1
|
Nti B, Allen S. Neurocognitive manifestation after treatment of pediatric severe anaphylaxis. BMC Neurol 2025; 25:192. [PMID: 40307782 PMCID: PMC12044803 DOI: 10.1186/s12883-025-04177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/04/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Anaphylaxis is a common, severe, and life-threatening allergic reaction that occurs rapidly after exposure to an allergen which can affect multiple systems in the body. In rare cases, it may lead to additional neurological manifestations that are poorly understood. CASE PRESENTATION We present a case of a 14-year-old boy who experienced severe anaphylaxis necessitating airway intervention and admission to critical care. While his initial presentation and treatment aligned with current standards, he subsequently developed prolonged neurological deficits, including weakness, prosopagnosia, amnesia, and loss of basic functions, during an extended recovery period. CONCLUSION This rare neurological manifestation following anaphylaxis may be overlooked by many clinicians. Therefore, it is imperative to highlight this potential complication to improve the management of patients experiencing anaphylaxis.
Collapse
Affiliation(s)
- Benjamin Nti
- Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA.
| | | |
Collapse
|
2
|
Qian F, He R, Du X, Wei Y, Zhou Z, Fan J, He Y. Microglia and Astrocytes Responses Contribute to Alleviating Inflammatory Damage by Repetitive Transcranial Magnetic Stimulation in Rats with Traumatic Brain Injury. Neurochem Res 2024; 49:2636-2651. [PMID: 38909329 DOI: 10.1007/s11064-024-04197-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a therapeutic strategy that shows promise in ameliorating the clinical sequelae following traumatic brain injury (TBI). These improvements are associated with neuroplastic changes in neurons and their synaptic connections. However, it has been hypothesized that rTMS may also modulate microglia and astrocytes, potentially potentiating their neuroprotective capabilities. This study aims to investigate the effects of high-frequency rTMS on microglia and astrocytes that may contribute to its neuroprotective effects. Feeney's weight-dropping method was used to establish rat models of moderate TBI. To evaluate the neuroprotective effect of high frequency rTMS on rats by observing the synaptic ultrastructure and the level of neuron apoptosis. The levels of several important inflammation-related proteins within microglia and astrocytes were assessed through immunofluorescence staining and western blot. Our findings demonstrate that injured neurons can be rescued through the modulation of microglia and astrocytes by rTMS. This modulation plays a key role in preserving the synaptic ultrastructure and inhibiting neuronal apoptosis. Among microglia, we observed that rTMS inhibited the levels of proinflammatory factors (CD16, IL-6 and TNF-α) and promoted the levels of anti-inflammatory factors (CD206, IL-10 and TNF-β). rTMS also reduced the levels of pyroptosis within microglia and pyroptosis-related proteins (NLRP3, Caspase-1, GSDMD, IL-1β and IL-18). Moreover, rTMS downregulated P75NTR expression and up-regulated IL33 expression in astrocytes. These findings suggest that regulation of microglia and astrocytes is the mechanism through which rTMS attenuates neuronal inflammatory damage after moderate TBI.
Collapse
Affiliation(s)
- FangFang Qian
- Department of Rehabilitation Medicine, Guangdong Province, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Avenue, Guangzhou, 510515, China
| | - RenHong He
- Department of Rehabilitation Medicine, Guangdong Province, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Avenue, Guangzhou, 510515, China
| | - XiaoHui Du
- Department of Rehabilitation Medicine, Guangdong Province, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Avenue, Guangzhou, 510515, China
| | - Yi Wei
- Department of Rehabilitation Medicine, Guangdong Province, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Avenue, Guangzhou, 510515, China
| | - Zhou Zhou
- Department of Rehabilitation Medicine, Guangdong Province, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Avenue, Guangzhou, 510515, China
| | - JianZhong Fan
- Department of Rehabilitation Medicine, Guangdong Province, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Avenue, Guangzhou, 510515, China.
| | - YouHua He
- Department of Comprehensive Medical Treatment Ward, Guangdong Province, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Avenue, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Ho G, Lam L, Tran T, Wei J, Hashimoto M. Innate neuroimmunity across aging and neurodegeneration: a perspective from amyloidogenic evolvability. Front Cell Dev Biol 2024; 12:1430593. [PMID: 39071802 PMCID: PMC11272618 DOI: 10.3389/fcell.2024.1430593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024] Open
Abstract
In Alzheimer's Disease (AD), amyloidogenic proteins (APs), such as β-amyloid (Aβ) and tau, may act as alarmins/damage-associated molecular patterns (DAMPs) to stimulate neuroinflammation and cell death. Indeed, recent evidence suggests that brain-specific type 2 immune networks may be important in modulating amyloidogenicity and brain homeostasis. Central to this, components of innate neuroimmune signaling, particularly type 2 components, assume distinctly specialized roles in regulating immune homeostasis and brain function. Whereas balanced immune surveillance stems from normal type 2 brain immune function, appropriate microglial clearance of aggregated misfolded proteins and neurotrophic and synaptotrophic signaling, aberrant pro-inflammatory activity triggered by alarmins might disrupt this normal immune homeostasis with reduced microglial amyloid clearance, synaptic loss, and ultimately neurodegeneration. Furthermore, since increased inflammation may in turn cause neurodegeneration, it is predicted that AP aggregation and neuroinflammation could synergistically promote even more damage. The reasons for maintaining such adverse biological conditions which have not been weeded out during evolution remain unclear. Here, we discuss these issues from a viewpoint of amyloidogenic evolvability, namely, aEVO, a hypothetic view of an adaptation to environmental stress by AP aggregates. Speculatively, the interaction of AP aggregation and neuroinflammation for aEVO in reproduction, which is evolutionally beneficial, might become a co-activating relationship which promotes AD pathogenesis through antagonistic pleiotropy. If validated, simultaneously suppressing both AP aggregation and specific innate neuroinflammation could greatly increase therapeutic efficacy in AD. Overall, combining a better understanding of innate neuroimmunity in aging and disease with the aEVO hypothesis may help uncover novel mechanism of pathogenesis of AD, leading to improved diagnostics and treatments.
Collapse
Affiliation(s)
- Gilbert Ho
- PCND Neuroscience Research Institute, Poway, CA, United States
| | - Linh Lam
- PCND Neuroscience Research Institute, Poway, CA, United States
| | - Tony Tran
- PCND Neuroscience Research Institute, Poway, CA, United States
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, China
| | | |
Collapse
|
4
|
Kountouras J, Boziki M, Kazakos E, Theotokis P, Kesidou E, Nella M, Bakirtzis C, Karafoulidou E, Vardaka E, Mouratidou MC, Kyrailidi F, Tzitiridou-Chatzopoulou M, Orovou E, Giartza-Taxidou E, Deretzi G, Grigoriadis N, Doulberis M. Impact of Helicobacter pylori and metabolic syndrome on mast cell activation-related pathophysiology and neurodegeneration. Neurochem Int 2024; 175:105724. [PMID: 38508416 DOI: 10.1016/j.neuint.2024.105724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/03/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Both Helicobacter pylori (H. pylori) infection and metabolic syndrome (MetS) are highly prevalent worldwide. The emergence of relevant research suggesting a pathogenic linkage between H. pylori infection and MetS-related cardio-cerebrovascular diseases and neurodegenerative disorders, particularly through mechanisms involving brain pericyte deficiency, hyperhomocysteinemia, hyperfibrinogenemia, elevated lipoprotein-a, galectin-3 overexpression, atrial fibrillation, and gut dysbiosis, has raised stimulating questions regarding their pathophysiology and its translational implications for clinicians. An additional stimulating aspect refers to H. pylori and MetS-related activation of innate immune cells, mast cells (MC), which is an important, often early, event in systemic inflammatory pathologies and related brain disorders. Synoptically, MC degranulation may play a role in the pathogenesis of H. pylori and MetS-related obesity, adipokine effects, dyslipidemia, diabetes mellitus, insulin resistance, arterial hypertension, vascular dysfunction and arterial stiffness, an early indicator of atherosclerosis associated with cardio-cerebrovascular and neurodegenerative disorders. Meningeal MC can be activated by triggers including stress and toxins resulting in vascular changes and neurodegeneration. Likewise, H.pylori and MetS-related MC activation is linked with: (a) vasculitis and thromboembolic events that increase the risk of cardio-cerebrovascular and neurodegenerative disorders, and (b) gut dysbiosis-associated neurodegeneration, whereas modulation of gut microbiota and MC activation may promote neuroprotection. This narrative review investigates the intricate relationship between H. pylori infection, MetS, MC activation, and their collective impact on pathophysiological processes linked to neurodegeneration. Through a comprehensive search of current literature, we elucidate the mechanisms through which H. pylori and MetS contribute to MC activation, subsequently triggering cascades of inflammatory responses. This highlights the role of MC as key mediators in the pathogenesis of cardio-cerebrovascular and neurodegenerative disorders, emphasizing their involvement in neuroinflammation, vascular dysfunction and, ultimately, neuronal damage. Although further research is warranted, we provide a novel perspective on the pathophysiology and management of brain disorders by exploring potential therapeutic strategies targeting H. pylori eradication, MetS management, and modulation of MC to mitigate neurodegeneration risk while promoting neuroprotection.
Collapse
Affiliation(s)
- Jannis Kountouras
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece.
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Evangelos Kazakos
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Maria Nella
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Christos Bakirtzis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Eleni Karafoulidou
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Elisabeth Vardaka
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, Alexander Campus, 57400, Macedonia, Greece
| | - Maria C Mouratidou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Foteini Kyrailidi
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Maria Tzitiridou-Chatzopoulou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Eirini Orovou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; School of Healthcare Sciences, Midwifery Department, University of West Macedonia, Koila, Kozani, 50100, Macedonia, Greece
| | - Evaggelia Giartza-Taxidou
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece
| | - Georgia Deretzi
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Department of Neurology, Papageorgiou General Hospital, Thessaloniki, Macedonia, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Michael Doulberis
- Second Medical Clinic, School of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, 54642, Thessaloniki, Macedonia, Greece; Gastroklinik, Private Gastroenterological Practice, 8810, Horgen, Switzerland; Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, 5001, Aarau, Switzerland
| |
Collapse
|
5
|
Arora H, Javed B, Kutikuppala LVS, Chaurasia M, Khullar K, Kannan S, Golla V. ST2 levels and neurodegenerative diseases: is this a significant relation? Ann Med Surg (Lond) 2024; 86:2812-2817. [PMID: 38694387 PMCID: PMC11060292 DOI: 10.1097/ms9.0000000000001939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/29/2024] [Indexed: 05/04/2024] Open
Abstract
Interleukin-33 (IL-33), belonging to the interleukin-1 cytokine family, has a decoy receptor soluble ST2 (sST2). IL-33 is found in oligodendrocytes and astrocytes and is involved in central nervous system healing and repair, whereas ST2 is found in microglia and astrocytes. Some studies have found a link between changes in the IL-33/ST2 pathway and neurodegenerative disorders. This review article investigates the relationship between the interleukin-33 (IL-33)/ST2 pathway and neurodegenerative disorders. It was discovered that soluble st2 levels were increased. Furthermore, IL-33 levels were found to be lower in many neurodegenerative diseases such as Alzheimer's and amyotrophic lateral sclerosis (ALS). The association with other disorders, such as ankylosing spondylitis, multiple sclerosis, and systemic lupus erythematosus (SLE), was also observed. Various studies suggest that ST2/IL-33 signalling may be pivotal in the disease modulation of neurodegenerative disorders. The serum sST2 level test can be useful in determining the inflammatory status and severity of illness in many neurodegenerative disorders. In this review, we will discuss recent findings concerning the interleukin-33 (IL-33)/ST2 pathway and its role in the diagnosis and treatment of diseases with neurodegeneration.
Collapse
Affiliation(s)
- Himanshu Arora
- Department of General Medicine, Netaji Subhash Chandra Bose Subharti Medical College, Meerut, Uttar Pradesh
| | - Binish Javed
- Atal Bihari Vajpayee Institute of Medical Sciences & Dr. Ram Manohar Lohia Hospital, New Delhi
| | | | - Mayuri Chaurasia
- National Institute of Medical Sciences and Research, Jaipur, Rajasthan
| | | | - Shreevikaa Kannan
- Department of General Medicine Tbilisi State Medical University, Tbilisi, Georgia
| | - Varshitha Golla
- Department of General Medicine, International School of Medicine (ISM), Bishkek, Kyrgyzstan
| |
Collapse
|
6
|
Huang Y, Guan Q, Zhang Z, Wang P, Li C. Oleacein: A comprehensive review of its extraction, purification, absorption, metabolism, and health effects. Food Chem 2024; 433:137334. [PMID: 37660602 DOI: 10.1016/j.foodchem.2023.137334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/27/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Extra virgin olive oil (EVOO) consumption reduces the risk of cardiovascular disease in high-risk groups and the polyphenols in EVOO play an important health effect on it. As one of the most abundant polyphenols in EVOO, oleacein (OLEA) has many health benefits. However, there is no review article that focus comprehensively on OLEA, and most articles have limited data and information on OLEA. The purpose of this review is to summarize the results of all available studies, to present and compare the main traditional and novel techniques for the extraction and isolation and purification of OLEA, to elucidate the absorption and metabolic pathways of OLEA, and finally, to illustrate the health-promoting properties. Hopefully, this review can promote the use of OLEA in functional foods and therapeutic fields.
