMAT, regulated and constitutive, reside in hematopoietic-rich red marrow and fatty yellow marrow, respectively, and exhibit distinct characteristics compared to peripheral fat such as white and brown adipose tissues. Bone marrow adipocytes (BMAds) are evolutionally preserved in most vertebrates, start development after birth and expand throughout life, and originate from unique progenitor populations that control bone formation and hematopoiesis. Mature BMAds also interact closely with other cellular components of the bone marrow niche, serving as a nearby energy reservoir to support the skeletal system, a signaling hub that contributes to both local and systemic homeostasis, and a final fuel reserve for survival during starvation. Though BMAT and bone are often inversely correlated, more BMAT does not always mean less bone, and the prevention of BMAT expansion as a strategy to prevent bone loss remains questionable. BMAT adipogenesis and lipid metabolism are regulated by the nervous systems and a variety of circulating hormones. This contributes to the plasticity of BMAT, including BMAT expansion in common physiological or pathological conditions, and BMAT catabolism under certain extreme circumstances, which are often associated with malnutrition and/or systemic inflammation. Altogether, this article provides a comprehensive overview of the local and systemic functions of BMAT and discusses the regulation and plasticity of this unique adipose tissue depot in health and disease. © 2024 American Physiological Society. Compr Physiol 14:5521-5579, 2024.
Collapse
Affiliation(s)
- Xiao Zhang
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Linda Tian
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Anurag Majumdar
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Wikarska A, Roszak K, Roszek K. Mesenchymal Stem Cells and Purinergic Signaling in Autism Spectrum Disorder: Bridging the Gap between Cell-Based Strategies and Neuro-Immune Modulation. Biomedicines 2024; 12:1310. [PMID: 38927517 PMCID: PMC11201695 DOI: 10.3390/biomedicines12061310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of autism spectrum disorder (ASD) is still increasing, which means that this neurodevelopmental lifelong pathology requires special scientific attention and efforts focused on developing novel therapeutic approaches. It has become increasingly evident that neuroinflammation and dysregulation of neuro-immune cross-talk are specific hallmarks of ASD, offering the possibility to treat these disorders by factors modulating neuro-immunological interactions. Mesenchymal stem cell-based therapy has already been postulated as one of the therapeutic approaches for ASD; however, less is known about the molecular mechanisms of stem cell influence. One of the possibilities, although still underestimated, is the paracrine purinergic activity of MSCs, by which stem cells ameliorate inflammatory reactions. Modulation of adenosine signaling may help restore neurotransmitter balance, reduce neuroinflammation, and improve overall brain function in individuals with ASD. In our review article, we present a novel insight into purinergic signaling, including but not limited to the adenosinergic pathway and its role in neuroinflammation and neuro-immune cross-talk modulation. We anticipate that by achieving a greater understanding of the purinergic signaling contribution to ASD and related disorders, novel therapeutic strategies may be devised for patients with autism in the near future.
Collapse
Affiliation(s)
| | | | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland; (A.W.); (K.R.)
| |
Collapse
|
6
|
Galgaro BC, Beckenkamp LR, Naasani LIS, Wink MR. Adenosine metabolism by mesenchymal stromal cells isolated from different human tissues. Hum Cell 2023; 36:2247-2258. [PMID: 37535223 DOI: 10.1007/s13577-023-00957-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
Mesenchymal stromal cells (MSCs) have unique biological properties and play important functions, which make them attractive tools for cell-based therapies. The basic mechanisms of these cells are not fully understood. However, the adenosinergic pathway contributes to the main effects attributed to MSCs. Adenosine is a highly immunosuppressive molecule and exerts a central role in inflammation by neutralizing the proinflammatory ATP influence. This nucleoside is produced by purinergic signaling, an important physiological pathway for MSCs, which involves proliferation, migration, differentiation, and apoptosis. Therefore, in this study, we analyzed the extracellular AMP hydrolysis and consequent adenosine production, as well as the expression of CD73 and adenosine receptors on the cell surface of MSCs isolated from different human tissues: dermis (D-MSCs), adipose tissue (AD-MSCs), and umbilical cord (UC-MSCs). All cells confirmed their multipotent capacity by adipogenic, osteogenic, and chondrogenic differentiation, as well as the expression of cell surface markers including CD44 + , CD105 + , and CD90 + . All MSCs expressed similar levels of CD73 and CD26 without a statistical difference among the different tissues, whereas ADA expression was lower in AD-MSCs. In addition, A1R and A3R mRNA levels were higher in D-MSCs and AD-MSCs, respectively. Enzymatic assay showed that AD-MSCs have the highest hydrolysis rate of AMP, leading to increased amount of adenosine production. Moreover, despite all MSCs completely hydrolyze extracellular AMP generating adenosine, the pattern of nucleosides metabolism was different. Therefore, although MSCs share certain characteristics as the multilineage potential and immunophenotype, they show different adenosinergic profiles according to tissue origin.
Collapse
Affiliation(s)
- Bruna Campos Galgaro
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Liziane Raquel Beckenkamp
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Liliana I Sous Naasani
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Márcia Rosângela Wink
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil.
| |
Collapse
|
7
|
Pinto-Cardoso R, Bessa-Andrês C, Correia-de-Sá P, Bernardo Noronha-Matos J. Could hypoxia rehabilitate the osteochondral diseased interface? Lessons from the interplay of hypoxia and purinergic signals elsewhere. Biochem Pharmacol 2023:115646. [PMID: 37321413 DOI: 10.1016/j.bcp.2023.115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
The osteochondral unit comprises the articular cartilage (90%), subchondral bone (5%) and calcified cartilage (5%). All cells present at the osteochondral unit that is ultimately responsible for matrix production and osteochondral homeostasis, such as chondrocytes, osteoblasts, osteoclasts and osteocytes, can release adenine and/or uracil nucleotides to the local microenvironment. Nucleotides are released by these cells either constitutively or upon plasma membrane damage, mechanical stress or hypoxia conditions. Once in the extracellular space, endogenously released nucleotides can activate membrane-bound purinoceptors. Activation of these receptors is fine-tuning regulated by nucleotides' breakdown by enzymes of the ecto-nucleotidase cascade. Depending on the pathophysiological conditions, both the avascular cartilage and the subchondral bone subsist to significant changes in oxygen tension, which has a tremendous impact on tissue homeostasis. Cell stress due to hypoxic conditions directly influences the expression and activity of several purinergic signalling players, namely nucleotide release channels (e.g. Cx43), NTPDase enzymes and purinoceptors. This review gathers experimental evidence concerning the interplay between hypoxia and the purinergic signalling cascade contributing to osteochondral unit homeostasis. Reporting deviations to this relationship resulting from pathological alterations of articular joints may ultimately unravel novel therapeutic targets for osteochondral rehabilitation. At this point, one can only hypothesize how hypoxia mimetic conditions can be beneficial to the ex vivo expansion and differentiation of osteo- and chondro-progenitors for auto-transplantation and tissue regenerative purposes.
Collapse
Affiliation(s)
- Rui Pinto-Cardoso
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Catarina Bessa-Andrês
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP).
| |
Collapse
|
8
|
Friedman B, Larranaga‐Vera A, Castro CM, Corciulo C, Rabbani P, Cronstein BN. Adenosine A2A receptor activation reduces chondrocyte senescence. FASEB J 2023; 37:e22838. [PMID: 36884388 PMCID: PMC11977601 DOI: 10.1096/fj.202201212rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/20/2023] [Accepted: 02/13/2023] [Indexed: 03/09/2023]
Abstract
Osteoarthritis (OA) pathogenesis is associated with reduced chondrocyte homeostasis and increased levels of cartilage cellular senescence. Chondrosenescence is the development of cartilage senescence that increases with aging joints and disrupts chondrocyte homeostasis and is associated with OA. Adenosine A2A receptor (A2AR) activation in cartilage via intra-articular injection of liposomal A2AR agonist, liposomal-CGS21680, leads to cartilage regeneration in vivo and chondrocyte homeostasis. A2AR knockout mice develop early OA isolated chondrocytes demonstrate upregulated expression of cellular senescence and aging-associated genes. Based on these observations, we hypothesized that A2AR activation would ameliorate cartilage senescence. We found that A2AR stimulation of chondrocytes reduced beta-galactosidase staining and regulated levels and cell localization of common senescence mediators p21 and p16 in vitro in the human TC28a2 chondrocyte cell line. In vivo analysis similarly showed A2AR activation reduced nuclear p21 and p16 in obesity-induced OA mice injected with liposomal-CGS21680 and increased nuclear p21 and p16 in A2AR knockout mouse chondrocytes compared to wild-type mice. A2AR agonism also increased activity of the chondrocyte Sirt1/AMPK energy-sensing pathway by enhancing nuclear Sirt1 localization and upregulating T172-phosphorylated (active) AMPK protein levels. Lastly, A2AR activation in TC28a2 and primary human chondrocytes reduced wild-type p53 and concomitantly increased p53 alternative splicing leading to increase in an anti-senescent p53 variant, Δ133p53α. The results reported here indicate that A2AR signaling promotes chondrocyte homeostasis in vitro and reduces OA cartilage development in vivo by reducing chondrocyte senescence.
Collapse
Affiliation(s)
- Benjamin Friedman
- Division of RheumatologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
- Division of Translational MedicineNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Ane Larranaga‐Vera
- Division of Translational MedicineNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Cristina M. Castro
- Division of Translational MedicineNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Carmen Corciulo
- Division of Translational MedicineNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Piul Rabbani
- Division of RheumatologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
- Hansjorg Wyss Department of Plastic SurgeryNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Bruce N. Cronstein
- Division of RheumatologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
- Division of Translational MedicineNew York University Grossman School of MedicineNew YorkNew YorkUSA
| |
Collapse
|
9
|
Hoque J, Zeng Y, Newman H, Gonzales G, Lee C, Varghese S. Microgel-Assisted Delivery of Adenosine to Accelerate Fracture Healing. ACS Biomater Sci Eng 2022; 8:4863-4872. [PMID: 36266245 PMCID: PMC11188841 DOI: 10.1021/acsbiomaterials.2c00977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Extracellular adenosine plays a key role in promoting bone tissue formation. Local delivery of adenosine could be an effective therapeutic strategy to harness the beneficial effect of extracellular adenosine on bone tissue formation following injury. Herein, we describe the development of an injectable in situ curing scaffold containing microgel-based adenosine delivery units. The two-component scaffold includes adenosine-loaded microgels and functionalized hyaluronic acid (HA) molecules. The microgels were generated upon copolymerization of 3-acrylamidophenylboronic acid (3-APBA)- and 2-aminoethylmethacrylamide (2-AEMA)-conjugated HA (HA-AEMA) in an emulsion suspension. The PBA functional groups were used to load the adenosine molecules. Mixing of the microgels with the HA polymers containing clickable groups, dibenzocyclooctyne (DBCO) and azide (HA-DBCO and HA-Azide), resulted in a 3D scaffold embedded with adenosine delivery units. Application of the in situ curing scaffolds containing adenosine-loaded microgels following tibial fracture injury showed improved bone tissue healing in a mouse model as demonstrated by the reduced callus size, higher bone volume, and increased tissue mineral density compared to those treated with the scaffold without adenosine. Overall, our results suggest that local delivery of adenosine could potentially be an effective strategy to promote bone tissue repair.
Collapse
Affiliation(s)
- Jiaul Hoque
- Department of Orthopaedic Surgery School of Medicine, Duke University, Durham, North Carolina 27710, United States
| | - Yuze Zeng
- Department of Orthopaedic Surgery School of Medicine, Duke University, Durham, North Carolina 27710, United States
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27710, United States
| | - Hunter Newman
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27710, United States
| | - Gavin Gonzales
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27710, United States
| | - Cheryl Lee
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27710, United States
| | - Shyni Varghese
- Department of Orthopaedic Surgery School of Medicine, Duke University, Durham, North Carolina 27710, United States
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27710, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
10
|
Simões AP, Gonçalves FQ, Rial D, Ferreira SG, Lopes JP, Canas PM, Cunha RA. CD73-Mediated Formation of Extracellular Adenosine Is Responsible for Adenosine A 2A Receptor-Mediated Control of Fear Memory and Amygdala Plasticity. Int J Mol Sci 2022; 23:12826. [PMID: 36361618 PMCID: PMC9653840 DOI: 10.3390/ijms232112826] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 08/27/2023] Open
Abstract
Adenosine A2A receptors (A2AR) control fear memory and the underlying processes of synaptic plasticity in the amygdala. In other brain regions, A2AR activation is ensured by ATP-derived extracellular adenosine formed by ecto-5'-nucleotidase or CD73. We now tested whether CD73 is also responsible to provide for the activation of A2AR in controlling fear memory and amygdala long-term potentiation (LTP). The bilateral intracerebroventricular injection of the CD73 inhibitor αβ-methylene ADP (AOPCP, 1 nmol/ventricle/day) phenocopied the effect of the A2AR blockade by decreasing the expression of fear memory, an effect disappearing in CD73-knockout (KO) mice and in forebrain neuronal A2AR-KO mice. In the presence of PPADS (20 μM) to eliminate any modification of ATP/ADP-mediated P2 receptor effects, both AOPCP (100 μM) and the A2AR antagonist, SCH58261 (50 nM), decreased LTP magnitude in synapses of projection from the external capsula into the lateral amygdala, an effect eliminated in slices from both forebrain neuronal A2AR-KO mice and CD73-KO mice. These data indicate a key role of CD73 in the process of A2AR-mediated control of fear memory and underlying synaptic plasticity processes in the amygdala, paving the way to envisage CD73 as a new therapeutic target to interfere with abnormal fear-like emotional processing.
