1
|
Ayten H, Toker P, Turan Duman G, Olgun ÇE, Demiralay ÖD, Bınarcı B, Güpür G, Yaşar P, Akman HB, Haberkant P, Muyan M. CXXC5 is a ubiquitinated protein and is degraded by the ubiquitin-proteasome pathway. Protein Sci 2025; 34:e70140. [PMID: 40371716 PMCID: PMC12079423 DOI: 10.1002/pro.70140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 05/16/2025]
Abstract
CXXC5, as a member of the zinc-finger CXXC family proteins, interacts with unmodified CpG dinucleotides to modulate the expression of genes involved in cellular proliferation, differentiation, and death in physiology and pathophysiology. Various signaling pathways, including mitogenic 17β-estradiol (E2), contribute to the expression and synthesis of CXXC5. However, how signaling pathways modulate protein levels of CXXC5 in cells is largely unknown. We previously reported that some key regulators, including retinoblastoma 1 and E74-like ETS transcription factor 1, of the G1 to S phase transitions are involved in the expression of CXXC5 in estrogen-responsive MCF-7 cells, derived from a breast adenocarcinoma. We, therefore, predict that the synthesis of CXXC5 is regulated in a cell cycle-dependent manner. We report here that although E2 in synchronized MCF-7 cells augments both transcription and synthesis of CXXC5 in the G1 phase, CXXC5 protein levels are primarily mediated by ubiquitination independently of cell cycle phases. Utilizing the bioUbiquitination approach, which is based on cellular biotinylation of ubiquitin, in HEK293FT cells derived from immortalized human embryonic kidney cells, followed by sequential immunoprecipitation coupled mass spectrometry analyses, we identified ubiquitinated lysine residues of CXXC5. We show in both MCF-7 and HEK293FT cells that the ubiquitinated lysine residues contribute to the degradation of CXXC5 through the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Hazal Ayten
- Department of Biological SciencesMiddle East Technical UniversityÇankaya‐AnkaraTürkiye
| | - Pelin Toker
- Department of Biological SciencesMiddle East Technical UniversityÇankaya‐AnkaraTürkiye
| | - Gizem Turan Duman
- Department of Biological SciencesMiddle East Technical UniversityÇankaya‐AnkaraTürkiye
| | - Çağla Ece Olgun
- Department of Biological SciencesMiddle East Technical UniversityÇankaya‐AnkaraTürkiye
| | - Öykü Deniz Demiralay
- Department of Biological SciencesMiddle East Technical UniversityÇankaya‐AnkaraTürkiye
- Present address:
Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthNeuherbergGermany
| | - Büşra Bınarcı
- Department of Biological SciencesMiddle East Technical UniversityÇankaya‐AnkaraTürkiye
| | - Gizem Güpür
- Department of Biological SciencesMiddle East Technical UniversityÇankaya‐AnkaraTürkiye
| | - Pelin Yaşar
- Department of Biological SciencesMiddle East Technical UniversityÇankaya‐AnkaraTürkiye
- Present address:
Epigenetics and Stem Cell Biology Laboratory, Single Cell Dynamics GroupNational Institute of Environmental Health SciencesResearch Triangle ParkNorth CarolinaUSA
| | - Hesna Begüm Akman
- Department of Biological SciencesMiddle East Technical UniversityÇankaya‐AnkaraTürkiye
| | - Per Haberkant
- Proteomics Core FacilityEMBL HeidelbergHeidelbergGermany
| | - Mesut Muyan
- Department of Biological SciencesMiddle East Technical UniversityÇankaya‐AnkaraTürkiye
| |
Collapse
|
2
|
An Z, Wang J, Li C, Tang C. Signal integrator function of CXXC5 in Cancer. Cell Commun Signal 2025; 23:25. [PMID: 39806388 PMCID: PMC11730785 DOI: 10.1186/s12964-024-02005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
CXXC type zinc finger protein 5 (CXXC5) is a member of the ZF-CXXC family and plays a pivotal role in signal integration and information transfer within cell signaling network. CXXC5 acts as a regulator in various physiological processes, and abnormalities in its protein structure or function have been linked to multiple pathological processes. In this article, we correspondingly describe the composition of the ZF-CXXC family, emphatically introducing the features of the CXXC5 gene and protein, review the role of CXXC5 in cellular signaling networks, the physiological and pathological processes associated with CXXC5 dysregulation, and particularly focus on the correlation between CXXC5 and cancers. Finally, we summarize the current therapies targeting CXXC5 and their potential applications, and discuss the intriguing findings from current studies, and the opportunities and challenges in future.
Collapse
Affiliation(s)
- Zihao An
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Jiepu Wang
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Chengzuo Li
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Chao Tang
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
3
|
Panjwani MK, Grassmann S, Sottile R, Le Luduec JB, Kontopoulos T, van der Ploeg K, Sun JC, Hsu KC. Single-cell profiling aligns CD56 bright and cytomegalovirus-induced adaptive natural killer cells to a naïve-memory relationship. Front Immunol 2024; 15:1499492. [PMID: 39742279 PMCID: PMC11686228 DOI: 10.3389/fimmu.2024.1499492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025] Open
Abstract
Development of antigen-specific memory upon pathogen exposure is a hallmark of the adaptive immune system. While natural killer (NK) cells are considered part of the innate immune system, humans exposed to the chronic viral pathogen cytomegalovirus (CMV) often possess a distinct NK cell population lacking in individuals who have not been exposed, termed "adaptive" NK cells. To identify the "naïve" population from which this "memory" population derives, we performed phenotypic, transcriptional, and functional profiling of NK cell subsets. We identified immature precursors to the Adaptive NK cells that are equally present in both CMV+ and CMV- individuals, resolved an Adaptive transcriptional state distinct from most mature NK cells and sharing a common gene program with the immature CD56bright population, and demonstrated retention of proliferative capacity and acquisition of superior IFNγ production in the Adaptive population. Furthermore, we distinguish the CD56bright and Adaptive NK populations by expression of the transcription factor CXXC5, positioning these memory NK cells at the inflection point between innate and adaptive lymphocytes.