Collapse
Affiliation(s)
- Yunfei Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingyun Guan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuoya Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengxiang Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
7
|
Huang HT, Tzeng SF. Interleukin-33 has the protective effect on oligodendrocytes against impairment induced by cuprizone intoxication. Neurochem Int 2024; 172:105645. [PMID: 38016520 DOI: 10.1016/j.neuint.2023.105645] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
Our prior investigations have demonstrated the pivotal role of IL-33 in facilitating the maturation of oligodendrocytes (OLs), prompting our interest in exploring its potential therapeutic effects. In this study, our focus was directed towards deciphering the functions of interleukin-33 (IL-33) in established demyelinating mouse model induced by the feeding of cuprizone (CPZ)-containing diet. We observed the reduction in corpus callosal adenomatous polyposis coli (APC)+ OLs with IL-33 expression in mice subjected to CPZ feeding for durations of 6 and 8 weeks. In parallel, the levels of IL-33 in the corpus callosum declined after CPZ-containing diet. Furthermore, we conducted experiments utilizing primary oligodendrocyte precursor cells (OPCs) and mature OLs, which were exposed to CPZ. A decrease in the expression of myelin basic protein (MBP) was evident in the cultures of mature OLs after treatment with CPZ. Additionally, both IL-33 mRNA and protein levels exhibited downregulation. To counteract the diminished IL-33 levels induced by CPZ, we employed a lentiviral vector to overexpress IL-33 in OLs. Intriguingly, the overexpression of IL-33 (IL33OE) in OLs resulted in a more distinct membranous morphology following CPZ treatment when compared to that observed in OL Mock cultures. Moreover, MBP protein levels in the presence of CPZ were higher in IL33OE OLs than that detected in OL Mock cultures. These findings collectively indicate that IL-33 possesses the capability to mitigate CPZ-induced damage and bolster OL homeostasis. In summary, our study underscores the importance of IL-33 in the context of demyelinating diseases, shedding light on its potential therapeutic implications for fostering remyelination and preserving OL function.
Collapse
Affiliation(s)
- Hui-Ting Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shun-Fen Tzeng
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
8
|
Mamuladze T, Kipnis J. Type 2 immunity in the brain and brain borders. Cell Mol Immunol 2023; 20:1290-1299. [PMID: 37429945 PMCID: PMC10616183 DOI: 10.1038/s41423-023-01043-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/16/2023] [Indexed: 07/12/2023] Open
Abstract
Recent research in neuroimmunology has revolutionized our understanding of the intricate interactions between the immune system and the central nervous system (CNS). The CNS, an "immune-privileged organ", is now known to be intimately connected to the immune system through different cell types and cytokines. While type 2 immune responses have traditionally been associated with allergy and parasitic infections, emerging evidence suggests that these responses also play a crucial role in CNS homeostasis and disease pathogenesis. Type 2 immunity encompasses a delicate interplay among stroma, Th2 cells, innate lymphoid type 2 cells (ILC2s), mast cells, basophils, and the cytokines interleukin (IL)-4, IL-5, IL-13, IL-25, TSLP and IL-33. In this review, we discuss the beneficial and detrimental roles of type 2 immune cells and cytokines in CNS injury and homeostasis, cognition, and diseases such as tumors, Alzheimer's disease and multiple sclerosis.
Collapse
Affiliation(s)
- Tornike Mamuladze
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Immunology Graduate Program, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Immunology Graduate Program, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
9
|
Jia Z, Guo M, Ge X, Chen F, Lei P. IL-33/ST2 Axis: A Potential Therapeutic Target in Neurodegenerative Diseases. Biomolecules 2023; 13:1494. [PMID: 37892176 PMCID: PMC10605306 DOI: 10.3390/biom13101494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Interleukin 33 (IL-33) belongs to the IL-1 family and is localized in the nucleus. IL-33 is primarily composed of three distinct domains, namely the N-terminal domain responsible for nuclear localization, the intermediate sense protease domain, and the C-terminal cytokine domain. Its specific receptor is the suppression of tumorigenicity 2 (ST2), which is detected in serum-stimulated fibroblasts and oncogenes. While most other cytokines are actively produced in cells, IL-33 is passively produced in response to tissue damage or cell necrosis, thereby suggesting its role as an alarm following cell infection, stress, or trauma. IL-33 plays a crucial role in congenital and acquired immunity, which assists in the response to environmental stress and maintains tissue homeostasis. IL-33/ST2 interaction further produces many pro-inflammatory cytokines. Moreover, IL-33 is crucial for central nervous system (CNS) homeostasis and the pathogenic mechanisms underlying CNS degenerative disorders. The present work summarizes the structure of IL-33, its fundamental activities, and its role in immunoregulation and neurodegenerative diseases. Therefore, this work proposes that IL-33 may play a role in the pathogenic mechanism of diseases and can be used in the development of treatment strategies.
Collapse
Affiliation(s)
- Zexi Jia
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China; (Z.J.); (X.G.)
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Mengtian Guo
- Department of Internal Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100054, China;
| | - Xintong Ge
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China; (Z.J.); (X.G.)
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Fanglian Chen
- Tianjin Neurological Institute, Tianjin 300052, China
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China; (Z.J.); (X.G.)
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
10
|
Guo S, Qian C, Li W, Zeng Z, Cai J, Luo Y. Modulation of Neuroinflammation: Advances in Roles and Mechanisms of the IL-33/ST2 Axis Involved in Ischemic Stroke. Neuroimmunomodulation 2023; 30:226-236. [PMID: 37729881 PMCID: PMC10614518 DOI: 10.1159/000533984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/02/2023] [Indexed: 09/22/2023] Open
Abstract
Interleukin (IL)-33 was initially recognized as a constituent of the IL-1 cytokine family in 2005. It exerts pleiotropic effects by regulating immune responses via its binding to the receptor ST2 (IL-33R). The IL-33/ST2 pathway has been linked to several inflammatory disorders. In human and rodents, the broad expression of IL-33 in spinal cord tissues and brain indicates its central nervous system-specific functions. Growing evidence supports the protective effects of the IL-33/ST2 pathway in ischemic stroke, along with a better understanding of the underlying mechanisms. IL-33 plays a crucial role in the regulation of the release of inflammatory molecules from glial cells in response to neuropathological lesions. Moreover, IL-33/ST2-mediated neuroprotection following cerebral ischemia may be linked to T-cell function, specifically regulatory T cells. Soluble ST2 (sST2) acts as a decoy receptor in the IL-33/ST2 axis, blocking IL-33 signaling through the membrane ST2 receptor. sST2 has also been identified as a potential inflammatory biomarker of ischemic stroke. Targeting sST2 specifically to eliminate its inhibition of the protective IL-33/ST2 pathway in ischemic brain tissues is a promising approach for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Shuang Guo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chengli Qian
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenfeng Li
- Department of Clinical Medicine, The Second Clinical College, Wuhan University, Wuhan, China
| | - Zhikun Zeng
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junlong Cai
- Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Luo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Woo AM, Sontheimer H. Interactions between astrocytes and extracellular matrix structures contribute to neuroinflammation-associated epilepsy pathology. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1198021. [PMID: 39086689 PMCID: PMC11285605 DOI: 10.3389/fmmed.2023.1198021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/31/2023] [Indexed: 08/02/2024]
Abstract
Often considered the "housekeeping" cells of the brain, astrocytes have of late been rising to the forefront of neurodegenerative disorder research. Identified as crucial components of a healthy brain, it is undeniable that when astrocytes are dysfunctional, the entire brain is thrown into disarray. We offer epilepsy as a well-studied neurological disorder in which there is clear evidence of astrocyte contribution to diseases as evidenced across several different disease models, including mouse models of hippocampal sclerosis, trauma associated epilepsy, glioma-associated epilepsy, and beta-1 integrin knockout astrogliosis. In this review we suggest that astrocyte-driven neuroinflammation, which plays a large role in the pathology of epilepsy, is at least partially modulated by interactions with perineuronal nets (PNNs), highly structured formations of the extracellular matrix (ECM). These matrix structures affect synaptic placement, but also intrinsic neuronal properties such as membrane capacitance, as well as ion buffering in their immediate milieu all of which alters neuronal excitability. We propose that the interactions between PNNs and astrocytes contribute to the disease progression of epilepsy vis a vis neuroinflammation. Further investigation and alteration of these interactions to reduce the resultant neuroinflammation may serve as a potential therapeutic target that provides an alternative to the standard anti-seizure medications from which patients are so frequently unable to benefit.
Collapse
Affiliation(s)
- AnnaLin M. Woo
- Neuroscience Graduate Program, Neuroscience Department, University of Virginia, Charlottesville, VA, United States
| | - Harald Sontheimer
- Neuroscience Department, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
12
|
Zeng X, Yang M, Ye T, Feng J, Xu X, Yang H, Wang X, Bao L, Li R, Xue B, Zang J, Huang Y. Mitochondrial GRIM-19 loss in parietal cells promotes spasmolytic polypeptide-expressing metaplasia through NLR family pyrin domain-containing 3 (NLRP3)-mediated IL-33 activation via a reactive oxygen species (ROS) -NRF2- Heme oxygenase-1(HO-1)-NF-кB axis. Free Radic Biol Med 2023; 202:46-61. [PMID: 36990300 DOI: 10.1016/j.freeradbiomed.2023.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/05/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Spasmolytic polypeptide-expressing metaplasia (SPEM), as a pre-neoplastic precursor of intestinal metaplasia (IM), plays critical roles in the development of chronic atrophic gastritis (CAG) and gastric cancer (GC). However, the pathogenetic targets responsible for the SPEM pathogenesis remain poorly understood. Gene associated with retinoid-IFN-induced mortality 19 (GRIM-19), an essential subunit of the mitochondrial respiratory chain complex I, was progressively lost along with malignant transformation of human CAG, little is known about the potential link between GRIM-19 loss and CAG pathogenesis. Here, we show that lower GRIM-19 is associated with higher NF-кB RelA/p65 and NLR family pyrin domain-containing 3 (NLRP3) levels in CAG lesions. Functionally, GRIM-19 deficiency fails to drive direct differentiation of human GES-1 cells into IM or SPEM-like cell lineages in vitro, whereas parietal cells (PCs)-specific GRIM-19 knockout disturbs gastric glandular differentiation and promotes spontaneous gastritis and SPEM pathogenesis without intestinal characteristics in mice. Mechanistically, GRIM-19 loss causes chronic mucosal injury and aberrant NRF2 (Nuclear factor erythroid 2-related factor 2)- HO-1 (Heme oxygenase-1) activation via reactive oxygen species (ROS)-mediated oxidative stress, resulting in aberrant NF-кB activation by inducing p65 nuclear translocation via an IKK/IкB partner, while NRF2-HO-1 activation contributes to GRIM-19 loss-driven NF-кB activation via a positive feedback NRF2-HO-1 loop. Furthermore, GRIM-19 loss did not cause obvious PCs loss but triggers NLRP3 inflammasome activation in PCs via a ROS-NRF2-HO-1-NF-кB axis, leading to NLRP3-dependent IL-33 expression, a key mediator for SPEM formation. Moreover, intraperitoneal administration of NLRP3 inhibitor MCC950 drastically attenuates GRIM-19 loss-driven gastritis and SPEM in vivo. Our study suggests that mitochondrial GRIM-19 maybe a potential pathogenetic target for the SPEM pathogenesis, and its deficiency promotes SPEM through NLRP3/IL-33 pathway via a ROS-NRF2-HO-1-NF-кB axis. This finding not only provides a causal link between GRIM-19 loss and SPEM pathogenesis, but offers potential therapeutic strategies for the early prevention of intestinal GC.