Collapse
Affiliation(s)
- Ana Patrícia Simões
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Francisco Q. Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Daniel Rial
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Samira G. Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - João Pedro Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Paula M. Canas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Rodrigo A. Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
11
|
Park DR, Yeo CH, Yoon JE, Hong EY, Choi BR, Lee YJ, Ha IH. Polygonatum sibiricum improves menopause symptoms by regulating hormone receptor balance in an ovariectomized mouse model. Biomed Pharmacother 2022; 153:113385. [DOI: 10.1016/j.biopha.2022.113385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022] Open
|
12
|
Dsouza C, Moussa MS, Mikolajewicz N, Komarova SV. Extracellular ATP and its derivatives provide spatiotemporal guidance for bone adaptation to wide spectrum of physical forces. Bone Rep 2022; 17:101608. [PMID: 35992507 PMCID: PMC9385560 DOI: 10.1016/j.bonr.2022.101608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
ATP is a ubiquitous intracellular molecule critical for cellular bioenergetics. ATP is released in response to mechanical stimulation through vesicular release, small tears in cellular plasma membranes, or when cells are destroyed by traumatic forces. Extracellular ATP is degraded by ecto-ATPases to form ADP and eventually adenosine. ATP, ADP, and adenosine signal through purinergic receptors, including seven P2X ATP-gated cation channels, seven G-protein coupled P2Y receptors responsive to ATP and ADP, and four P1 receptors stimulated by adenosine. The goal of this review is to build a conceptual model of the role of different components of this complex system in coordinating cellular responses that are appropriate to the degree of mechanical stimulation, cell proximity to the location of mechanical injury, and time from the event. We propose that route and amount of ATP release depend on the scale of mechanical forces, ranging from vesicular release of small ATP boluses upon membrane deformation, to leakage of ATP through resealable plasma membrane tears, to spillage of cellular content due to destructive forces. Correspondingly, different P2 receptors responsive to ATP will be activated according to their affinity at the site of mechanical stimulation. ATP is a small molecule that readily diffuses through the environment, bringing the signal to the surrounding cells. ATP is also degraded to ADP which can stimulate a distinct set of P2 receptors. We propose that depending on the magnitude of mechanical forces and distance from the site of their application, ATP/ADP profiles will be different, allowing the relay of information about tissue level injury and proximity. Lastly, ADP is degraded to adenosine acting via its P1 receptors. The presence of large amounts of adenosine without ATP, indicates that an active source of ATP release is no longer present, initiating the transition to the recovery phase. This model consolidates the knowledge regarding the individual components of the purinergic system into a conceptual framework of choreographed responses to physical forces. Cellular bioenergetic molecule ATP is released when cell is mechanically stimulated. ATP release is proportional to the amount of cellular damage. ATP diffusion and transformation to ADP indicates the proximity to the damage. Purinergic receptors form a network choreographing cell response to physical forces. Complete transformation of ATP to adenosine initiates the recovery phase.
Collapse
Affiliation(s)
- Chrisanne Dsouza
- Department of Experimental Surgery, McGill University, Montreal, QC H3G 1A4, Canada
- Shriners Hospitals for Children- Canada, Montreal, QC H4A 0A9, Canada
| | - Mahmoud S. Moussa
- Shriners Hospitals for Children- Canada, Montreal, QC H4A 0A9, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| | - Nicholas Mikolajewicz
- Shriners Hospitals for Children- Canada, Montreal, QC H4A 0A9, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| | - Svetlana V. Komarova
- Department of Experimental Surgery, McGill University, Montreal, QC H3G 1A4, Canada
- Shriners Hospitals for Children- Canada, Montreal, QC H4A 0A9, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
- Corresponding author.
| |
Collapse
|
13
|
董 润, 贾 宇, 杨 厚, 罗 干, 李 玉, 孙 天. [Effects and mechanism of morroniside on osteogenic differentiation and proliferation of mouse MC3T3-E1 cells]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:889-895. [PMID: 35848187 PMCID: PMC9288899 DOI: 10.7507/1002-1892.202202088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/25/2022] [Indexed: 01/24/2023]
Abstract
Objective To study the effects of morroniside (MOR) on the proliferation and osteogenic differentiation of mouse MC3T3-E1 cells. Methods The 4th generation MC3T3-E1 cells were randomly divided into 6 groups: control group (group A), MOR low dose group (10 μmol/L, group B), MOR medium-low dose group (20 μmol/L, group C), MOR medium dose group (40 μmol/L, group D), MOR medium-high dose group (80 μmol/L, group E), and MOR high dose group (100 μmol/L, group F). The proliferation activity of each group was detected by cell counting kit 8 (CCK-8) assay; the bone differentiation and mineralized nodule formation of each group were detected by alizarin red staining; real-time fluorescence quantitative PCR (RT-qPCR) was performed to detect cyclin-dependent kinase inhibitor 1A (P21), recombinant Cyclin D1 (CCND1), proliferating cell nuclear antigen (PCNA), alkaline phosphatase (ALP), collagen type Ⅰ (COL-1), bone morphogenetic protein 2 (BMP-2), and adenosine A2A receptor (A2AR) mRNA expressions; Western blot was used to detecte the expressions of osteopontin (OPN), Runt-related transcription factor 2 (RUNX2), and adenosine A2AR protein. Results The CCK-8 assay showed that the absorbance ( A) values of groups B to F were significantly higher than that of group A at 24 hours of culture, with group C significantly higher than the rest of the groups ( P<0.05). The MOR concentration (20 μmol/L) of group C was selected for the subsequent CCK-8 assay; the results showed that the A values of group C were significantly higher than those of group A at 24, 48, and 72 hours of culture ( P<0.05). Alizarin red staining showed that orange-red mineralized nodules were visible in all groups and the number of mineralized nodules was significantly higher in groups B and C than in group A ( P<0.05). RT-qPCR showed that the relative expressions of P21, CCND1, and PCNA mRNAs were significantly higher in group C than in group A ( P<0.05). The expressions of ALP, BMP-2, COL-1, and adenosine A2AR mRNAs in groups B to E were significantly higher than those in group A, with the expressions of ALP, BMP-2, COL-1 mRNAs in group C significantly higher than the rest of the groups ( P<0.05). Compared with group A, the expressions of OPN and RUNX2 proteins in groups B and C were significantly increased, while those in group D and E were significantly inhibited ( P<0.05). There was no significant difference between groups B and C and between groups D and E ( P>0.05). The relative expression of adenosine A2AR protein in groups B to E was significantly higher than that in group A, with group C significantly higher than the rest of the groups ( P<0.05). Conclusion MOR can promote the proliferation and osteogenic differentiation of MC3T3-E1 cells; the mechanism of MOR may be achieved by interacting with adenosine A2AR.
Collapse
Affiliation(s)
- 润北 董
- 天津医科大学研究生院(天津 300070)Graduate School of Tianjin Medical University, Tianjin, 300070, P. R. China
| | - 宇涛 贾
- 天津医科大学研究生院(天津 300070)Graduate School of Tianjin Medical University, Tianjin, 300070, P. R. China
| | - 厚志 杨
- 天津医科大学研究生院(天津 300070)Graduate School of Tianjin Medical University, Tianjin, 300070, P. R. China
| | - 干 罗
- 天津医科大学研究生院(天津 300070)Graduate School of Tianjin Medical University, Tianjin, 300070, P. R. China
| | - 玉乔 李
- 天津医科大学研究生院(天津 300070)Graduate School of Tianjin Medical University, Tianjin, 300070, P. R. China
| | - 天威 孙
- 天津医科大学研究生院(天津 300070)Graduate School of Tianjin Medical University, Tianjin, 300070, P. R. China
| |
Collapse
|
14
|
Tao R, Qu Z, Zhang K, Chen J, Wang X, Deng Y. Substance P modulates BMSCs migration for tissue repair through NK-1R/CXCR4/p-Akt signal activation. Mol Biol Rep 2022; 49:2227-2236. [PMID: 35034285 DOI: 10.1007/s11033-021-07044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND The migration of bone marrow-derived mesenchymal stem cells (BMSCs) to the wound site played an important role in tissue repair. Substance P (SP) has been studied and reported to be involved in tissue repair by promoting the growth of endothelial cells and the migration of BMSCs. However, the complicated process and the molecular mechanisms were not fully understood. Thus, we aimed to investigate the effect of SP-induced BMSCs migration on tissue repair and its possible mechanism. METHODS AND RESULTS Western blot and q-PCR assay revealed that SP could induce the BMSCs migration through overexpression of CXCR4 and upregulation of Akt phosphorylation. And the upregulation was related to the activation of neurokinin-1 receptor (NK-1R). Besides, we found that the increased phosphorylation Akt caused by SP could be canceled by the inhibition of CXCR4 both in vitro and in vivo. Furthermore, a skin-injury animal model was established and used to observe the tissue repair process. Results showed that SP could accelerate wound closure, gain more granulation tissue accumulation, and more collagen deposition through the promotion of angiogenesis and induction of the BMSCs migration to the wound site. And these effects could be impaired by inhibition of CXCR4 and p-Akt. CONCLUSIONS Our results suggested that SP promoted tissue repair through BMSCs migration via upregulation of CXCR4 and p-Akt. The expression of CXCR4 and p-Akt were regulated by NK-1R activation. These findings add more evidence in understanding the mechanisms of SP-induced BMSCs migration and highlight the potential for clinical implementation of SP in tissue repair.
Collapse
Affiliation(s)
- Ran Tao
- Day Surgery Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Zhan Qu
- Department of Essential Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, People's Republic of China
| | - Ke Zhang
- Day Surgery Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Jie Chen
- Day Surgery Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Xinyu Wang
- Department of Gastrointestinal Surgery, The First Hospital of Changsha, Changsha, 410008, Hunan Province, People's Republic of China
| | - Youming Deng
- Department of Essential Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, People's Republic of China.
| |
Collapse
|
15
|
Lu L, Tang M, Li J, Xie Y, Li Y, Xie J, Zhou L, Liu Y, Yu X. Gut Microbiota and Serum Metabolic Signatures of High-Fat-Induced Bone Loss in Mice. Front Cell Infect Microbiol 2022; 11:788576. [PMID: 35004355 PMCID: PMC8727351 DOI: 10.3389/fcimb.2021.788576] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/06/2021] [Indexed: 02/05/2023] Open
Abstract
Background Accumulating evidence indicates that high-fat diet (HFD) is a controllable risk factor for osteoporosis, but the underlying mechanism remains to be elucidated. As a primary biological barrier for nutrient entry into the human body, the composition and function of gut microbiota (GM) can be altered rapidly by HFD, which may trigger abnormal bone metabolism. In the current study, we analyzed the signatures of GM and serum metabolomics in HFD-induced bone loss and explored the potential correlations of GM and serum metabolites on HFD-related bone loss. Methods We conducted a mouse model with HFD-induced bone loss through a 12-week diet intervention. Micro-CT, Osmium-μCT, and histological analyses were used to observe bone microstructure and bone marrow adipose tissue. Quantitative Real-Time PCR was applied to analyze gene expression related to osteogenesis, adipogenesis, and osteoclastogenesis. Enzyme-linked immunosorbent assay was used to measure the biochemical markers of bone turnover. 16s rDNA sequencing was employed to analyze the abundance of GM, and UHPLC-MS/MS was used to identify serum metabolites. Correlation analysis was performed to explore the relationships among bone phenotypes, GM, and the metabolome. Results HFD induced bone loss accompanied by bone marrow adipose tissue expansion and bone formation inhibition. In the HFD group, the relative abundance of Firmicutes was increased significantly, while Bacteroidetes, Actinobacteria, Epsilonbacteraeota, and Patescibacteria were decreased compared with the ND group. Association analysis showed that thirty-two bacterial genera were significantly related to bone volume per tissue volume (BV/TV). One hundred and forty-five serum metabolites were identified as differential metabolites associated with HFD intervention, which were significantly enriched in five pathways, such as purine metabolism, regulation of lipolysis in adipocyte and cGMP-PKG signaling pathway. Sixty-four diffiential metabolites were matched to the MS2 spectra; and ten of them were positively correlated with BV/TV and five were negatively correlated with BV/TV. Conclusions These findings indicated that the alternations of GM and serum metabolites were related to HFD-induced bone loss, which might provide new insights into explain the occurrence and development of HFD-related osteoporosis. The regulatory effects of GM and metabolites associated with HFD on bone homeostasis required further exploration.
