1
|
Eddens T, Parks OB, Williams JV. Neonatal Immune Responses to Respiratory Viruses. Front Immunol 2022; 13:863149. [PMID: 35493465 PMCID: PMC9047724 DOI: 10.3389/fimmu.2022.863149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
Respiratory tract infections are a leading cause of morbidity and mortality in newborns, infants, and young children. These early life infections present a formidable immunologic challenge with a number of possibly conflicting goals: simultaneously eliminate the acute pathogen, preserve the primary gas-exchange function of the lung parenchyma in a developing lung, and limit long-term sequelae of both the infection and the inflammatory response. The latter has been most well studied in the context of childhood asthma, where multiple epidemiologic studies have linked early life viral infection with subsequent bronchospasm. This review will focus on the clinical relevance of respiratory syncytial virus (RSV), human metapneumovirus (HMPV), and rhinovirus (RV) and examine the protective and pathogenic host responses within the neonate.
Collapse
Affiliation(s)
- Taylor Eddens
- Pediatric Scientist Development Program, University of Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
- Division of Allergy/Immunology, University of Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Olivia B. Parks
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, United States
| | - John V. Williams
- Division of Pediatric Infectious Diseases, University of Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Brennan K, Craven S, Cheung M, Kane D, Noone E, O'Callaghan J, Molloy EJ, Walsh PT, McAuliffe FM, Doyle SL. Cytosolic dsRNA improves neonatal innate immune responses to adjuvants in use in pediatric vaccines. J Leukoc Biol 2022; 112:523-537. [PMID: 35098572 PMCID: PMC9542317 DOI: 10.1002/jlb.5a0521-242r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/17/2021] [Accepted: 01/06/2022] [Indexed: 11/12/2022] Open
Abstract
Pattern recognition receptors (PRRs) of the innate immune system represent the critical front‐line defense against pathogens, and new vaccine formulations target these PRR pathways to boost vaccine responses, through activation of cellular/Th1 immunity. The majority of pediatric vaccines contain aluminum (ALUM) or monophosphoryl lipid A (MPLA) as adjuvants to encourage immune activation. Evidence suggests that elements of the innate immune system, currently being targeted for vaccine adjuvanticity do not fully develop until puberty and it is likely that effective adjuvants for the neonatal and pediatric populations are being overlooked due to modeling of responses in adult systems. We recently reported that the activity of the cytosolic nucleic acid (CNA) sensing family of PRRs is strong in cord blood and peripheral blood of young children. This study investigates the function of CNA sensors in subsets of neonatal innate immune cells and shows that myeloid cells from cord blood can be activated to express T cell costimulatory markers, and also to produce Th1 promoting cytokines. CD80 and CD86 were consistently up‐regulated in response to cytosolic Poly(I:C) stimulation in all cell types examined and CNA activation also induced robust Type I IFN and low levels of TNFα in monocytes, monocyte‐derived macrophages, and monocyte‐derived dendritic cells. We have compared CNA activation to adjuvants currently in use (MPLA or ALUM), either alone or in combination and found that cytosolic Poly(I:C) in combination with MPLA or ALUM can improve expression of activation marker levels above those observed with either adjuvant alone. This may prove particularly promising in the context of improving the efficacy of existing ALUM‐ or MPLA‐containing vaccines, through activation of T cell‐mediated immunity.