Collapse
Affiliation(s)
- M. Kazim Panjwani
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Simon Grassmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Rosa Sottile
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jean-Benoît Le Luduec
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Theodota Kontopoulos
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Kattria van der Ploeg
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Joseph C. Sun
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Katharine C. Hsu
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
4
|
Jin SG, Johnson J, Huang Z, Cui W, Dunwell T, Pfeifer GP. CXXC5 stabilizes DNA methylation patterns in mouse embryonic stem cells. Epigenomics 2024; 16:1351-1363. [PMID: 39585161 PMCID: PMC11622772 DOI: 10.1080/17501911.2024.2426450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
AIMS Mammalian genomes encode 12 proteins that contain a CXXC zinc finger domain. Most members of this family are large multi-domain proteins that function in the control of DNA methylation and histone methylation patterns. CXXC5 is a smaller member of the family, along with its closest homologue CXXC4. These two proteins lack known catalytic domains. Here, we have characterized CXXC5 in mouse embryonic stem (ES) cells. MATERIALS & METHODS We used gene knockouts, RNA sequencing, and DNA methylation analysis by whole-genome bisulfite sequencing. RESULTS & CONCLUSIONS We show that CXXC5 is a nuclear protein that interacts with 5-methylcytosine oxidases (TET proteins). Removal of CXXC5 from ES cells leads to very few changes in gene expression. CXXC5 extensively colocalizes with TET1 and TET2 at CpG islands. CXXC5 inactivation leads to a substantial reduction of DNA methylation levels that affects all genomic compartments including genic and intergenic regions and CpG island shores. We propose a model in which CXXC5 serves as an anchor for TET proteins at CpG islands. In the absence of CXXC5, the 5-methylcytosine oxidases become dislodged from CpG islands and are enabled to induce genome-scale DNA demethylation. Thus, CXXC5 serves as a stabilizer of DNA methylation patterns.
Collapse
Affiliation(s)
- Seung-Gi Jin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Jennifer Johnson
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Zhijun Huang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Wei Cui
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Gerd P. Pfeifer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
5
|
Wang Y, Liu Q, Deng L, Ma X, Gong Y, Wang Y, Zhou F. The roles of epigenetic regulation in graft-versus-host disease. Biomed Pharmacother 2024; 175:116652. [PMID: 38692061 DOI: 10.1016/j.biopha.2024.116652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (aHSCT) is utilized as a potential curative treatment for various hematologic malignancies. However, graft-versus-host disease (GVHD) post-aHSCT is a severe complication that significantly impacts patients' quality of life and overall survival, becoming a major cause of non-relapse mortality. In recent years, the association between epigenetics and GVHD has garnered increasing attention. Epigenetics focuses on studying mechanisms that affect gene expression without altering DNA sequences, primarily including DNA methylation, histone modifications, non-coding RNAs (ncRNAs) regulation, and RNA modifications. This review summarizes the role of epigenetic regulation in the pathogenesis of GVHD, with a focus on DNA methylation, histone modifications, ncRNA, RNA modifications and their involvement and applications in the occurrence and development of GVHD. It also highlights advancements in relevant diagnostic markers and drugs, aiming to provide new insights for the clinical diagnosis and treatment of GVHD.
Collapse
Affiliation(s)
- Yimin Wang
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qi Liu
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Deng
- Department of Hematology, the 960th Hospital of the People's Liberation Army Joint Logistics Support Force, Jinan, China
| | - Xiting Ma
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuling Gong
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yifei Wang
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Fang Zhou
- Department of Hematology, the 960th Hospital of the People's Liberation Army Joint Logistics Support Force, Jinan, China.
| |
Collapse
|
6
|
Ghanim HY, Porteus MH. Gene regulation in inborn errors of immunity: Implications for gene therapy design and efficacy. Immunol Rev 2024; 322:157-177. [PMID: 38233996 DOI: 10.1111/imr.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
Inborn errors of immunity (IEI) present a unique paradigm in the realm of gene therapy, emphasizing the need for precision in therapeutic design. As gene therapy transitions from broad-spectrum gene addition to careful modification of specific genes, the enduring safety and effectiveness of these therapies in clinical settings have become crucial. This review discusses the significance of IEIs as foundational models for pioneering and refining precision medicine. We explore the capabilities of gene addition and gene correction platforms in modifying the DNA sequence of primary cells tailored for IEIs. The review uses four specific IEIs to highlight key issues in gene therapy strategies: X-linked agammaglobulinemia (XLA), X-linked chronic granulomatous disease (X-CGD), X-linked hyper IgM syndrome (XHIGM), and immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX). We detail the regulatory intricacies and therapeutic innovations for each disorder, incorporating insights from relevant clinical trials. For most IEIs, regulated expression is a vital aspect of the underlying biology, and we discuss the importance of endogenous regulation in developing gene therapy strategies.
Collapse
Affiliation(s)
- Hana Y Ghanim
- Division of Pediatrics, Division of Oncology, Hematology, Stem Cell Transplantation, Stanford University, Stanford, California, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Matthew H Porteus
- Division of Pediatrics, Division of Oncology, Hematology, Stem Cell Transplantation, Stanford University, Stanford, California, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
- Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
7
|
Li X, Lv X, Li H, Zhang G, Long Y, Li K, Fan Y, Jin D, Zhou F, Liu H. Undifferentially Expressed CXXC5 as a Transcriptionally Regulatory Biomarker of Breast Cancer. Adv Biol (Weinh) 2023; 7:e2300189. [PMID: 37423953 DOI: 10.1002/adbi.202300189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/17/2023] [Indexed: 07/11/2023]
Abstract
This work hypothesizes that some genes undergo radically changed transcription regulations (TRs) in breast cancer (BC), but don't show differential expressions for unknown reasons. The TR of a gene is quantitatively formulated by a regression model between the expression of this gene and multiple transcription factors (TFs). The difference between the predicted and real expression levels of a gene in a query sample is defined as the mqTrans value of this gene, which quantitatively reflects its regulatory changes. This work systematically screens the undifferentially expressed genes with differentially expressed mqTrans values in 1036 samples across five datasets and three ethnic groups. This study calls the 25 genes satisfying the above hypothesis in at least four datasets as dark biomarkers, and the strong dark biomarker gene CXXC5 (CXXC Finger Protein 5) is even supported by all the five independent BC datasets. Although CXXC5 does not show differential expressions in BC, its transcription regulations show quantitative associations with BCs in diversified cohorts. The overlapping long noncoding RNAs (lncRNAs) may have contributed their transcripts to the expression miscalculations of dark biomarkers. The mqTrans analysis serves as a complementary view of the transcriptome-based detections of biomarkers that are ignored by many existing studies.