Collapse
Affiliation(s)
- Lingyun Lu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Department of Integrated Traditional Chinese and Western Medicine, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Mengjia Tang
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Li
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Xie
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yujue Li
- Department of General Practice, West China Hospital, Sichuan University, Chengdu, China
| | - Jinwei Xie
- Department of Orthopaedic Surgery and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Li Zhou
- Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Grech L, Ebejer JP, Mazzitelli O, Schembri K, Borg J, Seria E. Possible Role of Circulating Bone Marrow Mesenchymal Progenitors in Modulating Inflammation and Promoting Wound Repair. Int J Mol Sci 2021; 23:78. [PMID: 35008501 PMCID: PMC8744598 DOI: 10.3390/ijms23010078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 12/05/2022] Open
Abstract
Circulating bone marrow mesenchymal progenitors (BMMPs) are known to be potent antigen-presenting cells that migrate to damaged tissue to secrete cytokines and growth factors. An altered or dysregulated inflammatory cascade leads to a poor healing outcome. A skin model developed in our previous study was used to observe the immuno-modulatory properties of circulating BMMP cells in inflammatory chronic wounds in a scenario of low skin perfusion. BMMPs were analysed exclusively and in conjunction with recombinant tumour necrosis factor alpha (TNFα) and recombinant hepatocyte growth factor (HGF) supplementation. We analysed the expression levels of interleukin-8 (IL-8) and ecto-5'-nucleotidase (CD73), together with protein levels for IL-8, stem cell factor (SCF), and fibroblast growth factor 1 (FGF-1). The successfully isolated BMMPs were positive for both hemopoietic and mesenchymal markers and showed the ability to differentiate into adipocytes, chondrocytes, and osteocytes. Significant differences were found in IL-8 and CD73 expressions and IL-8 and SCF concentrations, for all conditions studied over the three time points taken into consideration. Our data suggests that BMMPs may modulate the inflammatory response by regulating IL-8 and CD73 and influencing IL-8 and SCF protein secretions. In conclusion, we suggest that BMMPs play a role in wound repair and that their induced application might be suitable for scenarios with a low skin perfusion.
Collapse
Affiliation(s)
- Laura Grech
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080 Msida, Malta; (J.-P.E.); (O.M.)
| | - Jean-Paul Ebejer
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080 Msida, Malta; (J.-P.E.); (O.M.)
| | - Oriana Mazzitelli
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080 Msida, Malta; (J.-P.E.); (O.M.)
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, MSD 2080 Msida, Malta;
| | - Kevin Schembri
- Department of Surgery, Faculty of Medicine and Surgery, University of Malta Medical School and Mater Dei Hospital, MSD 2080 Msida, Malta;
| | - Joseph Borg
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, MSD 2080 Msida, Malta;
| | - Elisa Seria
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080 Msida, Malta; (J.-P.E.); (O.M.)
| |
Collapse
|
17
|
Newman H, Shih YV, Varghese S. Resolution of inflammation in bone regeneration: From understandings to therapeutic applications. Biomaterials 2021; 277:121114. [PMID: 34488119 DOI: 10.1016/j.biomaterials.2021.121114] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/10/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022]
Abstract
Impaired bone healing occurs in 5-10% of cases following injury, leading to a significant economic and clinical impact. While an inflammatory response upon injury is necessary to facilitate healing, its resolution is critical for bone tissue repair as elevated acute or chronic inflammation is associated with impaired healing in patients and animal models. This process is governed by important crosstalk between immune cells through mediators that contribute to resolution of inflammation in the local healing environment. Approaches modulating the initial inflammatory phase followed by its resolution leads to a pro-regenerative environment for bone regeneration. In this review, we discuss the role of inflammation in bone repair, the negative impact of dysregulated inflammation on bone tissue regeneration, and how timely resolution of inflammation is necessary to achieve normal healing. We will discuss applications of biomaterials to treat large bone defects with a specific focus on resolution of inflammation to modulate the immune environment following bone injury, and their observed functional benefits. We conclude the review by discussing future strategies that could lead to the realization of anti-inflammatory therapeutics for bone tissue repair.
Collapse
Affiliation(s)
- Hunter Newman
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27710, USA
| | - Yuru Vernon Shih
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shyni Varghese
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27710, USA; Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
18
|
Verma NK, Kar AK, Singh A, Jagdale P, Satija NK, Ghosh D, Patnaik S. Control Release of Adenosine Potentiate Osteogenic Differentiation within a Bone Integrative EGCG- g-NOCC/Collagen Composite Scaffold toward Guided Bone Regeneration in a Critical-Sized Calvarial Defect. Biomacromolecules 2021; 22:3069-3083. [PMID: 34152738 DOI: 10.1021/acs.biomac.1c00513] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The regeneration of critical-sized bone defects with biomimetic scaffolds remains clinically challenging due to avascular necrosis, chronic inflammation, and altered osteogenic activity. Two confounding mechanisms, efficacy manipulation, and temporal regulation dictate the scaffold's bone regenerative ability. Equally critical is the priming of the mesenchymal stromal cells (MSCs) toward lineage-specific differentiation into bone-forming osteoblast, which particularly depends on varied mechanochemical and biological cues during bone tissue regeneration. This study sought to design and develop an optimized osteogenic scaffold, adenosine/epigallocatechin gallate-N,O-carboxymethyl chitosan/collagen type I (AD/EGCG-g-NOCC@clgn I), having osteoinductive components toward swift bone regeneration in a calvarial defect BALB/c mice model. The ex vivo findings distinctly establish the pro-osteogenic potential of adenosine and EGCG, stimulating MSCs toward osteoblast differentiation with significantly increased expression of alkaline phosphatase, calcium deposits, and enhanced osteocalcin expression. Moreover, the 3D matrix recapitulates extracellular matrix (ECM) properties, provides a favorable microenvironment, structural support against mechanical stress, and acts as a reservoir for sustained release of osteoinductive molecules for cell differentiation, proliferation, and migration during matrix osteointegration observed. Evidence from in vivo experiments, micro-CT analyses, histology, and histomorphometry signify accelerated osteogenesis both qualitatively and quantitatively: effectual bone union with enhanced bone formation and new ossified tissue in 4 mm sized defects. Our results suggest that the optimized scaffold serves as an adjuvant to guide bone tissue regeneration in critical-sized calvarial defects with promising therapeutic efficacy.
Collapse
Affiliation(s)
- Neeraj K Verma
- College of Dental Sciences, BBD University, Faizabad Road, Lucknow, Uttar Pradesh 226028, India
| | - Aditya K Kar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amrita Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Neeraj K Satija
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debabrata Ghosh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Satyakam Patnaik
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
19
|
Bone targeting nanocarrier-assisted delivery of adenosine to combat osteoporotic bone loss. Biomaterials 2021; 273:120819. [PMID: 33892345 PMCID: PMC10108099 DOI: 10.1016/j.biomaterials.2021.120819] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 11/22/2022]
Abstract
Extracellular adenosine has been shown to play a key role in maintaining bone health and could potentially be used to treat bone loss. However, systemic administration of exogenous adenosine to treat bone disorders remains a challenge due to the ubiquitous presence of adenosine receptors in different organs and the short half-life of adenosine in circulation. Towards this, we have developed a bone-targeting nanocarrier and determined its potential for systemic administration of adenosine. The nanocarrier, synthesized via emulsion suspension photopolymerization, is comprised of hyaluronic acid (HA) copolymerized with phenylboronic acid (PBA), a moiety that can form reversible bonds with adenosine. The bone binding affinity of the nanocarrier was achieved by alendronate (Aln) conjugation. Nanocarriers functionalized with the alendronate (Aln-NC) showed a 45% higher accumulation in the mice vertebrae in vivo compared to those lacking alendronate molecules (NCs). Systemic administration of adenosine via bone-targeting nanocarriers (Aln-NC) attenuated bone loss in ovariectomized (OVX) mice. Furthermore, bone tissue of mice treated with adenosine-loaded Aln-NC displayed trabecular bone characteristics comparable to healthy controls as shown by microcomputed tomography, histochemical staining, bone labeling, and mechanical strength. Overall, our results demonstrate the use of a bone-targeting nanocarrier towards systemic administration of adenosine and its application in treating bone degenerative diseases such as osteoporosis.
Collapse
|
20
|
Galgaro BC, Beckenkamp LR, van den M Nunnenkamp M, Korb VG, Naasani LIS, Roszek K, Wink MR. The adenosinergic pathway in mesenchymal stem cell fate and functions. Med Res Rev 2021; 41:2316-2349. [PMID: 33645857 DOI: 10.1002/med.21796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) play an important role in tissue homeostasis and damage repair through their ability to differentiate into cells of different tissues, trophic support, and immunomodulation. These properties made them attractive for clinical applications in regenerative medicine, immune disorders, and cell transplantation. However, despite multiple preclinical and clinical studies demonstrating beneficial effects of MSCs, their native identity and mechanisms of action remain inconclusive. Since its discovery, the CD73/ecto-5'-nucleotidase is known as a classic marker for MSCs, but its role goes far beyond a phenotypic characterization antigen. CD73 contributes to adenosine production, therefore, is an essential component of purinergic signaling, a pathway composed of different nucleotides and nucleosides, which concentrations are finely regulated by the ectoenzymes and receptors. Thus, purinergic signaling controls pathophysiological functions such as proliferation, migration, cell fate, and immune responses. Despite the remarkable progress already achieved in considering adenosinergic pathway as a therapeutic target in different pathologies, its role is not fully explored in the context of the therapeutic functions of MSCs. Therefore, in this review, we provide an overview of the role of CD73 and adenosine-mediated signaling in the functions ascribed to MSCs, such as homing and proliferation, cell differentiation, and immunomodulation. Additionally, we will discuss the pathophysiological role of MSCs, via CD73 and adenosine, in different diseases, as well as in tumor development and progression. A better understanding of the adenosinergic pathway in the regulation of MSCs functions will help to provide improved therapeutic strategies applicable in regenerative medicine.
Collapse
Affiliation(s)
- Bruna C Galgaro
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Liziane R Beckenkamp
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Martha van den M Nunnenkamp
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Vitória G Korb
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Liliana I S Naasani
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Márcia R Wink
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
21
|
Eisenstein A, Chitalia SV, Ravid K. Bone Marrow and Adipose Tissue Adenosine Receptors Effect on Osteogenesis and Adipogenesis. Int J Mol Sci 2020; 21:E7470. [PMID: 33050467 PMCID: PMC7589187 DOI: 10.3390/ijms21207470] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Adenosine is an extracellular signaling molecule that is particularly relevant in times of cellular stress, inflammation and metabolic disturbances when the levels of the purine increase. Adenosine acts on two G-protein-coupled stimulatory and on two G-protein-coupled inhibitory receptors, which have varying expression profiles in different tissues and conditions, and have different affinities for the endogenous ligand. Studies point to significant roles of adenosine and its receptors in metabolic disease and bone health, implicating the receptors as potential therapeutic targets. This review will highlight our current understanding of the dichotomous effects of adenosine and its receptors on adipogenesis versus osteogenesis within the bone marrow to maintain bone health, as well as its relationship to obesity. Therapeutic implications will also be reviewed.