Collapse
Affiliation(s)
- Kiva Brennan
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Crumlin Dublin Ireland
- Department of Clinical Medicine, School of Medicine Trinity College Dublin Dublin Ireland
| | - Simon Craven
- UCD Perinatal Research Centre, Obstetrics & Gynaecology School of Medicine, University College Dublin, National Maternity Hospital Dublin Ireland
| | - Maria Cheung
- UCD Perinatal Research Centre, Obstetrics & Gynaecology School of Medicine, University College Dublin, National Maternity Hospital Dublin Ireland
| | - Daniel Kane
- UCD Perinatal Research Centre, Obstetrics & Gynaecology School of Medicine, University College Dublin, National Maternity Hospital Dublin Ireland
| | - Eleanor Noone
- Department of Clinical Medicine, School of Medicine Trinity College Dublin Dublin Ireland
| | - Joseph O'Callaghan
- Department of Clinical Medicine, School of Medicine Trinity College Dublin Dublin Ireland
| | - Eleanor J Molloy
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Crumlin Dublin Ireland
- Department of Paediatrics School of Medicine, Trinity College Dublin Dublin Ireland
- Coombe Women and Infants University Hospital Dublin Ireland
| | - Patrick T Walsh
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Crumlin Dublin Ireland
- Department of Clinical Medicine, School of Medicine Trinity College Dublin Dublin Ireland
| | - Fionnuala M McAuliffe
- UCD Perinatal Research Centre, Obstetrics & Gynaecology School of Medicine, University College Dublin, National Maternity Hospital Dublin Ireland
| | - Sarah L Doyle
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Crumlin Dublin Ireland
- Department of Clinical Medicine, School of Medicine Trinity College Dublin Dublin Ireland
| |
Collapse
|
3
|
Cord-Blood-Derived Professional Antigen-Presenting Cells: Functions and Applications in Current and Prospective Cell Therapies. Int J Mol Sci 2021; 22:ijms22115923. [PMID: 34072923 PMCID: PMC8199409 DOI: 10.3390/ijms22115923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/21/2022] Open
Abstract
Human umbilical cord blood (UCB) represents a valuable source of hematopoietic stem cells, particularly for patients lacking a matching donor. UCB provides practical advantages, including a lower risk of graft-versus-host-disease and permissive human leukocyte antigen mismatching. These advantageous properties have so far been applied for stem cell, mesenchymal stromal cell, and chimeric antigen receptor T cell therapies. However, UCB-derived professional antigen-presenting cells are increasingly being utilized in the context of immune tolerance and regenerative therapy. Here, we review the cell-specific characteristics as well as recent advancements in UCB-based cell therapies focusing on dendritic cells, monocytes, B lymphocytes, innate lymphoid cells, and macrophages.
Collapse
|
4
|
Bikhet M, Morsi M, Hara H, Rhodes LA, Carlo WF, Cleveland D, Cooper DK, Iwase H. The immune system in infants: Relevance to xenotransplantation. Pediatr Transplant 2020; 24:e13795. [PMID: 32845539 PMCID: PMC7606572 DOI: 10.1111/petr.13795] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022]
Abstract
Despite the improvement in surgical interventions in the treatment of congenital heart disease, many life-threatening lesions (eg, hypoplastic left heart syndrome) ultimately require transplantation. However, there is a great limitation in the availability of deceased human cardiac donors of a suitable size. Hearts from genetically engineered pigs may provide an alternative source. The relatively immature immune system in infants (eg, absence of anti-carbohydrate antibodies, reduced complement activation, reduced innate immune cell activity) should minimize the risk of early antibody-mediated rejection of a pig graft. Additionally, recipient thymectomy, performed almost routinely as a preliminary to orthotopic heart transplantation in this age-group, impairs the T-cell response. Because of the increasing availability of genetically engineered pigs (eg, triple-knockout pigs that do not express any of the three known carbohydrate antigens against which humans have natural antibodies) and the ability to diagnose congenital heart disease during fetal life, cardiac xenotransplantation could be preplanned to be carried out soon after birth. Because of these several advantages, prolonged graft survival and even the induction of tolerance, for example, following donor-specific pig thymus transplantation, are more likely to be achieved in infants than in adults. In this review, we summarize the factors in the infant immune system that would be advantageous in the success of cardiac xenotransplantation in this age-group.