Collapse
Affiliation(s)
- Xue Li
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Xiaoying Lv
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Haijun Li
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Gongyou Zhang
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Yaohang Long
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Kewei Li
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012, China
- College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Yusi Fan
- College of Software, Jilin University, Changchun, 130012, China
| | - Dawei Jin
- Research Institute of Guizhou Huada Life Big Data, Guiyang, Guizhou, 550025, China
| | - Fengfeng Zhou
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012, China
- College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Hongmei Liu
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, Guizhou, 550025, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012, China
| |
Collapse
|
8
|
Panjwani MK, Grassmann S, Sottile R, Le Luduec JB, Kontopoulos T, van der Ploeg K, Sun JC, Hsu KC. Single-Cell Profiling Reveals a Naive-Memory Relationship between CD56 bright and Adaptive Human Natural Killer Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559062. [PMID: 37790504 PMCID: PMC10543008 DOI: 10.1101/2023.09.23.559062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Development of antigen-specific memory upon pathogen exposure is a hallmark of the adaptive immune system. While natural killer (NK) cells are considered part of the innate immune system, humans exposed to the chronic viral pathogen cytomegalovirus (CMV) often possess a distinct NK cell population lacking in individuals who have not been exposed, termed "adaptive" NK cells. To identify the "naïve" population from which this "memory" population derives, we performed phenotypic, transcriptional, and functional profiling of NK cell subsets. We identified immature precursors to the Adaptive NK cells that are equally present in both CMV+ and CMV-individuals, resolved an Adaptive transcriptional state distinct from most mature NK cells and sharing a common gene program with the immature CD56 bright population, and demonstrated retention of proliferative capacity and acquisition of superior IFNγ production in the Adaptive population. Furthermore, we distinguish the CD56 bright and Adaptive NK populations by expression of the transcription factor CXXC5, positioning these memory NK cells at the inflection point between innate and adaptive lymphocytes.
Collapse
|
9
|
Chen J, He Y, Zhong H, Hu F, Li Y, Zhang Y, Zhang X, Lin W, Li Q, Xu F, Chen S, Zhang H, Cai W, Li L. Transcriptome analysis of CD4+ T cells from HIV-infected individuals receiving ART with LLV revealed novel transcription factors regulating HIV-1 promoter activity. Virol Sin 2023:S1995-820X(23)00022-6. [PMID: 36907331 DOI: 10.1016/j.virs.2023.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Some HIV-infected individuals receiving ART develop low-level viremia (LLV), with a plasma viral load of 50-1000 copies/mL. Persistent low-level viremia is associated with subsequent virologic failure. The peripheral blood CD4+ T cell pool is a source of LLV. However, the intrinsic characteristics of CD4+ T cells in LLV which may contribute to low-level viremia are largely unknown. We analyzed the transcriptome profiling of peripheral blood CD4+ T cells from healthy controls (HC) and HIV-infected patients receiving ART with either virologic suppression (VS) or LLV. To identify pathways potentially responding to increasing viral loads from HC to VS and to LLV, KEGG pathways of differentially expressed genes (DEGs) were acquired by comparing VS with HC (VS-HC group) and LLV with VS (LLV-VS group). Characterization of DEGs in key overlapping pathways showed that CD4+ T cells in LLV expressed higher levels of Th1 signature transcription factors (TBX21), toll-like receptors (TLR-4, -6, -7 and -8), anti-HIV entry chemokines (CCL3 and CCL4), and anti-IL-1β factors (ILRN and IL1R2) compared to VS. Our results also indicated activation of the NF-κB and TNF signaling pathways that could promote HIV-1 transcription. Finally, we evaluated the effects of 4 and 17 transcription factors that were upregulated in the VS-HC and LLV-VS groups, respectively, on HIV-1 promoter activity. Functional studies revealed that CXXC5 significantly increased, while SOX5 markedly suppressed HIV-1 transcription. In summary, we found that CD4+ T cells in LLV displayed a distinct mRNA profiling compared to that in VS, which promoted HIV-1 replication and reactivation of viral latency and may eventually contribute to virologic failure in patients with persistent LLV. CXXC5 and SOX5 may serve as targets for the development of latency-reversing agents.
Collapse
Affiliation(s)
- Jingliang Chen
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Yaozu He
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Huolin Zhong
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Fengyu Hu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Yonghong Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Yeyang Zhang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Xia Zhang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Weiyin Lin
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Quanmin Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Feilong Xu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Shaozhen Chen
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China.
| | - Weiping Cai
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China.
| | - Linghua Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China.
| |
Collapse
|
10
|
Wang W, Zhang Z, Zhao M, Wang Y, Ge Y, Shan L. Zinc-finger protein CXXC5 promotes breast carcinogenesis by regulating the TSC1/mTOR signaling pathway. J Biol Chem 2023; 299:102812. [PMID: 36539038 PMCID: PMC9860500 DOI: 10.1016/j.jbc.2022.102812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
CXXC5, a member of the CXXC family of zinc-finger proteins, is associated with numerous pathological processes. However, the pathophysiological function of CXXC5 has not been clearly established. Herein, we found that CXXC5 interacts with the CRL4B and NuRD complexes. Screening of transcriptional targets downstream of the CXXC5-CRL4B-NuRD complex by next-generation sequencing (chromatin immunoprecipitation sequencing) revealed that the complex regulates the transcriptional repression process of a cohort of genes, including TSC1 (tuberous sclerosis complex subunit 1), which play important roles in cell growth and mammalian target of rapamycin signaling pathway regulation, and whose abnormal regulation results in the activation of programmed cell death-ligand protein 1 (PD-L1). Intriguingly, CXXC5 expression increased after stimulation with vitamin B2 but decreased after vitamin D treatment. We also found that the CXXC5-CRL4B-NuRD complex promotes the proliferation of tumor cells in vitro and accelerates the growth of breast cancer in vivo. The expression of CXXC5, CUL4B, and MTA1 increased during the occurrence and development of breast cancer, and correspondingly, TSC1 expression decreased. Meanwhile, a high expression of CXXC5 was positively correlated with the histological grade of high malignancy and poor survival of patients. In conclusion, our study revealed that CXXC5-mediated TSC1 suppression activates the mammalian target of rapamycin pathway, reduces autophagic cell death, induces PD-L1-mediated immune suppression, and results in tumor development, shedding light on the mechanism of the pathophysiological function of CXXC5.