Collapse
Affiliation(s)
- Anna Eisenstein
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shlok V. Chitalia
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA; (S.V.C.); (K.R.)
| | - Katya Ravid
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA; (S.V.C.); (K.R.)
| |
Collapse
|
22
|
Carluccio M, Ziberi S, Zuccarini M, Giuliani P, Caciagli F, Di Iorio P, Ciccarelli R. Adult mesenchymal stem cells: is there a role for purine receptors in their osteogenic differentiation? Purinergic Signal 2020; 16:263-287. [PMID: 32500422 DOI: 10.1007/s11302-020-09703-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
The role played by mesenchymal stem cells (MSCs) in contributing to adult tissue homeostasis and damage repair thanks to their differentiation capabilities has raised a great interest, mainly in bone regenerative medicine. The growth/function of these undifferentiated cells of mesodermal origin, located in specialized structures (niches) of differentiated organs is influenced by substances present in this microenvironment. Among them, ancestral and ubiquitous molecules such as adenine-based purines, i.e., ATP and adenosine, may be included. Notably, extracellular purine concentrations greatly increase during tissue injury; thus, MSCs are exposed to effects mediated by these agents interacting with their own receptors when they act/migrate in vivo or are transplanted into a damaged tissue. Here, we reported that ATP modulates MSC osteogenic differentiation via different P2Y and P2X receptors, but data are often inconclusive/contradictory so that the ATP receptor importance for MSC physiology/differentiation into osteoblasts is yet undetermined. An exception is represented by P2X7 receptors, whose expression was shown at various differentiation stages of bone cells resulting essential for differentiation/survival of both osteoclasts and osteoblasts. As well, adenosine, usually derived from extracellular ATP metabolism, can promote osteogenesis, likely via A2B receptors, even though findings from human MSCs should be implemented and confirmed in preclinical models. Therefore, although many data have revealed possible effects caused by extracellular purines in bone healing/remodeling, further studies, hopefully performed in in vivo models, are necessary to identify defined roles for these compounds in favoring/increasing the pro-osteogenic properties of MSCs and thereby their usefulness in bone regenerative medicine.
Collapse
Affiliation(s)
- Marzia Carluccio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy.,StemTeCh Group, Via L. Polacchi, 66100, Chieti, Italy
| | - Sihana Ziberi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy.,StemTeCh Group, Via L. Polacchi, 66100, Chieti, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Francesco Caciagli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy. .,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy. .,StemTeCh Group, Via L. Polacchi, 66100, Chieti, Italy.
| |
Collapse
|
23
|
Cheng X, Cheng G, Xing X, Yin C, Cheng Y, Zhou X, Jiang S, Tao F, Deng H, Li Z. Controlled release of adenosine from core-shell nanofibers to promote bone regeneration through STAT3 signaling pathway. J Control Release 2020; 319:234-245. [DOI: 10.1016/j.jconrel.2019.12.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/16/2019] [Accepted: 12/28/2019] [Indexed: 12/13/2022]
|
24
|
Andrejew R, Glaser T, Oliveira-Giacomelli Á, Ribeiro D, Godoy M, Granato A, Ulrich H. Targeting Purinergic Signaling and Cell Therapy in Cardiovascular and Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1201:275-353. [PMID: 31898792 DOI: 10.1007/978-3-030-31206-0_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular purines exert several functions in physiological and pathophysiological mechanisms. ATP acts through P2 receptors as a neurotransmitter and neuromodulator and modulates heart contractility, while adenosine participates in neurotransmission, blood pressure, and many other mechanisms. Because of their capability to differentiate into mature cell types, they provide a unique therapeutic strategy for regenerating damaged tissue, such as in cardiovascular and neurodegenerative diseases. Purinergic signaling is pivotal for controlling stem cell differentiation and phenotype determination. Proliferation, differentiation, and apoptosis of stem cells of various origins are regulated by purinergic receptors. In this chapter, we selected neurodegenerative and cardiovascular diseases with clinical trials using cell therapy and purinergic receptor targeting. We discuss these approaches as therapeutic alternatives to neurodegenerative and cardiovascular diseases. For instance, promising results were demonstrated in the utilization of mesenchymal stem cells and bone marrow mononuclear cells in vascular regeneration. Regarding neurodegenerative diseases, in general, P2X7 and A2A receptors mostly worsen the degenerative state. Stem cell-based therapy, mainly through mesenchymal and hematopoietic stem cells, showed promising results in improving symptoms caused by neurodegeneration. We propose that purinergic receptor activity regulation combined with stem cells could enhance proliferative and differentiation rates as well as cell engraftment.
Collapse
Affiliation(s)
- Roberta Andrejew
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Talita Glaser
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Ágatha Oliveira-Giacomelli
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Deidiane Ribeiro
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Mariana Godoy
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil.,Laboratory of Neurodegenerative Diseases, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro Granato
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
25
|
Pinto-Cardoso R, Pereira-Costa F, Pedro Faria J, Bandarrinha P, Bessa-Andrês C, Correia-de-Sá P, Bernardo Noronha-Matos J. Adenosinergic signalling in chondrogenesis and cartilage homeostasis: Friend or foe? Biochem Pharmacol 2019; 174:113784. [PMID: 31884043 DOI: 10.1016/j.bcp.2019.113784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
Chondrocytes and their mesenchymal cell progenitors secrete a variety of bioactive molecules, including adenine nucleotides and nucleosides, but these molecules are not usually highlighted in review papers about the secretome of these cells. Ageing and inflammatory insults compromise chondrocytes ability to keep ATP/adenosine synthesis, release and turnover. Cartilage homeostasis depends on extracellular adenosine levels, which acting via four P1 purinoceptor subtypes modulates the release of pro-inflammatory mediators, including NO, PGE2 and several cytokines. Native articular cartilage is challenged by synovial fluid flow during normal joint motion transiently increasing ATP release and adenosine formation in the joint microenvironment. Excessive joint motion and shockwave trauma are deleterious to cartilage homeostasis due to HIF-1α overexpression, resulting in disproportionate ecto-5'-nucleotidase/CD73 production, adenosine accumulation and superfluous A2B receptors activation. Scarcity of data however exists on the putative interplay between coexistent high affinity (A2A and A3) and low affinity (A2B) adenosine receptors activation affecting stem cells fate towards preferential chondrogenic or osteogenic lineages in the human cartilage. Hints gathered in this commentary result mainly from studies using human immortalized cell lines and animal (e.g. rodent, equine, bovine) tissue samples. The available data point towards adenosine A2A and A3 receptors having cartilage protective roles, while excessive adenosine accumulation may be detrimental via low affinity A2B receptors activation, with little reference to the putative role of the adenosine forming enzyme ecto-5'-nucleotidase/CD73. Thus, emphasizing the multiple pathways responsible for controlling adenosine signalling in cartilage will certainly impact on the search for novel therapeutic targets for highly disabling articular disorders.
Collapse
Affiliation(s)
- Rui Pinto-Cardoso
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal
| | - Flávio Pereira-Costa
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal
| | - João Pedro Faria
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal
| | - Patrícia Bandarrinha
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal
| | - Catarina Bessa-Andrês
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal.
| | - José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal.
| |
Collapse
|
26
|
Shih YRV, Liu M, Kwon SK, Iida M, Gong Y, Sangaj N, Varghese S. Dysregulation of ectonucleotidase-mediated extracellular adenosine during postmenopausal bone loss. SCIENCE ADVANCES 2019; 5:eaax1387. [PMID: 31457100 PMCID: PMC6703860 DOI: 10.1126/sciadv.aax1387] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/12/2019] [Indexed: 05/25/2023]
Abstract
Adenosine and its receptors play a key role in bone homeostasis and regeneration. Extracellular adenosine is generated from CD39 and CD73 activity in the cell membrane, through conversion of adenosine triphosphate to adenosine monophosphate (AMP) and AMP to adenosine, respectively. Despite the relevance of CD39/CD73 to bone health, the roles of these enzymes in bona fide skeletal disorders remain unknown. We demonstrate that CD39/CD73 expression and extracellular adenosine levels in the bone marrow are substantially decreased in animals with osteoporotic bone loss. Knockdown of estrogen receptors ESR1 and ESR2 in primary osteoprogenitors and osteoclasts undergoing differentiation showed decreased coexpression of membrane-bound CD39 and CD73 and lower extracellular adenosine. Targeting the adenosine A2B receptor using an agonist attenuated bone loss in ovariectomized mice. Together, these findings suggest a pathological association of purine metabolism with estrogen deficiency and highlight the potential of A2B receptor as a target to treat osteoporosis.
Collapse
Affiliation(s)
- Yu-Ru V. Shih
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Mengqian Liu
- Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Seong Keun Kwon
- Department of Otorhinolaryngology–Head and Neck Surgery, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | | | - Ya Gong
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nivedita Sangaj
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Shyni Varghese
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA
- Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
27
|
The ectonucleoside triphosphate diphosphohydrolase-2 (NTPDase2) in human endometrium: a novel marker of basal stroma and mesenchymal stem cells. Purinergic Signal 2019; 15:225-236. [PMID: 31123897 DOI: 10.1007/s11302-019-09656-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/17/2019] [Indexed: 01/10/2023] Open
Abstract
The human endometrium undergoes repetitive regeneration cycles in order to recover the functional layer, shed during menses. The basal layer, which remains in charge of endometrial regeneration in every cycle, contains adult stem or progenitor cells of epithelial and mesenchymal lineage. Some pathologies such as adenomyosis, in which endometrial tissue develops within the myometrium, originate from this layer. It is well known that the balance between adenosine triphosphate (ATP) and adenosine plays a crucial role in stem/progenitor cell physiology, influencing proliferation, differentiation, and migration. The extracellular levels of nucleotides and nucleosides are regulated by the ectonucleotidases, such as the nucleoside triphosphate diphosphohydrolase 2 (NTPDase2). NTPDase2 is a membrane-expressed enzyme found in cells of mesenchymal origin such as perivascular cells of different tissues and the stem cells of adult neurogenic regions. The aim of this study was to characterize the expression of NTPDase2 in human nonpathological cyclic and postmenopausic endometria and in adenomyosis. We examined proliferative, secretory, and atrophic endometria from women without endometrial pathology and also adenomyotic lesions. Importantly, we identified NTPDase2 as the first marker of basal endometrium since other stromal cell markers such as CD10 label the entire stroma. As expected, NTPDase2 was also found in adenomyotic stroma, thus becoming a convenient tracer of these lesions. We did not record any changes in the expression levels or the localization of NTPDase2 along the cycle, thus suggesting that the enzyme is not influenced by the female sex hormones like other previously studied ectoenzymes. Remarkably, NTPDase2 was expressed by the Sushi Domain containing 2 (SUSD2)+ endometrial mesenchymal stem cells (eMSCs) found perivascularly, rendering it useful as a cell marker to improve the isolation of eMSCs needed for regenerative medicine therapies.
Collapse
|
28
|
Luo Y, Wu W, Gu J, Zhang X, Dang J, Wang J, Zheng Y, Huang F, Yuan J, Xue Y, Fu Q, Kandalam U, Colello J, Zheng SG. Human gingival tissue-derived MSC suppress osteoclastogenesis and bone erosion via CD39-adenosine signal pathway in autoimmune arthritis. EBioMedicine 2019; 43:620-631. [PMID: 31076346 PMCID: PMC6558261 DOI: 10.1016/j.ebiom.2019.04.058] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Bone destruction is one of many severe complications that occurs in patients with rheumatoid arthritis (RA) and current therapies are unable to cure this manifestation. This study here aims to determine whether GMSC can directly inhibit osteoclast formation and eventually attenuate osteoclastogenesis and bone erosion in an inflammatory milieu. METHOD GMSC were co-cultured with osteoclast precursors with or without CD39 inhibitor, CD73 inhibitor or adenosine receptors inhibitors pretreatment and osteoclast formation were evaluated in vitro. 2×10^6 GMSC per mouse were transferred to CIA mice and pathology scores, the frequency of osteoclasts, bone erosion in joints were assessed in vivo. FINDING GMSC but not control cells, markedly suppressed human or mice osteoclastogenesis in vitro. GMSC treatment also resulted in a dramatically decreased level of NF-κB p65/p50 in osteoclasts in vitro. Infusion of GMSC to CIA significantly attenuated the severity of arthritis, pathology scores, frequency of osteoclasts, particularly bone erosion, as well as a decreased expression of RANKL in synovial tissues in vivo. Blockade of CD39/CD73 or adenosine receptors has significantly abrogated the suppressive ability of GMSC in vitro and therapeutic effect of GMSC on bone erosion during CIA in vivo. INTERPRETATION GMSC inhibit osteoclast formation in vitro and in vivo partially via CD39-CD73-adenosine signals. Manipulation of GMSC may have a therapeutic implication on rheumatoid arthritis and other bone erosion related diseases. FUND: This study was supported by grants from the National Key R&D Program of China (2017YFA0105801 to F.H); the Zhujiang Innovative and Entrepreneurial Talent Team Award of Guangdong Province (2016 ZT 06S 252 to F·H) and National Institutes of Health (R01 AR059103, R61 AR073409 and NIH Star Award to S.G.Z).