Collapse
Affiliation(s)
- Mohamed Bikhet
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, AL, USA
| | - Mahmoud Morsi
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, AL, USA
| | - Leslie A. Rhodes
- Division of Pediatric Cardiology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Waldemar F. Carlo
- Division of Pediatric Cardiology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David Cleveland
- Department of Pediatric Cardiovascular Surgery, Children’s Hospital of Alabama, Birmingham, AL, USA
| | - David K.C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, AL, USA
| | - Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
5
|
Migdał A, Migdał Ł, Oczkowicz M, Okólski A, Chełmońska-Soyta A. Influence of Age and Immunostimulation on the Level of Toll-Like Receptor Gene ( TLR3, 4, and 7) Expression in Foals. Animals (Basel) 2020; 10:ani10111966. [PMID: 33114637 PMCID: PMC7692595 DOI: 10.3390/ani10111966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Detailed knowledge of the molecular mechanisms of immunoglobulin synthesis appears necessary for a better understanding of foal immunity maturity and its influencing factors. At the same time, it encourages studies regarding the influence of the signaling cascade’s proteins on the primary immunological response, which provides an opportunity to develop extremely precise methods of regulating acquired immunity. The results revealed that the expression of theTLR3 and TLR4 genes, as well as the levels of immunoglobulins and interleukins, can be modulated by stimulation with the pharmacological agent, and that the expression of the TLR3 and TLR4genes in peripheral blood cells is dependent on age. Abstract The aim of this study was to investigate the molecular mechanisms leading to the identification of pathogens by congenital immune receptors in foals up to 60 days of age. The study was conducted on 16 foal Polish Pony Horses (Polish Konik) divided into two study groups: control (n = 9) and experimental (n = 7). Foals from the experimental group received an intramuscular duplicate injection of 5 mL of Biotropina (Biowet) at 35 and 40 days of age. The RNA isolated from venous blood was used to evaluate the expression of theTLR3, TLR4, and TLR7 genes using RT-PCR. The results of the experiment demonstrated a statistically significant increase in the level of TLR3 gene expression and a decrease in the level ofTLR4 gene expression with foal aging. The level of TLR7 gene expression did not show age dependence. Immunostimulation with Biotropina had a significant impact on the level of the genes’ expression for Toll-like receptors. It increased the level of TLR4 expression and decreased TLR3 expression. Thus, it was concluded that the expression of theTLR3 and TLR4genes in peripheral blood cells is dependent on age. This experiment demonstrated a strong negative correlation between TLR3 and TLR4 gene expression.
Collapse
Affiliation(s)
- Anna Migdał
- Department of Genetics, Animal Breeding and Ethology, Faculty of Animal Sciences, University of Agriculture in Krakow, al. 29 Listopada 46, 31-425 Kraków, Poland;
- Correspondence: ; Tel.: +48-(12)-662-53408
| | - Łukasz Migdał
- Department of Genetics, Animal Breeding and Ethology, Faculty of Animal Sciences, University of Agriculture in Krakow, al. 29 Listopada 46, 31-425 Kraków, Poland;
| | - Maria Oczkowicz
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland;
| | - Adam Okólski
- Institute of Veterinary Science, University Centre of Veterinary Medicine UJ-UR, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Kraków, Poland;
| | - Anna Chełmońska-Soyta
- Laboratory of Reproductive Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12 Street, 53-114 Wroclaw, Poland;
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Division of Immunology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Norwida 31 Street, 50-375 Wroclaw, Poland
| |
Collapse
|
6
|
Yoshikawa FSY, Pietrobon AJ, Branco ACCC, Pereira NZ, Oliveira LMDS, Machado CM, Duarte AJDS, Sato MN. Zika Virus Infects Newborn Monocytes Without Triggering a Substantial Cytokine Response. J Infect Dis 2020; 220:32-40. [PMID: 30785182 DOI: 10.1093/infdis/jiz075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 12/18/2022] Open
Abstract
Zika virus (ZIKV) is a clinically important flavivirus that can cause neurological disturbances in newborns. Here, we investigated comparatively the outcome of in vitro infection of newborn monocytes by ZIKV. We observed that neonatal cells show defective production of interleukin 1β, interleukin 10, and monocyte chemoattractant protein 1 in response to ZIKV, although they were as efficient as adult cells in supporting viral infection. Although CLEC5A is a classical flavivirus immune receptor, it is not essential to the cytokine response, but it regulates the viral load only in adult cells. Greater expression of viral entry receptors may create a favorable environment for viral invasion in neonatal monocytes. We are the first to suggest a role for CLEC5A in human monocyte infectivity and to show that newborn monocytes are interesting targets in ZIKV pathogenesis, owing to their ability to carry the virus with only a partial triggering of the immune response, creating a potentially favorable environment for virus-related pathologies in young individuals.