Collapse
Affiliation(s)
- Wenjuan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhaohan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Minghui Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuze Ge
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lin Shan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China; Beijing Key Laboratory of Cancer Invasion and Metastasis Research, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
11
|
Onodera A, Kiuchi M, Kokubo K, Nakayama T. Epigenetic regulation of inflammation by CxxC domain‐containing proteins*. Immunol Rev 2022. [DOI: 10.1111/imr.13056
expr 964170082 + 969516512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Atsushi Onodera
- Department of Immunology Graduate School of Medicine Chiba University Chiba Japan
- Institute for Global Prominent Research Chiba University Chiba Japan
| | - Masahiro Kiuchi
- Department of Immunology Graduate School of Medicine Chiba University Chiba Japan
| | - Kota Kokubo
- Department of Immunology Graduate School of Medicine Chiba University Chiba Japan
| | - Toshinori Nakayama
- Department of Immunology Graduate School of Medicine Chiba University Chiba Japan
- AMED‐CREST, AMED Chiba Japan
| |
Collapse
|
12
|
Onodera A, Kiuchi M, Kokubo K, Nakayama T. Epigenetic regulation of inflammation by CxxC domain-containing proteins. Immunol Rev 2021; 305:137-151. [PMID: 34935162 DOI: 10.1111/imr.13056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/03/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022]
Abstract
Epigenetic regulation of gene transcription in the immune system is important for proper control of protective and pathogenic inflammation. Aberrant epigenetic modifications are often associated with dysregulation of the immune cells, including lymphocytes and macrophages, leading to pathogenic inflammation and autoimmune diseases. Two classical epigenetic markers-histone modifications and DNA cytosine methylation, the latter is the 5 position of the cytosine base in the context of CpG dinucleotides-play multiple roles in the immune system. CxxC domain-containing proteins, which basically bind to the non-methylated CpG (i.e., epigenetic "readers"), often function as "writers" of the epigenetic markers via their catalytic domain within the proteins or by interacting with other epigenetic modifiers. We herein report the most recent advances in our understanding of the functions of CxxC domain-containing proteins in the immune system and inflammation, mainly focusing on T cells and macrophages.
Collapse
Affiliation(s)
- Atsushi Onodera
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Institute for Global Prominent Research, Chiba University, Chiba, Japan
| | - Masahiro Kiuchi
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kota Kokubo
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,AMED-CREST, AMED, Chiba, Japan
| |
Collapse
|
13
|
Dutta A, Venkataganesh H, Love PE. New Insights into Epigenetic Regulation of T Cell Differentiation. Cells 2021; 10:3459. [PMID: 34943965 PMCID: PMC8700096 DOI: 10.3390/cells10123459] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
Immature CD4- CD8- thymocytes progress through several developmental steps in the thymus, ultimately emerging as mature CD4+ (helper) or CD8+ (cytotoxic) T cells. Activation of naïve CD4+ and CD8+ T cells in the presence of specific cytokines results in the induction of transcriptional programs that result in their differentiation into effector or memory cells and in the case of CD4+ T cells, the adoption of distinct T-helper fates. Previous studies have shown that histone modification and DNA methylation play important roles in each of these events. More recently, the roles of specific epigenetic regulators in T cell differentiation have been clarified. The identification of the epigenetic modifications and modifiers that control mature T cell differentiation and specification has also provided further insights into how dysregulation of these processes can lead to cancer or autoimmune diseases. In this review, we summarize recent findings that have provided new insights into epigenetic regulation of T cell differentiation in both mice and humans.
Collapse
Affiliation(s)
- Avik Dutta
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (A.D.); (H.V.)
| | - Harini Venkataganesh
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (A.D.); (H.V.)
- Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Paul E. Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (A.D.); (H.V.)
| |
Collapse
|
14
|
Wu X, Dong W, Kong M, Ren H, Wang J, Shang L, Zhu Z, Zhu W, Shi X. Down-Regulation of CXXC5 De-Represses MYCL1 to Promote Hepatic Stellate Cell Activation. Front Cell Dev Biol 2021; 9:680344. [PMID: 34621736 PMCID: PMC8490686 DOI: 10.3389/fcell.2021.680344] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/24/2021] [Indexed: 12/23/2022] Open
Abstract
Liver fibrosis is mediated by myofibroblasts, a specialized cell type involved in wound healing and extracellular matrix production. Hepatic stellate cells (HSC) are the major source of myofibroblasts in the fibrotic livers. In the present study we investigated the involvement of CXXC-type zinc-finger protein 5 (CXXC5) in HSC activation and the underlying mechanism. Down-regulation of CXXC5 was observed in activated HSCs compared to quiescent HSCs both in vivo and in vitro. In accordance, over-expression of CXXC5 suppressed HSC activation. RNA-seq analysis revealed that CXXC5 influenced multiple signaling pathways to regulate HSC activation. The proto-oncogene MYCL1 was identified as a novel target for CXXC5. CXXC5 bound to the proximal MYCL1 promoter to repress MYCL1 transcription in quiescent HSCs. Loss of CXXC5 expression during HSC activation led to the removal of CpG methylation and acquisition of acetylated histone H3K9/H3K27 on the MYCL1 promoter resulting in MYCL1 trans-activation. Finally, MYCL1 knockdown attenuated HSC activation whereas MYCL1 over-expression partially relieved the blockade of HSC activation by CXXC5. In conclusion, our data unveil a novel transcriptional mechanism contributing to HSC activation and liver fibrosis.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Department of Hepatobiliary Surgery, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Hepatobiliary Institute of Nanjing University, Nanjing, China
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, and Center for Experimental Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Wenhui Dong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, and Center for Experimental Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, and Center for Experimental Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Hepatobiliary Institute of Nanjing University, Nanjing, China
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Hepatobiliary Institute of Nanjing University, Nanjing, China
| | - Longcheng Shang
- Department of Hepatobiliary Surgery, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhengyi Zhu
- Department of Hepatobiliary Surgery, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Zhu
- Department of Anesthesiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Hepatobiliary Institute of Nanjing University, Nanjing, China
| |
Collapse
|
15
|
Ayaz G, Turan G, Olgun ÇE, Kars G, Karakaya B, Yavuz K, Demiralay ÖD, Can T, Muyan M, Yaşar P. A prelude to the proximity interaction mapping of CXXC5. Sci Rep 2021; 11:17587. [PMID: 34475492 PMCID: PMC8413330 DOI: 10.1038/s41598-021-97060-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/17/2021] [Indexed: 11/09/2022] Open
Abstract
CXXC5 is a member of the zinc-finger CXXC family proteins that interact with unmodified CpG dinucleotides through a conserved ZF-CXXC domain. CXXC5 is involved in the modulation of gene expressions that lead to alterations in diverse cellular events. However, the underlying mechanism of CXXC5-modulated gene expressions remains unclear. Proteins perform their functions in a network of proteins whose identities and amounts change spatiotemporally in response to various stimuli in a lineage-specific manner. Since CXXC5 lacks an intrinsic transcription regulatory function or enzymatic activity but is a DNA binder, CXXC5 by interacting with proteins could act as a scaffold to establish a chromatin state restrictive or permissive for transcription. To initially address this, we utilized the proximity-dependent biotinylation approach. Proximity interaction partners of CXXC5 include DNA and chromatin modifiers, transcription factors/co-regulators, and RNA processors. Of these, CXXC5 through its CXXC domain interacted with EMD, MAZ, and MeCP2. Furthermore, an interplay between CXXC5 and MeCP2 was critical for a subset of CXXC5 target gene expressions. It appears that CXXC5 may act as a nucleation factor in modulating gene expressions. Providing a prelude for CXXC5 actions, our results could also contribute to a better understanding of CXXC5-mediated cellular processes in physiology and pathophysiology.