Collapse
Affiliation(s)
- Yang Luo
- Department of Clinical Immunology, Sun Yat-sen University Third Affiliated Hospital, Guangzhou 510000, PR China; Division of Rheumatology, Department of Medicine at Penn State College of Medicine and Milton S. Hershey Medical Center, Hershey 17033, USA; Department of Neurology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Wenbin Wu
- Department of Clinical Immunology, Sun Yat-sen University Third Affiliated Hospital, Guangzhou 510000, PR China
| | - Jian Gu
- Division of Rheumatology, Department of Medicine at Penn State College of Medicine and Milton S. Hershey Medical Center, Hershey 17033, USA; Division of Rheumatology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ximei Zhang
- Department of Clinical Immunology, Sun Yat-sen University Third Affiliated Hospital, Guangzhou 510000, PR China; Division of Rheumatology, Department of Medicine at Penn State College of Medicine and Milton S. Hershey Medical Center, Hershey 17033, USA; Division of Rheumatology and Immunology, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, PA 43201, USA
| | - Junlong Dang
- Department of Clinical Immunology, Sun Yat-sen University Third Affiliated Hospital, Guangzhou 510000, PR China; Division of Rheumatology, Department of Medicine at Penn State College of Medicine and Milton S. Hershey Medical Center, Hershey 17033, USA
| | - Julie Wang
- Division of Rheumatology, Department of Medicine at Penn State College of Medicine and Milton S. Hershey Medical Center, Hershey 17033, USA; Division of Rheumatology and Immunology, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, PA 43201, USA
| | - Yongjiang Zheng
- Division of Rheumatology, Department of Medicine at Penn State College of Medicine and Milton S. Hershey Medical Center, Hershey 17033, USA
| | - Feng Huang
- Department of Clinical Immunology, Sun Yat-sen University Third Affiliated Hospital, Guangzhou 510000, PR China
| | - Jia Yuan
- Department of Clinical Immunology, Sun Yat-sen University Third Affiliated Hospital, Guangzhou 510000, PR China
| | - Youqiu Xue
- Department of Clinical Immunology, Sun Yat-sen University Third Affiliated Hospital, Guangzhou 510000, PR China; Division of Rheumatology, Department of Medicine at Penn State College of Medicine and Milton S. Hershey Medical Center, Hershey 17033, USA; Division of Rheumatology and Immunology, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, PA 43201, USA
| | - Qingling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong 510080, PR China
| | - Umadevi Kandalam
- Department of Pediatric Dentistry, College of Dental Medicine, Nova Southeastern University, Davie, FL 33328, USA
| | - Jacob Colello
- Division of Rheumatology, Department of Medicine at Penn State College of Medicine and Milton S. Hershey Medical Center, Hershey 17033, USA
| | - Song Guo Zheng
- Division of Rheumatology and Immunology, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, PA 43201, USA.
| |
Collapse
|
29
|
Bekisz JM, Lopez CD, Corciulo C, Mediero A, Coelho PG, Witek L, Flores RL, Cronstein BN. The Role of Adenosine Receptor Activation in Attenuating Cartilaginous Inflammation. Inflammation 2018; 41:1135-1141. [PMID: 29656316 DOI: 10.1007/s10753-018-0781-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Adenosine receptor activation has been explored as a modulator of the inflammatory process that propagates osteoarthritis. It has been reported that cartilage has enhanced regenerative potential when influenced by adenosine receptor activation. As adenosine's role in maintaining chondrocyte homeostasis at the cellular and molecular levels is explored, successful in vivo applications of adenosine delivery for cartilage repair continue to be reported. This review summarizes the role adenosine receptor ligation plays in chondrocyte homeostasis and regeneration of articular cartilage damaged in osteoarthritis. It also reports on all the modalities reported for delivery of adenosine through in vivo applications.
Collapse
Affiliation(s)
- Jonathan M Bekisz
- New York University School of Medicine, 550 First Avenue, MSB 521, New York, NY, 10016, USA. .,Hansjörg Wyss Department of Plastic Surgery at New York University School of Medicine, 307 East 33rd Street, New York, NY, 10016, USA.
| | - Christopher D Lopez
- Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA.,Division of Translational Medicine at New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA.,Department of Biomaterials and Biomimetics at New York University College of Dentistry, 433 First Avenue, New York, NY, 10010, USA
| | - Carmen Corciulo
- Division of Translational Medicine at New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Aranzazu Mediero
- Division of Translational Medicine at New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA.,Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Paulo G Coelho
- Hansjörg Wyss Department of Plastic Surgery at New York University School of Medicine, 307 East 33rd Street, New York, NY, 10016, USA.,Department of Biomaterials and Biomimetics at New York University College of Dentistry, 433 First Avenue, New York, NY, 10010, USA
| | - Lukasz Witek
- Department of Biomaterials and Biomimetics at New York University College of Dentistry, 433 First Avenue, New York, NY, 10010, USA
| | - Roberto L Flores
- Hansjörg Wyss Department of Plastic Surgery at New York University School of Medicine, 307 East 33rd Street, New York, NY, 10016, USA
| | - Bruce N Cronstein
- New York University School of Medicine, 550 First Avenue, MSB 521, New York, NY, 10016, USA.,Division of Translational Medicine at New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| |
Collapse
|
30
|
Di Vito A, Giudice A, Chiarella E, Malara N, Bennardo F, Fortunato L. In Vitro Long-Term Expansion and High Osteogenic Potential of Periodontal Ligament Stem Cells: More Than a Mirage. Cell Transplant 2018; 28:129-139. [PMID: 30369260 PMCID: PMC6322134 DOI: 10.1177/0963689718807680] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The periodontal ligament displays a reservoir of mesenchymal stem cells which can account for periodontal regeneration. Despite the numerous studies directed at the definition of optimal culture conditions for long-term expansion of periodontal ligament stem cells (PDLSCs), no consensus has been reached as to what is the ideal protocol. The aim of the present study was to determine the optimal medium formulation for long-term expansion and stemness maintenance of PDLSCs, in order to obtain a sufficient number of cells for therapeutic approaches. For this purpose, the effects of three different culture medium formulations were evaluated on PDLSCs obtained from three periodontal ligament samples of the same patient: minimum essential medium Eagle, alpha modification (α-MEM), Dulbecco's modified Eagle's medium (DMEM), both supplemented with 10% fetal bovine serum (FBS), and a new medium formulation, Ham's F12 medium, supplemented with 10% FBS, heparin 0.5 U/ml, epidermal growth factor (EGF) 50 ng/ml, fibroblast growth factor (FGF) 25 ng/ml, and bovine serum albumin (BSA) 1% (enriched Ham's F12 medium; EHFM). PDLSCs grown in EHFM displayed a higher PE-CD73 mean fluorescence intensity compared with cells maintained in α-MEM and DMEM, even at later passages. Cells maintained in EHFM displayed an increased population doubling and a reduced population doubling time compared with cells grown in DMEM or α-MEM. α-MEM, DMEM and EHFM with added dexamethasone, 2-phospho-L-ascorbic acid, and β-glycerophosphate were all able to promote alkaline phosphatase activity; however, no calcium deposition was detected in PDLSCs cultured in EHFM-differentiation medium. When EHFM-, α-MEM- and DMEM-expanded PDLSCs were transferred to a commercial culture medium for the osteogenesis, mineralization became much more evident in confluent monolayers of EHFM-expanded PDLSCs compared with DMEM and α-MEM. The results suggest EHFM is the optimal medium formulation for growth and stemness maintenance of primary PDLSCs. Moreover, EHFM confers higher osteogenic potential to PDLSCs compared with cells maintained in the other culture media. Overall, the results of the present work confirmed the advantages of using EHFM for long-term expansion of mesenchymal cells in vitro and the preservation of high osteogenic potential.
Collapse
Affiliation(s)
- Anna Di Vito
- 1 Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Campus Universitario "Salvatore Venuta" Viale Europa - Loc. Germaneto, Catanzaro, Italy
| | - Amerigo Giudice
- 2 Department of Health Science, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Emanuela Chiarella
- 1 Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Campus Universitario "Salvatore Venuta" Viale Europa - Loc. Germaneto, Catanzaro, Italy
| | - Natalia Malara
- 1 Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Campus Universitario "Salvatore Venuta" Viale Europa - Loc. Germaneto, Catanzaro, Italy
| | - Francesco Bennardo
- 2 Department of Health Science, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Leonzio Fortunato
- 2 Department of Health Science, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
31
|
Roszek K, Wujak M. How to influence the mesenchymal stem cells fate? Emerging role of ectoenzymes metabolizing nucleotides. J Cell Physiol 2018; 234:320-334. [PMID: 30078187 DOI: 10.1002/jcp.26904] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 06/13/2018] [Indexed: 12/11/2022]
Abstract
Extracellular purines, principally adenosine triphosphate and adenosine, are among the oldest evolutionary and widespread chemical messengers. The integrative view of purinergic signaling as a multistage coordinated cascade involves the participation of nucleotides/nucleosides, their receptors, enzymes metabolizing extracellular nucleosides and nucleotides as well as several membrane transporters taking part in the release and/or uptake of these molecules. In view of the emerging data, it is evident and widely accepted that an extensive network of diverse enzymatic activities exists in the extracellular space. The enzymes regulate the availability of nucleotide and adenosine receptor agonists, and consequently, the course of signaling events. The current data indicate that mesenchymal stem cells (MSCs) and cells induced to differentiate exhibit different sensitivity to purinergic ligands as well as a distinct activity and expression profiles of ectonucleotidases than mature cells. In the proposed review, we postulate for a critical role of these enzymatic players which, by orchestrating a fine-tune regulation of nucleotides concentrations, are integrally involved in modulation and diversification of purinergic signals. This specific hallmark of the MSC purinome should be linked with cell-specific biological potential and capacity for tissue regeneration. We anticipate this publication to be a starting point for scientific discussion and novel approach to the in vitro and in vivo regulation of the MSC properties.
Collapse
Affiliation(s)
- Katarzyna Roszek
- Biochemistry Department, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Magdalena Wujak
- Biochemistry Department, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW To summarize and discuss recent progress and novel signaling mechanisms relevant to bone marrow adipocyte formation and its physiological/pathophysiological implications for bone remodeling. RECENT FINDINGS Skeletal remodeling is a coordinated process entailing removal of old bone and formation of new bone. Several bone loss disorders such as osteoporosis are commonly associated with increased bone marrow adipose tissue. Experimental and clinical evidence supports that a reduction in osteoblastogenesis from mesenchymal stem cells at the expense of adipogenesis, as well as the deleterious effects of adipocyte-derived signaling, contributes to the etiology of osteoporosis as well as bone loss associated with aging, diabetes mellitus, post-menopause, and chronic drug therapy. However, this view is challenged by findings indicating that, in some contexts, bone marrow adipose tissue may have a beneficial impact on skeletal health. Further research is needed to better define the role of marrow adipocytes in bone physiology/pathophysiology and to determine the therapeutic potential of manipulating mesenchymal stem cell differentiation.