Collapse
Affiliation(s)
- Fabio Seiti Yamada Yoshikawa
- Laboratório de Investigação em Dermatologia e Imunodeficiências, Instituto de Medicina Tropical, Faculdade de Medicina
| | - Anna Julia Pietrobon
- Laboratório de Investigação em Dermatologia e Imunodeficiências, Instituto de Medicina Tropical, Faculdade de Medicina.,Departamento de Imunologia, Instituto de Ciências Biomédicas
| | - Anna Cláudia Calvielli Castelo Branco
- Laboratório de Investigação em Dermatologia e Imunodeficiências, Instituto de Medicina Tropical, Faculdade de Medicina.,Departamento de Imunologia, Instituto de Ciências Biomédicas
| | - Nátalli Zanete Pereira
- Laboratório de Investigação em Dermatologia e Imunodeficiências, Instituto de Medicina Tropical, Faculdade de Medicina.,Departamento de Imunologia, Instituto de Ciências Biomédicas
| | - Luanda Mara da Silva Oliveira
- Laboratório de Investigação em Dermatologia e Imunodeficiências, Instituto de Medicina Tropical, Faculdade de Medicina
| | | | - Alberto José da Silva Duarte
- Laboratório de Investigação em Dermatologia e Imunodeficiências, Instituto de Medicina Tropical, Faculdade de Medicina
| | - Maria Notomi Sato
- Laboratório de Investigação em Dermatologia e Imunodeficiências, Instituto de Medicina Tropical, Faculdade de Medicina.,Departamento de Imunologia, Instituto de Ciências Biomédicas
| |
Collapse
|
7
|
Stinson LF, Payne MS, Keelan JA. Placental and intra-amniotic inflammation are associated with altered fetal immune responses at birth. Placenta 2019; 85:15-23. [PMID: 31421529 DOI: 10.1016/j.placenta.2019.08.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/22/2019] [Accepted: 08/07/2019] [Indexed: 02/08/2023]
Abstract
INTRODUCTION High-grade placental inflammation is associated with preterm birth and poor neonatal outcomes. Recent reports suggest that low-grade placental inflammation is common in uncomplicated pregnancies. The relationship between placental inflammation and innate immune anti-microbial responses is unknown. In this study we sought to identify any association between placental inflammation and fetal immune responses. METHODS Cord blood samples collected from late preterm and full-term Caesarean section deliveries (n = 44) were exposed to various immune challenges (resiquimod, LPS, PGN, poly (I:C), cGAMP, and 5'ppp-dsRNA) and production of inflammatory mediators (G-CSF, IFN-γ, IL-1β, IL-6, IL-8, IL-10, and TNF-α) was measured by multiplex assay. Hospital histology reports were used to assess the extent of inflammation in the placenta. RESULTS Almost half (47.7%) of placentae examined here showed histological evidence of inflammation. Resiquimod, LPS, and PGN elicited strong inflammatory responses in neonatal cord blood, while poly (I:C), cGAMP, and 5'ppp-dsRNA elicited weaker responses. Fetuses with evidence of chorioamnionitis and fetal inflammatory reaction in their placentae had significantly increased immune responses to cGAMP and 5'ppp-dsRNA (ligands for STING and RIG-I, respectively) and significantly decreased immune responses to poly (I:C) (a TLR3 agonist). Interestingly, STING, RIG-I, and TLR3 are all involved in viral response pathways, suggesting that fetuses exposed to chorioamnionitis or fetal inflammatory reaction might respond differently to viruses postnatally. CONCLUSION Our data suggest that low-level placental inflammation is associated with altered innate cytokine responses at birth.
Collapse
Affiliation(s)
- Lisa F Stinson
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, WA, Australia.
| | - Matthew S Payne
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, WA, Australia
| | - Jeffrey A Keelan
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
8
|
Transcriptome analysis of immune genes in peripheral blood mononuclear cells of young foals and adult horses. PLoS One 2018; 13:e0202646. [PMID: 30183726 PMCID: PMC6124769 DOI: 10.1371/journal.pone.0202646] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 08/07/2018] [Indexed: 12/14/2022] Open
Abstract
During the neonatal period, the ability to generate immune effector and memory responses to vaccines or pathogens is often questioned. This study was undertaken to obtain a global view of the natural differences in the expression of immune genes early in life. Our hypothesis was that transcriptome analyses of peripheral blood mononuclear cells (PBMCs) of foals (on day 1 and day 42 after birth) and adult horses would show differential gene expression profiles that characterize natural immune processes. Gene ontology enrichment analysis provided assessment of biological processes affected by age, and a list of 897 genes with ≥2 fold higher (p<0.01) expression in day 42 when compared to day 1 foal samples. Up-regulated genes included B cell and T cell receptor diversity genes; DNA replication enzymes; natural killer cell receptors; granzyme B and perforin; complement receptors; immunomodulatory receptors; cell adhesion molecules; and cytokines/chemokines and their receptors. The list of 1,383 genes that had higher (p<0.01) expression on day 1 when compared to day 42 foal samples was populated by genes with roles in innate immunity such as antimicrobial proteins; pathogen recognition receptors; cytokines/chemokines and their receptors; cell adhesion molecules; co-stimulatory molecules; and T cell receptor delta chain. Within the 742 genes with increased expression between day 42 foal and adult samples, B cell immunity was the main biological process (p = 2.4E-04). Novel data on markedly low (p<0.0001) TLR3 gene expression, and high (p≤0.01) expression of IL27, IL13RA1, IREM-1, SIRL-1, and SIRPα on day 1 compared to day 42 foal samples point out potential mechanisms of increased susceptibility to pathogens in early life. The results portray a progression from innate immune gene expression predominance early in life to adaptive immune gene expression increasing with age with a putative overlay of immune suppressing genes in the neonatal phase. These results provide insight to the unique attributes of the equine neonatal and young immune system, and offer many avenues of future investigation.