Collapse
Affiliation(s)
- Gamze Ayaz
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey. .,Cancer and Stem Cell Epigenetics Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Gizem Turan
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Çağla Ece Olgun
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Gizem Kars
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Burcu Karakaya
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Kerim Yavuz
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Öykü Deniz Demiralay
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Tolga Can
- Department of Computer Engineering Middle, East Technical University, 06800, Ankara, Turkey
| | - Mesut Muyan
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey. .,Cansyl Laboratories, Middle East Technical University, 06800, Ankara, Turkey.
| | - Pelin Yaşar
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey.,Epigenetics and Stem Cell Biology Laboratory, Single Cell Dynamics Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
16
|
Yaşar P, Kars G, Yavuz K, Ayaz G, Oğuztüzün Ç, Bilgen E, Suvacı Z, Çetinkol ÖP, Can T, Muyan M. A CpG island promoter drives the CXXC5 gene expression. Sci Rep 2021; 11:15655. [PMID: 34341443 PMCID: PMC8329181 DOI: 10.1038/s41598-021-95165-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
CXXC5 is a member of the zinc-finger CXXC family that binds to unmethylated CpG dinucleotides. CXXC5 modulates gene expressions resulting in diverse cellular events mediated by distinct signaling pathways. However, the mechanism responsible for CXXC5 expression remains largely unknown. We found here that of the 14 annotated CXXC5 transcripts with distinct 5' untranslated regions encoding the same protein, transcript variant 2 with the highest expression level among variants represents the main transcript in cell models. The DNA segment in and at the immediate 5'-sequences of the first exon of variant 2 contains a core promoter within which multiple transcription start sites are present. Residing in a region with high G-C nucleotide content and CpG repeats, the core promoter is unmethylated, deficient in nucleosomes, and associated with active RNA polymerase-II. These findings suggest that a CpG island promoter drives CXXC5 expression. Promoter pull-down revealed the association of various transcription factors (TFs) and transcription co-regulatory proteins, as well as proteins involved in histone/chromatin, DNA, and RNA processing with the core promoter. Of the TFs, we verified that ELF1 and MAZ contribute to CXXC5 expression. Moreover, the first exon of variant 2 may contain a G-quadruplex forming region that could modulate CXXC5 expression.
Collapse
Affiliation(s)
- Pelin Yaşar
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey.
- Epigenetics and Stem Cell Biology Laboratory, Single Cell Dynamics Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA.
| | - Gizem Kars
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - Kerim Yavuz
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - Gamze Ayaz
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
- Cancer and Stem Cell Epigenetics Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Çerağ Oğuztüzün
- Department of Computer Engineering, Bilkent University, Ankara, 06800, Turkey
| | - Ecenaz Bilgen
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | - Zeynep Suvacı
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | | | - Tolga Can
- Department of Computer Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Mesut Muyan
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey.
- Cansyl Laboratories, Middle East Technical University, Ankara, 06800, Turkey.
| |
Collapse
|
17
|
Joshi HR, Hill HR, Asch J, Margraf RL, Coonrod E, Durtschi J, Zhou Q, He X, Voelkerding KV, Kumánovics A. CXXC5 variant in an immunodeficient patient with a progressive loss of hematopoietic cells. J Allergy Clin Immunol 2021; 147:1504-1507.e8. [PMID: 33075407 DOI: 10.1016/j.jaci.2020.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/28/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Hemant R Joshi
- Department of Pathology, University of Utah, Salt Lake City, Utah; ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah
| | - Harry R Hill
- Department of Pathology, University of Utah, Salt Lake City, Utah; ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah; Department of Medicine, University of Utah, Salt Lake City, Utah; Department of Pediatrics, University of Utah, Salt Lake City, Utah.
| | - Julie Asch
- Intermountain Blood and Marrow Transplant Program, LDS Hospital, Salt Lake City, Utah
| | - Rebecca L Margraf
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah
| | - Emily Coonrod
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah
| | - Jacob Durtschi
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah
| | - Qin Zhou
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Xiao He
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Karl V Voelkerding
- Department of Pathology, University of Utah, Salt Lake City, Utah; ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah
| | - Attila Kumánovics
- Department of Pathology, University of Utah, Salt Lake City, Utah; ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah
| |
Collapse
|
18
|
Ayaz G, Razizadeh N, Yaşar P, Kars G, Kahraman DC, Saatci Ö, Şahin Ö, Çetin-Atalay R, Muyan M. CXXC5 as an unmethylated CpG dinucleotide binding protein contributes to estrogen-mediated cellular proliferation. Sci Rep 2020; 10:5971. [PMID: 32249801 PMCID: PMC7136269 DOI: 10.1038/s41598-020-62912-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Evidence suggests that the CXXC type zinc finger (ZF-CXXC) protein 5 (CXXC5) is a critical regulator/integrator of various signaling pathways that include the estrogen (E2)-estrogen receptor α (ERα). Due to its ZF-CXXC domain, CXXC5 is considered to be a member of the ZF-CXXC family, which binds to unmethylated CpG dinucleotides of DNA and through enzymatic activities for DNA methylation and/or chromatin modifications generates a chromatin state critical for gene expressions. Structural/functional features of CXXC5 remain largely unknown. CXXC5, suggested as transcription and/or epigenetic factor, participates in cellular proliferation, differentiation, and death. To explore the role of CXXC5 in E2-ERα mediated cellular events, we verified by generating a recombinant protein that CXXC5 is indeed an unmethylated CpG binder. We uncovered that CXXC5, although lacks a transcription activation/repression function, participates in E2-driven cellular proliferation by modulating the expression of distinct and mutual genes also regulated by E2. Furthermore, we found that the overexpression of CXXC5, which correlates with mRNA and protein levels of ERα, associates with poor prognosis in ER-positive breast cancer patients. Thus, CXXC5 as an unmethylated CpG binder contributes to E2-mediated gene expressions that result in the regulation of cellular proliferation and may contribute to ER-positive breast cancer progression.