Collapse
Affiliation(s)
- Shanmugam Muruganandan
- Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA
| | - Rajgopal Govindarajan
- Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA
| | - Christopher J Sinal
- Department of Pharmacology, Dalhousie University, 5850 College Street, Box 15000, Halifax, Nova Scotia, B3H4R2, Canada.
| |
Collapse
|
33
|
Beach KM, Hung LF, Arumugam B, Smith EL, Ostrin LA. Adenosine receptor distribution in Rhesus monkey ocular tissue. Exp Eye Res 2018; 174:40-50. [PMID: 29792846 DOI: 10.1016/j.exer.2018.05.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/26/2018] [Accepted: 05/20/2018] [Indexed: 02/06/2023]
Abstract
Adenosine receptor (ADOR) antagonists, such as 7-methylxanthine (7-MX), have been shown to slow myopia progression in humans and animal models. Adenosine receptors are found throughout the body, and regulate the release of neurotransmitters such as dopamine and glutamate. However, the role of adenosine in eye growth is unclear. Evidence suggests that 7-MX increases scleral collagen fibril diameter, hence preventing axial elongation. This study used immunohistochemistry (IHC) and reverse-transcription quantitative polymerase chain reaction (RT-qPCR) to examine the distribution of the four ADORs in the normal monkey eye to help elucidate potential mechanisms of action. Eyes were enucleated from six Rhesus monkeys. Anterior segments and eyecups were separated into components and flash-frozen for RNA extraction or fixed in 4% paraformaldehyde and processed for immunohistochemistry against ADORA1, ADORA2a, ADORA2b, and ADORA3. RNA was reverse-transcribed, and qPCR was performed using custom primers. Relative gene expression was calculated using the ΔΔCt method normalizing to liver expression, and statistical analysis was performed using Relative Expression Software Tool. ADORA1 immunostaining was highest in the iris sphincter muscle, trabecular meshwork, ciliary epithelium, and retinal nerve fiber layer. ADORA2a immunostaining was highest in the corneal epithelium, trabecular meshwork, ciliary epithelium, retinal nerve fiber layer, and scleral fibroblasts. ADORA2b immunostaining was highest in corneal basal epithelium, limbal stem cells, iris sphincter, ciliary muscle, ciliary epithelium, choroid, isolated retinal ganglion cells and scattered scleral fibroblasts. ADORA3 immunostaining was highest in the iris sphincter, ciliary muscle, ciliary epithelium, choroid, isolated retinal ganglion cells, and scleral fibroblasts. Compared to liver mRNA, ADORA1 mRNA was significantly higher in the brain, retina and choroid, and significantly lower in the iris/ciliary body. ADORA2a expression was higher in brain and retina, ADORA2b expression was higher in retina, and ADORA3 was higher in the choroid. In conclusion, immunohistochemistry and RT-qPCR indicated differential patterns of expression of the four adenosine receptors in the ocular tissues of the normal non-human primate. The presence of ADORs in scleral fibroblasts and the choroid may support mechanisms by which ADOR antagonists prevent myopia. The potential effects of ADOR inhibition on both anterior and posterior ocular structures warrant investigation.
Collapse
Affiliation(s)
- Krista M Beach
- University of Houston College of Optometry, 4901 Calhoun Rd, Houston, TX 77204, USA
| | - Li-Fang Hung
- University of Houston College of Optometry, 4901 Calhoun Rd, Houston, TX 77204, USA
| | - Baskar Arumugam
- University of Houston College of Optometry, 4901 Calhoun Rd, Houston, TX 77204, USA
| | - Earl L Smith
- University of Houston College of Optometry, 4901 Calhoun Rd, Houston, TX 77204, USA
| | - Lisa A Ostrin
- University of Houston College of Optometry, 4901 Calhoun Rd, Houston, TX 77204, USA.
| |
Collapse
|
34
|
Kim S, Lee YK, Hong JH, Park J, Choi Y, Lee DU, Choi J, Sym SJ, Kim S, Khang D. Mutual Destruction of Deep Lung Tumor Tissues by Nanodrug-Conjugated Stealth Mesenchymal Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700860. [PMID: 29876212 PMCID: PMC5979625 DOI: 10.1002/advs.201700860] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/29/2018] [Indexed: 05/11/2023]
Abstract
Lung cancer is a highly malignant tumor, and targeted delivery of anti-cancer drugs to deep lung tumor tissue remains a challenge in drug design. Here, it is demonstrated that bone marrow mesenchymal stem cells armed with nanodrugs are highly targeted and mutually destructive with malignant lung cancer cells and successfully eradicate lung tumors tissues. Using this approach, the current clinical dose of anti-cancer drugs for the treatment of malignant lung tumors can be decreased by more than 100-fold without triggering immunotoxicity.
Collapse
Affiliation(s)
- Sang‐Woo Kim
- Lee Gil Ya Cancer and Diabetes InstituteGachon UniversityIncheon21999South Korea
| | - Yeon Kyung Lee
- Lee Gil Ya Cancer and Diabetes InstituteGachon UniversityIncheon21999South Korea
| | - Jeong Hee Hong
- Lee Gil Ya Cancer and Diabetes InstituteGachon UniversityIncheon21999South Korea
- Department of PhysiologySchool of MedicineGachon UniversityIncheon21999South Korea
| | - Jun‐Young Park
- Lee Gil Ya Cancer and Diabetes InstituteGachon UniversityIncheon21999South Korea
| | - Young‐Ae Choi
- Department of PharmacologySchool of MedicineKyungpook National UniversityDaegu41566South Korea
| | - Dong Un Lee
- Lee Gil Ya Cancer and Diabetes InstituteGachon UniversityIncheon21999South Korea
| | - Jungil Choi
- Gyeongnam Department of Environmental Toxicology and ChemistryKorea Institute of ToxicologyJinju52834South Korea
| | - Sun Jin Sym
- Division of Hematology and OncologySchool of MedicineGachon University and Gil HospitalIncheon21565South Korea
| | - Sang‐Hyun Kim
- Department of PharmacologySchool of MedicineKyungpook National UniversityDaegu41566South Korea
| | - Dongwoo Khang
- Lee Gil Ya Cancer and Diabetes InstituteGachon UniversityIncheon21999South Korea
- Department of PhysiologySchool of MedicineGachon UniversityIncheon21999South Korea
| |
Collapse
|
35
|
Pal China S, Pal S, Chattopadhyay S, Porwal K, Mittal M, Sanyal S, Chattopadhyay N. The wakefulness promoting drug Modafinil causes adenosine receptor-mediated upregulation of receptor activator of nuclear factor κB ligand in osteoblasts: Negative impact of the drug on peak bone accrual in rats. Toxicol Appl Pharmacol 2018; 348:22-31. [PMID: 29649498 DOI: 10.1016/j.taap.2018.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022]
Abstract
Modafinil is primarily prescribed for treatment of narcolepsy and other sleep-associated disorders. However, its off-prescription use as a cognition enhancer increased considerably, specially among youths. Given its increasing use in young adults the effect of modafinil on peak bone accrual is an important issue but has never been investigated. Modafinil treatment to young male rats caused trabecular and cortical bone loss in tibia and femur, and reduction in biomechanical strength. Co-treatment of modafinil with alendronate (a drug that suppresses bone resorption) reversed the trabecular bone loss but failed to prevent cortical loss. Modafinil increased serum type 1 pro-collagen N-terminal protein (P1NP) and collagen type 1 cross-linked C-telopeptide (CTX-1) indicating a high turnover bone loss. The drug also increased receptor activator of nuclear factor κB ligand (RANKL) to osteoprotegerin (OPG) ratio in serum which likely resulted in increased osteoclast number per bone surface. Furthermore, conditioned medium from modafinil treated osteoblasts increased the expression of osteoclastogenic genes in bone marrow-derived macrophages and the effect was blocked by RANKL neutralizing antibody. In primary osteoblasts, modafinil stimulated cAMP production and using pharmacological approach, we showed that modafinil signalled via adenosine receptors (A2AR and A2BR) which resulted in increased RANKL expression. ZM-241,385 (an A2AR inhibitor) and MRS 1754 (an A2BR inhibitor) suppressed modafinil-induced upregulation of RANKL/OPG ratio in the calvarium of new born rat pups. Our data suggests that by activating osteoblast adenosine receptors modafinil increases the production of osteoclastogenic cytokine, RANKL that in turn results in high turnover bone loss in young rats.
Collapse
Affiliation(s)
- Shyamsundar Pal China
- Division of Endocrinology, Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India; AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow 226031, India
| | - Subhashis Pal
- Division of Endocrinology, Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India
| | - Sourav Chattopadhyay
- AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow 226031, India; Division of Biochemistry, CSIR-CDRI, Lucknow 226031, India
| | - Konica Porwal
- Division of Endocrinology, Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India
| | - Monika Mittal
- Division of Endocrinology, Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India; AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow 226031, India
| | - Sabyasachi Sanyal
- AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow 226031, India; Division of Biochemistry, CSIR-CDRI, Lucknow 226031, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology, Center for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CDRI), Council of Scientific and Industrial Research (CSIR), Lucknow 226031, India; AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow 226031, India.
| |
Collapse
|
36
|
Abbasi A, Kukia NR, Froushani SMA, Hashemi SM. Nicotine and caffeine alter the effects of the LPS- primed mesenchymal stem cells on the co-cultured neutrophils. Life Sci 2018. [DOI: 10.1016/j.lfs.2018.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
37
|
Mediero A, Wilder T, Shah L, Cronstein BN. Adenosine A 2A receptor (A2AR) stimulation modulates expression of semaphorins 4D and 3A, regulators of bone homeostasis. FASEB J 2018; 32:3487-3501. [PMID: 29394106 DOI: 10.1096/fj.201700217r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The axonal guidance proteins semaphorin (Sema)4D and Sema3A play important roles in communication between osteoclasts and osteoblasts. As stimulation of adenosine A2A receptors (A2AR) regulates both osteoclast and osteoblast function, we asked whether A2AR regulates both osteoclast and osteoblast expression of Semas. In vivo bone formation and Sema3A/PlexinA1/Neuropilin-1, Sema4D/PlexinB1 protein expression were studied in a murine model of wear particle-induced osteolysis. Osteoclast/osteoblast differentiation were studied in vitro as the number of tartrate-resistant acid phosphatase+/Alizarin Red+ cells after challenge with CGS21680 (A2AR agonist, 1 µM) or ZM241385 (A2AR antagonist, 1 µM), with or without Sema4D or Sema3A (10 ng/ml). Sema3A/PlexinA1/Neuropilin-1, Sema4D/PlexinB1, and receptor activator of NF-κB ligand/osteoprotegerin (RANKL/OPG) expression was studied by RT-PCR and Western blot. β-Catenin activation and cytoskeleton changes were studied by fluorescence microscopy and Western blot. In mice with wear particles implanted over the calvaria, CGS21680 treatment increased bone formation in vivo, reduced Sema4D, and increased Sema3A expression compared with mice with wear particle-induced osteolysis treated with vehicle alone. During osteoclast differentiation, CGS21680 abrogated RANKL-induced Sema4D mRNA expression (1.3 ± 0.3- vs. 2.5 ± 0.1-fold change, P < 0.001, n = 4). PlexinA1, but not Neuropilin-1, mRNA was enhanced by CGS21680 treatment. CGS21680 enhanced Sema3A mRNA expression during osteoblast differentiation (8.7 ± 0.2-fold increase, P < 0.001, n = 4); PlexinB1 mRNA was increased 2-fold during osteoblast differentiation and was not altered by CGS21680. Similar changes were observed at the protein level. CGS21680 decreased RANKL, increased OPG, and increased total/nuclear β-catenin expression in osteoblasts. Sema4D increased Ras homolog gene family, member A phosphorylation and focal adhesion kinase activation in osteoclast precursors, and CGS21680 abrogated these effects. In summary, A2AR activation diminishes secretion of Sema4D by osteoclasts, inhibits Sema4D-mediated osteoclast activation, and enhances secretion of Sema3A by osteoblasts, increasing osteoblast differentiation and diminishing inflammatory osteolysis.-Mediero, A., Wilder, T., Shah, L., Cronstein, B. N. Adenosine A2A receptor (A2AR) stimulation modulates expression of semaphorins 4D and 3A, regulators of bone homeostasis.
Collapse
Affiliation(s)
- Aránzazu Mediero
- Division of Translational Medicine, Department of Medicine, New York University-Langone Medical Center, New York, New York, USA; and.,Bone and Joint Research Unit, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Madrid, Spain
| | - Tuere Wilder
- Division of Translational Medicine, Department of Medicine, New York University-Langone Medical Center, New York, New York, USA; and
| | - Lopa Shah
- Division of Translational Medicine, Department of Medicine, New York University-Langone Medical Center, New York, New York, USA; and
| | - Bruce N Cronstein
- Division of Translational Medicine, Department of Medicine, New York University-Langone Medical Center, New York, New York, USA; and
| |
Collapse
|
38
|
Theobromine suppresses adipogenesis through enhancement of CCAAT-enhancer-binding protein β degradation by adenosine receptor A1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2438-2448. [DOI: 10.1016/j.bbamcr.2017.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/11/2017] [Accepted: 09/26/2017] [Indexed: 12/27/2022]
|
39
|
Bradaschia-Correa V, Josephson AM, Egol AJ, Mizrahi MM, Leclerc K, Huo J, Cronstein BN, Leucht P. Ecto-5'-nucleotidase (CD73) regulates bone formation and remodeling during intramembranous bone repair in aging mice. Tissue Cell 2017; 49:545-551. [PMID: 28720305 PMCID: PMC5656528 DOI: 10.1016/j.tice.2017.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 11/19/2022]
Abstract
Ecto-5'-nucleotidase (CD73) generates adenosine, an osteoblast activator and key regulator of skeletal growth. It is unknown, however, if CD73 regulates osteogenic differentiation during fracture healing in adulthood, and in particular how CD73 activity regulates intramembranous bone repair in the elderly. Monocortical tibial defects were created in 46-52-week-old wild type (WT) and CD73 knock-out mice (CD73-/-) mice. Injury repair was analyzed at post-operative days 5, 7, 14 and 21 by micro-computed tomography (micro-CT), histomorphometry, proliferating cell nuclear antigen (PCNA) immunostaining, alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) histochemistry. Middle-aged CD73 knock-out mice exhibited delayed bone regeneration and significantly reduced bone matrix deposition detected by histomorphometry and micro-CT. Cell proliferation, ALP activity and osteoclast number were reduced in the CD73-/- mice, suggesting a combined defect in bone formation and resorption due the absence of CD73 activity in this model of intramembranous bone repair. Results from this study demonstrate that osteoblast activation through CD73 activity is essential during bone repair in aging mice, and it may present a drugable target for future biomimetic therapeutic approaches that aim at enhancing bone formation in the elderly patients.