Collapse
Affiliation(s)
- Xin Zeng
- Institute of Paediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Department of Laboratory Medicine, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Meihua Yang
- Departments of Neurology, Washington University School of Medicine and Barnes-Jewish Hospital, Saint Louis, 63110, MO, USA
| | - Tingbo Ye
- Department of Laboratory Medicine, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Jinmei Feng
- Institute of Paediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiaohui Xu
- Institute of Paediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Huaan Yang
- Department of Urologic Surgery, Yubei District People's Hospital, Chongqing, 401120, China
| | - Xin Wang
- Ministry of Education Key Laboratory of Molecular Biology for Infectious Diseases, Chongqing Medical University, Chongqing, 40016, China
| | - Liming Bao
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
| | - Rui Li
- Department of Laboratory Medicine, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Bingqian Xue
- Department of Laboratory Medicine, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Jinbao Zang
- Institute of Paediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yi Huang
- Institute of Paediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
13
|
Andoh A, Nishida A. Pro- and anti-inflammatory roles of interleukin (IL)-33, IL-36, and IL-38 in inflammatory bowel disease. J Gastroenterol 2023; 58:69-78. [PMID: 36376594 DOI: 10.1007/s00535-022-01936-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2022]
Abstract
Interleukin-33 (IL-33), IL-36, and IL-38 are members of the IL-1 cytokine family. The expression of each cytokine has been reported to be increased in the inflamed mucosa of patients with inflammatory bowel disease (IBD). IL-33 and IL-36 have been studied for pro- and anti-inflammatory functions, and IL-38 has been characterized as an anti-inflammatory cytokine by antagonizing the IL-36 receptor (IL-36R). IL-33 is a nuclear cytokine constitutively expressed by certain cell types such as epithelial, endothelial, and fibroblast-like cells and released on necrotic cell death. IL-33 mainly induces type 2 immune response through its receptor suppression tumorigenicity 2 (ST2) from Th2 cells and type 2 innate lymphoid cells (ILC2s), but also by stimulating Th1 cells, regulatory T cells, and CD8+ T cells. IL-36 cytokines consist of three agonists: IL-36α, IL-36β, and IL-36γ, and two receptor antagonists: IL-36R antagonist (IL-36Ra) and IL-38. All IL-36 cytokines bind to the IL-36R complex and exert various functions through NF-κB and mitogen-activated protein kinase (MAPK) pathways in inflammatory settings. IL-33 and IL-36 also play a crucial role in intestinal fibrosis characteristic manifestation of CD. In this review, we focused on the current understanding of the pro- and anti-inflammatory roles of IL-33, IL-36, and IL38 in experimental colitis and IBD patients.
Collapse
Affiliation(s)
- Akira Andoh
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan.
| | - Atsushi Nishida
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|
14
|
Yoon JH, Kim MY, Cho JY. Apigenin: A Therapeutic Agent for Treatment of Skin Inflammatory Diseases and Cancer. Int J Mol Sci 2023; 24:ijms24021498. [PMID: 36675015 PMCID: PMC9861958 DOI: 10.3390/ijms24021498] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
The skin is the main barrier between the body and the environment, protecting it from external oxidative stress induced by ultraviolet rays. It also prevents the entrance of infectious agents such as viruses, external antigens, allergens, and bacteria into our bodies. An overreaction to these agents causes severe skin diseases, including atopic dermatitis, pruritus, psoriasis, skin cancer, and vitiligo. Members of the flavonoid family include apigenin, quercetin, luteolin, and kaempferol. Of these, apigenin has been used as a dietary supplement due to its various biological activities and has been shown to reduce skin inflammation by downregulating various inflammatory markers and molecular targets. In this review, we deal with current knowledge about inflammatory reactions in the skin and the molecular mechanisms by which apigenin reduces skin inflammation.
Collapse
Affiliation(s)
- Ji Hye Yoon
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.: +82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.: +82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|
15
|
Esmael A, Petro TM. IL-33 promotes increased replication of Theiler's Murine Encephalomyelitis Virus in RAW264.7 macrophage cells with an IRF3-dependent response. Virus Res 2023; 323:199007. [PMID: 36414191 PMCID: PMC10194383 DOI: 10.1016/j.virusres.2022.199007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Interleukin-33 (IL-33), which promotes M2 macrophage development, may influence the control of viruses, such as Theiler's Murine Encephalomyelitis Virus (TMEV) that infect macrophages. Because Interferon Regulatory Factor-3 (IRF3) is also critical to control of TMEV infection in macrophages, information on the relationship between IL-33 and IRF3 is important. Thus, RAW264.7 Lucia murine macrophage lineage cells with an endogenous IRF3-ISRE promoter driving secreted luciferase and IRF3KO RAW Lucia, a subline deficient in IRF3, were challenged with TMEV. After the challenge, considerable TMEV RNA detected at 18 and 24 h in RAW cells was significantly elevated in IRF3KO RAW cells. TMEV induction of ISRE-IRF3 promoter activity, IFN-β and IL-33 gene expression, and IL-6 and IL-10 protein production, which was strong in RAW cells, was less in IRF3KO RAW cells. In contrast, expression of CD206 and ARG1, classical M2 macrophage markers, was significantly elevated in IRF3KO RAW cells. Moreover, RAW and IRF3KO RAW cells produced extracellular IL-33 prior to and after infection with TMEV and antibody blockade of the IL-33 receptor, ST2, reduced CD206 and ARG1 expression, but increased IL-6 gene expression. Pre-treating both RAW and IRF3KO RAW cells with IL-33 prior to challenge significantly increased TMEV infection, but also increased IL-33, IL-10, IL-6 mRNA expression, and NO production without increasing IFN-β. Notably, IL-33 induction of IL-33, IRF3-ISRE promoter activity, and IL-10 by TMEV or poly I:C/IFN-γ was significantly dependent upon IRF3. The results show that the expression of IL-33 and the repression of M2 macrophage phenotypic markers are dependent on IRF3 and that IL-33 decreases the ability of macrophages to control infection with macrophage-tropic viruses.
Collapse
Affiliation(s)
- Ahmed Esmael
- Nebraska Center for Virology, University of Nebraska Lincoln, Lincoln, NE 68583, USA; Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Thomas M Petro
- Nebraska Center for Virology, University of Nebraska Lincoln, Lincoln, NE 68583, USA; Dept. of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, 68583, USA.
| |
Collapse
|
16
|
Li Q, Zhao Y, Shi C, Song X. IL-33 Alleviates Postoperative Cognitive Impairment by Inhibiting Hippocampal Inflammation and Upregulating Excitatory Synaptic Number in Aged Mice. Brain Sci 2022; 12:brainsci12091244. [PMID: 36138980 PMCID: PMC9496788 DOI: 10.3390/brainsci12091244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Delayed neurocognitive recovery (dNCR), a postoperative complication that occurs in elderly patients, still lacks effective treatment. Interleukin-33 (IL-33) has been proved to modulate neuroinflammation and synaptic plasticity, among other effects, but the role of IL-33 in dNCR is not clear. We established a dNCR model in aged mice by laparotomy under sevoflurane anesthesia. Cognition was evaluated by Morris water maze (MWM) and fear conditioning test (FCT). Immunofluorescence was used to detect the density of IL-33 and glial fibrillary acidic protein (GFAP) co-localization, ionized calcium-binding adapter molecule 1, vesicular glutamate transporter 1 (vGlut1) and postsynaptic density protein-95 (PSD95) co-localization in the hippocampus. IL-33, GFAP, vGlut1 and PSD95 were tested by Western blotting. Enzyme-linked immunosorbent assay was used to detect the levels of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and IL-10. Surgery/anesthesia reduced the level of IL-33 in the hippocampus. Intraperitoneal injection of 200 ng IL-33 per mouse significantly decreased the latency to the platform and increased the number of platform crossings and the target quadrant dwell time in MWM, while increasing the freezing time in the context test of FCT. Furthermore, IL-33 inhibited microglial activation and the release of TNF-α and IL-1β while upregulating the markers of excitatory synapses vGlut1 and PSD95. Our findings indicated that IL-33 improved cognition by inhibiting the hippocampal inflammatory response and upregulating the number of excitatory synapses. Therefore, IL-33 is a potential drug for the treatment of dNCR.
Collapse
Affiliation(s)
- Qi Li
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, No. 169 East Lake Road, Wuhan 430071, China
| | - Yuqian Zhao
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, No. 169 East Lake Road, Wuhan 430071, China
| | - Chuanchuan Shi
- Department of Intensive Care Unit, Renmin Hospital of Zhengzhou University, No. 7 Wei Wu Road, Zhengzhou 450003, China
| | - Xuemin Song
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, No. 169 East Lake Road, Wuhan 430071, China
- Correspondence:
| |
Collapse
|
17
|
Rao X, Hua F, Zhang L, Lin Y, Fang P, Chen S, Ying J, Wang X. Dual roles of interleukin-33 in cognitive function by regulating central nervous system inflammation. J Transl Med 2022; 20:369. [PMID: 35974336 PMCID: PMC9382782 DOI: 10.1186/s12967-022-03570-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/04/2022] [Indexed: 12/13/2022] Open
Abstract
With the advent of an aging society, the incidence of dementia is increasing, resulting in a vast burden on society. It is increasingly acknowledged that neuroinflammation is implicated in various neurological diseases with cognitive dysfunction such as Alzheimer’s disease, multiple sclerosis, ischemic stroke, traumatic brain injury, and central nervous system infections. As an important neuroinflammatory factor, interleukin-33 (IL-33) is highly expressed in various tissues and cells in the mammalian brain, where it plays a role in the pathogenesis of a number of central nervous system conditions. Reams of previous studies have shown that IL-33 has both pro- and anti-inflammatory effects, playing dual roles in the progression of diseases linked to cognitive impairment by regulating the activation and polarization of immune cells, apoptosis, and synaptic plasticity. This article will summarize the current findings on the effects IL-33 exerts on cognitive function by regulating neuroinflammation, and attempt to explore possible therapeutic strategies for cognitive disorders based on the adverse and protective mechanisms of IL-33.
Collapse
Affiliation(s)
- Xiuqin Rao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Pu Fang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shoulin Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
18
|
Ma H, Cheng N, Zhang C. Schizophrenia and Alarmins. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58060694. [PMID: 35743957 PMCID: PMC9230958 DOI: 10.3390/medicina58060694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
Schizophrenia, consisting of a group of severe psychiatric disorders with a complex etiology, is a leading cause of disability globally. Due to the lack of objective indicators, accurate diagnosis and selection of effective treatments for schizophrenia remain challenging. The association between schizophrenia and alarmins levels has been proposed for many years, but without solid evidence. Alarmins are prestored molecules that do not require processing and can be released upon cell death or damage, making them an ideal candidate for an early initiator of inflammation. Immunological biomarkers seem to be related to disease progression and treatment effectiveness. Several studies suggest strong associations among the high-mobility group box 1 protein (HMGB1), interleukin-1α, interleukin-33, S100B, heat-shock proteins, and uric acid with schizophrenic disorders. The purpose of this review is to discuss the evidence of central and peripheral immune findings in schizophrenia, their potential causes, and the effects of immunomodulatory therapies on symptoms and outline potential applications of these markers in managing the illness. Although there are currently no effective markers for diagnosing or predicting treatment effects in patients with schizophrenia, we believe that screening immune-inflammatory biomarkers that are closely related to the pathological mechanism of schizophrenia can be used for early clinical identification, diagnosis, and treatment of schizophrenia, which may lead to more effective treatment options for people with schizophrenia.
Collapse
Affiliation(s)
- Huan Ma
- Department of Psychiatry, First Clinical College, Xuzhou Medical University, Xuzhou 221000, China; (H.M.); (N.C.)
| | - Ning Cheng
- Department of Psychiatry, First Clinical College, Xuzhou Medical University, Xuzhou 221000, China; (H.M.); (N.C.)
| | - Caiyi Zhang
- Department of Psychiatry, First Clinical College, Xuzhou Medical University, Xuzhou 221000, China; (H.M.); (N.C.)