Collapse
Affiliation(s)
- Gamze Ayaz
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey.,Cancer and Stem Cell Epigenetics Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Negin Razizadeh
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - Pelin Yaşar
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - Gizem Kars
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - Deniz Cansen Kahraman
- Enformatics Institute, Middle East Technical University, Ankara, 06800, Turkey.,Cansyl Laboratories, Middle East Technical University, Ankara, 06800, Turkey
| | - Özge Saatci
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Özgür Şahin
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.,Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800, Turkey
| | - Rengül Çetin-Atalay
- Enformatics Institute, Middle East Technical University, Ankara, 06800, Turkey.,Cansyl Laboratories, Middle East Technical University, Ankara, 06800, Turkey
| | - Mesut Muyan
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey. .,Cansyl Laboratories, Middle East Technical University, Ankara, 06800, Turkey.
| |
Collapse
|
19
|
CXXC5 Attenuates Pulmonary Fibrosis in a Bleomycin-Induced Mouse Model and MLFs by Suppression of the CD40/CD40L Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7840652. [PMID: 32337277 PMCID: PMC7160725 DOI: 10.1155/2020/7840652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 01/26/2023]
Abstract
Objective To investigate the role of CXXC5 and the CD40/CD40L pathway in lung fibrosis. Methods (1) We constructed mouse models of bleomycin-induced pulmonary fibrosis and transfected them with a CXXC5 overexpression vector to evaluate the severity of pulmonary fibrosis. (2) Mouse lung fibroblast (MLF) models stably overexpressed or knockout of CXXC5 vector were constructed. After transforming growth factor-β1 (TGF-β1) stimulation, we examined the proliferation and apoptosis of the MLF model and evaluated the expression of mesenchymal markers and the CXXC5/CD40/CD40L pathway. Results (1) Compared with other groups, the overexpressed CXXC5 group had less alveolar structure destruction, thinner alveolar septum, and lower Ashcroft score. (2) In bleomycin-induced mice, the expression of CD40 and CD40L increased at both transcriptional and protein levels, and the same changes were observed in α-smooth muscle actin (α-SMA) and collagen type I (Colla I). After upregulation of CXXC5, the increase in CD40, CD40L, α-SMA, and Colla I was attenuated. (3) Stimulated with TGF-β1, MLF proliferation was activated, apoptosis was suppressed, and the expression of CD40, CD40L, α-SMA, and Colla I was increased at both transcriptional and protein levels. After upregulation of CXXC5, these changes were attenuated. Conclusion CXXC5 inhibits pulmonary fibrosis and transformation to myofibroblasts by negative feedback regulation of the CD40/CD40L pathway.
Collapse
|
20
|
Transcriptomic features of tumour-infiltrating CD4 lowCD8 high double positive αβ T cells in melanoma. Sci Rep 2020; 10:5900. [PMID: 32246006 PMCID: PMC7125144 DOI: 10.1038/s41598-020-62664-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/17/2020] [Indexed: 12/17/2022] Open
Abstract
Peripheral CD4+CD8+ double positive (DP) T cells are a phenotypically and functionally heterogeneous population depending on their origin and pathologic context. We previously identified among tumour infiltrating lymphocytes in melanoma, a tumour-reactive MHC class-I restricted CD4lowCD8high DP αβ T-cell subpopulation with CD4-like function. In this study, we used an in-depth comparative transriptomic analysis of intra-melanoma DP T cells and CD4 and CD8 single positive (SP) T cells, to better comprehend the origin of this DP phenotype, and define the transcriptomic signature of activated DP T cells. We observed that intra-melanoma DP T cells were transcriptome-wise closer to their CD8 SP T-cell counterparts in terms of number of genes differentially expressed (97 in common with CD8 SP T cells and 15 with CD4 SP T cells) but presented hallmarks of a transition to a CD4-like functional profile (CD40LG) with a decreased cytotoxic signature (KLRC1) in favour of an increased cytokine-receptor interaction signature (IL4, IL24, IL17A…). This unleashed CD4-like program could be the results of the observed unbalanced expression of the THPOK/Runx3 transcription factors in DP T cells. Overall, this study allow us to speculate that intra-melanoma DP T cells arise from CD8 SP T cells being reprogrammed to a helper function.
Collapse
|
21
|
Liu K, Min J. Structural Basis for the Recognition of Non-methylated DNA by the CXXC Domain. J Mol Biol 2020:S0022-2836(19)30591-1. [DOI: 10.1016/j.jmb.2019.09.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
|
22
|
Joshi HR, Hill HR, Zhou Z, He X, Voelkerding KV, Kumánovics A. Frontline Science: Cxxc5 expression alters cell cycle and myeloid differentiation of mouse hematopoietic stem and progenitor cells. J Leukoc Biol 2020; 108:469-484. [PMID: 32083332 DOI: 10.1002/jlb.1hi0120-169r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 01/28/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
CXXC5 is a member of the CXXC-type zinc finger epigenetic regulators. Various hematopoietic and nonhematopoietic roles have been assigned to CXXC5. In the present study, the role of Cxxc5 in myelopoiesis was studied using overexpression and short hairpin RNA-mediated knockdown in mouse early stem and progenitor cells defined as Lineage- Sca-1+ c-Kit+ (LSK) cells. Knockdown of Cxxc5 in mouse progenitor cells reduced monocyte and increased granulocyte development in ex vivo culture systems. In addition, ex vivo differentiation and proliferation experiments demonstrated that the expression of Cxxc5 affects the cell cycle in stem/progenitor cells and myeloid cells. Flow cytometry-based analyses revealed that down-regulation of Cxxc5 leads to an increase in the percentage of cells in the S phase, whereas overexpression results in a decrease in the percentage of cells in the S phase. Progenitor cells proliferate more after Cxxc5 knockdown, and RNA sequencing of LSK cells, and single-cell RNA sequencing of differentiating myeloid cells showed up-regulation of genes involved in the regulation of cell cycle after Cxxc5 knockdown. These results provide novel insights into the physiologic function of Cxxc5 during hematopoiesis, and demonstrate for the first time that it plays a role in monocyte development.