Collapse
Affiliation(s)
- Vivian Bradaschia-Correa
- Department of Orthopaedic Surgery, New York University Langone Medical Center - Hospital for Joint Diseases, New York, NY, USA
| | - Anne M Josephson
- Department of Orthopaedic Surgery, New York University Langone Medical Center - Hospital for Joint Diseases, New York, NY, USA
| | - Alexander J Egol
- Department of Orthopaedic Surgery, New York University Langone Medical Center - Hospital for Joint Diseases, New York, NY, USA
| | - Matthew M Mizrahi
- Department of Orthopaedic Surgery, New York University Langone Medical Center - Hospital for Joint Diseases, New York, NY, USA
| | - Kevin Leclerc
- Department of Orthopaedic Surgery, New York University Langone Medical Center - Hospital for Joint Diseases, New York, NY, USA
| | - Jason Huo
- Department of Orthopaedic Surgery, New York University Langone Medical Center - Hospital for Joint Diseases, New York, NY, USA
| | - Bruce N Cronstein
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Philipp Leucht
- Department of Orthopaedic Surgery, New York University Langone Medical Center - Hospital for Joint Diseases, New York, NY, USA; Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
40
|
Shushtari N, Abtahi Froushani SM. Caffeine Augments The Instruction of Anti-Inflammatory Macrophages by The Conditioned Medium of Mesenchymal Stem Cells. CELL JOURNAL 2017; 19:415-424. [PMID: 28836403 PMCID: PMC5570406 DOI: 10.22074/cellj.2017.4364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 08/07/2016] [Indexed: 12/14/2022]
Abstract
Objective Mesenchymal stem cells (MSCs) have been shown to produce adenosine,
express adenosine receptors, and communicate with macrophages and other cells. However, there is no information about the role of caffeine, as a popular drink and adenosine
antagonist, on the crosstalk between MSCs and immune cells. The aim of the current
study is to evaluate the effects of the conditioned medium of MSCs treated with caffeine
on macrophages.
Materials and Methods In this experimental study, MSCs were isolated from bone
marrow of rats and pulsed with different concentrations of caffeine (0, 0.1, 0.5 and
1 mM) for 72 hours. The conditioned medium of MSCs was collected after 24 hours,
then incubated with macrophages for 24 hours. Finally, the functions of the macrophages were evaluated.
Results Conditioned medium of MSCs treated with caffeine significantly enhanced
phagocytosis and simultaneously regressed expression of reactive oxygen species
(ROS) and nitric oxide (NO) as well as IL-12 by macrophages compared to the supernatants of MSCs alone. The conditioned medium of MSCs pulsed with caffeine at
low to moderate concentrations preserved the neutral red uptake by macrophages
and elevated IL-10 secretion by macrophages. A high concentration of caffeine could
interfere with the two latter effects of supernatants of MSCs on the macrophages.
Conclusion Collectively, caffeine treatment of MSCs appeared to augment the instruction of anti-inflammatory macrophages by conditioned medium of MSCs. These findings
might offer new insight into the potential mechanisms that underlie the immunomodulatory
and anti-inflammatory effects of caffeine.
Collapse
Affiliation(s)
- Nazanin Shushtari
- Division of Immunology, Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | |
Collapse
|
41
|
Naasani LIS, Rodrigues C, de Campos RP, Beckenkamp LR, Iser IC, Bertoni APS, Wink MR. Extracellular Nucleotide Hydrolysis in Dermal and Limbal Mesenchymal Stem Cells: A Source of Adenosine Production. J Cell Biochem 2017; 118:2430-2442. [PMID: 28120532 DOI: 10.1002/jcb.25909] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/23/2017] [Indexed: 01/20/2023]
Abstract
Human Limbal (L-MSCs) and Dermal Mesenchymal Stem Cell (D-MSCs) possess many properties that increase their therapeutic potential in ophthalmology and dermatology. It is known that purinergic signaling plays a role in many aspects of mesenchymal stem cells physiology. They release and respond to purinergic ligands, altering proliferation, migration, differentiation, and apoptosis. Therefore, more information on these processes would be crucial for establishing future clinical applications using their differentiation potential, but without undesirable side effects. This study evaluated and compared the expression of ecto-nucleotidases, the enzymatic activity of degradation of extracellular nucleotides and the metabolism of extracellular ATP in D-MSCs and L-MSCs, isolated from discard tissues of human skin and sclerocorneal rims. The D-MSCs and L-MSCs showed a differentiation potential into osteogenic, adipogenic, and chondrogenic lineages and the expression of markers CD105+ , CD44+ , CD14- , CD34- , CD45- , as expected. Both cells hydrolyzed low levels of extracellular ATP and high levels of AMP, leading to adenosine accumulation that can regulate inflammation and tissue repair. These cells expressed mRNA for ENTPD1, 2, 3, 5 and 6, and CD73 that corresponded to the observed enzymatic activities. Thus, considering the degradation of ATP and adenosine production, limbal MSCs are very similar to dermal MSCs, indicating that from the aspect of extracellular nucleotide metabolism L-MSCs are very similar to the characterized D-MSCs. J. Cell. Biochem. 118: 2430-2442, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Liliana I Sous Naasani
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brasil
| | - Cristiano Rodrigues
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brasil
| | - Rafael Paschoal de Campos
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brasil
| | - Liziane Raquel Beckenkamp
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brasil
| | - Isabele C Iser
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brasil
| | - Ana Paula Santin Bertoni
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brasil
| | - Márcia R Wink
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brasil
| |
Collapse
|
42
|
Czarnecka J, Porowińska D, Bajek A, Hołysz M, Roszek K. Neurogenic Differentiation of Mesenchymal Stem Cells Induces Alterations in Extracellular Nucleotides Metabolism. J Cell Biochem 2016; 118:478-486. [PMID: 27472650 DOI: 10.1002/jcb.25664] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/28/2016] [Indexed: 01/06/2023]
Abstract
The presented results show for the first time that the neurogenic transdifferentiation of hUC-MSCs considerably changes the elements of purinergic signaling profile. Although, it has been demonstrated in the literature that extracellular nucleotides and nucleosides determine the fate of mesenchymal and neural stem cells, there is lack of comprehensive studies on the activity of ecto-enzymes metabolizing nucleotides on the surface of neurogenically induced cells. Our study shows that human UC-MSCs sense the microenvironment and adjust their response to the environmental signals for example, adenine nucleotides and nucleosides. Nucleotides, and not adenosine, signaling alters the biological potential of MSCs-decreases their proliferation rate, increases the neurogenic transdifferentiation efficiency expressed as the number of positively labeled NCAM+ and A2B5+ cells and simultaneously increases the ecto-nucleotidases activity on neural- and glial-committed precursors. Purines implication in the proliferative and neurogenic potential of hUC-MSCs is of strong importance for the in vitro propagation of hUC-MSCs and for their successive therapeutic applications. J. Cell. Biochem. 118: 478-486, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joanna Czarnecka
- Department of Biochemistry, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Torun, Poland
| | - Dorota Porowińska
- Department of Biochemistry, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Torun, Poland
| | - Anna Bajek
- Department of Tissue Engineering, Chair of Urology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Marcin Hołysz
- Department of Biochemistry and Molecular Biology, Karol Marcinkowski Medical University, Poznan, Poland
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
43
|
Roszek K, Porowińska D, Bajek A, Hołysz M, Czarnecka J. Chondrogenic Differentiation of Human Mesenchymal Stem Cells Results in Substantial Changes of Ecto-Nucleotides Metabolism. J Cell Biochem 2016; 116:2915-23. [PMID: 26018728 DOI: 10.1002/jcb.25239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/20/2015] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) are population of adult stem cells and attractive candidates for cartilage repair due to their chondrogenic potential. Purinergic compounds (purinergic receptors and ecto-enzymes metabolizing nucleotides), together with nucleotides/nucleosides present in the extracellular environment, are known to play a key role in controlling the stem cells biological potential to proliferate and differentiate. Despite the available literature pointing to the importance of purinergic signaling in controlling the fate of MSCs, the research results linking nucleotides and ecto-nucleotidases with MSCs chondrogenic differentiation are indigent. Therefore, the aim of presented study was the characterization of the ecto-nucleotides hydrolysis profile and ecto-enzymes expression in human umbilical cord-derived MSCs and chondrogenically induced MSCs. We described substantial changes of ecto-nucleotides metabolism and ecto-enzymes expression profiles resulting from chondrogenic differentiation of human umbilical cord-derived MSCs. The increased rate of ADP hydrolysis, measured by ecto-nucleotidases activity, plays a pivotal role in the regulation of cartilage formation and resorption. Despite the increased level of NTPDase1 and NTPDase3 mRNA expression in chondrogenically induced MSCs, their activity toward ATP remains quite low. Supported by the literature data, we hypothesize that structure-function relationships in chondrogenic lineage dictate the direction of nucleotides metabolism. In early neocartilage tissue, the beneficial role of ATP in improving biomechanical properties of cartilage does not necessitate the high rate of enzymatic ATP degradation.