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou 221000, China
- Department of Medical Psychology, Second Clinical College, Xuzhou Medical University, Xuzhou 221000, China
- Correspondence: ; Tel.: +86-137-7588-9105
| |
Collapse
|
19
|
Wang P, Shi B, Wang C, Wang Y, Que W, Jiang Z, Liu X, Jiang Q, Li H, Peng Z, Zhong L. Hepatic pannexin-1 mediates ST2 + regulatory T cells promoting resolution of inflammation in lipopolysaccharide-induced endotoxemia. Clin Transl Med 2022; 12:e849. [PMID: 35593197 PMCID: PMC9121315 DOI: 10.1002/ctm2.849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
Sepsis remains the most lethal infectious disease and substantially impairs patient prognosis after liver transplantation (LT). Our previous study reported a role of the pannexin 1 (PANX1)–interleukin‐33 (IL‐33) axis in activating innate immunity to protect against methicillin‐resistant Staphylococcus aureus infection; however, the role of PANX1 in regulating adaptive immunity in sepsis and the underlying mechanism are unclear. In this study, we examined the role of the PANX1–IL‐33 axis in protecting against sepsis caused by a gram‐negative bacterial infection in an independent LT cohort. Next, in animal studies, we assessed the immunological state of Panx1−/‐ mice with lipopolysaccharide (LPS)‐induced endotoxemia and then focused on the cytokine storm and regulatory T cells (Tregs), which are crucial for the resolution of inflammation. To generate liver‐specific Panx1‐deficient mice and mimic clinical LT procedures, a mouse LT model was established. We demonstrated that hepatic PANX1 deficiency exacerbated LPS‐induced endotoxemia and dysregulated the immune response in the mouse LT model. In hepatocytes, we confirmed that PANX1 positively regulated IL‐33 synthesis after LPS administration. We showed that the adenosine triphosphate‐P2X7 pathway regulated the hepatic PANX1–IL‐33 axis during endotoxemia in vitro and in vivo. Recombinant IL‐33 treatment rescued LPS‐induced endotoxemia by increasing the numbers of liver‐infiltrating ST2+ Tregs and attenuating the cytokine storm in hepatic PANX1‐deficient mice. In conclusion, our findings revealed that the hepatic PANX1–IL‐33 axis protects against endotoxemia and liver injury by targeting ST2+ Tregs and promoting the early resolution of hyperinflammation.
Collapse
Affiliation(s)
- Pusen Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baojie Shi
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunguang Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Wang
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Weitao Que
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongyi Jiang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueni Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianwei Jiang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihai Peng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Zhong
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Zhuang X, Zhan B, Jia Y, Li C, Wu N, Zhao M, Chen N, Guo Y, Du Y, Zhang Y, Cao B, Li Y, Zhu F, Guo C, Wang Q, Li Y, Zhang L. IL-33 in the basolateral amygdala integrates neuroinflammation into anxiogenic circuits via modulating BDNF expression. Brain Behav Immun 2022; 102:98-109. [PMID: 35181439 DOI: 10.1016/j.bbi.2022.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 12/13/2022] Open
Abstract
Hyper-inflammatory reaction plays a crucial role in the pathophysiology of depression and anxiety disorders. However, the mechanisms underlying inflammation-induced anxiety changes remain poorly understood. Here, we showed that in the lipopolysaccharide (LPS)-induced anxiety model, Interleukin (IL)-33, a member of the IL-1 family, was up-regulated in the basolateral amygdala, and IL-33 deficiency prevent anxiety-like behavior. Overexpression of IL-33 in amygdalar astrocytes led to anxiety-like response via repressing brain-derived neurotrophic factor (BDNF) expression. Mechanically, IL-33 suppressed BDNF expression through NF-κB pathway to impair GABAergic transmission in the amygdala and NF-κB inhibitor abolished the effect of IL-33 on anxiety. Administration of an inverse GABAA receptor agonist increased the anxiety of IL-33- deficient mice. These results reveal that inflammatory response can activate anxiogenic circuits by suppressing BDNF and GABAergic neurons transmission, suggesting that IL-33 in basolateral amygdalar is a linker between inflammation and anxiety.
Collapse
Affiliation(s)
- Xiao Zhuang
- Shandong Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Bing Zhan
- Shandong Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Yufeng Jia
- Shandong Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Chaoze Li
- Shandong Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Nan Wu
- Shandong Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Ming Zhao
- Shandong Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China; Department of Pathogenic Biology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Nuo Chen
- Shandong Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Yaxin Guo
- Shandong Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Yingxin Du
- Shandong Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Yi Zhang
- Shandong Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Baihui Cao
- Shandong Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Yan Li
- Department of Pathogenic Biology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Faliang Zhu
- Shandong Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Chun Guo
- Shandong Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Qun Wang
- Shandong Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Yuan Li
- Shandong Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.
| | - Lining Zhang
- Shandong Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
21
|
Borovcanin MM, Vesic K. Breast cancer in schizophrenia could be interleukin-33-mediated. World J Psychiatry 2021; 11:1065-1074. [PMID: 34888174 PMCID: PMC8613763 DOI: 10.5498/wjp.v11.i11.1065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/21/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Recent epidemiological and genetic studies have revealed an interconnection between schizophrenia and breast cancer. The mutual underlying pathophysiological mechanisms may be immunologically driven. A new cluster of molecules called alarmins may be involved in sterile brain inflammation, and we have already reported the potential impact of interleukin-33 (IL-33) on positive symptoms onset and the role of its soluble trans-membranes full length receptor (sST2) on amelioration of negative symptoms in schizophrenia genesis. Furthermore, these molecules have already been shown to be involved in breast cancer etiopathogenesis. In this review article, we aim to describe the IL-33/suppressor of tumorigenicity 2 (ST2) axis as a crossroad in schizophrenia-breast cancer comorbidity. Considering that raloxifene could be tissue-specific and improve cognition and that tamoxifen resistance in breast carcinoma could be improved by strategies targeting IL-33, these selective estrogen receptor modulators could be useful in complementary treatment. These observations could guide further somatic, as well as psychiatric therapeutical protocols by incorporating what is known about immunity in schizophrenia.
Collapse
Affiliation(s)
- Milica M Borovcanin
- Department of Psychiatry, University of Kragujevac, Faculty of Medical Sciences, Kragujevac 34000, Serbia
| | - Katarina Vesic
- Department of Neurology, University of Kragujevac, Faculty of Medical Sciences, Kragujevac 34000, Serbia
| |
Collapse
|
22
|
Parkitny L, Maletic-Savatic M. Glial PAMPering and DAMPening of Adult Hippocampal Neurogenesis. Brain Sci 2021; 11:1299. [PMID: 34679362 PMCID: PMC8533961 DOI: 10.3390/brainsci11101299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Adult neurogenesis represents a mature brain's capacity to integrate newly generated neurons into functional circuits. Impairment of neurogenesis contributes to the pathophysiology of various mood and cognitive disorders such as depression and Alzheimer's Disease. The hippocampal neurogenic niche hosts neural progenitors, glia, and vasculature, which all respond to intrinsic and environmental cues, helping determine their current state and ultimate fate. In this article we focus on the major immune communication pathways and mechanisms through which glial cells sense, interact with, and modulate the neurogenic niche. We pay particular attention to those related to the sensing of and response to innate immune danger signals. Receptors for danger signals were first discovered as a critical component of the innate immune system response to pathogens but are now also recognized to play a crucial role in modulating non-pathogenic sterile inflammation. In the neurogenic niche, viable, stressed, apoptotic, and dying cells can activate danger responses in neuroimmune cells, resulting in neuroprotection or neurotoxicity. Through these mechanisms glial cells can influence hippocampal stem cell fate, survival, neuronal maturation, and integration. Depending on the context, such responses may be appropriate and on-target, as in the case of learning-associated synaptic pruning, or excessive and off-target, as in neurodegenerative disorders.
Collapse
Affiliation(s)
- Luke Parkitny
- Baylor College of Medicine and Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA;
| | | |
Collapse
|
23
|
Environmental allergens trigger type 2 inflammation through ripoptosome activation. Nat Immunol 2021; 22:1316-1326. [PMID: 34531562 PMCID: PMC8487942 DOI: 10.1038/s41590-021-01011-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/22/2021] [Indexed: 12/23/2022]
Abstract
Environmental allergens, including fungi, insects and mites, trigger type 2 immunity; however, the innate sensing mechanisms and initial signaling events remain unclear. Herein, we demonstrate that allergens trigger RIPK1-caspase 8 ripoptosome activation in epithelial cells. The active caspase 8 subsequently engages caspases 3 and 7, which directly mediate intracellular maturation and release of IL-33, a pro-atopy, innate immunity, alarmin cytokine. Mature IL-33 maintained functional interaction with the cognate ST2 receptor and elicited potent pro-atopy inflammatory activity in vitro and in vivo. Inhibiting caspase 8 pharmacologically and deleting murine Il33 and Casp8 each attenuated allergic inflammation in vivo. Clinical data substantiated ripoptosome activation and IL-33 maturation as likely contributors to human allergic inflammation. Our findings reveal an epithelial barrier, allergen-sensing mechanism that converges on the ripoptosome as an intracellular molecular signaling platform, triggering type 2 innate immune responses. These findings have significant implications for understanding and treating human allergic diseases.
Collapse
|
24
|
Wang Y, Fu AKY, Ip NY. IL-33/ST2 Signaling Regulates Synaptic Plasticity and Homeostasis in the Adult Hippocampal Circuitry. DNA Cell Biol 2021; 40:1125-1130. [PMID: 34297618 DOI: 10.1089/dna.2021.0491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In response to neuronal activity changes, the adult hippocampal circuits undergo continuous synaptic remodeling, which is essential for information processing, learning, and memory encoding. Glial cells, including astrocytes and microglia, actively regulate hippocampal synaptic plasticity by coordinating the neuronal activity-induced synaptic changes at the circuit level. Emerging evidence suggests that the crosstalk between neurons and glia in the adult hippocampus is region specific and that the mechanisms controlling this process are critically dependent on secreted factors. Interleukin-33 (IL-33), a cytokine of the IL-1 family, is a key factor that modulates such glia-driven neuromodulations in two distinct hippocampal circuits. The activation of IL-33 and its receptor complex is important for maintaining the excitatory synaptic activity in the cornu ammonis 1 subregion and the remodeling of dentate gyrus synapses through activity-dependent astrocyte-synapse and microglia-synapse interactions, respectively. Meanwhile, the dysregulation of this signaling is implicated in multiple neurological disorders, especially Alzheimer's disease. Further investigations of how IL-33/ST2 signaling is regulated in a region-specific manner as well as its diverse functions in glia-synapse communications in the adult hippocampal circuitry will provide insights into the nature of hippocampal synaptic plasticity and homeostasis in health and disease.
Collapse
Affiliation(s)
- Ye Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Amy K Y Fu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China
| | - Nancy Y Ip
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China
| |
Collapse
|
25
|
Interleukin-33 modulates lipopolysaccharide-mediated inflammatory response in rat primary astrocytes. Neuroreport 2021; 32:694-701. [PMID: 33913926 DOI: 10.1097/wnr.0000000000001644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Astrocytes have a crucial role in the modulation of the neuroinflammatory response. However, the underlying mechanisms have yet to be fully defined. Interleukin-33 (IL-33) is constitutively expressed in astrocytes, which has been found to orchestrate inflammatory responses in a large variety of immune-mediated and inflammatory diseases of the nervous system. Thus, the purpose of this study was to elucidate the potential effect of IL-33 in the regulation of inflammatory response in primary cultured astrocytes. We investigated the role of IL-33 in the regulation of inflammatory responses in the lipopolysaccharide-stimulated astrocytes. This study utilized lentiviral short hairpin RNA vectors to target IL-33 (LV-shIL-33) for gene silencing. After lipopolysaccharide stimulation, the expression levels of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), as well as the activation of nuclear factor-kappa B (NF-κB) and extracellular signal-regulated kinase (ERK) signaling pathways, were evaluated to elucidate the mechanisms related to the contributions of IL-33 to the inflammatory response in astrocytes. We found that the expression IL-33 has increased in rat primary cultured astrocytes after lipopolysaccharide stimulation. Administration of LV-shIL-33 knocked down the expression of IL-33 and markedly reduced the overexpression of spinal IL-1β, IL-6, and TNF-α, and attenuated the activation of ERK and NF-κB/p65. This study shows that IL-33 participates in regulating inflammatory responses in primary cultured astrocytes, which might provide additional targets for controlling inflammatory responses following neurological diseases. See Video abstract, http://links.lww.com/WNR/A627.