Collapse
Affiliation(s)
- Hemant R Joshi
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Harry R Hill
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA.,Departments of Medicine and Pediatrics, University of Utah, Salt Lake City, Utah, USA.,ARUP Institute for Clinical and Experimental pathology, ARUP Laboratories, Salt Lake City, Utah, USA
| | - Zemin Zhou
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Xiao He
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Karl V Voelkerding
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA.,ARUP Institute for Clinical and Experimental pathology, ARUP Laboratories, Salt Lake City, Utah, USA
| | - Attila Kumánovics
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA.,ARUP Institute for Clinical and Experimental pathology, ARUP Laboratories, Salt Lake City, Utah, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
23
|
Ma L, Wang X, Liu H, Jiang C, Liao H, Xu S, Guo Y, Cao Z. CXXC5 Mediates P. gingivalis-suppressed Cementoblast Functions Partially via MAPK Signaling Network. Int J Biol Sci 2019; 15:1685-1695. [PMID: 31360111 PMCID: PMC6643218 DOI: 10.7150/ijbs.35419] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/19/2019] [Indexed: 01/18/2023] Open
Abstract
Porphyromonas (P.) gingivalis associates tightly with periodontal diseases and it is also a dominant pathogen of periapical periodontitis. However, the influence of P. gingivalis on cementoblasts, root surface cells pivotal in the apical areas, and the possible involvement of other molecules remain largely elusive. CXXC5 is a nuclear protein that regulates gene expression as well as cell growth, differentiation, and apoptosis. In this study, P. gingivalis repressed the mineralization capacity of cementoblasts by inducing inflammatory reactions and inhibiting cell differentiation. Intriguingly, the expression of CXXC5 decreased in P. gingivalis-treated OCCM-30 cells and apical periodontitis models but gradually increased during mineralization. Furthermore, RNA interference of CXXC5 significantly inhibited cementoblast differentiation, represented by decline of bone-associated markers Osterix, osteocalcin (OCN), and alkaline phosphatase (ALP). CXXC5 overexpression facilitated differentiation, and therefore attenuated the P. gingivalis-repressed effects on OCCM-30 cells. In addition, Erk1/2, p38, and PI3K-Akt were inactivated by silencing CXXC5 and activated upon its overexpression, whereas Wnt/β-catenin exhibited an opposite trend. The employment of specific inhibitors revealed that the CXXC5-dependent promotions of cementoblast differentiation were partially abrogated by p38 and PI3K-Akt inhibitors but were exacerbated by inhibiting Erk1/2. Overall, our experiment demonstrated a novel function of CXXC5 in the regeneration of impaired cementum caused by P. gingivalis invasion and suggested that MAPK signaling network balances the facilitation effects of CXXC5 in cementoblast differentiation.
Collapse
Affiliation(s)
- Li Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaoxuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huan Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chenxi Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Haiqing Liao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shihan Xu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yi Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Zeidan N, Damen H, Roy DC, Dave VP. Critical Role for TCR Signal Strength and MHC Specificity in ThPOK-Induced CD4 Helper Lineage Choice. THE JOURNAL OF IMMUNOLOGY 2019; 202:3211-3225. [PMID: 31036767 DOI: 10.4049/jimmunol.1801464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/26/2019] [Indexed: 01/08/2023]
Abstract
Sustained TCR signaling is critical for ThPOK induction in MHC class II (MHCII)-signaled thymocytes leading to the CD4 helper lineage commitment. ThPOK suppresses the cytotoxic program in the signaled thymocytes and is shown to be necessary and sufficient for the CD4 helper lineage choice. Accordingly, loss and gain of ThPOK function redirects MHCII- and MHC class I (MHCI)-signaled thymocytes into the CD8 cytotoxic and CD4 helper lineage, respectively. However, the impact of a defined ThPOK level on the CD4 helper lineage choice of MHCII- and MHCI-specific thymocytes and the role of TCR signaling in this process is not evaluated. Equally, it is not clear if suppression of the cytotoxic program by ThPOK is sufficient in redirecting MHCI-restricted thymocytes into the CD4 helper lineage. In this study, we have investigated CD8 to CD4 helper lineage redirection in three independent ThPOK overexpressing transgenic mouse lines. Our analysis shows that one of the transgenic lines, despite overexpressing ThPOK compared with wild-type CD4 mature T cells and compromising cytotoxic program, failed to redirect all MHCI-signaled thymocytes into the CD4 helper lineage, resulting in the continued presence of CD8+ mature T cells and the generation of a large number of double negative mature T cells. Critically, the same ThPOK transgene completely restored the CD4 helper lineage commitment of MHCII-specific Thpok -/- thymocytes. Importantly, augmenting TCR signaling significantly enhanced the ThPOK-mediated CD4 helper lineage choice of MHCI-specific thymocytes but was still substantially less efficient than that of MHCII-specific thymocytes expressing the same amount of ThPOK. Together, these data suggest that the ThPOK-induced CD4 helper lineage commitment is strongly influenced by TCR signal strength and MHC specificity of developing thymocytes.
Collapse
Affiliation(s)
- Nabil Zeidan
- Département d'Immunologie-Oncologie, Centre de Recherche Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Immunologie et Infectiologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada; and
| | - Hassan Damen
- Département d'Immunologie-Oncologie, Centre de Recherche Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada
| | - Denis-Claude Roy
- Département d'Immunologie-Oncologie, Centre de Recherche Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada.,Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Vibhuti P Dave
- Département d'Immunologie-Oncologie, Centre de Recherche Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada; .,Département de Microbiologie, Immunologie et Infectiologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada; and
| |
Collapse
|
25
|
Xiong X, Tu S, Wang J, Luo S, Yan X. CXXC5: A novel regulator and coordinator of TGF-β, BMP and Wnt signaling. J Cell Mol Med 2018; 23:740-749. [PMID: 30479059 PMCID: PMC6349197 DOI: 10.1111/jcmm.14046] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022] Open
Abstract
CXXC5 is a member of the CXXC-type zinc-finger protein family. Proteins in this family play a pivotal role in epigenetic regulation by binding to unmethylated CpG islands in gene promoters through their characteristic CXXC domain. CXXC5 is a short protein (322 amino acids in length) that does not have any catalytic domain, but is able to bind to DNA and act as a transcription factor and epigenetic factor through protein-protein interactions. Intriguingly, increasing evidence indicates that expression of the CXXC5 gene is controlled by multiple signaling pathways and a variety of transcription factors, positioning CXXC5 as an important signal integrator. In addition, CXXC5 is capable of regulating various signal transduction processes, including the TGF-β, Wnt and ATM-p53 pathways, thereby acting as a novel and crucial signaling coordinator. CXXC5 plays an important role in embryonic development and adult tissue homeostasis by regulating cell proliferation, differentiation and apoptosis. In keeping with these functions, aberrant expression or altered activity of CXXC5 has been shown to be involved in several human diseases including tumourigenesis. This review summarizes the current understanding of CXXC5 as a transcription factor and signaling regulator and coordinator.
Collapse
Affiliation(s)
- Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Shuo Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Jianbin Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
26
|
Yan X, Wu J, Jiang Q, Cheng H, Han JDJ, Chen YG. CXXC5 suppresses hepatocellular carcinoma by promoting TGF-β-induced cell cycle arrest and apoptosis. J Mol Cell Biol 2017; 10:48-59. [DOI: 10.1093/jmcb/mjx042] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 09/18/2017] [Indexed: 12/18/2022] Open
Affiliation(s)
- Xiaohua Yan
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Jingyi Wu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Quanlong Jiang
- Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hao Cheng
- Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing-Dong J Han
- Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
27
|
Kim D, Garza LA. The Negative Regulator CXXC5: Making WNT Look a Little Less Dishevelled. J Invest Dermatol 2017; 137:2248-2250. [PMID: 28967390 DOI: 10.1016/j.jid.2017.07.826] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 11/19/2022]
Abstract
Wingless-related integration site (WNT)/β-catenin signaling regulates diverse physiological functions including tissue regeneration. Activation of WNT signaling can be inhibited by various agents. Lee et al. investigate the interaction of CXXC-type zinc finger protein 5 (CXXC5) with Dishevelled as one such negative regulator of WNT in hair follicle regeneration.