Collapse
Affiliation(s)
- Katarzyna Roszek
- Department of Biochemistry, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Torun, Poland
| | - Dorota Porowińska
- Department of Biochemistry, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Torun, Poland
| | - Anna Bajek
- Department of Tissue Engineering, Chair of Regenerative Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Marcin Hołysz
- Department of Biochemistry and Molecular Biology, Karol Marcinkowski Medical University, Poznan, Poland
| | - Joanna Czarnecka
- Department of Biochemistry, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
44
|
Roszek K, Makowska N, Czarnecka J, Porowińska D, Dąbrowski M, Danielewska J, Nowak W. Canine Adipose-Derived Stem Cells: Purinergic Characterization and Neurogenic Potential for Therapeutic Applications. J Cell Biochem 2016; 118:58-65. [PMID: 27225588 DOI: 10.1002/jcb.25610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/24/2016] [Indexed: 12/13/2022]
Abstract
The presented results evidence that canine adipose-derived stem cells (ADSCs) represent the premature population of stem cells with great biological potential and properties. ADCS are easy to obtain and culture, able to differentiate into the neurogenic lineage as well as it is easy to control their proliferation rate with nucleotides and nucleosides or analogues. We report that in vitro cultured canine ADSCs response to adenosine- and ATP-mediated stimulation. Differences in canine ADSCs and human mesenchymal stem cells in ecto-nucleotidase activity have been observed. The ecto-nucleotidase activity changes during ADSCs in vitro transdifferentiation into neurogenic lineage are fast and simple to analyze. Therefore, the simple analysis of ecto-enzymes activity allows for verification of the stem cells quality: their stemness or initiation of the differentiation process. The biological potential of the cells isolated from canine fat, as well as the good quality control of this cell culture, make them a promising tool for both experimental and therapeutic usage. J. Cell. Biochem. 118: 58-65, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Katarzyna Roszek
- Faculty of Biology and Environment Protection, Department of Biochemistry, Nicolaus Copernicus University, Torun, Poland
| | - Noemi Makowska
- Faculty of Biology and Environment Protection, Department of Biochemistry, Nicolaus Copernicus University, Torun, Poland
| | - Joanna Czarnecka
- Faculty of Biology and Environment Protection, Department of Biochemistry, Nicolaus Copernicus University, Torun, Poland
| | - Dorota Porowińska
- Faculty of Biology and Environment Protection, Department of Biochemistry, Nicolaus Copernicus University, Torun, Poland
| | - Marcin Dąbrowski
- Faculty of Physics, Astronomy and Computer Science, Department of Biophysics and Medical Physics, Institute of Physics, Nicolaus Copernicus University, Torun, Poland.,Faculty of Biology and Environment Protection, Department of Biophysics, Nicolaus Copernicus University, Torun, Poland
| | | | - Wiesław Nowak
- Faculty of Physics, Astronomy and Computer Science, Department of Biophysics and Medical Physics, Institute of Physics, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
45
|
Sah SK, Park KH, Yun CO, Kang KS, Kim TY. Effects of Human Mesenchymal Stem Cells Transduced with Superoxide Dismutase on Imiquimod-Induced Psoriasis-Like Skin Inflammation in Mice. Antioxid Redox Signal 2016; 24:233-48. [PMID: 26462411 PMCID: PMC4753626 DOI: 10.1089/ars.2015.6368] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIMS The immunomodulatory and anti-inflammatory properties of mesenchymal stem cells (MSCs) have been proposed in several autoimmune diseases and successfully tested in animal models, but their contribution to psoriasis and underlying pathways remains elusive. Likewise, an increased or prolonged presence of reactive oxygen species and aberrant antioxidant systems in skin are known to contribute to the development of psoriasis and therefore effective antioxidant therapy is highly required. We explored the feasibility of using extracellular superoxide dismutase (SOD3)-transduced allogeneic MSCs as a novel therapeutic approach in a mouse model of imiquimod (IMQ)-induced psoriasis-like inflammation and investigated the poorly understood underlying mechanism. In addition, the chronicity and late-phase response of inflammation were evaluated during continued activation of antigen receptors by applying a booster dose of IMQ. RESULTS Subcutaneous injection of allogeneic SOD3-transduced MSCs significantly prevented psoriasis development in our IMQ-induced mouse model, likely through a suppression of proliferation and infiltration of various effector cells into skin with a concomitant modulated cytokine and chemokine expression and inhibition of signaling pathways such as toll-like receptor-7, nuclear factor-kappa B, p38 mitogen-activated kinase, and Janus kinase-signal transducer and activator of transcription, as well as adenosine receptor activation. INNOVATION AND CONCLUSION Our data offer a novel therapeutic approach to chronic inflammatory skin diseases such as psoriasis by leveraging immunomodulatory effects of MSCs as well as SOD3 expression.
Collapse
Affiliation(s)
- Shyam Kishor Sah
- 1 Laboratory of Dermato-Immunology, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea , Seoul, Republic of Korea
| | - Kyung Ho Park
- 2 Biological Sciences Center, University of Minnesota Twin Cities , St. Paul, Minnesota
| | - Chae-Ok Yun
- 3 Department of Bioengineering, College of Engineering, Hanyang University , Seoul, Republic of Korea
| | - Kyung-Sun Kang
- 4 Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University , Seoul, Republic of Korea
| | - Tae-Yoon Kim
- 1 Laboratory of Dermato-Immunology, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea , Seoul, Republic of Korea
| |
Collapse
|
46
|
Noronha-Matos JB, Correia-de-Sá P. Mesenchymal Stem Cells Ageing: Targeting the "Purinome" to Promote Osteogenic Differentiation and Bone Repair. J Cell Physiol 2016; 231:1852-61. [PMID: 26754327 DOI: 10.1002/jcp.25303] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 01/07/2016] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into bone forming cells. Such ability is compromised in elderly individuals resulting in bone disorders such as osteoporosis, also limiting their clinical usage for cell transplantation and bone tissue engineering strategies. In bone marrow niches, adenine and uracil nucleotides are important local regulators of osteogenic differentiation of MSCs. Nucleotides can be released to the extracellular milieu under both physiological and pathological conditions via (1) membrane cell damage, (2) vesicle exocytosis, (3) ATP-binding cassette transporters, and/or (4) facilitated diffusion through maxi-anion channels, hemichannels or ligand-gated receptor pores. Nucleotides and their derivatives act via adenosine P1 (A1 , A2A , A2B , and A3 ) and nucleotide-sensitive P2 purinoceptors comprising ionotropic P2X and G-protein-coupled P2Y receptors. Purinoceptors activation is terminated by membrane-bound ecto-nucleotidases and other ecto-phosphatases, which rapidly hydrolyse extracellular nucleotides to their respective nucleoside 5'-di- and mono-phosphates, nucleosides and free phosphates, or pyrophosphates. Current knowledge suggests that different players of the "purinome" cascade, namely nucleotide release sites, ecto-nucleotidases and purinoceptors, orchestrate to fine-tuning regulate the activity of MSCs in the bone microenvironment. Increasing studies, using osteoprogenitor cell lines, animal models and, more recently, non-modified MSCs from postmenopausal women, raised the possibility to target chief components of the purinergic signaling pathway to regenerate the ability of aged MSCs to differentiate into functional osteoblasts. This review summarizes the main findings of those studies, prompting for novel therapeutic strategies to control ageing disorders where bone destruction exceeds bone formation, like osteoporosis, rheumatoid arthritis, and fracture mal-union. J. Cell. Physiol. 231: 1852-1861, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- J B Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia-Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Portugal
| | - P Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia-Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Portugal
| |
Collapse
|
47
|
Caplan AI, Sorrell JM. The MSC curtain that stops the immune system. Immunol Lett 2015; 168:136-9. [DOI: 10.1016/j.imlet.2015.06.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/04/2015] [Indexed: 01/08/2023]
|
48
|
Cavaliere F, Donno C, D'Ambrosi N. Purinergic signaling: a common pathway for neural and mesenchymal stem cell maintenance and differentiation. Front Cell Neurosci 2015; 9:211. [PMID: 26082684 PMCID: PMC4451364 DOI: 10.3389/fncel.2015.00211] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/16/2015] [Indexed: 01/25/2023] Open
Abstract
Extracellular ATP, related nucleotides and adenosine are among the earliest signaling molecules, operating in virtually all tissues and cells. Through their specific receptors, namely purinergic P1 for nucleosides and P2 for nucleotides, they are involved in a wide array of physiological effects ranging from neurotransmission and muscle contraction to endocrine secretion, vasodilation, immune response, and fertility. The purinergic system also participates in the proliferation and differentiation of stem cells from different niches. In particular, both mesenchymal stem cells (MSCs) and neural stem cells are endowed with several purinergic receptors and ecto-nucleotide metabolizing enzymes, and release extracellular purines that mediate autocrine and paracrine growth/proliferation, pro- or anti-apoptotic processes, differentiation-promoting effects and immunomodulatory actions. Here, we discuss the often opposing roles played by ATP and adenosine in adult neurogenesis in both physiological and pathological conditions, as well as in adipogenic and osteogenic MSC differentiation. We also focus on how purinergic ligands produced and released by transplanted stem cells can be regarded as ideal candidates to mediate the crosstalk with resident stem cell niches, promoting cell growth and survival, regulating inflammation and, therefore, contributing to local tissue homeostasis and repair.
Collapse
Affiliation(s)
- Fabio Cavaliere
- Department of Neuroscience, Achucarro Basque Center for Neuroscience, CIBERNED and University of Basque Country, Leioa Spain
| | - Claudia Donno
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome Italy
| | - Nadia D'Ambrosi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome Italy
| |
Collapse
|
49
|
Fletcher AL, Elman JS, Astarita J, Murray R, Saeidi N, D'Rozario J, Knoblich K, Brown FD, Schildberg FA, Nieves JM, Heng TSP, Boyd RL, Turley SJ, Parekkadan B. Lymph node fibroblastic reticular cell transplants show robust therapeutic efficacy in high-mortality murine sepsis. Sci Transl Med 2015; 6:249ra109. [PMID: 25122637 DOI: 10.1126/scitranslmed.3009377] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sepsis is an aggressive inflammatory syndrome and a global health burden estimated to kill 7.3 million people annually. Single-target molecular therapies have not addressed the multiple disease pathways triggered by septic injury. Cell therapies might offer a broader set of mechanisms of action that benefit complex, multifocal disease processes. We describe a population of immune-specialized myofibroblasts derived from lymph node tissue, termed fibroblastic reticular cells (FRCs). Because FRCs have an immunoregulatory function in lymph nodes, we hypothesized that ex vivo-expanded FRCs would control inflammation when administered therapeutically. Indeed, a single injection of ex vivo-expanded allogeneic FRCs reduced mortality in mouse models of sepsis when administered at early or late time points after septic onset. Mice treated with FRCs exhibited lower local and systemic concentrations of proinflammatory cytokines and reduced bacteremia. When administered 4 hours after induction of lipopolysaccharide endotoxemia, or cecal ligation and puncture (CLP) sepsis in mice, FRCs reduced deaths by at least 70%. When administered late in disease (16 hours after CLP), FRCs still conveyed a robust survival advantage (44% survival compared to 0% for controls). FRC therapy was dependent on the metabolic activity of nitric oxide synthase 2 (NOS2) as the primary molecular mechanism of drug action in the mice. Together, these data describe a new anti-inflammatory cell type and provide preclinical evidence for therapeutic efficacy in severe sepsis that warrants further translational study.
Collapse
Affiliation(s)
- Anne L Fletcher
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA. Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA. Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia. School of Immunity and Infection, University of Birmingham, Birmingham B15 2TT, UK.
| | - Jessica S Elman
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Jillian Astarita
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA. Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ryan Murray
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Nima Saeidi
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Joshua D'Rozario
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Konstantin Knoblich
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Flavian D Brown
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA. Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Frank A Schildberg
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA. Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Janice M Nieves
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA. Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Tracy S P Heng
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Richard L Boyd
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Shannon J Turley
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA. Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Biju Parekkadan
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospitals for Children, Boston, MA 02114, USA. Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
50
|
Mediero A, Wilder T, Perez-Aso M, Cronstein BN. Direct or indirect stimulation of adenosine A2A receptors enhances bone regeneration as well as bone morphogenetic protein-2. FASEB J 2015; 29:1577-90. [PMID: 25573752 PMCID: PMC4396602 DOI: 10.1096/fj.14-265066] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/10/2014] [Indexed: 12/11/2022]
Abstract
Promoting bone regeneration and repair of bone defects is a need that has not been well met to date. We have previously found that adenosine, acting via A2A receptors (A2AR) promotes wound healing and inhibits inflammatory osteolysis and hypothesized that A2AR might be a novel target to promote bone regeneration. Therefore, we determined whether direct A2AR stimulation or increasing endogenous adenosine concentrations via purine transport blockade with dipyridamole regulates bone formation. We determined whether coverage of a 3 mm trephine defect in a mouse skull with a collagen scaffold soaked in saline, bone morphogenetic protein-2 (BMP-2; 200 ng), 1 μM CGS21680 (A2AR agonist, EC50 = 160 nM), or 1 μM dipyridamole (EC50 = 32 nM) promoted bone regeneration. Microcomputed tomography examination demonstrated that CGS21680 and dipyridamole markedly enhanced bone regeneration as well as BMP-2 8 wk after surgery (60 ± 2%, 79 ± 2%, and 75 ± 1% bone regeneration, respectively, vs. 32 ± 2% in control, P < 0.001). Blockade by a selective A2AR antagonist (ZM241385, 1 μM) or deletion of A2AR abrogated the effect of CGS21680 and dipyridamole on bone regeneration. Both CGS21680 and dipyridamole treatment increased alkaline phosphatase-positive osteoblasts and diminished tartrate resistance acid phosphatase-positive osteoclasts in the defects. In vivo imaging with a fluorescent dye for new bone formation revealed a strong fluorescent signal in treated animals that was equivalent to BMP-2. In conclusion, stimulation of A2AR by specific agonists or by increasing endogenous adenosine levels stimulates new bone formation as well as BMP-2 and represents a novel approach to stimulating bone regeneration.
Collapse
Affiliation(s)
- Aránzazu Mediero
- Divisions of Translational Medicine and Rheumatology, Department of Medicine, New York University Langone Medical Center, New York, New York, USA
| | - Tuere Wilder
- Divisions of Translational Medicine and Rheumatology, Department of Medicine, New York University Langone Medical Center, New York, New York, USA
| | - Miguel Perez-Aso
- Divisions of Translational Medicine and Rheumatology, Department of Medicine, New York University Langone Medical Center, New York, New York, USA
| | - Bruce N Cronstein
- Divisions of Translational Medicine and Rheumatology, Department of Medicine, New York University Langone Medical Center, New York, New York, USA
| |
Collapse
|