Collapse
|
26
|
Sun Y, Wen Y, Wang L, Wen L, You W, Wei S, Mao L, Wang H, Chen Z, Yang X. Therapeutic Opportunities of Interleukin-33 in the Central Nervous System. Front Immunol 2021; 12:654626. [PMID: 34079543 PMCID: PMC8165230 DOI: 10.3389/fimmu.2021.654626] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/04/2021] [Indexed: 01/14/2023] Open
Abstract
Interleukin-33 (IL-33), a member of the IL-1 cytokine family, is involved in various diseases. IL-33 exerts its effects via its heterodimeric receptor complex, which comprises suppression of tumorigenicity 2 (ST2) and the IL-1 receptor accessory protein (IL-1RAP). Increasing evidence has demonstrated that IL-33/ST2 signaling plays diverse but crucial roles in the homeostasis of the central nervous system (CNS) and the pathogenesis of CNS diseases, including neurodegenerative diseases, cerebrovascular diseases, infection, trauma, and ischemic stroke. In the current review, we focus on the functional roles and cellular signaling mechanisms of IL-33 in the CNS and evaluate the potential for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Yun Sun
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yankai Wen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Luxi Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang Wen
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Wendong You
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Shuang Wei
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Lin Mao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Hao Wang
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zuobing Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiaofeng Yang
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Hirahara K, Aoki A, Nakayama T. Pathogenic helper T cells. Allergol Int 2021; 70:169-173. [PMID: 33637414 DOI: 10.1016/j.alit.2021.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/22/2022] Open
Abstract
Intractable chronic inflammatory diseases, including autoimmune diseases, autoinflammatory diseases and allergic diseases, are caused by disruption or failure of the immune system. Pathogenic immune cells are presumed to be closely related to the pathogenesis of intractable diseases, but the precise cellular and molecular mechanisms underlying the pathogenesis of these diseases remain unclear. The balance between the T helper type 1 (Th1) and Th2 cell fractions has been believed to be responsible for the differences among inflammatory diseases. However, an analysis of the cells infiltrating inflammatory lesions in mice and humans revealed the generation of pathogenic Th cells with different characteristics at the memory T-cell stage in the peripheral tissues in various inflammatory diseases. In this review, we will summarize and discuss recent progress regarding the characteristics of pathogenic Th cells, their mode of action, and the molecular mechanisms that regulate the pathology of intractable chronic inflammatory diseases, particularly those with tissue fibrosis. We hope this article will help clarify the pathogenesis of these diseases and propose a future direction for research.
Collapse
|
28
|
Gutiérrez-Miranda B, Gallardo I, Melliou E, Cabero I, Álvarez Y, Magiatis P, Hernández M, Nieto ML. Oleacein Attenuates the Pathogenesis of Experimental Autoimmune Encephalomyelitis through Both Antioxidant and Anti-Inflammatory Effects. Antioxidants (Basel) 2020; 9:antiox9111161. [PMID: 33233421 PMCID: PMC7700216 DOI: 10.3390/antiox9111161] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress and proinflammatory cytokines are factors affecting multiple sclerosis (MS) disease progression. Oleacein (OLE), an olive secoiridoid, possesses powerful antioxidant and anti-inflammatory activities, which suggests its potential application to treat neuroinflammatory disorders. Herein, we investigated the impact of OLE on the main clinic-pathological features of experimental autoimmune encephalomyelitis (EAE), an animal model for MS, including paralysis, demyelination, central nervous system (CNS) inflammation/oxidative stress and blood-brain barrier (BBB) breakdown. METHODS Mice were immunized with the myelin oligodendrocyte glycoprotein peptide, MOG35-55, to induce EAE, and OLE was administrated from immunization day. Serum, optic nerve, spinal cord and cerebellum were collected to evaluate immunomodulatory activities at a systemic level, as well as within the CNS. Additionally, BV2 microglia and the retinal ganglion cell line RGC-5 were used to confirm the direct effect of OLE on CNS-resident cells. RESULTS We show that OLE treatment effectively reduced clinical score and histological signs typical of EAE. Histological evaluation confirmed a decrease in leukocyte infiltration, demyelination, BBB disruption and superoxide anion accumulation in CNS tissues of OLE-treated EAE mice compared to untreated ones. OLE significantly decreased expression of proinflammatory cytokines (IL-13, TNFα, GM-CSF, MCP-1 and IL-1β), while it increased the anti-inflammatory cytokine IL-10. Serum levels of anti-MOG35-55 antibodies were also lower in OLE-treated EAE mice. Further, OLE significantly diminished the presence of oxidative system parameters, while upregulated the ROS disruptor, Sestrin-3. Mechanistically, OLE prevented NLRP3 expression, phosphorylation of p65-NF-κB and reduced the synthesis of proinflammatory mediators induced by relevant inflammatory stimuli in BV2 cells. OLE did not affect viability or the phagocytic capabilities of BV2 microglia. In addition, apoptosis of RGC-5 induced by oxidative stressors was also prevented by OLE. CONCLUSION Altogether, our results show that the antioxidant and anti-inflammatory OLE has neuroprotective effects in the CNS of EAE mice, pointing out this natural product as a candidate to consider for research on MS treatments.
Collapse
Affiliation(s)
- Beatriz Gutiérrez-Miranda
- Instituto de Biología y Genética Molecular (IBGM-CSIC/UVa), 47001 Valladolid, Spain; (B.G.-M.); (I.G.); (I.C.); (Y.Á.); (M.H.)
| | - Isabel Gallardo
- Instituto de Biología y Genética Molecular (IBGM-CSIC/UVa), 47001 Valladolid, Spain; (B.G.-M.); (I.G.); (I.C.); (Y.Á.); (M.H.)
| | - Eleni Melliou
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (E.M.); (P.M.)
| | - Isabel Cabero
- Instituto de Biología y Genética Molecular (IBGM-CSIC/UVa), 47001 Valladolid, Spain; (B.G.-M.); (I.G.); (I.C.); (Y.Á.); (M.H.)
| | - Yolanda Álvarez
- Instituto de Biología y Genética Molecular (IBGM-CSIC/UVa), 47001 Valladolid, Spain; (B.G.-M.); (I.G.); (I.C.); (Y.Á.); (M.H.)
| | - Prokopios Magiatis
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (E.M.); (P.M.)
| | - Marita Hernández
- Instituto de Biología y Genética Molecular (IBGM-CSIC/UVa), 47001 Valladolid, Spain; (B.G.-M.); (I.G.); (I.C.); (Y.Á.); (M.H.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valladolid, 47001 Valladolid, Spain
| | - María Luisa Nieto
- Instituto de Biología y Genética Molecular (IBGM-CSIC/UVa), 47001 Valladolid, Spain; (B.G.-M.); (I.G.); (I.C.); (Y.Á.); (M.H.)
- Correspondence: ; Tel.: +34-983-1848-36; Fax: +34-983-1848-00
| |
Collapse
|
29
|
De Boeck A, Ahn BY, D'Mello C, Lun X, Menon SV, Alshehri MM, Szulzewsky F, Shen Y, Khan L, Dang NH, Reichardt E, Goring KA, King J, Grisdale CJ, Grinshtein N, Hambardzumyan D, Reilly KM, Blough MD, Cairncross JG, Yong VW, Marra MA, Jones SJM, Kaplan DR, McCoy KD, Holland EC, Bose P, Chan JA, Robbins SM, Senger DL. Glioma-derived IL-33 orchestrates an inflammatory brain tumor microenvironment that accelerates glioma progression. Nat Commun 2020; 11:4997. [PMID: 33020472 PMCID: PMC7536425 DOI: 10.1038/s41467-020-18569-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Despite a deeper molecular understanding, human glioblastoma remains one of the most treatment refractory and fatal cancers. It is known that the presence of macrophages and microglia impact glioblastoma tumorigenesis and prevent durable response. Herein we identify the dual function cytokine IL-33 as an orchestrator of the glioblastoma microenvironment that contributes to tumorigenesis. We find that IL-33 expression in a large subset of human glioma specimens and murine models correlates with increased tumor-associated macrophages/monocytes/microglia. In addition, nuclear and secreted functions of IL-33 regulate chemokines that collectively recruit and activate circulating and resident innate immune cells creating a pro-tumorigenic environment. Conversely, loss of nuclear IL-33 cripples recruitment, dramatically suppresses glioma growth, and increases survival. Our data supports the paradigm that recruitment and activation of immune cells, when instructed appropriately, offer a therapeutic strategy that switches the focus from the cancer cell alone to one that includes the normal host environment.
Collapse
Affiliation(s)
- Astrid De Boeck
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bo Young Ahn
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Charlotte D'Mello
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Xueqing Lun
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Shyam V Menon
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mana M Alshehri
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Frank Szulzewsky
- Divison of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Yaoqing Shen
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Lubaba Khan
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ngoc Ha Dang
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Elliott Reichardt
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kimberly-Ann Goring
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jennifer King
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Cameron J Grisdale
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Natalie Grinshtein
- Department of Molecular Genetics, University of Toronto and Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute and the Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Karlyne M Reilly
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Michael D Blough
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - J Gregory Cairncross
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - David R Kaplan
- Department of Molecular Genetics, University of Toronto and Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Eric C Holland
- Divison of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Pinaki Bose
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jennifer A Chan
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Pathology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Stephen M Robbins
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Donna L Senger
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
30
|
Reverchon F, de Concini V, Larrigaldie V, Benmerzoug S, Briault S, Togbé D, Ryffel B, Quesniaux VFJ, Menuet A. Hippocampal interleukin-33 mediates neuroinflammation-induced cognitive impairments. J Neuroinflammation 2020; 17:268. [PMID: 32917228 PMCID: PMC7488545 DOI: 10.1186/s12974-020-01939-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/24/2020] [Indexed: 12/23/2022] Open
Abstract
Background Interleukin (IL)-33 is expressed in a healthy brain and plays a pivotal role in several neuropathologies, as protective or contributing to the development of cerebral diseases associated with cognitive impairments. However, the role of IL-33 in the brain is poorly understood, raising the question of its involvement in immunoregulatory mechanisms. Methods We administered recombinant IL-33 (rmIL-33) by intra-hippocampal injection to C57BL/6 J (WT) and IL-1αβ deficient mice. Chronic minocycline administration was performed and cognitive functions were examined trough spatial habituation test. Hippocampal inflammatory responses were investigated by RT-qPCR. The microglia activation was assessed using immunohistological staining and fluorescence-activated cell sorting (FACS). Results We showed that IL-33 administration in mice led to a spatial memory performance defect associated with an increase of inflammatory markers in the hippocampus while minocycline administration limited the inflammatory response. Quantitative assessment of glial cell activation in situ demonstrated an increase of proximal intersections per radius in each part of the hippocampus. Moreover, rmIL-33 significantly promoted the outgrowth of microglial processes. Fluorescence-activated cell sorting analysis on isolated microglia, revealed overexpression of IL-1β, 48 h post-rmIL-33 administration. This microglial reactivity was closely related to the onset of cognitive disturbance. Finally, we demonstrated that IL-1αβ deficient mice were resistant to cognitive disorders after intra-hippocampal IL-33 injection. Conclusion Thus, hippocampal IL-33 induced an inflammatory state, including IL-1β overexpression by microglia cells, being causative of the cognitive impairment. These results highlight the pathological role for IL-33 in the central nervous system, independently of a specific neuropathological model.
Collapse
Affiliation(s)
- Flora Reverchon
- UMR7355, Experimental and Molecular Immunology and Neurogenetics, CNRS and University of Orléans, 3B rue de la Ferollerie, 45071, Orléans, France.,Current address: Center for Molecular Biophysics, CNRS UPR4301, 45071, Orléans, France
| | - Vidian de Concini
- UMR7355, Experimental and Molecular Immunology and Neurogenetics, CNRS and University of Orléans, 3B rue de la Ferollerie, 45071, Orléans, France
| | - Vanessa Larrigaldie
- UMR7355, Experimental and Molecular Immunology and Neurogenetics, CNRS and University of Orléans, 3B rue de la Ferollerie, 45071, Orléans, France
| | - Sulayman Benmerzoug
- UMR7355, Experimental and Molecular Immunology and Neurogenetics, CNRS and University of Orléans, 3B rue de la Ferollerie, 45071, Orléans, France.,Current address:Department of Urology, Urology Research Unit, CHUV, Lausanne, Switzerland
| | - Sylvain Briault
- UMR7355, Experimental and Molecular Immunology and Neurogenetics, CNRS and University of Orléans, 3B rue de la Ferollerie, 45071, Orléans, France.,Department of Genetics, Regional Hospital, Orléans, France
| | | | - Bernhard Ryffel
- UMR7355, Experimental and Molecular Immunology and Neurogenetics, CNRS and University of Orléans, 3B rue de la Ferollerie, 45071, Orléans, France
| | - Valérie F J Quesniaux
- UMR7355, Experimental and Molecular Immunology and Neurogenetics, CNRS and University of Orléans, 3B rue de la Ferollerie, 45071, Orléans, France
| | - Arnaud Menuet
- UMR7355, Experimental and Molecular Immunology and Neurogenetics, CNRS and University of Orléans, 3B rue de la Ferollerie, 45071, Orléans, France.
| |
Collapse
|
31
|
Zhang X, Chen W, Zeng P, Xu J, Diao H. The Contradictory Role of Interleukin-33 in Immune Cells and Tumor Immunity. Cancer Manag Res 2020; 12:7527-7537. [PMID: 32904627 PMCID: PMC7457384 DOI: 10.2147/cmar.s262745] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/02/2020] [Indexed: 12/29/2022] Open
Abstract
Interleukin (IL)-33 is a member of the IL-1 superfamily and is a crucial cytokine playing the role of a dual-function molecule. IL-33 mediates its function by interacting with its receptor suppression of tumorigenicity 2 (ST2), which is constitutively expressed on T helper (Th)1 cells, Th2 cells, and other immune cells. Previously, we summarized findings on IL-33 and performed an intensive study of the correlation between IL-33 and tumor. IL-33 enables anti-tumor immune responses through Th1 cells and natural killer (NK) cells and plays a role in tumor immune escape in cancers via Th2 cells and regulatory T cells. Herein, we discuss the contradictory role of IL-33 in immune cells in different cancer, and our summaries may be helpful for better understanding of the development of research on IL-33 and tumor immunity.