Collapse
|
9
|
Ganesan P, Chandwani MN, Creisher PS, Bohn L, O'Donnell LA. The neonatal anti-viral response fails to control measles virus spread in neurons despite interferon-gamma expression and a Th1-like cytokine profile. J Neuroimmunol 2017; 316:80-97. [PMID: 29366594 PMCID: PMC6003673 DOI: 10.1016/j.jneuroim.2017.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 12/16/2017] [Accepted: 12/19/2017] [Indexed: 01/01/2023]
Abstract
Neonates are highly susceptible to viral infections in the periphery, potentially due to deviant cytokine responses. Here, we investigated the role of interferon-gamma (IFNγ), a key anti-viral in the neonatal brain. We found that (i) IFNγ, which is critical for viral control and survival in adults, delays mortality in neonates, (ii) IFNγ limits infiltration of macrophages, neutrophils, and T cells in the neonatal brain, (iii) neonates and adults differentially express pathogen recognition receptors and Type I interferons in response to the infection, (iv) both neonates and adults express IFNγ and other Th1-related factors, but expression of many cytokines/chemokines and IFNγ-responsive genes is age-dependent, and (v) administration of IFNγ extends survival and reduces CD4 T cell infiltration in the neonatal brain. Our findings suggest age-dependent expression of cytokine/chemokine profiles in the brain and distinct dynamic interplays between lymphocyte populations and cytokines/chemokines in MV-infected neonates. The role of the anti-viral cytokine interferon-gamma (IFNγ) is investigated during a neonatal viral infection in CNS neurons. IFNγ did not prevent mortality in neonates, but it slowed disease progression. IFNγ reduced infiltration of neutrophils, macrophages, and T cells in the neonatal CNS. Both adult and neonatal mice expressed Th1-like cytokines, including IFNγ and some IFNγ-stimulated genes, during infection. Despite a Th1-like cytokine profile in the neonatal CNS, the cytokine milieu is ineffective at controlling viral spread.
Collapse
Affiliation(s)
- Priya Ganesan
- Duquesne University, School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Pittsburgh, PA 15282, United States
| | - Manisha N Chandwani
- Duquesne University, School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Pittsburgh, PA 15282, United States
| | - Patrick S Creisher
- Duquesne University, School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Pittsburgh, PA 15282, United States
| | - Larissa Bohn
- Duquesne University, School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Pittsburgh, PA 15282, United States
| | - Lauren A O'Donnell
- Duquesne University, School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Pittsburgh, PA 15282, United States.
| |
Collapse
|
10
|
Svensson A, Patzi Churqui M, Schlüter K, Lind L, Eriksson K. Maturation-dependent expression of AIM2 in human B-cells. PLoS One 2017; 12:e0183268. [PMID: 28809949 PMCID: PMC5557365 DOI: 10.1371/journal.pone.0183268] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/01/2017] [Indexed: 02/01/2023] Open
Abstract
Intracellular DNA- and RNA-sensing receptors, such as the IFN-inducible protein Absent in Melanoma 2 (AIM2), serve as host sensors against a wide range of infections. Immune sensing and inflammasome activation by AIM2 has been implicated in innate antiviral recognition in many experimental systems using cell-lines and animal models. However, little is known about the expression and function of AIM2 in freshly isolated human cells. In this study we investigated the expression of AIM2 in different cell types derived from human cord and adult peripheral blood, in steady state and following in vitro-activation. Adult but not cord blood B-cells expressed high levels of AIM2 mRNA at steady state. In adults, AIM2 was primarily expressed in mature memory CD27+ B-cells. Both adult and cord blood derived B-cells could induce their transcription of AIM2 mRNA in response to type II IFN but not type I IFN or the AIM2 ligand poly dA:dT. Upon B-cell receptor stimulation, B-cells from adult blood expressed reduced levels of AIM2 mRNA. In addition, we show that adult B-cells were able to release IL-1β upon stimulation with synthetic DNA. We conclude that functional AIM2 is preferentially expressed in adult human CD27+ B-cells, but is absent in cord blood mononuclear cells.