Collapse
Affiliation(s)
- Dongwon Kim
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Luis A Garza
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
28
|
Vacchio MS, Bosselut R. What Happens in the Thymus Does Not Stay in the Thymus: How T Cells Recycle the CD4+-CD8+ Lineage Commitment Transcriptional Circuitry To Control Their Function. THE JOURNAL OF IMMUNOLOGY 2017; 196:4848-56. [PMID: 27260768 DOI: 10.4049/jimmunol.1600415] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/06/2016] [Indexed: 12/24/2022]
Abstract
MHC-restricted CD4(+) and CD8(+) T cells are at the core of most adaptive immune responses. Although these cells carry distinct functions, they arise from a common precursor during thymic differentiation, in a developmental sequence that matches CD4 and CD8 expression and functional potential with MHC restriction. Although the transcriptional control of CD4(+)-CD8(+) lineage choice in the thymus is now better understood, less was known about what maintains the CD4(+) and CD8(+) lineage integrity of mature T cells. In this review, we discuss the mechanisms that establish in the thymus, and maintain in postthymic cells, the separation of these lineages. We focus on recent studies that address the mechanisms of epigenetic control of Cd4 expression and emphasize how maintaining a transcriptional circuitry nucleated around Thpok and Runx proteins, the key architects of CD4(+)-CD8(+) lineage commitment in the thymus, is critical for CD4(+) T cell helper functions.
Collapse
Affiliation(s)
- Melanie S Vacchio
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
29
|
Ma S, Wan X, Deng Z, Shi L, Hao C, Zhou Z, Zhou C, Fang Y, Liu J, Yang J, Chen X, Li T, Zang A, Yin S, Li B, Plumas J, Chaperot L, Zhang X, Xu G, Jiang L, Shen N, Xiong S, Gao X, Zhang Y, Xiao H. Epigenetic regulator CXXC5 recruits DNA demethylase Tet2 to regulate TLR7/9-elicited IFN response in pDCs. J Exp Med 2017; 214:1471-1491. [PMID: 28416650 PMCID: PMC5413332 DOI: 10.1084/jem.20161149] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 01/20/2017] [Accepted: 03/03/2017] [Indexed: 12/14/2022] Open
Abstract
Ma and colleagues identify CXXC5 as an epigenetic regulator required for maintaining the hypomethylation of a subset of CGIs, thereby promoting the expression of transcriptional factors such as IRF7 in pDCs to enable robust IFN response to viral infection. TLR7/9 signals are capable of mounting massive interferon (IFN) response in plasmacytoid dendritic cells (pDCs) immediately after viral infection, yet the involvement of epigenetic regulation in this process has not been documented. Here, we report that zinc finger CXXC family epigenetic regulator CXXC5 is highly expressed in pDCs, where it plays a crucial role in TLR7/9- and virus-induced IFN response. Notably, genetic ablation of CXXC5 resulted in aberrant methylation of the CpG-containing island (CGI) within the Irf7 gene and impaired IRF7 expression in steady-state pDCs. Mechanistically, CXXC5 is responsible for the recruitment of DNA demethylase Tet2 to maintain the hypomethylation of a subset of CGIs, a process coincident with active histone modifications and constitutive transcription of these CGI-containing genes. Consequently, CXXC5-deficient mice had compromised early IFN response and became highly vulnerable to infection by herpes simplex virus and vesicular stomatitis virus. Together, our results identify CXXC5 as a novel epigenetic regulator for pDC-mediated antiviral response.
Collapse
Affiliation(s)
- Shixin Ma
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Institute of Biology and Medical Sciences, Soochow University, Soochow, Jiangsu 215006, China
| | - Xiaoling Wan
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zihou Deng
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Shi
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Congfang Hao
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhenyuan Zhou
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Chun Zhou
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yiyuan Fang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jinghua Liu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Yang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xia Chen
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tiantian Li
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Aiping Zang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shigang Yin
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Li
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Joel Plumas
- Institute for Advanced Biosciences (IAB), Team Immunobiology and Immunotherapy in Chronic Diseases, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique UMR5309, Université Grenoble Alpes, Etablissement Français du Sang-Rhone-Alpes, F-38700 Grenoble, France
| | - Laurence Chaperot
- Institute for Advanced Biosciences (IAB), Team Immunobiology and Immunotherapy in Chronic Diseases, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique UMR5309, Université Grenoble Alpes, Etablissement Français du Sang-Rhone-Alpes, F-38700 Grenoble, France
| | - Xiaoming Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guoliang Xu
- State Key Laboratory of Molecular Biology, CAS Excellence Center in Molecular Cell Sciences, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lubin Jiang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Sidong Xiong
- Institute of Biology and Medical Sciences, Soochow University, Soochow, Jiangsu 215006, China
| | - Xiaoming Gao
- Institute of Biology and Medical Sciences, Soochow University, Soochow, Jiangsu 215006, China
| | - Yan Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Xiao
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai; CAS Center for Excellence in Molecular Cell Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
30
|
Estradiol-Estrogen Receptor α Mediates the Expression of the CXXC5 Gene through the Estrogen Response Element-Dependent Signaling Pathway. Sci Rep 2016; 6:37808. [PMID: 27886276 PMCID: PMC5122896 DOI: 10.1038/srep37808] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022] Open
Abstract
17β-estradiol (E2), the primary circulating estrogen hormone, mediates physiological and pathophysiological functions of breast tissue mainly through estrogen receptor α (ERα). Upon binding to E2, ERα modulates the expression of target genes involved in the regulation of cellular proliferation primarily through interactions with specific DNA sequences, estrogen response elements (EREs). Our previous microarray results suggested that E2-ERα modulates CXXC5 expression. Because of the presence of a zinc-finger CXXC domain (ZF-CXXC), CXXC5 is considered to be a member of the ZF-CXXC family, which binds to non-methylated CpG dinucleotides. Although studies are limited, CXXC5 appears to participate as a transcription factor, co-regulator and/or epigenetic factor in the regulation of cellular events induced by various signaling pathways. However, how signaling pathways mediate the expression of CXXC5 is yet unclear. Due to the importance of E2-ERα signaling in breast tissue, changes in the CXXC5 transcription/synthesis could participate in E2-mediated cellular events as well. To address these issues, we initially examined the mechanism whereby E2-ERα regulates CXXC5 expression. We show here that CXXC5 is an E2-ERα responsive gene regulated by the interaction of E2-ERα with an ERE present at a region upstream of the initial translation codon of the gene.
Collapse
|