Collapse
Affiliation(s)
- Xujun Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Wenbiao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Ping Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Jia Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| |
Collapse
|
32
|
Ahmadi M, Fathi F, Fouladi S, Alsahebfosul F, Manian M, Eskandari N. Serum IL-33 Level and IL-33, IL1RL1 Gene Polymorphisms in Asthma and Multiple Sclerosis Patients. Curr Mol Med 2020; 19:357-363. [PMID: 30950351 DOI: 10.2174/1566524019666190405120137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/23/2019] [Accepted: 03/27/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Asthma is a chronic and complex inflammatory disease of the respiratory tract. Also, multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system. Against this background, IL-33 and IL1RL1 play a critical role in autoimmune and inflammatory disorders. Here, we explored the IL-33 serum level and two potential genetic variants in the IL33 gene and its receptor in Iranian asthma and MS patients. METHODS This study consisted of asthma (n=140) and MS patients (n=140), and healthy subjects (n=72). Genotyping was carried out in two genetic polymorphisms, rs1342326 variant of IL-33 and rs10204137SNP variant of IL-33 receptor genes, using High- Resolution Melt Real- Time PCR based method. The level of serum IL-33 was also measured using enzyme-linked immunosorbent assay method. RESULTS The level of IL33 was significantly higher in asthma and MS patients compared to the control group (P< 0.001- P<0.001).The frequency distribution of the genotype in rs1342326 variant of IL-33 gene in patients with asthma, MS and healthy subjects was not significantly different (P>0.05). The frequency distribution of the genotype in rs10204137 variant of IL-33 gene in MS patients and healthy subjects was significantly different (p = 0.013). CONCLUSION Our findings demonstrated that asthma and MS patients had a higher level of IL-33, and IL-33 receptor genetic polymorphism was associated with MS. Further studies in a larger multicenter setting are needed to explore the value of this marker as a risk stratification biomarker.
Collapse
Affiliation(s)
- Maryam Ahmadi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farshid Fathi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saloomeh Fouladi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fereshteh Alsahebfosul
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mostafa Manian
- Department of Immunology, school of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Eskandari
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
33
|
Artru F, Bou Saleh M, Maggiotto F, Lassailly G, Ningarhari M, Demaret J, Ntandja-Wandji LC, Pais de Barros JP, Labreuche J, Drumez E, Helou DG, Dharancy S, Gantier E, Périanin A, Chollet-Martin S, Bataller R, Mathurin P, Dubuquoy L, Louvet A. IL-33/ST2 pathway regulates neutrophil migration and predicts outcome in patients with severe alcoholic hepatitis. J Hepatol 2020; 72:1052-1061. [PMID: 31953139 DOI: 10.1016/j.jhep.2019.12.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/30/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Severe alcoholic hepatitis (SAH) is associated with a high risk of infection. The IL-33/ST2 pathway is involved in sepsis control but data regarding its role in alcohol-related liver disease (ALD) are lacking. We aimed to characterize the role of IL-33/ST2 in the polymorphonuclear neutrophils (PMNs) of patients with ALD and SAH. METHODS Serum and circulating neutrophils were collected from patients with SAH, alcoholic cirrhosis and healthy controls. We quantified IL-33/ST2 pathway activity and CXCR2 at baseline and after exposure to IL-33. We also determined the migration capacity of PMNs. RESULTS The decoy receptor of IL-33 (soluble ST2 [sST2]) was increased in SAH vs. cirrhosis and controls, demonstrating the defect in this pathway during ALD. The sST2 level was associated with response to treatment, 2-month survival, infection-free survival and probability of infection in SAH. Endotoxemia was weakly correlated with sST2. GRK2, a negative regulator of CXCR2, was overexpressed in PMNs of patients with SAH and cirrhosis and was decreased by IL-33. CXCR2 levels on PMNs were lower in SAH vs. cirrhosis and controls. Treatment with IL-33 partially restored CXCR2 expression in SAH and cirrhosis. PMN migration upon IL-8 was lower in patients with SAH and cirrhosis vs. controls. Treatment with IL-33 partially restored migration in those with SAH and cirrhosis. Interestingly, the migration capacity of PMNs and the response to IL-33 were enhanced in responders to corticosteroids (Lille <0.45) compared to non-responders. CONCLUSION The IL33/ST2 pathway is defective in SAH and predicts outcome. This defect is associated with decreased CXCR2 expression on the surface of PMNs and lower migration capacity, which can be corrected by IL-33, especially in patients responding to steroids. These results suggest that IL-33 has therapeutic potential for SAH and its infectious complications. LAY SUMMARY The neutrophils of patients with severe alcoholic hepatitis are associated with a defect in the IL-33/ST2 pathway. This defect is associated with lower migration capacities in neutrophils and a higher probability of getting infected. Administration of IL-33 to the neutrophils at least partly restores this defect and may be effective at reducing the risk of infection in patients with severe alcoholic hepatitis.
Collapse
Affiliation(s)
- Florent Artru
- Hôpital Claude-Huriez, Service Maladies de l'Appareil Digestif, CHU Lille, Lille, France; Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France
| | - Mohamed Bou Saleh
- Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France
| | - François Maggiotto
- Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France
| | - Guillaume Lassailly
- Hôpital Claude-Huriez, Service Maladies de l'Appareil Digestif, CHU Lille, Lille, France; Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France
| | - Massih Ningarhari
- Hôpital Claude-Huriez, Service Maladies de l'Appareil Digestif, CHU Lille, Lille, France; Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France
| | - Julie Demaret
- Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France; Centre de Biologie-Pathologie, CHU de Lille, Lille, France
| | - Line-Carolle Ntandja-Wandji
- Hôpital Claude-Huriez, Service Maladies de l'Appareil Digestif, CHU Lille, Lille, France; Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France
| | | | | | - Elodie Drumez
- Département de biostatistiques, CHU de Lille, Lille, France
| | - Doumet Georges Helou
- Inserm/Université Paris-Sud/Université Paris-Saclay, UMR996, Chatenay-Malabry, France; Assistance publique-Hôpitaux de Paris, Hôpital Bichat, Laboratoire d'immunologie « Autoimmunité et Hypersensibilités », Paris, France
| | - Sébastien Dharancy
- Hôpital Claude-Huriez, Service Maladies de l'Appareil Digestif, CHU Lille, Lille, France; Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France
| | - Emilie Gantier
- Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France
| | - Axel Périanin
- Inserm/Faculté de Médecine Xavier Bichat, UMRS-1149, Paris, France; CNRS, ERL-8252 Centre de Recherche sur l'Inflammation, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Sylvie Chollet-Martin
- Inserm/Université Paris-Sud/Université Paris-Saclay, UMR996, Chatenay-Malabry, France; Assistance publique-Hôpitaux de Paris, Hôpital Bichat, Laboratoire d'immunologie « Autoimmunité et Hypersensibilités », Paris, France
| | - Ramon Bataller
- Division of Gastroenterology, Hepatology and Nutrition, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Philippe Mathurin
- Hôpital Claude-Huriez, Service Maladies de l'Appareil Digestif, CHU Lille, Lille, France; Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France
| | - Laurent Dubuquoy
- Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France.
| | - Alexandre Louvet
- Hôpital Claude-Huriez, Service Maladies de l'Appareil Digestif, CHU Lille, Lille, France; Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France.
| |
Collapse
|
34
|
Che DN, Cho BO, Kim JS, Shin JY, Kang HJ, Jang SI. Luteolin and Apigenin Attenuate LPS-Induced Astrocyte Activation and Cytokine Production by Targeting MAPK, STAT3, and NF-κB Signaling Pathways. Inflammation 2020; 43:1716-1728. [DOI: 10.1007/s10753-020-01245-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
35
|
House dust mite allergens induce interleukin 33 (IL-33) synthesis and release from keratinocytes via ATP-mediated extracellular signaling. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165719. [PMID: 32044300 DOI: 10.1016/j.bbadis.2020.165719] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/01/2020] [Accepted: 02/05/2020] [Indexed: 12/21/2022]
Abstract
In atopic diseases, the epithelium releases cytokines and chemokines that initiate skin inflammation. Atopic dermatitis (AD) is characterized by a disrupted epidermal barrier and is triggered or exacerbated by environmental stimuli such as house dust mite (HDM) allergens. The proinflammatory cytokine interleukin 33 (IL-33) plays an important role in the pathogenesis of AD, but how IL-33 production in keratinocytes is elicited by HDM is unknown. To that end, here we stimulated monolayer-cultured human keratinocytes and human living skin equivalents with Dermatophagoides pteronyssinus HDM extract to investigate its effects on IL-33 production from keratinocytes. The HDM extract induced intracellular expression of IL-33 and modulated its processing and maturation, triggering rapid IL-33 release from keratinocytes. Group 1 HDM allergen but not group 2 HDM allergen elicited IL-33 production. An ATP assay of keratinocyte culture supernatants revealed an acute and transient accumulation of extracellular ATP immediately after the HDM extract stimulation. Using the broad-spectrum P2 antagonist suramin, the specific purinergic receptor P2Y2 (P2RY2) antagonist AR-C118925XX, and P2RY2-specific siRNA, we discovered that the HDM extract-induced IL-33 expression was mainly dependent on extracellular ATP/P2Y2 signaling mediated by transactivation of epidermal growth factor receptor, followed by activation of the ERK kinase signaling pathway. Moreover, HDM extract-induced release of 25-kDa IL-33 from the keratinocytes depended on an extracellular ATP/P2 signaling-mediated intracellular Ca2+ increase. Our study demonstrates the new mechanism controlling the induction and maturation of keratinocyte-produced IL-33 by HDM allergens, an innate immune process that might play a role in AD development or severity.
Collapse
|
36
|
The role of the IL-33/ST2 axis in autoimmune disorders: Friend or foe? Cytokine Growth Factor Rev 2019; 50:60-74. [DOI: 10.1016/j.cytogfr.2019.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/01/2019] [Indexed: 12/12/2022]
|
37
|
Abstract
Mast cells are first responders to intracerebral hemorrhage. They release potent mediators that can disrupt the blood-brain barrier promoting injury, vasogenic edema formation, and hematoma exacerbation. Also, mast cells recruit other inflammatory cells that maintain and amplify brain damage. Given their early role in the cascade of events in intracerebral hemorrhage, mast cells may offer an alternative target for antichemotactic interventions.
Collapse
Affiliation(s)
- Mustafa Yehya
- Cerebrovascular and Neurocritical Care Division, Department of Neurology, Wexner Medical Center, The Ohio State University, 333 W. 10th Ave, Graves Hall, Rm. 3172, Columbus, OH, 43210, USA
| | - Michel T Torbey
- Cerebrovascular and Neurocritical Care Division, Department of Neurology, Wexner Medical Center, The Ohio State University, 333 W. 10th Ave, Graves Hall, Rm. 3172, Columbus, OH, 43210, USA. .,Department of Neurosurgery, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
38
|
Zhu H, Wang Z, Yu J, Yang X, He F, Liu Z, Che F, Chen X, Ren H, Hong M, Wang J. Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage. Prog Neurobiol 2019; 178:101610. [PMID: 30923023 DOI: 10.1016/j.pneurobio.2019.03.003] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/07/2019] [Accepted: 03/16/2019] [Indexed: 12/18/2022]
Abstract
Intracerebral hemorrhage (ICH) is a common and severe cerebrovascular disease that has high mortality. Few survivors achieve self-care. Currently, patients receive only symptomatic treatment for ICH and benefit poorly from this regimen. Inflammatory cytokines are important participants in secondary injury after ICH. Increases in proinflammatory cytokines may aggravate the tissue injury, whereas increases in anti-inflammatory cytokines might be protective in the ICH brain. Inflammatory cytokines have been studied as therapeutic targets in a variety of acute and chronic brain diseases; however, studies on ICH are limited. This review summarizes the roles and functions of various pro- and anti-inflammatory cytokines in secondary brain injury after ICH and discusses pathogenic mechanisms and emerging therapeutic strategies and directions for treatment of ICH.