Collapse
Affiliation(s)
- Alexandra Svensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| | - Marianela Patzi Churqui
- Department of Rheumatology and Inflammation Research, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Virology, Immunity and Infection Unit, SELADIS institute, Biochemistry and Pharmacy Faculty, Universidad Mayor de San Andres, La Paz, Bolivia
| | - Kerstin Schlüter
- Department of Rheumatology and Inflammation Research, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Liza Lind
- Department of Rheumatology and Inflammation Research, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristina Eriksson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Wang ZS, Liu YL, Mi N, Duan DY. Intracellular DNA sensing pathway of cGAS-cGAMP is decreased in human newborns and young children. Mol Immunol 2017; 87:76-85. [PMID: 28412547 DOI: 10.1016/j.molimm.2017.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/29/2017] [Accepted: 04/05/2017] [Indexed: 01/30/2023]
Abstract
Newborns are highly susceptible to DNA virus infections, which may result from the characteristics of neonatal innate immune systems. Here we analyzed for the first time the development of innate immune sensing and signaling of intracellular DNA virus infection in human newborns and young children. Both mRNA and protein expression of cGAS, an intracellular DNA sensor, were shown to be significantly reduced in neonatal peripheral blood mononuclear cells (PBMCs). In addition, cGAS expression in neonatal PBMCs could be induced upon herpes simplex virus type 1 (HSV-1) or interferon-α (IFNα) stimulation. Furthermore, production of the second messenger cGAMP and activation of the transcriptional factor IRF3 was severely decreased in neonatal cord blood mononuclear cells (CBMCs) or PBMCs compared with adults. In contrast, the downstream signaling STING-TBK1-IRF3 appeared to be functional in neonatal PBMCs, as demonstrated by the fact that IRF3 phosphorylation and IFNβ production in these cells could be activated by cGAMP. Intriguingly, decreased expression of cGAS in neonatal cells can be rescued by DNA demethylation, with concomitant enhancement in IFNβ induction by HSV-1. Thus, cGAS restoration or STING stimulation by small molecules during infancy might improve the age-dependent susceptibility to DNA virus infection.
Collapse
Affiliation(s)
- Zhan-Sheng Wang
- Department of Neonatal Intensive Care Unit, The First People's Hospital of Shangqiu City, No 292, South Kaixuan Rd., Shangqiu 476100, Henan, People's Republic of China.
| | - Yu-Lu Liu
- Department of Neonatal Intensive Care Unit, The First People's Hospital of Shangqiu City, No 292, South Kaixuan Rd., Shangqiu 476100, Henan, People's Republic of China
| | - Nan Mi
- Department of Neonatal Intensive Care Unit, The First People's Hospital of Shangqiu City, No 292, South Kaixuan Rd., Shangqiu 476100, Henan, People's Republic of China
| | - Dao-Yun Duan
- Department of Neonatal Intensive Care Unit, The First People's Hospital of Shangqiu City, No 292, South Kaixuan Rd., Shangqiu 476100, Henan, People's Republic of China
| |
Collapse
|
12
|
Cabinian A, Sinsimer D, Tang M, Zumba O, Mehta H, Toma A, Sant’Angelo D, Laouar Y, Laouar A. Transfer of Maternal Immune Cells by Breastfeeding: Maternal Cytotoxic T Lymphocytes Present in Breast Milk Localize in the Peyer's Patches of the Nursed Infant. PLoS One 2016; 11:e0156762. [PMID: 27285085 PMCID: PMC4902239 DOI: 10.1371/journal.pone.0156762] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/19/2016] [Indexed: 12/22/2022] Open
Abstract
Despite our knowledge of the protective role of antibodies passed to infants through breast milk, our understanding of immunity transfer via maternal leukocytes is still limited. To emulate the immunological interface between the mother and her infant while breast-feeding, we used murine pups fostered after birth onto MHC-matched and MHC-mismatched dams. Overall, data revealed that: 1) Survival of breast milk leukocytes in suckling infants is possible, but not significant after the foster-nursing ceases; 2) Most breast milk lymphocytes establish themselves in specific areas of the intestine termed Peyer’s patches (PPs); 3) While most leukocytes in the milk bolus were myeloid cells, the majority of breast milk leukocytes localized to PPs were T lymphocytes, and cytotoxic T cells (CTLs) in particular; 4) These CTLs exhibit high levels of the gut-homing molecules α4β7 and CCR9, but a reduced expression of the systemic homing marker CD62L; 5) Under the same activation conditions, transferred CD8 T cells through breast milk have a superior capacity to produce potent cytolytic and inflammatory mediators when compared to those generated by the breastfed infant. It is therefore possible that maternal CTLs found in breast milk are directed to the PPs to compensate for the immature adaptive immune system of the infant in order to protect it against constant oral infectious risks during the postnatal phase.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Animals, Suckling