Collapse
Affiliation(s)
- Huimin Zhu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Zhiqiang Wang
- Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Jixu Yu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China; Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China; Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Xiuli Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Feng He
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Zhenchuan Liu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China.
| | - Fengyuan Che
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China; Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China.
| | - Xuemei Chen
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Honglei Ren
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael Hong
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
39
|
Shlomovitz I, Erlich Z, Speir M, Zargarian S, Baram N, Engler M, Edry-Botzer L, Munitz A, Croker BA, Gerlic M. Necroptosis directly induces the release of full-length biologically active IL-33 in vitro and in an inflammatory disease model. FEBS J 2019; 286:507-522. [PMID: 30576068 DOI: 10.1111/febs.14738] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/10/2018] [Accepted: 12/18/2018] [Indexed: 12/26/2022]
Abstract
Interleukin-33 (IL-33) is a pro-inflammatory cytokine that plays a significant role in inflammatory diseases by activating immune cells to induce type 2 immune responses upon its release. Although IL-33 is known to be released during tissue damage, its exact release mechanism is not yet fully understood. Previously, we have shown that cleaved IL-33 can be detected in the plasma and epithelium of Ripk1-/- neonates, which succumb to systemic inflammation driven by spontaneous receptor-interacting protein kinase-3 (RIPK3)-dependent necroptotic cell death, shortly after birth. Thus, we hypothesized that necroptosis, a RIPK3/mixed lineage kinase-like protein (MLKL)-dependent, caspase-independent cell death pathway controls IL-33 release. Here, we show that necroptosis directly induces the release of nuclear IL-33 in its full-length form. Unlike the necroptosis executioner protein, MLKL, which was released in its active phosphorylated form in extracellular vesicles, IL-33 was released directly into the supernatant. Importantly, full-length IL-33 released in response to necroptosis was found to be bioactive, as it was able to activate basophils and eosinophils. Finally, the human and murine necroptosis inhibitor, GW806742X, blocked necroptosis and IL-33 release in vitro and reduced eosinophilia in Aspergillus fumigatus extract-induced asthma in vivo, an allergic inflammation model that is highly dependent on IL-33. Collectively, these data establish for the first time, necroptosis as a direct mechanism for IL-33 release, a finding that may have major implications in type 2 immune responses.
Collapse
Affiliation(s)
- Inbar Shlomovitz
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Ziv Erlich
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Mary Speir
- Division of Hematology/Oncology, Boston Children's Hospital, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Sefi Zargarian
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Noam Baram
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Maya Engler
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Liat Edry-Botzer
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Ben A Croker
- Division of Hematology/Oncology, Boston Children's Hospital, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Motti Gerlic
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| |
Collapse
|
40
|
Sun Z, Chang B, Huang A, Hao S, Gao M, Sun Y, Shi M, Jin L, Zhang W, Zhao J, Teng G, Han L, Tian H, Liang Q, Zhang JY, Zou Z. Plasma levels of soluble ST2, but not IL-33, correlate with the severity of alcoholic liver disease. J Cell Mol Med 2018; 23:887-897. [PMID: 30478965 PMCID: PMC6349182 DOI: 10.1111/jcmm.13990] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022] Open
Abstract
Alcoholic liver disease (ALD) is a complication that is a burden on global health and economy. Interleukin‐33 (IL‐33) is a newly identified member of the IL‐1 cytokine family and is released as an “alarmin” during inflammation. Soluble suppression of tumourigenicity 2 (sST2), an IL‐33 decoy receptor, has been reported as a new biomarker for the severity of systemic and highly inflammatory diseases. Here, we found the levels of plasma sST2, increased with the disease severity from mild to severe ALD. Importantly, the plasma sST2 levels in ALD patients not only correlated with scores for prognostic models (Maddrey's discriminant function, model for end‐stage liver disease and Child‐Pugh scores) and indexes for liver function (total bilirubin, international normalized ratio, albumin, and cholinesterase) but also correlated with neutrophil‐associated factors as well as some proinflammatory cytokines. In vitro, lipopolysaccharide‐activated monocytes down‐regulated transmembrane ST2 receptor but up‐regulated sST2 mRNA and protein expression and produced higher levels of tumour necrosis factor‐α (TNF‐α). By contrast, monocytes pretreated with recombinant sST2 showed decreased TNF‐α production. In addition, although plasma IL‐33 levels were comparable between healthy controls and ALD patients, we found the IL‐33 expression in liver tissues from ALD patients was down‐regulated at both RNA and protein levels. Immunohistochemical staining further showed that the decreased of IL‐33‐positive cells were mainly located in liver lobule area. These results suggested that sST2, but not IL‐33, is closely related to the severity of ALD. Consequently, sST2 could be used as a potential biomarker for predicting the prognosis of ALD.
Collapse
Affiliation(s)
- Zijian Sun
- Center of Non-infectious Liver Diseases, Peking University 302 Clinical Medical School, Beijing, China
| | - Binxia Chang
- Center of Non-infectious Liver Diseases, Beijing 302 Hospital, Beijing, China
| | - Ang Huang
- Center of Non-infectious Liver Diseases, Beijing 302 Hospital, Beijing, China
| | - Shuli Hao
- Center of Non-infectious Liver Diseases, Beijing 302 Hospital, Beijing, China
| | - Miaomiao Gao
- Center of Non-infectious Liver Diseases, Peking University 302 Clinical Medical School, Beijing, China
| | - Ying Sun
- Center of Non-infectious Liver Diseases, Beijing 302 Hospital, Beijing, China
| | - Ming Shi
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Lei Jin
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Wei Zhang
- Center of Non-infectious Liver Diseases, Beijing 302 Hospital, Beijing, China
| | - Jun Zhao
- Center of Non-infectious Liver Diseases, Beijing 302 Hospital, Beijing, China
| | - Guangju Teng
- Center of Non-infectious Liver Diseases, Beijing 302 Hospital, Beijing, China
| | - Lin Han
- Center of Non-infectious Liver Diseases, Beijing 302 Hospital, Beijing, China
| | - Hui Tian
- Center of Non-infectious Liver Diseases, Beijing 302 Hospital, Beijing, China
| | - Qingsheng Liang
- Center of Non-infectious Liver Diseases, Beijing 302 Hospital, Beijing, China
| | - Ji-Yuan Zhang
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Zhengsheng Zou
- Center of Non-infectious Liver Diseases, Peking University 302 Clinical Medical School, Beijing, China
| |
Collapse
|
41
|
Fairlie-Clarke K, Barbour M, Wilson C, Hridi SU, Allan D, Jiang HR. Expression and Function of IL-33/ST2 Axis in the Central Nervous System Under Normal and Diseased Conditions. Front Immunol 2018; 9:2596. [PMID: 30515150 PMCID: PMC6255965 DOI: 10.3389/fimmu.2018.02596] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Interleukin-33 (IL-33) is a well-recognized immunomodulatory cytokine which plays critical roles in tissue function and immune-mediated diseases. The abundant expression of IL-33 in brain and spinal cord prompted many scientists to explore its unique role in the central nervous system (CNS) under physiological and pathological conditions. Indeed emerging evidence from over a decade's research suggests that IL-33 acts as one of the key molecular signaling cues coordinating the network between the immune and CNS systems, particularly during the development of neurological diseases. Here, we highlight the recent advances in our knowledge regarding the distribution and cellular localization of IL-33 and its receptor ST2 in specific CNS regions, and more importantly the key roles IL-33/ST2 signaling pathway play in CNS function under normal and diseased conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Hui-Rong Jiang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
42
|
Xing Z, He Z, Wang S, Yan Y, Zhu H, Gao Y, Zhao Y, Zhang L. Ameliorative effects and possible molecular mechanisms of action of fibrauretine from Fibraurea recisa Pierre on d-galactose/AlCl 3-mediated Alzheimer's disease. RSC Adv 2018; 8:31646-31657. [PMID: 35548215 PMCID: PMC9085853 DOI: 10.1039/c8ra05356a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/26/2018] [Indexed: 12/23/2022] Open
Abstract
Fibrauretine is one of the main active ingredients from the rattan stems of Fibraurea recisa Pierre It exhibits a series of significant pharmacological effects. The present study aimed to evaluate the potential anti Alzheimer's disease (AD) effects of fibrauretine on a d-galactose/AlCl3-induced mouse model, and the underlying mechanisms of action were further investigated for the first time. Our results showed that pretreatment with fibrauretine significantly improved the ability of spatial short-term working memory in the model mice during the Y-maze test, as well as the abilities of spatial learning and memory during the Morris water maze. The levels of brain tissue amyloid (Aβ), P-Tau, Tau and acetylcholinesterase (AchE) were evidently increased in d-galactose/AlCl3-intoxicated mice, and these effects were reversed by fibrauretine. In contrast, a significant increase in the levels of the neurotransmitter acetylcholine (Ach) and choline acetyl transferase (ChAT) was observed in the fibrauretine-treated groups compared with the model group. Neuronal oxidative stress, evidenced by increased malondialdehyde (MDA) and nitric oxide (NO) levels and a decline in glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD) activity, was significantly alleviated by fibrauretine pretreatment. The suppression of the neuroinflammatory response by fibrauretine was realized not only by the decrease in the levels of tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the brain tissues and by the enzyme-linked immunosorbent assay (ELISA) but also by the protein expression levels of nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS), which were measured by immunohistochemistry and western blotting. In addition, the protein expression levels of inflammatory factors interleukin-33 (IL-33) and ST2 in the brain tissues were detected by immunohistochemistry. Furthermore, the effects of western blotting demonstrated that the administration of fibrauretine significantly suppressed the protein expression levels of caspase-3, cleaved caspase-3, and Bax and increased the protein expression levels of Bcl-2, and the results of the H&E and TUNEL assay all suggested the inhibition of apoptosis in the neurons. The results clearly suggest that the underlying molecular mechanisms of action of the fibrauretine-mediated alleviation of d-galactose/AlCl3-induced Alzheimer's disease may involve antioxidant, anti-inflammatory, and anti-apoptotic effects.
Collapse
Affiliation(s)
- Zhiheng Xing
- Jilin Agricultural University Changchun 130118 Jilin China +86 431 84533358 +86 431 84533358
| | - Zhongmei He
- Jilin Agricultural University Changchun 130118 Jilin China +86 431 84533358 +86 431 84533358
- College of Chinese Medicinal Materials Changchun 130118 Jilin China
| | - Shuning Wang
- Jilin Agricultural University Changchun 130118 Jilin China +86 431 84533358 +86 431 84533358
| | - Yu Yan
- Jilin Agricultural University Changchun 130118 Jilin China +86 431 84533358 +86 431 84533358
| | - Hongyan Zhu
- Jilin Agricultural University Changchun 130118 Jilin China +86 431 84533358 +86 431 84533358
- College of Chinese Medicinal Materials Changchun 130118 Jilin China
| | - Yugang Gao
- Jilin Agricultural University Changchun 130118 Jilin China +86 431 84533358 +86 431 84533358
- College of Chinese Medicinal Materials Changchun 130118 Jilin China
| | - Yan Zhao
- Jilin Agricultural University Changchun 130118 Jilin China +86 431 84533358 +86 431 84533358
- College of Chinese Medicinal Materials Changchun 130118 Jilin China
| | - Lianxue Zhang
- Jilin Agricultural University Changchun 130118 Jilin China +86 431 84533358 +86 431 84533358
- College of Chinese Medicinal Materials Changchun 130118 Jilin China
| |
Collapse
|
43
|
Role of Damage Associated Molecular Pattern Molecules (DAMPs) in Aneurysmal Subarachnoid Hemorrhage (aSAH). Int J Mol Sci 2018; 19:ijms19072035. [PMID: 30011792 PMCID: PMC6073937 DOI: 10.3390/ijms19072035] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/01/2018] [Accepted: 07/09/2018] [Indexed: 12/27/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) represents only a small portion of all strokes, but accounts for almost half of the deaths caused by stroke worldwide. Neurosurgical clipping and endovascular coiling can successfully obliterate the bleeding aneurysms, but ensuing complications such as cerebral vasospasm, acute and chronic hydrocephalus, seizures, cortical spreading depression, delayed ischemic neurological deficits, and delayed cerebral ischemia lead to poor clinical outcomes. The mechanisms leading to these complications are complex and poorly understood. Early brain injury resulting from transient global ischemia can release molecules that may be critical to initiate and sustain inflammatory response. Hence, the events during early brain injury can influence the occurrence of delayed brain injury. Since the damage associated molecular pattern molecules (DAMPs) might be the initiators of inflammation in the pathophysiology of aSAH, so the aim of this review is to highlight their role in the context of aSAH from diagnostic, prognostic, therapeutic, and drug therapy monitoring perspectives. DAMPs represent a diverse and a heterogenous group of molecules derived from different compartments of cells upon injury. Here, we have reviewed the most important DAMPs molecules including high mobility group box-1 (HMGB1), S100B, hemoglobin and its derivatives, extracellular matrix components, IL-1α, IL-33, and mitochondrial DNA in the context of aSAH and their role in post-aSAH complications and clinical outcome after aSAH.