- Cells, Cultured
- Chemotaxis, Leukocyte/physiology
- Female
- Immunity, Maternally-Acquired/immunology
- Immunization, Passive/methods
- Lactation/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Milk/cytology
- Milk/immunology
- Mothers
- Peyer's Patches/cytology
- Peyer's Patches/immunology
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/physiology
Collapse
Affiliation(s)
- Allison Cabinian
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Daniel Sinsimer
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, United States of America
| | - May Tang
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Osvaldo Zumba
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Hetali Mehta
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Annmarie Toma
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Derek Sant’Angelo
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Yasmina Laouar
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
- * E-mail: (AL); (YL)
| | - Amale Laouar
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, United States of America
- * E-mail: (AL); (YL)
| |
Collapse
|
13
|
Kumar SKM, Bhat BV. Distinct mechanisms of the newborn innate immunity. Immunol Lett 2016; 173:42-54. [PMID: 26994839 DOI: 10.1016/j.imlet.2016.03.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 12/23/2022]
Abstract
The ontogeny of immunity during early life is of high importance as it shapes the immune system for the entire course of life. The microbiome and the environment contribute to the development of immunity in newborns. As immune responses in newborns are predominantly less experienced they are increasingly susceptible to infections. Though the immune cells in newborns are in 'naïve' state, they have been shown to mount adult-like responses in several circumstances. The innate immunity plays a vital role in providing protection during the neonatal period. Various stimulants have been shown to enhance the potential and functioning of the innate immune cells in newborns. They are biased against the production of pro-inflammatory cytokines and this makes them susceptible to wide variety of intracellular pathogens. The adaptive immunity requires prior antigenic experience which is very limited in newborns. This review discusses in detail the characteristics of innate immunity in newborns and the underlying developmental and functional mechanisms involved in the immune response. A better understanding of the immunological milieu in newborns could help the medical fraternity to find novel methods for prevention and treatment of infection in newborns.
Collapse
Affiliation(s)
- S Kingsley Manoj Kumar
- Department of Neonatology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry 605006, India.
| | - B Vishnu Bhat
- Department of Neonatology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry 605006, India.
| |
Collapse
|
14
|
|
15
|
Abstract
Neonates have little immunological memory and a developing immune system, which increases their vulnerability to infectious agents. Recent advances in the understanding of neonatal immunity indicate that both innate and adaptive responses are dependent on precursor frequency of lymphocytes, antigenic dose and mode of exposure. Studies in neonatal mouse models and human umbilical cord blood cells demonstrate the capability of neonatal immune cells to produce immune responses similar to adults in some aspects but not others. This review focuses mainly on the developmental and functional mechanisms of the human neonatal immune system. In particular, the mechanism of innate and adaptive immunity and the role of neutrophils, antigen presenting cells, differences in subclasses of T lymphocytes (Th1, Th2, Tregs) and B cells are discussed. In addition, we have included the recent developments in the neonatal mouse immune system. Understanding neonatal immunity is essential to development of therapeutic vaccines to combat newly emerging infectious agents.
Collapse
Affiliation(s)
- Saleem Basha
- Center for Infectious Disease and Immunology, Rochester General Hospital Research Institute, 1425 Portland Avenue, Rochester, NY 14621, USA
| | | | | |
Collapse
|