Collapse
|
44
|
Pinto SM, Subbannayya Y, Rex DAB, Raju R, Chatterjee O, Advani J, Radhakrishnan A, Keshava Prasad TS, Wani MR, Pandey A. A network map of IL-33 signaling pathway. J Cell Commun Signal 2018; 12:615-624. [PMID: 29705949 DOI: 10.1007/s12079-018-0464-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/02/2018] [Indexed: 12/19/2022] Open
Abstract
Interleukin-33 (IL-33) is a member of the IL-1 family of cytokines that play a central role in the regulation of immune responses. Its release from epithelial and endothelial cells is mediated by pro-inflammatory cytokines, cell damage and by recognition of pathogen-associated molecular patterns (PAMPs). The activity of IL-33 is mediated by binding to the IL-33 receptor complex (IL-33R) and activation of NF-κB signaling via the classical MyD88/IRAK/TRAF6 module. IL-33 also induces the phosphorylation and activation of ERK1/2, JNK, p38 and PI3K/AKT signaling modules resulting in the production and release of pro-inflammatory cytokines. Aberrant signaling by IL-33 has been implicated in the pathogenesis of several acute and chronic inflammatory diseases, including asthma, atopic dermatitis, rheumatoid arthritis and ulcerative colitis among others. Considering the biomedical importance of IL-33, we developed a pathway resource of signaling events mediated by IL-33/IL-33R in this study. Using data mined from the published literature, we describe an integrated pathway reaction map of IL-33/IL-33R consisting of 681 proteins and 765 reactions. These include information pertaining to 19 physical interaction events, 740 enzyme catalysis events, 6 protein translocation events, 4 activation/inhibition events, 9 transcriptional regulators and 2492 gene regulation events. The pathway map is publicly available through NetPath ( http://www.netpath.org /), a resource of human signaling pathways developed previously by our group. This resource will provide a platform to the scientific community in facilitating identification of novel therapeutic targets for diseases associated with dysregulated IL-33 signaling. Database URL: http://www.netpath.org/pathways?path_id=NetPath_120 .
Collapse
Affiliation(s)
- Sneha M Pinto
- Institute of Bioinformatics, International Technology Park, Bangalore, India. .,Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India.
| | - Yashwanth Subbannayya
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - D A B Rex
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - Rajesh Raju
- Computational Biology Group, Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Oishi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Jayshree Advani
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | | | - T S Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - Mohan R Wani
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Akhilesh Pandey
- Institute of Bioinformatics, International Technology Park, Bangalore, India. .,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India. .,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Oncology, Johns Hopkins University School of Medicine, 733, N Broadway, MRB 527, Baltimore, MD, USA.
| |
Collapse
|
45
|
Wei ZH, Li YY, Huang SQ, Tan ZQ. Genetic variants in IL-33/ST2 pathway with the susceptibility to hepatocellular carcinoma in a Chinese population. Cytokine 2018; 118:124-129. [PMID: 29656959 DOI: 10.1016/j.cyto.2018.03.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 12/28/2022]
Abstract
Interleukin (IL)-33/ST2 pathway plays a pivotal role in tumorigenesis through influencing cancer stemness, tumor growth, metastasis, angiogenesis, and accumulation of regulatory T cells in tumor microenvironments. The aim of this study was to investigate the association of IL-33 rs7025417 and ST2 rs3821204 with the risk of hepatocellular carcinoma (HCC). Genotyping of IL-33 rs7025417 and ST2 rs3821204 was carried out using a Taqman assay. IL-33 and ST2 mRNA was examined using real-time PCR and plasma IL-33 and sST2 levels were measured using enzyme-linked immunosorbent assay. The ST2 rs3821204 CC genotype was associated with a significantly increased risk of HCC (CC vs. GG: adjusted OR = 2.29, 95% CI, 1.39-3.78; dominant model: adjusted OR = 1.58, 95% CI, 1.12-2.23; recessive model: adjusted OR = 1.88, 95% CI, 1.21-2.93; C vs. G: adjusted OR = 1.53, 95% CI, 1.20-1.95). Gene-environment interaction analysis showed that the risk effect of rs3821204 CG/CC genotypes was more evident in smokers (adjusted OR = 1.70, 95% CI, 1.13-2.55) and drinkers (adjusted OR = 1.57, 95% CI, 1.04-2.37). The increased risk was also observed in combined analysis. Moreover, HCC patients with ST2 rs3821204 CC genotype had higher levels of mRNA and protein expression (P < 0.05). These findings suggest that ST2 rs3821204 CC genotype may contribute to hepatocarcinogenesis by enhancing ST2 production at the transcriptional and translational level.
Collapse
Affiliation(s)
- Zhong-Heng Wei
- Department of Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China.
| | - Yue-Yong Li
- Department of Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Shi-Qing Huang
- Department of Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Zhong-Qiu Tan
- Department of Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| |
Collapse
|
46
|
Khaitov MR, Gaisina AR, Shilovskiy IP, Smirnov VV, Ramenskaia GV, Nikonova AA, Khaitov RM. The Role of Interleukin-33 in Pathogenesis of Bronchial Asthma. New Experimental Data. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29534664 DOI: 10.1134/s0006297918010029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Interleukin-33 (IL-33) belongs to the IL-1 cytokine family and plays an important role in modulating immune system by inducing Th2 immune response via the ST2 membrane receptor. Epithelial cells are the major producers of IL-33. However, IL-33 is also secreted by other cells, e.g., bone marrow cells, dendritic cells, macrophages, and mast cells. IL-33 targets a broad range of cell types bearing the ST2 surface receptor. Many ST2-positive cells, such as Th2 cells, mast cells, basophils, and eosinophils, are involved in the development of allergic bronchial asthma (BA). This suggests that IL-33 directly participates in BA pathogenesis. Currently, the role of IL-33 in pathogenesis of inflammatory disorders, including BA, has been extensively investigated using clinical samples collected from patients, as well as asthma animal models. In particular, numerous studies on blocking IL-33 and its receptor by monoclonal antibodies in asthma mouse model have been performed over the last several years; IL-33- and ST2-deficient transgenic mice have also been generated. In this review, we summarized and analyzed the data on the role of IL-33 in BA pathogenesis and the prospects for creating new treatments for BA.
Collapse
Affiliation(s)
- M R Khaitov
- Institute of Immunology, FMBA of Russia, Moscow, 115478, Russia.
| | | | | | | | | | | | | |
Collapse
|
47
|
Critical Roles of IL-33/ST2 Pathway in Neurological Disorders. Mediators Inflamm 2018; 2018:5346413. [PMID: 29507527 PMCID: PMC5817350 DOI: 10.1155/2018/5346413] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/06/2017] [Indexed: 01/21/2023] Open
Abstract
Interleukin-33 (IL-33) is an IL-1 family member, which exhibits both pro- and anti-inflammatory properties solely based on the type of the disease itself. Generally, IL-33 is expressed by both endothelial and epithelial cells and mediates its function based on the interaction with various receptors, mainly with ST2 variants. IL-33 is a potent inducer for the Th2 immune response which includes defence mechanism in brain diseases. Thus, in this paper, we review the biological features of IL-33 and the critical roles of IL-33/ST2 pathway in selected neurological disorders including Alzheimer's disease, multiple sclerosis, and malaria infection to discuss the involvement of IL-33/ST2 pathway during these brain diseases and its potential as future immunotherapeutic agents or for intervention purposes.
Collapse
|
48
|
Dichotomous function of IL-33 in health and disease: From biology to clinical implications. Biochem Pharmacol 2018; 148:238-252. [PMID: 29309756 DOI: 10.1016/j.bcp.2018.01.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022]
Abstract
Interleukin (IL)-33 is a cytokine that is released from epithelial and endothelial cells at barrier surfaces upon tissue stress or damage to operate as an alarmin. IL-33 has been primarily implicated in the induction of T helper (Th) 2 type immune responses. Therefore, IL-33 has attracted a lot of interest as a potential therapeutic target in asthma and other allergic diseases. Over the years, it has become clear that IL-33 has a much broader activity and also contributes to Th1 immunity, expanding the possibilities for therapeutic modulation of IL-33 activity to multiple inflammatory diseases. However, more recently IL-33 has also been shown to mediate immunosuppression and tissue repair by activating regulatory T cells (Treg) and promoting M2 macrophage polarization. These pleiotropic activities of IL-33 illustrate the need for a tight molecular regulation of IL-33 activity, and have to be taken into account when IL-33 or its receptor is targeted for therapeutic modulation. Here we review the multiple molecular mechanisms that regulate IL-33 activity and describe how IL-33 can shape innate and adaptive immune responses by promoting Th1, Th2 and Treg function. Finally, we will discuss the possibilities for therapeutic modulation of IL-33 signaling as well as possible safety issues.
Collapse
|
49
|
Gao Y, Luo CL, Li LL, Ye GH, Gao C, Wang HC, Huang WW, Wang T, Wang ZF, Ni H, Chen XP, Tao LY. IL-33 Provides Neuroprotection through Suppressing Apoptotic, Autophagic and NF-κB-Mediated Inflammatory Pathways in a Rat Model of Recurrent Neonatal Seizure. Front Mol Neurosci 2017; 10:423. [PMID: 29311813 PMCID: PMC5742123 DOI: 10.3389/fnmol.2017.00423] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/04/2017] [Indexed: 12/19/2022] Open
Abstract
Interleukin-33 (IL-33) is a novel identified chromatin-associated cytokine of IL-1 family cytokines. It signals through a heterodimer comprised of ST2L and IL-1RAcp, and plays a crucial role in many diseases. However, very little is known about the role and underlying intricate mechanisms of IL-33 in recurrent neonatal seizure (RNS). To determine whether IL-33 plays an important regulatory role, we established a neonatal seizure model in this study. Rats were subjected to recurrent seizures induced by inhaling volatile flurothyl. Recombinant IL-33 or PBS were also administered by intraperitoneally (IP) before surgery, respectively. Here, our current results indicated that RNS contributed to a significant reduction in IL-33 and its specific receptor (ST2L) expressions in cortex. While, in hippocampus, RNS induced an increase in IL-33 and ST2L evidently, compared with Sham group. After injection with IL-33, however, a remarkable increase in total IL-33 was detected both in brain cortex and hippocampus. In addition, IL-33 was mainly co-localized in the nuclear of GFAP+ astrocytes and the cytoplasm of the Iba-1+ microglia and IL-33+/NeuN+ merged cells. In parallel, ST2L was expressed mainly in the membrane of GFAP+ astrocytes, Iba-1+ microglia and NeuN+ neurons, respectively. Furthermore, administration of IL-33 improved RNS-induced behavioral deficits, promoted bodyweight gain, and ameliorated spatial learning and memory ability. Moreover, IL-33 pretreatment blocked the activation of NF-κB, resisted inflammatory cytokines IL-1β and TNF-α increase, as well as suppressed apoptosis and autophagy activation after RNS. Collectively, IL-33 provides potential neuroprotection through suppressing apoptosis, autophagy and at least in part by NF-κB-mediated inflammatory pathways after RNS.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Forensic Medicine, Wenzhou Medical University, Wenzhou, China.,Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Cheng-Liang Luo
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Li-Li Li
- Department of Neurology Laboratory, Children's Hospital of Soochow University, Suzhou, China
| | - Guang-Hua Ye
- Department of Forensic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Cheng Gao
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Hao-Chen Wang
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Wen-Wen Huang
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Tao Wang
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Zu-Feng Wang
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Hong Ni
- Department of Neurology Laboratory, Children's Hospital of Soochow University, Suzhou, China
| | - Xi-Ping Chen
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Lu-Yang Tao
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| |
Collapse
|
50
|
Cayrol C, Girard JP. Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family. Immunol Rev 2017; 281:154-168. [DOI: 10.1111/imr.12619] [Citation(s) in RCA: 401] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Corinne Cayrol
- Institut de Pharmacologie et de Biologie Structurale; IPBS; Université de Toulouse; CNRS; UPS; Toulouse France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale; IPBS; Université de Toulouse; CNRS; UPS; Toulouse France
| |
Collapse
|